Next: Calendar Time, Previous: Calculating Elapsed Time, Up: Date and Time [Contents][Index]
If you’re trying to optimize your program or measure its efficiency, it’s very useful to know how much processor time it uses. For that, calendar time and elapsed times are useless because a process may spend time waiting for I/O or for other processes to use the CPU. However, you can get the information with the functions in this section.
CPU time (see Time Basics) is represented by the data type
clock_t
, which is a number of clock ticks. It gives the
total amount of time a process has actively used a CPU since some
arbitrary event. On GNU systems, that event is the creation of the
process. While arbitrary in general, the event is always the same event
for any particular process, so you can always measure how much time on
the CPU a particular computation takes by examining the process’ CPU
time before and after the computation.
On GNU/Linux and GNU/Hurd systems, clock_t
is equivalent to long int
and
CLOCKS_PER_SEC
is an integer value. But in other systems, both
clock_t
and the macro CLOCKS_PER_SEC
can be either integer
or floating-point types. Casting CPU time values to double
, as
in the example above, makes sure that operations such as arithmetic and
printing work properly and consistently no matter what the underlying
representation is.
Note that the clock can wrap around. On a 32bit system with
CLOCKS_PER_SEC
set to one million this function will return the
same value approximately every 72 minutes.
For additional functions to examine a process’ use of processor time, and to control it, see Resource Usage And Limitation.
Next: Calendar Time, Previous: Calculating Elapsed Time, Up: Date and Time [Contents][Index]