
GNU Emacs Lisp Reference Manual
Volume 2

For Emacs Version 24.1
Revision 3.1, May 2012

by Bil Lewis, Dan LaLiberte, Richard Stallman,
the GNU Manual Group, et al.

This is edition 3.1 of the GNU Emacs Lisp Reference Manual,
corresponding to Emacs version 24.1.

Copyright c© 1990-1996, 1998-2012 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “GNU General Public License,” with the Front-Cover texts being “A
GNU Manual,” and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

Published by the Free Software Foundation
51 Franklin St, Fifth Floor
Boston, MA 02110-1301
USA
ISBN 1-882114-74-4

Cover art by Etienne Suvasa.

i

Short Contents

Volume 1

1 Introduction . I:1

2 Lisp Data Types . I:8

3 Numbers . I:33

4 Strings and Characters . I:48

5 Lists . I:64

6 Sequences, Arrays, and Vectors . I:86

7 Hash Tables . I:97

8 Symbols . I:102

9 Evaluation . I:110

10 Control Structures . I:120

11 Variables . I:137

12 Functions . I:163

13 Macros . I:181
14 Customization Settings . I:190

15 Loading . I:209

16 Byte Compilation . I:223

17 Advising Emacs Lisp Functions . I:233

18 Debugging Lisp Programs . I:243

19 Reading and Printing Lisp Objects . I:274

20 Minibuffers . I:284

21 Command Loop . I:315

22 Keymaps . I:360

23 Major and Minor Modes . I:396

24 Documentation . I:451

25 Files . I:461
26 Backups and Auto-Saving . I:502

Index . I:512

ii

Volume 2

27 Buffers . 1

28 Windows . 18

29 Frames . 66

30 Positions . 99

31 Markers . 112

32 Text . 122

33 Non-ASCII Characters . 182

34 Searching and Matching . 209

35 Syntax Tables . 234

36 Abbrevs and Abbrev Expansion . 250
37 Processes . 257

38 Emacs Display . 299
39 Operating System Interface . 386

40 Preparing Lisp code for distribution . 418

A Emacs 23 Antinews . 423

B GNU Free Documentation License . 425

C GNU General Public License . 433

D Tips and Conventions . 444

E GNU Emacs Internals . 457

F Standard Errors . 477

G Standard Keymaps . 481

H Standard Hooks . 484

Index . 488

iii

Table of Contents

Volume 1

1 Introduction . I:1
1.1 Caveats . I:1
1.2 Lisp History . I:1
1.3 Conventions . I:2

1.3.1 Some Terms . I:2
1.3.2 nil and t . I:2
1.3.3 Evaluation Notation . I:3
1.3.4 Printing Notation . I:3
1.3.5 Error Messages . I:3
1.3.6 Buffer Text Notation . I:4
1.3.7 Format of Descriptions . I:4

1.3.7.1 A Sample Function Description . I:4
1.3.7.2 A Sample Variable Description . I:6

1.4 Version Information . I:6
1.5 Acknowledgements . I:7

2 Lisp Data Types . I:8
2.1 Printed Representation and Read Syntax . I:8
2.2 Comments . I:9
2.3 Programming Types . I:9

2.3.1 Integer Type . I:9
2.3.2 Floating Point Type . I:10
2.3.3 Character Type . I:10

2.3.3.1 Basic Char Syntax . I:10
2.3.3.2 General Escape Syntax . I:11
2.3.3.3 Control-Character Syntax . I:12
2.3.3.4 Meta-Character Syntax . I:12
2.3.3.5 Other Character Modifier Bits . I:13

2.3.4 Symbol Type . I:13
2.3.5 Sequence Types . I:14
2.3.6 Cons Cell and List Types . I:14

2.3.6.1 Drawing Lists as Box Diagrams . I:15
2.3.6.2 Dotted Pair Notation . I:17
2.3.6.3 Association List Type . I:17

2.3.7 Array Type . I:18
2.3.8 String Type . I:18

2.3.8.1 Syntax for Strings . I:18
2.3.8.2 Non-ASCII Characters in Strings I:19
2.3.8.3 Nonprinting Characters in Strings I:19
2.3.8.4 Text Properties in Strings . I:20

iv

2.3.9 Vector Type . I:20
2.3.10 Char-Table Type . I:20
2.3.11 Bool-Vector Type . I:21
2.3.12 Hash Table Type . I:21
2.3.13 Function Type . I:21
2.3.14 Macro Type . I:22
2.3.15 Primitive Function Type . I:22
2.3.16 Byte-Code Function Type . I:22
2.3.17 Autoload Type . I:23

2.4 Editing Types . I:23
2.4.1 Buffer Type . I:23
2.4.2 Marker Type . I:24
2.4.3 Window Type . I:24
2.4.4 Frame Type . I:25
2.4.5 Terminal Type . I:25
2.4.6 Window Configuration Type . I:25
2.4.7 Frame Configuration Type . I:25
2.4.8 Process Type . I:25
2.4.9 Stream Type . I:26
2.4.10 Keymap Type . I:26
2.4.11 Overlay Type . I:26
2.4.12 Font Type . I:26

2.5 Read Syntax for Circular Objects . I:26
2.6 Type Predicates . I:27
2.7 Equality Predicates . I:30

3 Numbers . I:33
3.1 Integer Basics . I:33
3.2 Floating Point Basics . I:34
3.3 Type Predicates for Numbers . I:35
3.4 Comparison of Numbers . I:36
3.5 Numeric Conversions . I:38
3.6 Arithmetic Operations . I:39
3.7 Rounding Operations . I:42
3.8 Bitwise Operations on Integers . I:42
3.9 Standard Mathematical Functions . I:46
3.10 Random Numbers . I:47

4 Strings and Characters . I:48
4.1 String and Character Basics . I:48
4.2 The Predicates for Strings . I:49
4.3 Creating Strings . I:49
4.4 Modifying Strings . I:52
4.5 Comparison of Characters and Strings . I:53
4.6 Conversion of Characters and Strings . I:55
4.7 Formatting Strings . I:57
4.8 Case Conversion in Lisp . I:59
4.9 The Case Table . I:61

v

5 Lists . I:64
5.1 Lists and Cons Cells . I:64
5.2 Predicates on Lists . I:64
5.3 Accessing Elements of Lists . I:65
5.4 Building Cons Cells and Lists . I:68
5.5 Modifying List Variables . I:71
5.6 Modifying Existing List Structure . I:73

5.6.1 Altering List Elements with setcar . I:73
5.6.2 Altering the CDR of a List . I:75
5.6.3 Functions that Rearrange Lists . I:76

5.7 Using Lists as Sets . I:78
5.8 Association Lists . I:82

6 Sequences, Arrays, and Vectors I:86
6.1 Sequences . I:86
6.2 Arrays . I:88
6.3 Functions that Operate on Arrays . I:89
6.4 Vectors . I:90
6.5 Functions for Vectors . I:91
6.6 Char-Tables . I:92
6.7 Bool-vectors . I:94
6.8 Managing a Fixed-Size Ring of Objects . I:95

7 Hash Tables . I:97
7.1 Creating Hash Tables . I:97
7.2 Hash Table Access . I:99
7.3 Defining Hash Comparisons . I:100
7.4 Other Hash Table Functions . I:101

8 Symbols . I:102
8.1 Symbol Components . I:102
8.2 Defining Symbols . I:103
8.3 Creating and Interning Symbols . I:104
8.4 Property Lists . I:106

8.4.1 Property Lists and Association Lists I:107
8.4.2 Property List Functions for Symbols I:107
8.4.3 Property Lists Outside Symbols . I:108

vi

9 Evaluation . I:110
9.1 Kinds of Forms . I:111

9.1.1 Self-Evaluating Forms . I:111
9.1.2 Symbol Forms . I:111
9.1.3 Classification of List Forms . I:112
9.1.4 Symbol Function Indirection . I:112
9.1.5 Evaluation of Function Forms . I:113
9.1.6 Lisp Macro Evaluation . I:114
9.1.7 Special Forms . I:114
9.1.8 Autoloading . I:116

9.2 Quoting . I:116
9.3 Backquote . I:116
9.4 Eval . I:117

10 Control Structures . I:120
10.1 Sequencing . I:120
10.2 Conditionals . I:121
10.3 Constructs for Combining Conditions . I:123
10.4 Iteration . I:124
10.5 Nonlocal Exits . I:126

10.5.1 Explicit Nonlocal Exits: catch and throw I:126
10.5.2 Examples of catch and throw . I:127
10.5.3 Errors . I:128

10.5.3.1 How to Signal an Error . I:128
10.5.3.2 How Emacs Processes Errors . I:130
10.5.3.3 Writing Code to Handle Errors I:130
10.5.3.4 Error Symbols and Condition Names I:134

10.5.4 Cleaning Up from Nonlocal Exits . I:135

11 Variables . I:137
11.1 Global Variables . I:137
11.2 Variables that Never Change . I:137
11.3 Local Variables . I:138
11.4 When a Variable is “Void” . I:140
11.5 Defining Global Variables . I:141
11.6 Tips for Defining Variables Robustly . I:142
11.7 Accessing Variable Values . I:144
11.8 Setting Variable Values . I:145
11.9 Scoping Rules for Variable Bindings . I:146

11.9.1 Dynamic Binding . I:146
11.9.2 Proper Use of Dynamic Binding . I:147
11.9.3 Lexical Binding . I:148
11.9.4 Using Lexical Binding . I:149

11.10 Buffer-Local Variables . I:150
11.10.1 Introduction to Buffer-Local Variables I:150
11.10.2 Creating and Deleting Buffer-Local Bindings I:152
11.10.3 The Default Value of a Buffer-Local Variable I:155

vii

11.11 File Local Variables . I:156
11.12 Directory Local Variables . I:159
11.13 Variable Aliases . I:160
11.14 Variables with Restricted Values . I:162

12 Functions . I:163
12.1 What Is a Function? . I:163
12.2 Lambda Expressions . I:165

12.2.1 Components of a Lambda Expression I:165
12.2.2 A Simple Lambda Expression Example I:165
12.2.3 Other Features of Argument Lists . I:166
12.2.4 Documentation Strings of Functions I:167

12.3 Naming a Function . I:168
12.4 Defining Functions . I:169
12.5 Calling Functions . I:170
12.6 Mapping Functions . I:172
12.7 Anonymous Functions . I:174
12.8 Accessing Function Cell Contents . I:175
12.9 Closures . I:176
12.10 Declaring Functions Obsolete . I:177
12.11 Inline Functions . I:177
12.12 Telling the Compiler that a Function is Defined I:178
12.13 Determining whether a Function is Safe to Call I:179
12.14 Other Topics Related to Functions . I:180

13 Macros . I:181
13.1 A Simple Example of a Macro . I:181
13.2 Expansion of a Macro Call . I:181
13.3 Macros and Byte Compilation . I:182
13.4 Defining Macros . I:183
13.5 Common Problems Using Macros . I:184

13.5.1 Wrong Time . I:184
13.5.2 Evaluating Macro Arguments Repeatedly I:185
13.5.3 Local Variables in Macro Expansions I:186
13.5.4 Evaluating Macro Arguments in Expansion I:187
13.5.5 How Many Times is the Macro Expanded? I:187

13.6 Indenting Macros . I:188

viii

14 Customization Settings I:190
14.1 Common Item Keywords . I:190
14.2 Defining Customization Groups . I:192
14.3 Defining Customization Variables . I:193
14.4 Customization Types . I:196

14.4.1 Simple Types . I:197
14.4.2 Composite Types . I:198
14.4.3 Splicing into Lists . I:202
14.4.4 Type Keywords . I:203
14.4.5 Defining New Types . I:204

14.5 Applying Customizations . I:206
14.6 Custom Themes . I:206

15 Loading . I:209
15.1 How Programs Do Loading . I:209
15.2 Load Suffixes . I:211
15.3 Library Search . I:211
15.4 Loading Non-ASCII Characters . I:213
15.5 Autoload . I:213
15.6 Repeated Loading . I:216
15.7 Features . I:217
15.8 Which File Defined a Certain Symbol . I:219
15.9 Unloading . I:220
15.10 Hooks for Loading . I:221

16 Byte Compilation . I:223
16.1 Performance of Byte-Compiled Code . I:223
16.2 Byte-Compilation Functions . I:223
16.3 Documentation Strings and Compilation I:226
16.4 Dynamic Loading of Individual Functions I:226
16.5 Evaluation During Compilation . I:227
16.6 Compiler Errors . I:228
16.7 Byte-Code Function Objects . I:229
16.8 Disassembled Byte-Code . I:230

17 Advising Emacs Lisp Functions I:233
17.1 A Simple Advice Example . I:233
17.2 Defining Advice . I:234
17.3 Around-Advice . I:236
17.4 Computed Advice . I:237
17.5 Activation of Advice . I:237
17.6 Enabling and Disabling Advice . I:239
17.7 Preactivation . I:240
17.8 Argument Access in Advice . I:240
17.9 The Combined Definition . I:242

ix

18 Debugging Lisp Programs I:243
18.1 The Lisp Debugger . I:243

18.1.1 Entering the Debugger on an Error I:243
18.1.2 Debugging Infinite Loops . I:245
18.1.3 Entering the Debugger on a Function Call I:245
18.1.4 Explicit Entry to the Debugger . I:246
18.1.5 Using the Debugger . I:246
18.1.6 Debugger Commands . I:247
18.1.7 Invoking the Debugger . I:248
18.1.8 Internals of the Debugger . I:249

18.2 Edebug . I:251
18.2.1 Using Edebug . I:252
18.2.2 Instrumenting for Edebug . I:253
18.2.3 Edebug Execution Modes . I:253
18.2.4 Jumping . I:255
18.2.5 Miscellaneous Edebug Commands . I:255
18.2.6 Breaks . I:256

18.2.6.1 Edebug Breakpoints . I:256
18.2.6.2 Global Break Condition . I:257
18.2.6.3 Source Breakpoints . I:257

18.2.7 Trapping Errors . I:258
18.2.8 Edebug Views . I:258
18.2.9 Evaluation . I:259
18.2.10 Evaluation List Buffer . I:259
18.2.11 Printing in Edebug . I:260
18.2.12 Trace Buffer . I:261
18.2.13 Coverage Testing . I:262
18.2.14 The Outside Context . I:263

18.2.14.1 Checking Whether to Stop . I:263
18.2.14.2 Edebug Display Update . I:263
18.2.14.3 Edebug Recursive Edit . I:264

18.2.15 Edebug and Macros . I:264
18.2.15.1 Instrumenting Macro Calls . I:264
18.2.15.2 Specification List . I:265
18.2.15.3 Backtracking in Specifications I:268
18.2.15.4 Specification Examples . I:269

18.2.16 Edebug Options . I:269
18.3 Debugging Invalid Lisp Syntax . I:271

18.3.1 Excess Open Parentheses . I:272
18.3.2 Excess Close Parentheses . I:272

18.4 Test Coverage . I:272

x

19 Reading and Printing Lisp Objects I:274
19.1 Introduction to Reading and Printing . I:274
19.2 Input Streams . I:274
19.3 Input Functions . I:276
19.4 Output Streams . I:277
19.5 Output Functions . I:279
19.6 Variables Affecting Output . I:282

20 Minibuffers . I:284
20.1 Introduction to Minibuffers . I:284
20.2 Reading Text Strings with the Minibuffer I:285
20.3 Reading Lisp Objects with the Minibuffer I:288
20.4 Minibuffer History . I:289
20.5 Initial Input . I:291
20.6 Completion . I:291

20.6.1 Basic Completion Functions . I:291
20.6.2 Completion and the Minibuffer . I:294
20.6.3 Minibuffer Commands that Do Completion I:296
20.6.4 High-Level Completion Functions . I:298
20.6.5 Reading File Names . I:300
20.6.6 Completion Variables . I:303
20.6.7 Programmed Completion . I:305
20.6.8 Completion in Ordinary Buffers . I:306

20.7 Yes-or-No Queries . I:307
20.8 Asking Multiple Y-or-N Questions . I:309
20.9 Reading a Password . I:310
20.10 Minibuffer Commands . I:311
20.11 Minibuffer Windows . I:311
20.12 Minibuffer Contents . I:312
20.13 Recursive Minibuffers . I:313
20.14 Minibuffer Miscellany . I:313

21 Command Loop . I:315
21.1 Command Loop Overview . I:315
21.2 Defining Commands . I:316

21.2.1 Using interactive . I:316
21.2.2 Code Characters for interactive . I:318
21.2.3 Examples of Using interactive . I:321

21.3 Interactive Call . I:321
21.4 Distinguish Interactive Calls . I:323
21.5 Information from the Command Loop . I:324
21.6 Adjusting Point After Commands . I:326
21.7 Input Events . I:327

21.7.1 Keyboard Events . I:327
21.7.2 Function Keys . I:328
21.7.3 Mouse Events . I:329
21.7.4 Click Events . I:329

xi

21.7.5 Drag Events . I:332
21.7.6 Button-Down Events . I:332
21.7.7 Repeat Events . I:332
21.7.8 Motion Events . I:334
21.7.9 Focus Events . I:334
21.7.10 Miscellaneous System Events . I:334
21.7.11 Event Examples . I:336
21.7.12 Classifying Events . I:336
21.7.13 Accessing Mouse Events . I:338
21.7.14 Accessing Scroll Bar Events . I:340
21.7.15 Putting Keyboard Events in Strings I:341

21.8 Reading Input . I:342
21.8.1 Key Sequence Input . I:342
21.8.2 Reading One Event . I:344
21.8.3 Modifying and Translating Input Events I:346
21.8.4 Invoking the Input Method . I:347
21.8.5 Quoted Character Input . I:348
21.8.6 Miscellaneous Event Input Features I:348

21.9 Special Events . I:350
21.10 Waiting for Elapsed Time or Input . I:350
21.11 Quitting . I:351
21.12 Prefix Command Arguments . I:353
21.13 Recursive Editing . I:355
21.14 Disabling Commands . I:356
21.15 Command History . I:357
21.16 Keyboard Macros . I:358

22 Keymaps . I:360
22.1 Key Sequences . I:360
22.2 Keymap Basics . I:361
22.3 Format of Keymaps . I:361
22.4 Creating Keymaps . I:363
22.5 Inheritance and Keymaps . I:364
22.6 Prefix Keys . I:365
22.7 Active Keymaps . I:367
22.8 Searching the Active Keymaps . I:368
22.9 Controlling the Active Keymaps . I:369
22.10 Key Lookup . I:371
22.11 Functions for Key Lookup . I:373
22.12 Changing Key Bindings . I:375
22.13 Remapping Commands . I:378
22.14 Keymaps for Translating Sequences of Events I:378
22.15 Commands for Binding Keys . I:380
22.16 Scanning Keymaps . I:381
22.17 Menu Keymaps . I:384

22.17.1 Defining Menus . I:384
22.17.1.1 Simple Menu Items . I:384
22.17.1.2 Extended Menu Items . I:385

xii

22.17.1.3 Menu Separators . I:387
22.17.1.4 Alias Menu Items . I:388
22.17.1.5 Toolkit Differences . I:389

22.17.2 Menus and the Mouse . I:389
22.17.3 Menus and the Keyboard . I:389
22.17.4 Menu Example . I:390
22.17.5 The Menu Bar . I:391
22.17.6 Tool bars . I:392
22.17.7 Modifying Menus . I:395

23 Major and Minor Modes I:396
23.1 Hooks . I:396

23.1.1 Running Hooks . I:396
23.1.2 Setting Hooks . I:398

23.2 Major Modes . I:399
23.2.1 Major Mode Conventions . I:399
23.2.2 How Emacs Chooses a Major Mode I:403
23.2.3 Getting Help about a Major Mode . I:405
23.2.4 Defining Derived Modes . I:405
23.2.5 Basic Major Modes . I:407
23.2.6 Mode Hooks . I:408
23.2.7 Tabulated List mode . I:409
23.2.8 Generic Modes . I:411
23.2.9 Major Mode Examples . I:411

23.3 Minor Modes . I:413
23.3.1 Conventions for Writing Minor Modes I:414
23.3.2 Keymaps and Minor Modes . I:415
23.3.3 Defining Minor Modes . I:416

23.4 Mode Line Format . I:419
23.4.1 Mode Line Basics . I:419
23.4.2 The Data Structure of the Mode Line I:419
23.4.3 The Top Level of Mode Line Control I:421
23.4.4 Variables Used in the Mode Line . I:422
23.4.5 %-Constructs in the Mode Line . I:424
23.4.6 Properties in the Mode Line . I:425
23.4.7 Window Header Lines . I:426
23.4.8 Emulating Mode Line Formatting . I:426

23.5 Imenu . I:427
23.6 Font Lock Mode . I:429

23.6.1 Font Lock Basics . I:429
23.6.2 Search-based Fontification . I:430
23.6.3 Customizing Search-Based Fontification I:434
23.6.4 Other Font Lock Variables . I:435
23.6.5 Levels of Font Lock . I:436
23.6.6 Precalculated Fontification . I:436
23.6.7 Faces for Font Lock . I:436
23.6.8 Syntactic Font Lock . I:437
23.6.9 Multiline Font Lock Constructs . I:438

xiii

23.6.9.1 Font Lock Multiline . I:439
23.6.9.2 Region to Fontify after a Buffer Change I:440

23.7 Automatic Indentation of code . I:440
23.7.1 Simple Minded Indentation Engine . I:441

23.7.1.1 SMIE Setup and Features . I:441
23.7.1.2 Operator Precedence Grammars I:442
23.7.1.3 Defining the Grammar of a Language I:443
23.7.1.4 Defining Tokens . I:444
23.7.1.5 Living With a Weak Parser . I:445
23.7.1.6 Specifying Indentation Rules . I:446
23.7.1.7 Helper Functions for Indentation Rules I:447
23.7.1.8 Sample Indentation Rules . I:448

23.8 Desktop Save Mode . I:449

24 Documentation . I:451
24.1 Documentation Basics . I:451
24.2 Access to Documentation Strings . I:452
24.3 Substituting Key Bindings in Documentation I:454
24.4 Describing Characters for Help Messages I:456
24.5 Help Functions . I:457

25 Files . I:461
25.1 Visiting Files . I:461

25.1.1 Functions for Visiting Files . I:461
25.1.2 Subroutines of Visiting . I:464

25.2 Saving Buffers . I:465
25.3 Reading from Files . I:467
25.4 Writing to Files . I:468
25.5 File Locks . I:470
25.6 Information about Files . I:471

25.6.1 Testing Accessibility . I:471
25.6.2 Distinguishing Kinds of Files . I:473
25.6.3 Truenames . I:474
25.6.4 Other Information about Files . I:475
25.6.5 How to Locate Files in Standard Places I:478

25.7 Changing File Names and Attributes . I:479
25.8 File Names . I:482

25.8.1 File Name Components . I:482
25.8.2 Absolute and Relative File Names . I:484
25.8.3 Directory Names . I:485
25.8.4 Functions that Expand Filenames . I:486
25.8.5 Generating Unique File Names . I:488
25.8.6 File Name Completion . I:489
25.8.7 Standard File Names . I:490

25.9 Contents of Directories . I:491
25.10 Creating, Copying and Deleting Directories I:493
25.11 Making Certain File Names “Magic” . I:493
25.12 File Format Conversion . I:497

xiv

25.12.1 Overview . I:497
25.12.2 Round-Trip Specification . I:498
25.12.3 Piecemeal Specification . I:500

26 Backups and Auto-Saving I:502
26.1 Backup Files . I:502

26.1.1 Making Backup Files . I:502
26.1.2 Backup by Renaming or by Copying? I:504
26.1.3 Making and Deleting Numbered Backup Files I:505
26.1.4 Naming Backup Files . I:505

26.2 Auto-Saving . I:507
26.3 Reverting . I:510

Index . I:512

xv

Volume 2

27 Buffers . 1
27.1 Buffer Basics . 1
27.2 The Current Buffer . 1
27.3 Buffer Names . 4
27.4 Buffer File Name . 5
27.5 Buffer Modification . 7
27.6 Buffer Modification Time . 8
27.7 Read-Only Buffers . 9
27.8 The Buffer List . 10
27.9 Creating Buffers . 13
27.10 Killing Buffers . 13
27.11 Indirect Buffers . 15
27.12 Swapping Text Between Two Buffers . 16
27.13 The Buffer Gap . 16

28 Windows . 18
28.1 Basic Concepts of Emacs Windows . 18
28.2 Windows and Frames . 19
28.3 Window Sizes . 22
28.4 Resizing Windows . 24
28.5 Splitting Windows . 26
28.6 Deleting Windows . 31
28.7 Selecting Windows . 33
28.8 Cyclic Ordering of Windows . 34
28.9 Buffers and Windows . 36
28.10 Switching to a Buffer in a Window . 37
28.11 Choosing a Window for Display . 39
28.12 Action Functions for display-buffer . 40
28.13 Additional Options for Displaying Buffers 41
28.14 Window History . 45
28.15 Dedicated Windows . 46
28.16 Quitting Windows . 47
28.17 Windows and Point . 48
28.18 The Window Start and End Positions . 49
28.19 Textual Scrolling . 52
28.20 Vertical Fractional Scrolling . 55
28.21 Horizontal Scrolling . 56
28.22 Coordinates and Windows . 58
28.23 Window Configurations . 60
28.24 Window Parameters . 62
28.25 Hooks for Window Scrolling and Changes 64

xvi

29 Frames . 66
29.1 Creating Frames . 67
29.2 Multiple Terminals . 67
29.3 Frame Parameters . 70

29.3.1 Access to Frame Parameters . 70
29.3.2 Initial Frame Parameters . 70
29.3.3 Window Frame Parameters . 71

29.3.3.1 Basic Parameters . 71
29.3.3.2 Position Parameters . 72
29.3.3.3 Size Parameters . 73
29.3.3.4 Layout Parameters . 74
29.3.3.5 Buffer Parameters . 75
29.3.3.6 Window Management Parameters 75
29.3.3.7 Cursor Parameters . 76
29.3.3.8 Font and Color Parameters . 77

29.3.4 Frame Size And Position . 79
29.3.5 Geometry . 80

29.4 Terminal Parameters . 80
29.5 Frame Titles . 81
29.6 Deleting Frames . 82
29.7 Finding All Frames . 82
29.8 Minibuffers and Frames . 83
29.9 Input Focus . 83
29.10 Visibility of Frames . 85
29.11 Raising and Lowering Frames . 86
29.12 Frame Configurations . 86
29.13 Mouse Tracking . 87
29.14 Mouse Position . 87
29.15 Pop-Up Menus . 88
29.16 Dialog Boxes . 89
29.17 Pointer Shape . 90
29.18 Window System Selections . 91
29.19 Drag and Drop . 91
29.20 Color Names . 92
29.21 Text Terminal Colors . 93
29.22 X Resources . 94
29.23 Display Feature Testing . 95

30 Positions . 99
30.1 Point . 99
30.2 Motion . 100

30.2.1 Motion by Characters . 100
30.2.2 Motion by Words . 101
30.2.3 Motion to an End of the Buffer . 101
30.2.4 Motion by Text Lines . 102
30.2.5 Motion by Screen Lines . 103
30.2.6 Moving over Balanced Expressions . 106
30.2.7 Skipping Characters . 107

xvii

30.3 Excursions . 108
30.4 Narrowing . 109

31 Markers . 112
31.1 Overview of Markers . 112
31.2 Predicates on Markers . 113
31.3 Functions that Create Markers . 113
31.4 Information from Markers . 115
31.5 Marker Insertion Types . 116
31.6 Moving Marker Positions . 116
31.7 The Mark . 117
31.8 The Region . 120

32 Text . 122
32.1 Examining Text Near Point . 122
32.2 Examining Buffer Contents . 123
32.3 Comparing Text . 125
32.4 Inserting Text . 126
32.5 User-Level Insertion Commands . 127
32.6 Deleting Text . 128
32.7 User-Level Deletion Commands . 130
32.8 The Kill Ring . 132

32.8.1 Kill Ring Concepts . 132
32.8.2 Functions for Killing . 132
32.8.3 Yanking . 133
32.8.4 Functions for Yanking . 134
32.8.5 Low-Level Kill Ring . 135
32.8.6 Internals of the Kill Ring . 136

32.9 Undo . 137
32.10 Maintaining Undo Lists . 139
32.11 Filling . 140
32.12 Margins for Filling . 143
32.13 Adaptive Fill Mode . 144
32.14 Auto Filling . 146
32.15 Sorting Text . 146
32.16 Counting Columns . 150
32.17 Indentation . 151

32.17.1 Indentation Primitives . 151
32.17.2 Indentation Controlled by Major Mode 151
32.17.3 Indenting an Entire Region . 153
32.17.4 Indentation Relative to Previous Lines 154
32.17.5 Adjustable “Tab Stops” . 154
32.17.6 Indentation-Based Motion Commands 155

32.18 Case Changes . 155
32.19 Text Properties . 156

32.19.1 Examining Text Properties . 157
32.19.2 Changing Text Properties . 158
32.19.3 Text Property Search Functions . 160

xviii

32.19.4 Properties with Special Meanings . 162
32.19.5 Formatted Text Properties . 167
32.19.6 Stickiness of Text Properties . 167
32.19.7 Lazy Computation of Text Properties 169
32.19.8 Defining Clickable Text . 169
32.19.9 Defining and Using Fields . 172
32.19.10 Why Text Properties are not Intervals 174

32.20 Substituting for a Character Code . 174
32.21 Registers . 175
32.22 Transposition of Text . 176
32.23 Base 64 Encoding . 177
32.24 Checksum/Hash . 177
32.25 Parsing HTML and XML . 178
32.26 Atomic Change Groups . 179
32.27 Change Hooks . 180

33 Non-ASCII Characters . 182
33.1 Text Representations . 182
33.2 Converting Text Representations . 183
33.3 Selecting a Representation . 184
33.4 Character Codes . 185
33.5 Character Properties . 186
33.6 Character Sets . 189
33.7 Scanning for Character Sets . 191
33.8 Translation of Characters . 191
33.9 Coding Systems . 193

33.9.1 Basic Concepts of Coding Systems . 193
33.9.2 Encoding and I/O . 194
33.9.3 Coding Systems in Lisp . 195
33.9.4 User-Chosen Coding Systems . 198
33.9.5 Default Coding Systems . 199
33.9.6 Specifying a Coding System for One Operation 202
33.9.7 Explicit Encoding and Decoding . 203
33.9.8 Terminal I/O Encoding . 205
33.9.9 MS-DOS File Types . 205

33.10 Input Methods . 206
33.11 Locales . 207

34 Searching and Matching . 209
34.1 Searching for Strings . 209
34.2 Searching and Case . 211
34.3 Regular Expressions . 211

34.3.1 Syntax of Regular Expressions . 212
34.3.1.1 Special Characters in Regular Expressions 212
34.3.1.2 Character Classes . 215
34.3.1.3 Backslash Constructs in Regular Expressions 217

34.3.2 Complex Regexp Example . 220
34.3.3 Regular Expression Functions . 220

xix

34.4 Regular Expression Searching . 221
34.5 POSIX Regular Expression Searching . 224
34.6 The Match Data . 225

34.6.1 Replacing the Text that Matched . 225
34.6.2 Simple Match Data Access . 226
34.6.3 Accessing the Entire Match Data . 228
34.6.4 Saving and Restoring the Match Data 229

34.7 Search and Replace . 230
34.8 Standard Regular Expressions Used in Editing 233

35 Syntax Tables . 234
35.1 Syntax Table Concepts . 234
35.2 Syntax Descriptors . 234

35.2.1 Table of Syntax Classes . 235
35.2.2 Syntax Flags . 237

35.3 Syntax Table Functions . 238
35.4 Syntax Properties . 240
35.5 Motion and Syntax . 241
35.6 Parsing Expressions . 242

35.6.1 Motion Commands Based on Parsing 242
35.6.2 Finding the Parse State for a Position 243
35.6.3 Parser State . 244
35.6.4 Low-Level Parsing . 245
35.6.5 Parameters to Control Parsing . 245

35.7 Some Standard Syntax Tables . 246
35.8 Syntax Table Internals . 246
35.9 Categories . 247

36 Abbrevs and Abbrev Expansion 250
36.1 Abbrev Tables . 250
36.2 Defining Abbrevs . 251
36.3 Saving Abbrevs in Files . 252
36.4 Looking Up and Expanding Abbreviations 253
36.5 Standard Abbrev Tables . 255
36.6 Abbrev Properties . 255
36.7 Abbrev Table Properties . 256

37 Processes . 257
37.1 Functions that Create Subprocesses . 257
37.2 Shell Arguments . 258
37.3 Creating a Synchronous Process . 260
37.4 Creating an Asynchronous Process . 264
37.5 Deleting Processes . 266
37.6 Process Information . 266
37.7 Sending Input to Processes . 269
37.8 Sending Signals to Processes . 270
37.9 Receiving Output from Processes . 271

xx

37.9.1 Process Buffers . 272
37.9.2 Process Filter Functions . 273
37.9.3 Decoding Process Output . 275
37.9.4 Accepting Output from Processes . 275

37.10 Sentinels: Detecting Process Status Changes 276
37.11 Querying Before Exit . 277
37.12 Accessing Other Processes . 278
37.13 Transaction Queues . 280
37.14 Network Connections . 281
37.15 Network Servers . 283
37.16 Datagrams . 284
37.17 Low-Level Network Access . 284

37.17.1 make-network-process . 284
37.17.2 Network Options . 287
37.17.3 Testing Availability of Network Features 288

37.18 Misc Network Facilities . 288
37.19 Communicating with Serial Ports . 289
37.20 Packing and Unpacking Byte Arrays . 292

37.20.1 Describing Data Layout . 292
37.20.2 Functions to Unpack and Pack Bytes 294
37.20.3 Examples of Byte Unpacking and Packing 295

38 Emacs Display . 299
38.1 Refreshing the Screen . 299
38.2 Forcing Redisplay . 299
38.3 Truncation . 300
38.4 The Echo Area . 302

38.4.1 Displaying Messages in the Echo Area 302
38.4.2 Reporting Operation Progress . 303
38.4.3 Logging Messages in ‘*Messages*’ . 305
38.4.4 Echo Area Customization . 306

38.5 Reporting Warnings . 306
38.5.1 Warning Basics . 306
38.5.2 Warning Variables . 307
38.5.3 Warning Options . 308
38.5.4 Delayed Warnings . 309

38.6 Invisible Text . 309
38.7 Selective Display . 312
38.8 Temporary Displays . 313
38.9 Overlays . 315

38.9.1 Managing Overlays . 316
38.9.2 Overlay Properties . 318
38.9.3 Searching for Overlays . 322

38.10 Width . 323
38.11 Line Height . 324
38.12 Faces . 325

38.12.1 Defining Faces . 325
38.12.2 Face Attributes . 327

xxi

38.12.3 Face Attribute Functions . 330
38.12.4 Displaying Faces . 333
38.12.5 Face Remapping . 334
38.12.6 Functions for Working with Faces . 335
38.12.7 Automatic Face Assignment . 336
38.12.8 Basic Faces . 336
38.12.9 Font Selection . 337
38.12.10 Looking Up Fonts . 339
38.12.11 Fontsets . 339
38.12.12 Low-Level Font Representation . 341

38.13 Fringes . 344
38.13.1 Fringe Size and Position . 344
38.13.2 Fringe Indicators . 344
38.13.3 Fringe Cursors . 346
38.13.4 Fringe Bitmaps . 346
38.13.5 Customizing Fringe Bitmaps . 347
38.13.6 The Overlay Arrow . 348

38.14 Scroll Bars . 349
38.15 The display Property . 350

38.15.1 Display Specs That Replace The Text 350
38.15.2 Specified Spaces . 351
38.15.3 Pixel Specification for Spaces . 352
38.15.4 Other Display Specifications . 353
38.15.5 Displaying in the Margins . 354

38.16 Images . 355
38.16.1 Image Formats . 355
38.16.2 Image Descriptors . 356
38.16.3 XBM Images . 359
38.16.4 XPM Images . 360
38.16.5 GIF Images . 360
38.16.6 TIFF Images . 360
38.16.7 PostScript Images . 360
38.16.8 ImageMagick Images . 361
38.16.9 Other Image Types . 361
38.16.10 Defining Images . 362
38.16.11 Showing Images . 364
38.16.12 Animated Images . 365
38.16.13 Image Cache . 365

38.17 Buttons . 366
38.17.1 Button Properties . 367
38.17.2 Button Types . 367
38.17.3 Making Buttons . 368
38.17.4 Manipulating Buttons . 369
38.17.5 Button Buffer Commands . 370

38.18 Abstract Display . 370
38.18.1 Abstract Display Functions . 371
38.18.2 Abstract Display Example . 373

38.19 Blinking Parentheses . 375

xxii

38.20 Character Display . 376
38.20.1 Usual Display Conventions . 376
38.20.2 Display Tables . 377
38.20.3 Active Display Table . 379
38.20.4 Glyphs . 379
38.20.5 Glyphless Character Display . 380

38.21 Beeping . 381
38.22 Window Systems . 382
38.23 Bidirectional Display . 382

39 Operating System Interface 386
39.1 Starting Up Emacs . 386

39.1.1 Summary: Sequence of Actions at Startup 386
39.1.2 The Init File . 389
39.1.3 Terminal-Specific Initialization . 390
39.1.4 Command-Line Arguments . 391

39.2 Getting Out of Emacs . 392
39.2.1 Killing Emacs . 392
39.2.2 Suspending Emacs . 393

39.3 Operating System Environment . 395
39.4 User Identification . 398
39.5 Time of Day . 399
39.6 Time Conversion . 401
39.7 Parsing and Formatting Times . 402
39.8 Processor Run time . 405
39.9 Time Calculations . 405
39.10 Timers for Delayed Execution . 406
39.11 Idle Timers . 408
39.12 Terminal Input . 409

39.12.1 Input Modes . 409
39.12.2 Recording Input . 410

39.13 Terminal Output . 411
39.14 Sound Output . 412
39.15 Operating on X11 Keysyms . 413
39.16 Batch Mode . 413
39.17 Session Management . 414
39.18 Desktop Notifications . 414
39.19 Dynamically Loaded Libraries . 417

40 Preparing Lisp code for distribution 418
40.1 Packaging Basics . 418
40.2 Simple Packages . 419
40.3 Multi-file Packages . 420
40.4 Creating and Maintaining Package Archives 421

Appendix A Emacs 23 Antinews 423
A.1 Old Lisp Features in Emacs 23 . 423

xxiii

Appendix B GNU Free Documentation License
. 425

Appendix C GNU General Public License . . . 433

Appendix D Tips and Conventions 444
D.1 Emacs Lisp Coding Conventions . 444
D.2 Key Binding Conventions . 446
D.3 Emacs Programming Tips . 447
D.4 Tips for Making Compiled Code Fast . 449
D.5 Tips for Avoiding Compiler Warnings . 449
D.6 Tips for Documentation Strings . 450
D.7 Tips on Writing Comments . 453
D.8 Conventional Headers for Emacs Libraries 454

Appendix E GNU Emacs Internals 457
E.1 Building Emacs . 457
E.2 Pure Storage . 458
E.3 Garbage Collection . 459
E.4 Memory Usage . 462
E.5 Writing Emacs Primitives . 463
E.6 Object Internals . 467

E.6.1 Buffer Internals . 467
E.6.2 Window Internals . 472
E.6.3 Process Internals . 475

Appendix F Standard Errors 477

Appendix G Standard Keymaps 481

Appendix H Standard Hooks 484

Index . 488

Chapter 27: Buffers 1

27 Buffers

A buffer is a Lisp object containing text to be edited. Buffers are used to hold the contents
of files that are being visited; there may also be buffers that are not visiting files. While
several buffers may exist at one time, only one buffer is designated the current buffer at
any time. Most editing commands act on the contents of the current buffer. Each buffer,
including the current buffer, may or may not be displayed in any windows.

27.1 Buffer Basics

Buffers in Emacs editing are objects that have distinct names and hold text that can be
edited. Buffers appear to Lisp programs as a special data type. You can think of the
contents of a buffer as a string that you can extend; insertions and deletions may occur in
any part of the buffer. See Chapter 32 [Text], page 122.

A Lisp buffer object contains numerous pieces of information. Some of this information
is directly accessible to the programmer through variables, while other information is acces-
sible only through special-purpose functions. For example, the visited file name is directly
accessible through a variable, while the value of point is accessible only through a primitive
function.

Buffer-specific information that is directly accessible is stored in buffer-local variable
bindings, which are variable values that are effective only in a particular buffer. This feature
allows each buffer to override the values of certain variables. Most major modes override
variables such as fill-column or comment-column in this way. For more information
about buffer-local variables and functions related to them, see Section 11.10 [Buffer-Local
Variables], page 150, vol. 1.

For functions and variables related to visiting files in buffers, see Section 25.1 [Visiting
Files], page 461, vol. 1 and Section 25.2 [Saving Buffers], page 465, vol. 1. For functions
and variables related to the display of buffers in windows, see Section 28.9 [Buffers and
Windows], page 36.

[Function]bufferp object
This function returns t if object is a buffer, nil otherwise.

27.2 The Current Buffer

There are, in general, many buffers in an Emacs session. At any time, one of them is
designated the current buffer—the buffer in which most editing takes place. Most of the
primitives for examining or changing text operate implicitly on the current buffer (see
Chapter 32 [Text], page 122).

Normally, the buffer displayed in the selected window is the current buffer, but this is
not always so: a Lisp program can temporarily designate any buffer as current in order to
operate on its contents, without changing what is displayed on the screen. The most basic
function for designating a current buffer is set-buffer.

[Function]current-buffer
This function returns the current buffer.

(current-buffer)

⇒ #<buffer buffers.texi>

Chapter 27: Buffers 2

[Function]set-buffer buffer-or-name
This function makes buffer-or-name the current buffer. buffer-or-name must be an
existing buffer or the name of an existing buffer. The return value is the buffer made
current.

This function does not display the buffer in any window, so the user cannot necessarily
see the buffer. But Lisp programs will now operate on it.

When an editing command returns to the editor command loop, Emacs automatically
calls set-buffer on the buffer shown in the selected window. This is to prevent confusion:
it ensures that the buffer that the cursor is in, when Emacs reads a command, is the buffer
to which that command applies (see Chapter 21 [Command Loop], page 315, vol. 1). Thus,
you should not use set-buffer to switch visibly to a different buffer; for that, use the
functions described in Section 28.10 [Switching Buffers], page 37.

When writing a Lisp function, do not rely on this behavior of the command loop to
restore the current buffer after an operation. Editing commands can also be called as Lisp
functions by other programs, not just from the command loop; it is convenient for the caller
if the subroutine does not change which buffer is current (unless, of course, that is the
subroutine’s purpose).

To operate temporarily on another buffer, put the set-buffer within a save-current-

buffer form. Here, as an example, is a simplified version of the command append-to-

buffer:

(defun append-to-buffer (buffer start end)

"Append the text of the region to BUFFER."

(interactive "BAppend to buffer: \nr")

(let ((oldbuf (current-buffer)))

(save-current-buffer

(set-buffer (get-buffer-create buffer))

(insert-buffer-substring oldbuf start end))))

Here, we bind a local variable to record the current buffer, and then save-current-buffer

arranges to make it current again later. Next, set-buffer makes the specified buffer
current, and insert-buffer-substring copies the string from the original buffer to the
specified (and now current) buffer.

Alternatively, we can use the with-current-buffer macro:

(defun append-to-buffer (buffer start end)

"Append the text of the region to BUFFER."

(interactive "BAppend to buffer: \nr")

(let ((oldbuf (current-buffer)))

(with-current-buffer (get-buffer-create buffer)

(insert-buffer-substring oldbuf start end))))

In either case, if the buffer appended to happens to be displayed in some window, the
next redisplay will show how its text has changed. If it is not displayed in any window,
you will not see the change immediately on the screen. The command causes the buffer to
become current temporarily, but does not cause it to be displayed.

If you make local bindings (with let or function arguments) for a variable that may
also have buffer-local bindings, make sure that the same buffer is current at the beginning

Chapter 27: Buffers 3

and at the end of the local binding’s scope. Otherwise you might bind it in one buffer and
unbind it in another!

Do not rely on using set-buffer to change the current buffer back, because that won’t
do the job if a quit happens while the wrong buffer is current. For instance, in the previous
example, it would have been wrong to do this:

(let ((oldbuf (current-buffer)))

(set-buffer (get-buffer-create buffer))

(insert-buffer-substring oldbuf start end)

(set-buffer oldbuf))

Using save-current-buffer or with-current-buffer, as we did, correctly handles quit-
ting, errors, and throw, as well as ordinary evaluation.

[Special Form]save-current-buffer body. . .
The save-current-buffer special form saves the identity of the current buffer, eval-
uates the body forms, and finally restores that buffer as current. The return value is
the value of the last form in body. The current buffer is restored even in case of an
abnormal exit via throw or error (see Section 10.5 [Nonlocal Exits], page 126, vol. 1).

If the buffer that used to be current has been killed by the time of exit from save-

current-buffer, then it is not made current again, of course. Instead, whichever
buffer was current just before exit remains current.

[Macro]with-current-buffer buffer-or-name body. . .
The with-current-buffer macro saves the identity of the current buffer, makes
buffer-or-name current, evaluates the body forms, and finally restores the current
buffer. buffer-or-name must specify an existing buffer or the name of an existing
buffer.

The return value is the value of the last form in body. The current buffer is restored
even in case of an abnormal exit via throw or error (see Section 10.5 [Nonlocal Exits],
page 126, vol. 1).

[Macro]with-temp-buffer body. . .
The with-temp-buffer macro evaluates the body forms with a temporary buffer as
the current buffer. It saves the identity of the current buffer, creates a temporary
buffer and makes it current, evaluates the body forms, and finally restores the previous
current buffer while killing the temporary buffer. By default, undo information (see
Section 32.9 [Undo], page 137) is not recorded in the buffer created by this macro
(but body can enable that, if needed).

The return value is the value of the last form in body. You can return the contents
of the temporary buffer by using (buffer-string) as the last form.

The current buffer is restored even in case of an abnormal exit via throw or error (see
Section 10.5 [Nonlocal Exits], page 126, vol. 1).

See also with-temp-file in [Writing to Files], page 469, vol. 1.

Chapter 27: Buffers 4

27.3 Buffer Names

Each buffer has a unique name, which is a string. Many of the functions that work on
buffers accept either a buffer or a buffer name as an argument. Any argument called buffer-
or-name is of this sort, and an error is signaled if it is neither a string nor a buffer. Any
argument called buffer must be an actual buffer object, not a name.

Buffers that are ephemeral and generally uninteresting to the user have names starting
with a space, so that the list-buffers and buffer-menu commands don’t mention them
(but if such a buffer visits a file, it is mentioned). A name starting with space also initially
disables recording undo information; see Section 32.9 [Undo], page 137.

[Function]buffer-name &optional buffer
This function returns the name of buffer as a string. buffer defaults to the current
buffer.

If buffer-name returns nil, it means that buffer has been killed. See Section 27.10
[Killing Buffers], page 13.

(buffer-name)

⇒ "buffers.texi"

(setq foo (get-buffer "temp"))

⇒ #<buffer temp>

(kill-buffer foo)

⇒ nil

(buffer-name foo)

⇒ nil

foo

⇒ #<killed buffer>

[Command]rename-buffer newname &optional unique
This function renames the current buffer to newname. An error is signaled if newname
is not a string.

Ordinarily, rename-buffer signals an error if newname is already in use. However,
if unique is non-nil, it modifies newname to make a name that is not in use. Inter-
actively, you can make unique non-nil with a numeric prefix argument. (This is how
the command rename-uniquely is implemented.)

This function returns the name actually given to the buffer.

[Function]get-buffer buffer-or-name
This function returns the buffer specified by buffer-or-name. If buffer-or-name is a
string and there is no buffer with that name, the value is nil. If buffer-or-name is
a buffer, it is returned as given; that is not very useful, so the argument is usually a
name. For example:

(setq b (get-buffer "lewis"))

⇒ #<buffer lewis>

(get-buffer b)

⇒ #<buffer lewis>

(get-buffer "Frazzle-nots")

⇒ nil

Chapter 27: Buffers 5

See also the function get-buffer-create in Section 27.9 [Creating Buffers], page 13.

[Function]generate-new-buffer-name starting-name &optional ignore
This function returns a name that would be unique for a new buffer—but does not
create the buffer. It starts with starting-name, and produces a name not currently in
use for any buffer by appending a number inside of ‘<...>’. It starts at 2 and keeps
incrementing the number until it is not the name of an existing buffer.

If the optional second argument ignore is non-nil, it should be a string, a potential
buffer name. It means to consider that potential buffer acceptable, if it is tried, even
it is the name of an existing buffer (which would normally be rejected). Thus, if
buffers named ‘foo’, ‘foo<2>’, ‘foo<3>’ and ‘foo<4>’ exist,

(generate-new-buffer-name "foo")

⇒ "foo<5>"

(generate-new-buffer-name "foo" "foo<3>")

⇒ "foo<3>"

(generate-new-buffer-name "foo" "foo<6>")

⇒ "foo<5>"

See the related function generate-new-buffer in Section 27.9 [Creating Buffers],
page 13.

27.4 Buffer File Name

The buffer file name is the name of the file that is visited in that buffer. When a buffer is
not visiting a file, its buffer file name is nil. Most of the time, the buffer name is the same
as the nondirectory part of the buffer file name, but the buffer file name and the buffer
name are distinct and can be set independently. See Section 25.1 [Visiting Files], page 461,
vol. 1.

[Function]buffer-file-name &optional buffer
This function returns the absolute file name of the file that buffer is visiting. If buffer
is not visiting any file, buffer-file-name returns nil. If buffer is not supplied, it
defaults to the current buffer.

(buffer-file-name (other-buffer))

⇒ "/usr/user/lewis/manual/files.texi"

[Variable]buffer-file-name
This buffer-local variable contains the name of the file being visited in the current
buffer, or nil if it is not visiting a file. It is a permanent local variable, unaffected
by kill-all-local-variables.

buffer-file-name

⇒ "/usr/user/lewis/manual/buffers.texi"

It is risky to change this variable’s value without doing various other things. Normally
it is better to use set-visited-file-name (see below); some of the things done there,
such as changing the buffer name, are not strictly necessary, but others are essential
to avoid confusing Emacs.

Chapter 27: Buffers 6

[Variable]buffer-file-truename
This buffer-local variable holds the abbreviated truename of the file visited in the
current buffer, or nil if no file is visited. It is a permanent local, unaffected by
kill-all-local-variables. See Section 25.6.3 [Truenames], page 474, vol. 1, and
[abbreviate-file-name], page 485, vol. 1.

[Variable]buffer-file-number
This buffer-local variable holds the file number and directory device number of the
file visited in the current buffer, or nil if no file or a nonexistent file is visited. It is
a permanent local, unaffected by kill-all-local-variables.

The value is normally a list of the form (filenum devnum). This pair of numbers
uniquely identifies the file among all files accessible on the system. See the func-
tion file-attributes, in Section 25.6.4 [File Attributes], page 475, vol. 1, for more
information about them.

If buffer-file-name is the name of a symbolic link, then both numbers refer to the
recursive target.

[Function]get-file-buffer filename
This function returns the buffer visiting file filename. If there is no such buffer,
it returns nil. The argument filename, which must be a string, is expanded (see
Section 25.8.4 [File Name Expansion], page 486, vol. 1), then compared against the
visited file names of all live buffers. Note that the buffer’s buffer-file-name must
match the expansion of filename exactly. This function will not recognize other names
for the same file.

(get-file-buffer "buffers.texi")

⇒ #<buffer buffers.texi>

In unusual circumstances, there can be more than one buffer visiting the same file
name. In such cases, this function returns the first such buffer in the buffer list.

[Function]find-buffer-visiting filename &optional predicate
This is like get-file-buffer, except that it can return any buffer visiting the file
possibly under a different name. That is, the buffer’s buffer-file-name does not
need to match the expansion of filename exactly, it only needs to refer to the same
file. If predicate is non-nil, it should be a function of one argument, a buffer visiting
filename. The buffer is only considered a suitable return value if predicate returns
non-nil. If it can not find a suitable buffer to return, find-buffer-visiting returns
nil.

[Command]set-visited-file-name filename &optional no-query along-with-file
If filename is a non-empty string, this function changes the name of the file visited
in the current buffer to filename. (If the buffer had no visited file, this gives it one.)
The next time the buffer is saved it will go in the newly-specified file.

This command marks the buffer as modified, since it does not (as far as Emacs
knows) match the contents of filename, even if it matched the former visited file. It
also renames the buffer to correspond to the new file name, unless the new name is
already in use.

Chapter 27: Buffers 7

If filename is nil or the empty string, that stands for “no visited file”. In this case,
set-visited-file-name marks the buffer as having no visited file, without changing
the buffer’s modified flag.

Normally, this function asks the user for confirmation if there already is a buffer
visiting filename. If no-query is non-nil, that prevents asking this question. If there
already is a buffer visiting filename, and the user confirms or query is non-nil, this
function makes the new buffer name unique by appending a number inside of ‘<...>’
to filename.

If along-with-file is non-nil, that means to assume that the former visited file has
been renamed to filename. In this case, the command does not change the buffer’s
modified flag, nor the buffer’s recorded last file modification time as reported by
visited-file-modtime (see Section 27.6 [Modification Time], page 8). If along-
with-file is nil, this function clears the recorded last file modification time, after
which visited-file-modtime returns zero.

When the function set-visited-file-name is called interactively, it prompts for
filename in the minibuffer.

[Variable]list-buffers-directory
This buffer-local variable specifies a string to display in a buffer listing where the
visited file name would go, for buffers that don’t have a visited file name. Dired
buffers use this variable.

27.5 Buffer Modification

Emacs keeps a flag called the modified flag for each buffer, to record whether you have
changed the text of the buffer. This flag is set to t whenever you alter the contents of the
buffer, and cleared to nil when you save it. Thus, the flag shows whether there are unsaved
changes. The flag value is normally shown in the mode line (see Section 23.4.4 [Mode Line
Variables], page 422, vol. 1), and controls saving (see Section 25.2 [Saving Buffers], page 465,
vol. 1) and auto-saving (see Section 26.2 [Auto-Saving], page 507, vol. 1).

Some Lisp programs set the flag explicitly. For example, the function set-visited-

file-name sets the flag to t, because the text does not match the newly-visited file, even
if it is unchanged from the file formerly visited.

The functions that modify the contents of buffers are described in Chapter 32 [Text],
page 122.

[Function]buffer-modified-p &optional buffer
This function returns t if the buffer buffer has been modified since it was last read
in from a file or saved, or nil otherwise. If buffer is not supplied, the current buffer
is tested.

[Function]set-buffer-modified-p flag
This function marks the current buffer as modified if flag is non-nil, or as unmodified
if the flag is nil.

Another effect of calling this function is to cause unconditional redisplay of the mode
line for the current buffer. In fact, the function force-mode-line-update works by
doing this:

Chapter 27: Buffers 8

(set-buffer-modified-p (buffer-modified-p))

[Function]restore-buffer-modified-p flag
Like set-buffer-modified-p, but does not force redisplay of mode lines.

[Command]not-modified &optional arg
This command marks the current buffer as unmodified, and not needing to be saved.
If arg is non-nil, it marks the buffer as modified, so that it will be saved at the next
suitable occasion. Interactively, arg is the prefix argument.

Don’t use this function in programs, since it prints a message in the echo area; use
set-buffer-modified-p (above) instead.

[Function]buffer-modified-tick &optional buffer
This function returns buffer’s modification-count. This is a counter that increments
every time the buffer is modified. If buffer is nil (or omitted), the current buffer is
used. The counter can wrap around occasionally.

[Function]buffer-chars-modified-tick &optional buffer
This function returns buffer’s character-change modification-count. Changes to text
properties leave this counter unchanged; however, each time text is inserted or re-
moved from the buffer, the counter is reset to the value that would be returned by
buffer-modified-tick. By comparing the values returned by two buffer-chars-

modified-tick calls, you can tell whether a character change occurred in that buffer
in between the calls. If buffer is nil (or omitted), the current buffer is used.

27.6 Buffer Modification Time

Suppose that you visit a file and make changes in its buffer, and meanwhile the file itself is
changed on disk. At this point, saving the buffer would overwrite the changes in the file.
Occasionally this may be what you want, but usually it would lose valuable information.
Emacs therefore checks the file’s modification time using the functions described below
before saving the file. (See Section 25.6.4 [File Attributes], page 475, vol. 1, for how to
examine a file’s modification time.)

[Function]verify-visited-file-modtime &optional buffer
This function compares what buffer (by default, the current-buffer) has recorded for
the modification time of its visited file against the actual modification time of the file
as recorded by the operating system. The two should be the same unless some other
process has written the file since Emacs visited or saved it.

The function returns t if the last actual modification time and Emacs’s recorded
modification time are the same, nil otherwise. It also returns t if the buffer has no
recorded last modification time, that is if visited-file-modtime would return zero.

It always returns t for buffers that are not visiting a file, even if visited-file-
modtime returns a non-zero value. For instance, it always returns t for dired buffers.
It returns t for buffers that are visiting a file that does not exist and never existed,
but nil for file-visiting buffers whose file has been deleted.

Chapter 27: Buffers 9

[Function]clear-visited-file-modtime
This function clears out the record of the last modification time of the file being
visited by the current buffer. As a result, the next attempt to save this buffer will
not complain of a discrepancy in file modification times.

This function is called in set-visited-file-name and other exceptional places where
the usual test to avoid overwriting a changed file should not be done.

[Function]visited-file-modtime
This function returns the current buffer’s recorded last file modification time, as a
list of the form (high low). (This is the same format that file-attributes uses to
return time values; see Section 25.6.4 [File Attributes], page 475, vol. 1.)

If the buffer has no recorded last modification time, this function returns zero. This
case occurs, for instance, if the buffer is not visiting a file or if the time has been
explicitly cleared by clear-visited-file-modtime. Note, however, that visited-
file-modtime returns a list for some non-file buffers too. For instance, in a Dired
buffer listing a directory, it returns the last modification time of that directory, as
recorded by Dired.

For a new buffer visiting a not yet existing file, high is −1 and low is 65535, that is,
216 − 1.

[Function]set-visited-file-modtime &optional time
This function updates the buffer’s record of the last modification time of the visited
file, to the value specified by time if time is not nil, and otherwise to the last
modification time of the visited file.

If time is neither nil nor zero, it should have the form (high . low) or (high low),
in either case containing two integers, each of which holds 16 bits of the time.

This function is useful if the buffer was not read from the file normally, or if the file
itself has been changed for some known benign reason.

[Function]ask-user-about-supersession-threat filename
This function is used to ask a user how to proceed after an attempt to modify an
buffer visiting file filename when the file is newer than the buffer text. Emacs detects
this because the modification time of the file on disk is newer than the last save-time
of the buffer. This means some other program has probably altered the file.

Depending on the user’s answer, the function may return normally, in which case the
modification of the buffer proceeds, or it may signal a file-supersession error with
data (filename), in which case the proposed buffer modification is not allowed.

This function is called automatically by Emacs on the proper occasions. It exists so
you can customize Emacs by redefining it. See the file ‘userlock.el’ for the standard
definition.

See also the file locking mechanism in Section 25.5 [File Locks], page 470, vol. 1.

27.7 Read-Only Buffers

If a buffer is read-only, then you cannot change its contents, although you may change your
view of the contents by scrolling and narrowing.

Read-only buffers are used in two kinds of situations:

Chapter 27: Buffers 10

• A buffer visiting a write-protected file is normally read-only.

Here, the purpose is to inform the user that editing the buffer with the aim of saving it
in the file may be futile or undesirable. The user who wants to change the buffer text
despite this can do so after clearing the read-only flag with C-x C-q.

• Modes such as Dired and Rmail make buffers read-only when altering the contents with
the usual editing commands would probably be a mistake.

The special commands of these modes bind buffer-read-only to nil (with let) or
bind inhibit-read-only to t around the places where they themselves change the
text.

[Variable]buffer-read-only
This buffer-local variable specifies whether the buffer is read-only. The buffer is read-
only if this variable is non-nil.

[Variable]inhibit-read-only
If this variable is non-nil, then read-only buffers and, depending on the actual value,
some or all read-only characters may be modified. Read-only characters in a buffer
are those that have non-nil read-only properties (either text properties or overlay
properties). See Section 32.19.4 [Special Properties], page 162, for more information
about text properties. See Section 38.9 [Overlays], page 315, for more information
about overlays and their properties.

If inhibit-read-only is t, all read-only character properties have no effect. If
inhibit-read-only is a list, then read-only character properties have no effect if
they are members of the list (comparison is done with eq).

[Command]toggle-read-only &optional arg
This command toggles whether the current buffer is read-only. It is intended for
interactive use; do not use it in programs (it may have side-effects, such as enabling
View mode, and does not affect read-only text properties). To change the read-only
state of a buffer in a program, explicitly set buffer-read-only to the proper value.
To temporarily ignore a read-only state, bind inhibit-read-only.

If arg is non-nil, it should be a raw prefix argument. toggle-read-only sets buffer-
read-only to t if the numeric value of that prefix argument is positive and to nil

otherwise. See Section 21.12 [Prefix Command Arguments], page 353, vol. 1.

[Function]barf-if-buffer-read-only
This function signals a buffer-read-only error if the current buffer is read-only. See
Section 21.2.1 [Using Interactive], page 316, vol. 1, for another way to signal an error
if the current buffer is read-only.

27.8 The Buffer List

The buffer list is a list of all live buffers. The order of the buffers in this list is based
primarily on how recently each buffer has been displayed in a window. Several functions,
notably other-buffer, use this ordering. A buffer list displayed for the user also follows
this order.

Creating a buffer adds it to the end of the buffer list, and killing a buffer removes it
from that list. A buffer moves to the front of this list whenever it is chosen for display

Chapter 27: Buffers 11

in a window (see Section 28.10 [Switching Buffers], page 37) or a window displaying it is
selected (see Section 28.7 [Selecting Windows], page 33). A buffer moves to the end of the
list when it is buried (see bury-buffer, below). There are no functions available to the
Lisp programmer which directly manipulate the buffer list.

In addition to the fundamental buffer list just described, Emacs maintains a local buffer
list for each frame, in which the buffers that have been displayed (or had their windows
selected) in that frame come first. (This order is recorded in the frame’s buffer-list frame
parameter; see Section 29.3.3.5 [Buffer Parameters], page 75.) Buffers never displayed in
that frame come afterward, ordered according to the fundamental buffer list.

[Function]buffer-list &optional frame
This function returns the buffer list, including all buffers, even those whose names
begin with a space. The elements are actual buffers, not their names.

If frame is a frame, this returns frame’s local buffer list. If frame is nil or omitted,
the fundamental buffer list is used: the buffers appear in order of most recent display
or selection, regardless of which frames they were displayed on.

(buffer-list)

⇒ (#<buffer buffers.texi>

#<buffer *Minibuf-1*> #<buffer buffer.c>

#<buffer *Help*> #<buffer TAGS>)

;; Note that the name of the minibuffer
;; begins with a space!
(mapcar (function buffer-name) (buffer-list))

⇒ ("buffers.texi" " *Minibuf-1*"

"buffer.c" "*Help*" "TAGS")

The list returned by buffer-list is constructed specifically; it is not an internal Emacs
data structure, and modifying it has no effect on the order of buffers. If you want to change
the order of buffers in the fundamental buffer list, here is an easy way:

(defun reorder-buffer-list (new-list)

(while new-list

(bury-buffer (car new-list))

(setq new-list (cdr new-list))))

With this method, you can specify any order for the list, but there is no danger of losing
a buffer or adding something that is not a valid live buffer.

To change the order or value of a specific frame’s buffer list, set that frame’s buffer-
list parameter with modify-frame-parameters (see Section 29.3.1 [Parameter Access],
page 70).

[Function]other-buffer &optional buffer visible-ok frame
This function returns the first buffer in the buffer list other than buffer. Usually, this
is the buffer appearing in the most recently selected window (in frame frame or else
the selected frame, see Section 29.9 [Input Focus], page 83), aside from buffer. Buffers
whose names start with a space are not considered at all.

Chapter 27: Buffers 12

If buffer is not supplied (or if it is not a live buffer), then other-buffer returns the
first buffer in the selected frame’s local buffer list. (If frame is non-nil, it returns the
first buffer in frame’s local buffer list instead.)

If frame has a non-nil buffer-predicate parameter, then other-buffer uses that
predicate to decide which buffers to consider. It calls the predicate once for each
buffer, and if the value is nil, that buffer is ignored. See Section 29.3.3.5 [Buffer
Parameters], page 75.

If visible-ok is nil, other-buffer avoids returning a buffer visible in any window on
any visible frame, except as a last resort. If visible-ok is non-nil, then it does not
matter whether a buffer is displayed somewhere or not.

If no suitable buffer exists, the buffer ‘*scratch*’ is returned (and created, if neces-
sary).

[Function]last-buffer &optional buffer visible-ok frame
This function returns the last buffer in frame’s buffer list other than BUFFER. If
frame is omitted or nil, it uses the selected frame’s buffer list.

The argument visible-ok is handled as with other-buffer, see above. If no suitable
buffer can be found, the buffer ‘*scratch*’ is returned.

[Command]bury-buffer &optional buffer-or-name
This command puts buffer-or-name at the end of the buffer list, without changing
the order of any of the other buffers on the list. This buffer therefore becomes the
least desirable candidate for other-buffer to return. The argument can be either a
buffer itself or the name of one.

This functions operates on each frame’s buffer-list parameter as well as the fun-
damental buffer list; therefore, the buffer that you bury will come last in the value of
(buffer-list frame) and in the value of (buffer-list). In addition, it also puts
the buffer at the end of the list of buffer of the selected window (see Section 28.14
[Window History], page 45) provided it is shown in that window.

If buffer-or-name is nil or omitted, this means to bury the current buffer. In addition,
if the current buffer is displayed in the selected window, this makes sure that the
window is either deleted or another buffer is shown in it. More precisely, if the
window is dedicated (see Section 28.15 [Dedicated Windows], page 46) and there are
other windows on its frame, the window is deleted. If the window is both dedicated
and the only window on its frame’s terminal, the function specified by frame-auto-

hide-function (see Section 28.16 [Quitting Windows], page 47) will deal with the
window. If the window is not dedicated to its buffer, it calls switch-to-prev-buffer
(see Section 28.14 [Window History], page 45) to show another buffer in that window.
If buffer-or-name is displayed in some other window, it remains displayed there.

To replace a buffer in all the windows that display it, use replace-buffer-in-

windows, See Section 28.9 [Buffers and Windows], page 36.

[Command]unbury-buffer
This command switches to the last buffer in the local buffer list of the selected frame.
More precisely, it calls the function switch-to-buffer (see Section 28.10 [Switching
Buffers], page 37), to display the buffer returned by last-buffer (see above), in the
selected window.

Chapter 27: Buffers 13

27.9 Creating Buffers

This section describes the two primitives for creating buffers. get-buffer-create creates
a buffer if it finds no existing buffer with the specified name; generate-new-buffer always
creates a new buffer and gives it a unique name.

Other functions you can use to create buffers include with-output-to-temp-buffer (see
Section 38.8 [Temporary Displays], page 313) and create-file-buffer (see Section 25.1
[Visiting Files], page 461, vol. 1). Starting a subprocess can also create a buffer (see
Chapter 37 [Processes], page 257).

[Function]get-buffer-create buffer-or-name
This function returns a buffer named buffer-or-name. The buffer returned does not
become the current buffer—this function does not change which buffer is current.

buffer-or-name must be either a string or an existing buffer. If it is a string and a
live buffer with that name already exists, get-buffer-create returns that buffer. If
no such buffer exists, it creates a new buffer. If buffer-or-name is a buffer instead of
a string, it is returned as given, even if it is dead.

(get-buffer-create "foo")

⇒ #<buffer foo>

The major mode for a newly created buffer is set to Fundamental mode. (The default
value of the variable major-mode is handled at a higher level; see Section 23.2.2 [Auto
Major Mode], page 403, vol. 1.) If the name begins with a space, the buffer initially
disables undo information recording (see Section 32.9 [Undo], page 137).

[Function]generate-new-buffer name
This function returns a newly created, empty buffer, but does not make it current.
The name of the buffer is generated by passing name to the function generate-new-

buffer-name (see Section 27.3 [Buffer Names], page 4). Thus, if there is no buffer
named name, then that is the name of the new buffer; if that name is in use, a suffix
of the form ‘<n>’, where n is an integer, is appended to name.

An error is signaled if name is not a string.

(generate-new-buffer "bar")

⇒ #<buffer bar>

(generate-new-buffer "bar")

⇒ #<buffer bar<2>>

(generate-new-buffer "bar")

⇒ #<buffer bar<3>>

The major mode for the new buffer is set to Fundamental mode. The default value of
the variable major-mode is handled at a higher level. See Section 23.2.2 [Auto Major
Mode], page 403, vol. 1.

27.10 Killing Buffers

Killing a buffer makes its name unknown to Emacs and makes the memory space it occupied
available for other use.

The buffer object for the buffer that has been killed remains in existence as long as
anything refers to it, but it is specially marked so that you cannot make it current or

Chapter 27: Buffers 14

display it. Killed buffers retain their identity, however; if you kill two distinct buffers, they
remain distinct according to eq although both are dead.

If you kill a buffer that is current or displayed in a window, Emacs automatically selects
or displays some other buffer instead. This means that killing a buffer can change the
current buffer. Therefore, when you kill a buffer, you should also take the precautions
associated with changing the current buffer (unless you happen to know that the buffer
being killed isn’t current). See Section 27.2 [Current Buffer], page 1.

If you kill a buffer that is the base buffer of one or more indirect buffers, the indirect
buffers are automatically killed as well.

The buffer-name of a buffer is nil if, and only if, the buffer is killed. A buffer that
has not been killed is called a live buffer. To test whether a buffer is live or killed, use the
function buffer-live-p (see below).

[Command]kill-buffer &optional buffer-or-name
This function kills the buffer buffer-or-name, freeing all its memory for other uses or
to be returned to the operating system. If buffer-or-name is nil or omitted, it kills
the current buffer.

Any processes that have this buffer as the process-buffer are sent the SIGHUP

(“hangup”) signal, which normally causes them to terminate. See Section 37.8 [Signals
to Processes], page 270.

If the buffer is visiting a file and contains unsaved changes, kill-buffer asks the
user to confirm before the buffer is killed. It does this even if not called interactively.
To prevent the request for confirmation, clear the modified flag before calling kill-

buffer. See Section 27.5 [Buffer Modification], page 7.

This function calls replace-buffer-in-windows for cleaning up all windows cur-
rently displaying the buffer to be killed.

Killing a buffer that is already dead has no effect.

This function returns t if it actually killed the buffer. It returns nil if the user refuses
to confirm or if buffer-or-name was already dead.

(kill-buffer "foo.unchanged")
⇒ t

(kill-buffer "foo.changed")

---------- Buffer: Minibuffer ----------

Buffer foo.changed modified; kill anyway? (yes or no) yes

---------- Buffer: Minibuffer ----------

⇒ t

[Variable]kill-buffer-query-functions
After confirming unsaved changes, kill-buffer calls the functions in the list kill-
buffer-query-functions, in order of appearance, with no arguments. The buffer
being killed is the current buffer when they are called. The idea of this feature is that
these functions will ask for confirmation from the user. If any of them returns nil,
kill-buffer spares the buffer’s life.

[Variable]kill-buffer-hook
This is a normal hook run by kill-buffer after asking all the questions it is going
to ask, just before actually killing the buffer. The buffer to be killed is current when

Chapter 27: Buffers 15

the hook functions run. See Section 23.1 [Hooks], page 396, vol. 1. This variable is a
permanent local, so its local binding is not cleared by changing major modes.

[User Option]buffer-offer-save
This variable, if non-nil in a particular buffer, tells save-buffers-kill-emacs and
save-some-buffers (if the second optional argument to that function is t) to of-
fer to save that buffer, just as they offer to save file-visiting buffers. See [Definition
of save-some-buffers], page 465, vol. 1. The variable buffer-offer-save automati-
cally becomes buffer-local when set for any reason. See Section 11.10 [Buffer-Local
Variables], page 150, vol. 1.

[Variable]buffer-save-without-query
This variable, if non-nil in a particular buffer, tells save-buffers-kill-emacs and
save-some-buffers to save this buffer (if it’s modified) without asking the user. The
variable automatically becomes buffer-local when set for any reason.

[Function]buffer-live-p object
This function returns t if object is a live buffer (a buffer which has not been killed),
nil otherwise.

27.11 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer of
the indirect buffer. In some ways it is the analogue, for buffers, of a symbolic link among
files. The base buffer may not itself be an indirect buffer.

The text of the indirect buffer is always identical to the text of its base buffer; changes
made by editing either one are visible immediately in the other. This includes the text
properties as well as the characters themselves.

In all other respects, the indirect buffer and its base buffer are completely separate. They
have different names, independent values of point, independent narrowing, independent
markers and overlays (though inserting or deleting text in either buffer relocates the markers
and overlays for both), independent major modes, and independent buffer-local variable
bindings.

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the
indirect buffer, that actually saves the base buffer.

Killing an indirect buffer has no effect on its base buffer. Killing the base buffer effectively
kills the indirect buffer in that it cannot ever again be the current buffer.

[Command]make-indirect-buffer base-buffer name &optional clone
This creates and returns an indirect buffer named name whose base buffer is base-
buffer. The argument base-buffer may be a live buffer or the name (a string) of an
existing buffer. If name is the name of an existing buffer, an error is signaled.

If clone is non-nil, then the indirect buffer originally shares the “state” of base-buffer
such as major mode, minor modes, buffer local variables and so on. If clone is omitted
or nil the indirect buffer’s state is set to the default state for new buffers.

If base-buffer is an indirect buffer, its base buffer is used as the base for the new
buffer. If, in addition, clone is non-nil, the initial state is copied from the actual
base buffer, not from base-buffer.

Chapter 27: Buffers 16

[Command]clone-indirect-buffer newname display-flag &optional norecord
This function creates and returns a new indirect buffer that shares the current buffer’s
base buffer and copies the rest of the current buffer’s attributes. (If the current buffer
is not indirect, it is used as the base buffer.)

If display-flag is non-nil, that means to display the new buffer by calling pop-to-

buffer. If norecord is non-nil, that means not to put the new buffer to the front of
the buffer list.

[Function]buffer-base-buffer &optional buffer
This function returns the base buffer of buffer, which defaults to the current buffer. If
buffer is not indirect, the value is nil. Otherwise, the value is another buffer, which
is never an indirect buffer.

27.12 Swapping Text Between Two Buffers

Specialized modes sometimes need to let the user access from the same buffer several vastly
different types of text. For example, you may need to display a summary of the buffer text,
in addition to letting the user access the text itself.

This could be implemented with multiple buffers (kept in sync when the user edits the
text), or with narrowing (see Section 30.4 [Narrowing], page 109). But these alternatives
might sometimes become tedious or prohibitively expensive, especially if each type of text
requires expensive buffer-global operations in order to provide correct display and editing
commands.

Emacs provides another facility for such modes: you can quickly swap buffer text between
two buffers with buffer-swap-text. This function is very fast because it doesn’t move any
text, it only changes the internal data structures of the buffer object to point to a different
chunk of text. Using it, you can pretend that a group of two or more buffers are actually a
single virtual buffer that holds the contents of all the individual buffers together.

[Function]buffer-swap-text buffer
This function swaps the text of the current buffer and that of its argument buffer.
It signals an error if one of the two buffers is an indirect buffer (see Section 27.11
[Indirect Buffers], page 15) or is a base buffer of an indirect buffer.

All the buffer properties that are related to the buffer text are swapped as well: the
positions of point and mark, all the markers, the overlays, the text properties, the
undo list, the value of the enable-multibyte-characters flag (see Section 33.1 [Text
Representations], page 182), etc.

If you use buffer-swap-text on a file-visiting buffer, you should set up a hook to save
the buffer’s original text rather than what it was swapped with. write-region-annotate-
functions works for this purpose. You should probably set buffer-saved-size to −2 in
the buffer, so that changes in the text it is swapped with will not interfere with auto-saving.

27.13 The Buffer Gap

Emacs buffers are implemented using an invisible gap to make insertion and deletion faster.
Insertion works by filling in part of the gap, and deletion adds to the gap. Of course, this
means that the gap must first be moved to the locus of the insertion or deletion. Emacs

Chapter 27: Buffers 17

moves the gap only when you try to insert or delete. This is why your first editing command
in one part of a large buffer, after previously editing in another far-away part, sometimes
involves a noticeable delay.

This mechanism works invisibly, and Lisp code should never be affected by the gap’s
current location, but these functions are available for getting information about the gap
status.

[Function]gap-position
This function returns the current gap position in the current buffer.

[Function]gap-size
This function returns the current gap size of the current buffer.

Chapter 28: Windows 18

28 Windows

This chapter describes the functions and variables related to Emacs windows. See
Chapter 29 [Frames], page 66, for how windows are assigned an area of screen available for
Emacs to use. See Chapter 38 [Display], page 299, for information on how text is displayed
in windows.

28.1 Basic Concepts of Emacs Windows

A window is a area of the screen that is used to display a buffer (see Chapter 27 [Buffers],
page 1). In Emacs Lisp, windows are represented by a special Lisp object type.

Windows are grouped into frames (see Chapter 29 [Frames], page 66). Each frame
contains at least one window; the user can subdivide it into multiple, non-overlapping
windows to view several buffers at once. Lisp programs can use multiple windows for a
variety of purposes. In Rmail, for example, you can view a summary of message titles in
one window, and the contents of the selected message in another window.

Emacs uses the word “window” with a different meaning than in graphical desktop
environments and window systems, such as the X Window System. When Emacs is run
on X, each of its graphical X windows is an Emacs frame (containing one or more Emacs
windows). When Emacs is run on a text terminal, the frame fills the entire terminal screen.

Unlike X windows, Emacs windows are tiled; they never overlap within the area of the
frame. When a window is created, resized, or deleted, the change in window space is taken
from or given to the adjacent windows, so that the total area of the frame is unchanged.

A live window is one that is actually displaying a buffer in a frame. Such a window can
be deleted, i.e. removed from the frame (see Section 28.6 [Deleting Windows], page 31);
then it is no longer live, but the Lisp object representing it might be still referenced from
other Lisp objects. A deleted window may be brought back to life by restoring a saved
window configuration (see Section 28.23 [Window Configurations], page 60).

[Function]windowp object
This function returns t if object is a window (whether or not it is live). Otherwise,
it returns nil.

[Function]window-live-p object
This function returns t if object is a live window and nil otherwise. A live window
is one that displays a buffer.

The windows in each frame are organized into a window tree. See Section 28.2 [Win-
dows and Frames], page 19. The leaf nodes of each window tree are live windows—the
ones actually displaying buffers. The internal nodes of the window tree are internal win-
dows, which are not live. You can distinguish internal windows from deleted windows with
window-valid-p.

[Function]window-valid-p object
This function returns t if object is a live window, or an internal window in a window
tree. Otherwise, it returns nil, including for the case where object is a deleted
window.

Chapter 28: Windows 19

In each frame, at any time, exactly one Emacs window is designated as selected within
the frame. For the selected frame, that window is called the selected window—the one in
which most editing takes place, and in which the cursor for selected windows appears (see
Section 29.3.3.7 [Cursor Parameters], page 76). The selected window’s buffer is usually
also the current buffer, except when set-buffer has been used (see Section 27.2 [Current
Buffer], page 1). As for non-selected frames, the window selected within the frame becomes
the selected window if the frame is ever selected. See Section 28.7 [Selecting Windows],
page 33.

[Function]selected-window
This function returns the selected window (which is always a live window).

28.2 Windows and Frames

Each window belongs to exactly one frame (see Chapter 29 [Frames], page 66).

[Function]window-frame window
This function returns the frame that the window window belongs to. If window is
nil, it defaults to the selected window.

[Function]window-list &optional frame minibuffer window
This function returns a list of live windows belonging to the frame frame. If frame is
omitted or nil, it defaults to the selected frame.

The optional argument minibuffer specifies whether to include the minibuffer window
in the returned list. Ifminibuffer is t, the minibuffer window is included. Ifminibuffer
is nil or omitted, the minibuffer window is included only if it is active. If minibuffer
is neither nil nor t, the minibuffer window is never included.

The optional argument window, if non-nil, should be a live window on the specified
frame; then window will be the first element in the returned list. If window is omitted
or nil, the window selected within the frame is the first element.

Windows in the same frame are organized into a window tree, whose leaf nodes are the
live windows. The internal nodes of a window tree are not live; they exist for the purpose
of organizing the relationships between live windows. The root node of a window tree is
called the root window. It can be either a live window (if the frame has just one window),
or an internal window.

A minibuffer window (see Section 20.11 [Minibuffer Windows], page 311, vol. 1) is not
part of its frame’s window tree unless the frame is a minibuffer-only frame. Nonetheless,
most of the functions in this section accept the minibuffer window as an argument. Also,
the function window-tree described at the end of this section lists the minibuffer window
alongside the actual window tree.

[Function]frame-root-window &optional frame-or-window
This function returns the root window for frame-or-window. The argument frame-or-
window should be either a window or a frame; if omitted or nil, it defaults to the
selected frame. If frame-or-window is a window, the return value is the root window
of that window’s frame.

Chapter 28: Windows 20

When a window is split, there are two live windows where previously there was one. One
of these is represented by the same Lisp window object as the original window, and the other
is represented by a newly-created Lisp window object. Both of these live windows become
leaf nodes of the window tree, as child windows of a single internal window. If necessary,
Emacs automatically creates this internal window, which is also called the parent window,
and assigns it to the appropriate position in the window tree. A set of windows that share
the same parent are called siblings.

[Function]window-parent &optional window
This function returns the parent window of window. If window is omitted or nil,
it defaults to the selected window. The return value is nil if window has no parent
(i.e. it is a minibuffer window or the root window of its frame).

Each internal window always has at least two child windows. If this number falls to one
as a result of window deletion, Emacs automatically deletes the internal window, and its
sole remaining child window takes its place in the window tree.

Each child window can be either a live window, or an internal window (which in turn
would have its own child windows). Therefore, each internal window can be thought of as
occupying a certain rectangular screen area—the union of the areas occupied by the live
windows that are ultimately descended from it.

For each internal window, the screen areas of the immediate children are arranged either
vertically or horizontally (never both). If the child windows are arranged one above the
other, they are said to form a vertical combination; if they are arranged side by side, they
are said to form a horizontal combination. Consider the following example:

| ______ ____________________________ |

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| ||| |||

|| |||____________W4____________|||

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| |||____________W5____________|||

||__W2__||_____________W3_____________ |

|__________________W1__________________|

The root window of this frame is an internal window, W1. Its child windows form a horizontal
combination, consisting of the live window W2 and the internal window W3. The child
windows of W3 form a vertical combination, consisting of the live windows W4 and W5.
Hence, the live windows in this window tree are W2 W4, and W5.

The following functions can be used to retrieve a child window of an internal window,
and the siblings of a child window.

[Function]window-top-child window
This function returns the topmost child window of window, if window is an internal
window whose children form a vertical combination. For any other type of window,
the return value is nil.

Chapter 28: Windows 21

[Function]window-left-child window
This function returns the leftmost child window of window, if window is an internal
window whose children form a horizontal combination. For any other type of window,
the return value is nil.

[Function]window-child window
This function returns the first child window of the internal window window—the
topmost child window for a vertical combination, or the leftmost child window for a
horizontal combination. If window is a live window, the return value is nil.

[Function]window-combined-p &optional window horizontal
This function returns a non-nil value if and only if window is part of a vertical
combination. If window is omitted or nil, it defaults to the selected one.

If the optional argument horizontal is non-nil, this means to return non-nil if and
only if window is part of a horizontal combination.

[Function]window-next-sibling &optional window
This function returns the next sibling of the window window. If omitted or nil,
window defaults to the selected window. The return value is nil if window is the
last child of its parent.

[Function]window-prev-sibling &optional window
This function returns the previous sibling of the window window. If omitted or nil,
window defaults to the selected window. The return value is nil if window is the
first child of its parent.

The functions window-next-sibling and window-prev-sibling should not be confused
with the functions next-window and previous-window, which return the next and previous
window, respectively, in the cyclic ordering of windows (see Section 28.8 [Cyclic Window
Ordering], page 34).

You can use the following functions to find the first live window on a frame, and to
retrieve the entire window tree of a frame:

[Function]frame-first-window &optional frame-or-window
This function returns the live window at the upper left corner of the frame specified
by frame-or-window. The argument frame-or-window must denote a window or a live
frame and defaults to the selected frame. If frame-or-window specifies a window, this
function returns the first window on that window’s frame. Under the assumption that
the frame from our canonical example is selected (frame-first-window) returns W2.

[Function]window-tree &optional frame
This function returns a list representing the window tree for frame frame. If frame is
omitted or nil, it defaults to the selected frame.

The return value is a list of the form (root mini), where root represents the window
tree of the frame’s root window, and mini is the frame’s minibuffer window.

If the root window is live, root is that window itself. Otherwise, root is a list (dir
edges w1 w2 ...) where dir is nil for a horizontal combination and t for a vertical
combination, edges gives the size and position of the combination, and the remaining

Chapter 28: Windows 22

elements are the child windows. Each child window may again be a window object
(for a live window) or a list with the same format as above (for an internal window).
The edges element is a list (left top right bottom), similar to the value returned
by window-edges (see Section 28.22 [Coordinates and Windows], page 58).

28.3 Window Sizes

The following schematic shows the structure of a live window:

^ |______________ Header Line_______________|

| |LS|LF|LM| |RM|RF|RS| ^

| | | | | | | | | |

Window | | | | Text Area | | | | Window

Total | | | | (Window Body) | | | | Body

Height | | | | | | | | Height

| | | | |<- Window Body Width ->| | | | |

| |__|__|__|_______________________|__|__|__| v

v |_______________ Mode Line _______________|

<----------- Window Total Width -------->

At the center of the window is the text area, or body, where the buffer text is dis-
played. On each side of the text area is a series of vertical areas; from innermost to
outermost, these are the left and right margins, denoted by LM and RM in the schematic
(see Section 38.15.5 [Display Margins], page 354); the left and right fringes, denoted by LF
and RF (see Section 38.13 [Fringes], page 344); and the left or right scroll bar, only one
of which is present at any time, denoted by LS and RS (see Section 38.14 [Scroll Bars],
page 349). At the top of the window is an optional header line (see Section 23.4.7 [Header
Lines], page 426, vol. 1), and at the bottom of the window is the mode line (see Section 23.4
[Mode Line Format], page 419, vol. 1).

Emacs provides several functions for finding the height and width of a window. Except
where noted, Emacs reports window heights and widths as integer numbers of lines and
columns, respectively. On a graphical display, each “line” and “column” actually corre-
sponds to the height and width of a “default” character specified by the frame’s default
font. Thus, if a window is displaying text with a different font or size, the reported height
and width for that window may differ from the actual number of text lines or columns
displayed within it.

The total height of a window is the distance between the top and bottom of the window,
including the header line (if one exists) and the mode line. The total width of a window is
the distance between the left and right edges of the mode line. Note that the height of a
frame is not the same as the height of its windows, since a frame may also contain an echo
area, menu bar, and tool bar (see Section 29.3.4 [Size and Position], page 79).

[Function]window-total-height &optional window
This function returns the total height, in lines, of the window window. If window is
omitted or nil, it defaults to the selected window. If window is an internal window,
the return value is the total height occupied by its descendant windows.

Chapter 28: Windows 23

[Function]window-total-width &optional window
This function returns the total width, in columns, of the window window. If window
is omitted or nil, it defaults to the selected window. If window is internal, the return
value is the total width occupied by its descendant windows.

[Function]window-total-size &optional window horizontal
This function returns either the total height or width of the window window. If
horizontal is omitted or nil, this is equivalent to calling window-total-height for
window ; otherwise it is equivalent to calling window-total-width for window.

The following functions can be used to determine whether a given window has any
adjacent windows.

[Function]window-full-height-p &optional window
This function returns non-nil if window has no other window above or below it in its
frame, i.e. its total height equals the total height of the root window on that frame.
If window is omitted or nil, it defaults to the selected window.

[Function]window-full-width-p &optional window
This function returns non-nil if window has no other window to the left or right in
its frame, i.e. its total width equals that of the root window on that frame. If window
is omitted or nil, it defaults to the selected window.

The body height of a window is the height of its text area, which does not include the
mode or header line. Similarly, the body width is the width of the text area, which does
not include the scroll bar, fringes, or margins.

[Function]window-body-height &optional window
This function returns the body height, in lines, of the window window. If window is
omitted or nil, it defaults to the selected window; otherwise it must be a live window.

If there is a partially-visible line at the bottom of the text area, that counts as a
whole line; to exclude such a partially-visible line, use window-text-height, below.

[Function]window-body-width &optional window
This function returns the body width, in columns, of the window window. If window
is omitted or nil, it defaults to the selected window; otherwise it must be a live
window.

[Function]window-body-size &optional window horizontal
This function returns the body height or body width of window. If horizontal is
omitted or nil, it is equivalent to calling window-body-height for window ; otherwise
it is equivalent to calling window-body-width.

[Function]window-text-height &optional window
This function is like window-body-height, except that any partially-visible line at
the bottom of the text area is not counted.

For compatibility with previous versions of Emacs, window-height is an alias for
window-total-height, and window-width is an alias for window-body-width. These
aliases are considered obsolete and will be removed in the future.

Chapter 28: Windows 24

Commands that change the size of windows (see Section 28.4 [Resizing Windows],
page 24), or split them (see Section 28.5 [Splitting Windows], page 26), obey the variables
window-min-height and window-min-width, which specify the smallest allowable window
height and width. See Section “Deleting and Rearranging Windows” in The GNU Emacs
Manual. They also obey the variable window-size-fixed, with which a window can be
fixed in size:

[Variable]window-size-fixed
If this buffer-local variable is non-nil, the size of any window displaying the buffer
cannot normally be changed. Deleting a window or changing the frame’s size may
still change its size, if there is no choice.

If the value is height, then only the window’s height is fixed; if the value is width,
then only the window’s width is fixed. Any other non-nil value fixes both the width
and the height.

[Function]window-size-fixed-p &optional window horizontal
This function returns a non-nil value if window ’s height is fixed. If window is omitted
or nil, it defaults to the selected window. If the optional argument horizontal is non-
nil, the return value is non-nil if window ’s width is fixed.

A nil return value does not necessarily mean that window can be resized in the
desired direction. To determine that, use the function window-resizable. See
Section 28.4 [Resizing Windows], page 24.

See Section 28.22 [Coordinates and Windows], page 58, for more functions that report
the positions of various parts of a window relative to the frame, from which you can calculate
its size. In particular, you can use the functions window-pixel-edges and window-inside-

pixel-edges to find the size in pixels, for graphical displays.

28.4 Resizing Windows

This section describes functions for resizing a window without changing the size of its frame.
Because live windows do not overlap, these functions are meaningful only on frames that
contain two or more windows: resizing a window also changes the size of a neighboring
window. If there is just one window on a frame, its size cannot be changed except by
resizing the frame (see Section 29.3.4 [Size and Position], page 79).

Except where noted, these functions also accept internal windows as arguments. Resizing
an internal window causes its child windows to be resized to fit the same space.

[Function]window-resizable window delta &optional horizontal ignore
This function returns delta if the size of window can be changed vertically by delta
lines. If the optional argument horizontal is non-nil, it instead returns delta if window
can be resized horizontally by delta columns. It does not actually change the window
size.

If window is nil, it defaults to the selected window.

A positive value of delta means to check whether the window can be enlarged by that
number of lines or columns; a negative value of delta means to check whether the
window can be shrunk by that many lines or columns. If delta is non-zero, a return
value of 0 means that the window cannot be resized.

Chapter 28: Windows 25

Normally, the variables window-min-height and window-min-width specify the
smallest allowable window size. See Section “Deleting and Rearranging Windows”
in The GNU Emacs Manual. However, if the optional argument ignore is non-nil,
this function ignores window-min-height and window-min-width, as well as
window-size-fixed. Instead, it considers the minimum-height window to be one
consisting of a header (if any), a mode line, plus a text area one line tall; and a
minimum-width window as one consisting of fringes, margins, and scroll bar (if any),
plus a text area two columns wide.

[Function]window-resize window delta &optional horizontal ignore
This function resizes window by delta increments. If horizontal is nil, it changes the
height by delta lines; otherwise, it changes the width by delta columns. A positive
delta means to enlarge the window, and a negative delta means to shrink it.

If window is nil, it defaults to the selected window. If the window cannot be resized
as demanded, an error is signaled.

The optional argument ignore has the same meaning as for the function window-

resizable above.

The choice of which window edges this function alters depends on the values of the
option window-combination-resize and the combination limits of the involved win-
dows; in some cases, it may alter both edges. See Section 28.5 [Splitting Windows],
page 26. To resize by moving only the bottom or right edge of a window, use the
function adjust-window-trailing-edge, below.

[Function]adjust-window-trailing-edge window delta &optional horizontal
This function moves window ’s bottom edge by delta lines. If optional argument
horizontal is non-nil, it instead moves the right edge by delta columns. If window is
nil, it defaults to the selected window.

A positive delta moves the edge downwards or to the right; a negative delta moves it
upwards or to the left. If the edge cannot be moved as far as specified by delta, this
function moves it as far as possible but does not signal a error.

This function tries to resize windows adjacent to the edge that is moved. If this is
not possible for some reason (e.g. if that adjacent window is fixed-size), it may resize
other windows.

The following commands resize windows in more specific ways. When called interactively,
they act on the selected window.

[Command]fit-window-to-buffer &optional window max-height min-height
override

This command adjusts the height of window to fit the text in it. It returns non-nil
if it was able to resize window, and nil otherwise. If window is omitted or nil, it
defaults to the selected window. Otherwise, it should be a live window.

The optional argument max-height, if non-nil, specifies the maximum total height
that this function can give window. The optional argument min-height, if non-nil,
specifies the minimum total height that it can give, which overrides the variable
window-min-height.

If the optional argument override is non-nil, this function ignores any size restrictions
imposed by window-min-height and window-min-width.

Chapter 28: Windows 26

[Command]shrink-window-if-larger-than-buffer &optional window
This command attempts to reduce window ’s height as much as possible while still
showing its full buffer, but no less than window-min-height lines. The return value
is non-nil if the window was resized, and nil otherwise. If window is omitted or
nil, it defaults to the selected window. Otherwise, it should be a live window.

This command does nothing if the window is already too short to display all of its
buffer, or if any of the buffer is scrolled off-screen, or if the window is the only live
window in its frame.

[Command]balance-windows &optional window-or-frame
This function balances windows in a way that gives more space to full-width and/or
full-height windows. If window-or-frame specifies a frame, it balances all windows on
that frame. If window-or-frame specifies a window, it balances only that window and
its siblings (see Section 28.2 [Windows and Frames], page 19).

[Command]balance-windows-area
This function attempts to give all windows on the selected frame approximately the
same share of the screen area. Full-width or full-height windows are not given more
space than other windows.

[Command]maximize-window &optional window
This function attempts to make window as large as possible, in both dimensions,
without resizing its frame or deleting other windows. If window is omitted or nil, it
defaults to the selected window.

[Command]minimize-window &optional window
This function attempts to make window as small as possible, in both dimensions,
without deleting it or resizing its frame. If window is omitted or nil, it defaults to
the selected window.

28.5 Splitting Windows

This section describes functions for creating a new window by splitting an existing one.

[Command]split-window &optional window size side
This function creates a new live window next to the window window. If window
is omitted or nil, it defaults to the selected window. That window is “split”, and
reduced in size. The space is taken up by the new window, which is returned.

The optional second argument size determines the sizes of window and/or the new
window. If it is omitted or nil, both windows are given equal sizes; if there is an odd
line, it is allocated to the new window. If size is a positive number, window is given
size lines (or columns, depending on the value of side). If size is a negative number,
the new window is given −size lines (or columns).

If size is nil, this function obeys the variables window-min-height and window-

min-width. See Section “Deleting and Rearranging Windows” in The GNU Emacs
Manual. Thus, it signals an error if splitting would result in making a window smaller
than those variables specify. However, a non-nil value for size causes those variables
to be ignored; in that case, the smallest allowable window is considered to be one
that has space for a text area one line tall and/or two columns wide.

Chapter 28: Windows 27

The optional third argument side determines the position of the new window relative
to window. If it is nil or below, the new window is placed below window. If it is
above, the new window is placed above window. In both these cases, size specifies a
total window height, in lines.

If side is t or right, the new window is placed on the right of window. If side is left,
the new window is placed on the left of window. In both these cases, size specifies a
total window width, in columns.

If window is a live window, the new window inherits various properties from it,
including margins and scroll bars. If window is an internal window, the new window
inherits the properties of the window selected within window ’s frame.

The behavior of this function may be altered by the window parameters of window,
so long as the variable ignore-window-parameters is nil. If the value of the split-
window window parameter is t, this function ignores all other window parameters.
Otherwise, if the value of the split-window window parameter is a function, that
function is called with the arguments window, size, and side, in lieu of the usual action
of split-window. Otherwise, this function obeys the window-atom or window-side
window parameter, if any. See Section 28.24 [Window Parameters], page 62.

As an example, here is a sequence of split-window calls that yields the window con-
figuration discussed in Section 28.2 [Windows and Frames], page 19. This example demon-
strates splitting a live window as well as splitting an internal window. We begin with a
frame containing a single window (a live root window), which we denote by W4. Calling
(split-window W4) yields this window configuration:

| ____________________________________ |

|| ||

|| ||

|| ||

||_________________W4_________________||

| ____________________________________ |

|| ||

|| ||

|| ||

||_________________W5_________________||

|__________________W3__________________|

The split-window call has created a new live window, denoted by W5. It has also created
a new internal window, denoted by W3, which becomes the root window and the parent of
both W4 and W5.

Next, we call (split-window W3 nil ’left), passing the internal window W3 as the
argument. The result:

Chapter 28: Windows 28

| ______ ____________________________ |

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| ||| |||

|| |||____________W4____________|||

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| |||____________W5____________|||

||__W2__||_____________W3_____________ |

|__________________W1__________________|

A new live window W2 is created, to the left of the internal window W3. A new internal
window W1 is created, becoming the new root window.

[User Option]window-combination-resize
If this variable is nil, split-window can only split a window (denoted by window) if
window ’s screen area is large enough to accommodate both itself and the new window.

If this variable is t, split-window tries to resize all windows that are part of the same
combination as window, in order to accommodate the new window. In particular, this
may allow split-window to succeed even if window is a fixed-size window or too small
to ordinarily split. Furthermore, subsequently resizing or deleting window may resize
all other windows in its combination.

The default is nil. Other values are reserved for future use. The value of this variable
is ignored when window-combination-limit is non-nil (see below).

To illustrate the effect of window-combination-resize, consider the following window
configuration:

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

||_________________W3_________________||

|__________________W1__________________|

If window-combination-resize is nil, splitting window W3 leaves the size of W2 unchanged:

Chapter 28: Windows 29

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

||_________________W3_________________||

| ____________________________________ |

|| ||

||_________________W4_________________||

|__________________W1__________________|

If window-combination-resize is t, splitting W3 instead leaves all three live windows with
approximately the same height:

| ____________________________________ |

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W3_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W4_________________||

|__________________W1__________________|

[User Option]window-combination-limit
If the value of this variable is t, the split-window function always creates a new
internal window. If the value is nil, the new live window is allowed to share the
existing parent window, if one exists, provided the split occurs in the same direction
as the existing window combination (otherwise, a new internal window is created
anyway). The default is nil. Other values are reserved for future use.

Thus, if the value of this variable is at all times t, then at all times every window
tree is a binary tree (a tree where each window except the root window has exactly
one sibling).

Furthermore, split-window calls set-window-combination-limit on the newly-
created internal window, recording the current value of this variable. This affects
how the window tree is rearranged when the child windows are deleted (see below).

[Function]set-window-combination-limit window limit
This functions sets the combination limit of the window window to limit. This value
can be retrieved via the function window-combination-limit. See below for its
effects; note that it is only meaningful for internal windows. The split-window

function automatically calls this function, passing the value of the variable window-

combination-limit as limit.

Chapter 28: Windows 30

[Function]window-combination-limit window
This function returns the combination limit for window.

The combination limit is meaningful only for an internal window. If it is nil, then
Emacs is allowed to automatically delete window, in response to a window deletion,
in order to group the child windows of window with its sibling windows to form a
new window combination. If the combination limit is t, the child windows of window
are never automatically re-combined with its siblings.

To illustrate the effect of window-combination-limit, consider the following configura-
tion (throughout this example, we will assume that window-combination-resize is nil):

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W3_________________||

|__________________W1__________________|

If window-combination-limit is nil, splitting W2 into two windows, one above the other,
yields

| ____________________________________ |

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W4_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W3_________________||

|__________________W1__________________|

The newly-created window, W4, shares the same internal window W1. If W4 is resized, it is
allowed to resize the other live window, W3.

If window-combination-limit is t, splitting W2 in the initial configuration would instead
have produced this:

Chapter 28: Windows 31

| ____________________________________ |

|| __________________________________ ||

||| |||

|||________________W2________________|||

|| __________________________________ ||

||| |||

|||________________W4________________|||

||_________________W5_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W3_________________||

|__________________W1__________________|

A new internal window W5 has been created; its children are W2 and the new live window
W4. Now, W2 is the only sibling of W4, so resizing W4 will resize W2, leaving W3 unaffected.

For interactive use, Emacs provides two commands which always split the selected win-
dow. These call split-window internally.

[Command]split-window-right &optional size
This function splits the selected window into two side-by-side windows, putting the
selected window on the left. If size is positive, the left window gets size columns; if
size is negative, the right window gets −size columns.

[Command]split-window-below &optional size
This function splits the selected window into two windows, one above the other,
leaving the upper window selected. If size is positive, the upper window gets size
lines; if size is negative, the lower window gets −size lines.

[User Option]split-window-keep-point
If the value of this variable is non-nil (the default), split-window-below behaves
as described above.

If it is nil, split-window-below adjusts point in each of the two windows to minimize
redisplay. (This is useful on slow terminals.) It selects whichever window contains the
screen line that point was previously on. Note that this only affects split-window-
below, not the lower-level split-window function.

28.6 Deleting Windows

Deleting a window removes it from the frame’s window tree. If the window is a live window,
it disappears from the screen. If the window is an internal window, its child windows are
deleted too.

Even after a window is deleted, it continues to exist as a Lisp object, until there are
no more references to it. Window deletion can be reversed, by restoring a saved window
configuration (see Section 28.23 [Window Configurations], page 60).

[Command]delete-window &optional window
This function removes window from display and returns nil. If window is omitted or
nil, it defaults to the selected window. If deleting the window would leave no more

Chapter 28: Windows 32

windows in the window tree (e.g. if it is the only live window in the frame), an error
is signaled.

By default, the space taken up by window is given to one of its adjacent sibling
windows, if any. However, if the variable window-combination-resize is non-nil,
the space is proportionally distributed among any remaining windows in the window
combination. See Section 28.5 [Splitting Windows], page 26.

The behavior of this function may be altered by the window parameters of window, so
long as the variable ignore-window-parameters is nil. If the value of the delete-
window window parameter is t, this function ignores all other window parameters.
Otherwise, if the value of the delete-window window parameter is a function, that
function is called with the argument window, in lieu of the usual action of delete-
window. Otherwise, this function obeys the window-atom or window-side window
parameter, if any. See Section 28.24 [Window Parameters], page 62.

[Command]delete-other-windows &optional window
This function makes window fill its frame, by deleting other windows as necessary.
If window is omitted or nil, it defaults to the selected window. The return value is
nil.

The behavior of this function may be altered by the window parameters of window, so
long as the variable ignore-window-parameters is nil. If the value of the delete-
other-windows window parameter is t, this function ignores all other window pa-
rameters. Otherwise, if the value of the delete-other-windows window parameter
is a function, that function is called with the argument window, in lieu of the usual
action of delete-other-windows. Otherwise, this function obeys the window-atom

or window-side window parameter, if any. See Section 28.24 [Window Parameters],
page 62.

[Command]delete-windows-on &optional buffer-or-name frame
This function deletes all windows showing buffer-or-name, by calling delete-window

on those windows. buffer-or-name should be a buffer, or the name of a buffer; if
omitted or nil, it defaults to the current buffer. If there are no windows showing the
specified buffer, this function does nothing. If the specified buffer is a minibuffer, an
error is signaled.

If there is a dedicated window showing the buffer, and that window is the only one
on its frame, this function also deletes that frame if it is not the only frame on the
terminal.

The optional argument frame specifies which frames to operate on:

• nil means operate on all frames.

• t means operate on the selected frame.

• visible means operate on all visible frames.

• 0 means operate on all visible or iconified frames.

• A frame means operate on that frame.

Note that this argument does not have the same meaning as in other functions which
scan all live windows (see Section 28.8 [Cyclic Window Ordering], page 34). Specifi-
cally, the meanings of t and nil here are the opposite of what they are in those other
functions.

Chapter 28: Windows 33

28.7 Selecting Windows

[Function]select-window window &optional norecord
This function makes window the selected window, as well as the window selected
within its frame (see Section 28.1 [Basic Windows], page 18). window must be a
live window. Unless window already is the selected window, its buffer becomes the
current buffer (see Section 28.9 [Buffers and Windows], page 36). The return value is
window.

By default, this function also moves window ’s selected buffer to the front of the
buffer list (see Section 27.8 [The Buffer List], page 10), and makes window the most
recently selected window. However, if the optional argument norecord is non-nil,
these additional actions are omitted.

The sequence of calls to select-window with a non-nil norecord argument determines
an ordering of windows by their selection time. The function get-lru-window can be
used to retrieve the least recently selected live window (see Section 28.8 [Cyclic Window
Ordering], page 34).

[Macro]save-selected-window forms. . .
This macro records the selected frame, as well as the selected window of each frame,
executes forms in sequence, then restores the earlier selected frame and windows. It
also saves and restores the current buffer. It returns the value of the last form in
forms.

This macro does not save or restore anything about the sizes, arrangement or contents
of windows; therefore, if forms change them, the change persists. If the previously
selected window of some frame is no longer live at the time of exit from forms, that
frame’s selected window is left alone. If the previously selected window is no longer
live, then whatever window is selected at the end of forms remains selected. The
current buffer is restored if and only if it is still live when exiting forms.

This macro changes neither the ordering of recently selected windows nor the buffer
list.

[Macro]with-selected-window window forms. . .
This macro selects window, executes forms in sequence, then restores the previously
selected window and current buffer. The ordering of recently selected windows and
the buffer list remain unchanged unless you deliberately change them within forms;
for example, by calling select-window with argument norecord nil.

This macro does not change the order of recently selected windows or the buffer list.

[Function]frame-selected-window &optional frame
This function returns the window on frame that is selected within that frame. frame
should be a live frame; if omitted or nil, it defaults to the selected frame.

[Function]set-frame-selected-window frame window &optional norecord
This function makes window the window selected within the frame frame. frame
should be a live frame; if omitted or nil, it defaults to the selected frame. window
should be a live window; if omitted or nil, it defaults to the selected window.

If frame is the selected frame, this makes window the selected window.

Chapter 28: Windows 34

If the optional argument norecord is non-nil, this function does not alter the list of
most recently selected windows, nor the buffer list.

28.8 Cyclic Ordering of Windows

When you use the command C-x o (other-window) to select some other window, it moves
through live windows in a specific order. For any given configuration of windows, this order
never varies. It is called the cyclic ordering of windows.

The ordering is determined by a depth-first traversal of the frame’s window tree, retriev-
ing the live windows which are the leaf nodes of the tree (see Section 28.2 [Windows and
Frames], page 19). If the minibuffer is active, the minibuffer window is included too. The
ordering is cyclic, so the last window in the sequence is followed by the first one.

[Function]next-window &optional window minibuf all-frames
This function returns a live window, the one following window in the cyclic ordering
of windows. window should be a live window; if omitted or nil, it defaults to the
selected window.

The optional argument minibuf specifies whether minibuffer windows should be in-
cluded in the cyclic ordering. Normally, when minibuf is nil, a minibuffer window
is included only if it is currently “active”; this matches the behavior of C-x o. (Note
that a minibuffer window is active as long as its minibuffer is in use; see Chapter 20
[Minibuffers], page 284, vol. 1).

If minibuf is t, the cyclic ordering includes all minibuffer windows. If minibuf is
neither t nor nil, minibuffer windows are not included even if they are active.

The optional argument all-frames specifies which frames to consider:

• nil means to consider windows on window ’s frame. If the minibuffer window is
considered (as specified by the minibuf argument), then frames that share the
minibuffer window are considered too.

• t means to consider windows on all existing frames.

• visible means to consider windows on all visible frames.

• 0 means to consider windows on all visible or iconified frames.

• A frame means to consider windows on that specific frame.

• Anything else means to consider windows on window ’s frame, and no others.

If more than one frame is considered, the cyclic ordering is obtained by appending
the orderings for those frames, in the same order as the list of all live frames (see
Section 29.7 [Finding All Frames], page 82).

[Function]previous-window &optional window minibuf all-frames
This function returns a live window, the one preceding window in the cyclic ordering
of windows. The other arguments are handled like in next-window.

[Command]other-window count &optional all-frames
This function selects a live window, one count places from the selected window in
the cyclic ordering of windows. If count is a positive number, it skips count windows
forwards; if count is negative, it skips −count windows backwards; if count is zero,

Chapter 28: Windows 35

that simply re-selects the selected window. When called interactively, count is the
numeric prefix argument.

The optional argument all-frames has the same meaning as in next-window, like a
nil minibuf argument to next-window.

This function does not select a window that has a non-nil no-other-window window
parameter (see Section 28.24 [Window Parameters], page 62).

[Function]walk-windows fun &optional minibuf all-frames
This function calls the function fun once for each live window, with the window as
the argument.

It follows the cyclic ordering of windows. The optional arguments minibuf and all-
frames specify the set of windows included; these have the same arguments as in
next-window. If all-frames specifies a frame, the first window walked is the first
window on that frame (the one returned by frame-first-window), not necessarily
the selected window.

If fun changes the window configuration by splitting or deleting windows, that does
not alter the set of windows walked, which is determined prior to calling fun for the
first time.

[Function]one-window-p &optional no-mini all-frames
This function returns t if the selected window is the only live window, and nil

otherwise.

If the minibuffer window is active, it is normally considered (so that this function
returns nil). However, if the optional argument no-mini is non-nil, the minibuffer
window is ignored even if active. The optional argument all-frames has the same
meaning as for next-window.

The following functions return a window which satisfies some criterion, without selecting
it:

[Function]get-lru-window &optional all-frames dedicated
This function returns a live window which is heuristically the “least recently used”
window. The optional argument all-frames has the same meaning as in next-window.

If any full-width windows are present, only those windows are considered. The selected
window is never returned, unless it is the only candidate. A minibuffer window is never
a candidate. A dedicated window (see Section 28.15 [Dedicated Windows], page 46)
is never a candidate unless the optional argument dedicated is non-nil.

[Function]get-largest-window &optional all-frames dedicated
This function returns the window with the largest area (height times width). A
minibuffer window is never a candidate. A dedicated window (see Section 28.15
[Dedicated Windows], page 46) is never a candidate unless the optional argument
dedicated is non-nil.

If there are two candidate windows of the same size, this function prefers the one that
comes first in the cyclic ordering of windows, starting from the selected window.

The optional argument all-frames specifies the windows to search, and has the same
meaning as in next-window.

Chapter 28: Windows 36

[Function]get-window-with-predicate predicate &optional minibuf all-frames
default

This function calls the function predicate for each of the windows in the cyclic order
of windows in turn, passing it the window as an argument. If the predicate returns
non-nil for any window, this function stops and returns that window. If no such
window is found, the return value is default (which defaults to nil).

The optional arguments minibuf and all-frames specify the windows to search, and
have the same meanings as in next-window.

28.9 Buffers and Windows

This section describes low-level functions for examining and setting the contents of windows.
See Section 28.10 [Switching Buffers], page 37, for higher-level functions for displaying a
specific buffer in a window.

[Function]window-buffer &optional window
This function returns the buffer that window is displaying. If window is omitted or
nil it defaults to the selected window. If window is an internal window, this function
returns nil.

[Function]set-window-buffer window buffer-or-name &optional keep-margins
This function makes window display buffer-or-name. window should be a live window;
if nil, it defaults to the selected window. buffer-or-name should be a buffer, or the
name of an existing buffer. This function does not change which window is selected,
nor does it directly change which buffer is current (see Section 27.2 [Current Buffer],
page 1). Its return value is nil.

If window is strongly dedicated to a buffer and buffer-or-name does not specify that
buffer, this function signals an error. See Section 28.15 [Dedicated Windows], page 46.

By default, this function resets window ’s position, display margins, fringe widths,
and scroll bar settings, based on the local variables in the specified buffer. However,
if the optional argument keep-margins is non-nil, it leaves the display margins and
fringe widths unchanged.

When writing an application, you should normally use the higher-level functions de-
scribed in Section 28.10 [Switching Buffers], page 37, instead of calling set-window-

buffer directly.

This runs window-scroll-functions, followed by window-configuration-change-

hook. See Section 28.25 [Window Hooks], page 64.

[Variable]buffer-display-count
This buffer-local variable records the number of times a buffer has been displayed in
a window. It is incremented each time set-window-buffer is called for the buffer.

[Variable]buffer-display-time
This buffer-local variable records the time at which a buffer was last displayed in
a window. The value is nil if the buffer has never been displayed. It is updated
each time set-window-buffer is called for the buffer, with the value returned by
current-time (see Section 39.5 [Time of Day], page 399).

Chapter 28: Windows 37

[Function]get-buffer-window &optional buffer-or-name all-frames
This function returns the first window displaying buffer-or-name in the cyclic ordering
of windows, starting from the selected window (see Section 28.8 [Cyclic Window
Ordering], page 34). If no such window exists, the return value is nil.

buffer-or-name should be a buffer or the name of a buffer; if omitted or nil, it defaults
to the current buffer. The optional argument all-frames specifies which windows to
consider:

• t means consider windows on all existing frames.

• visible means consider windows on all visible frames.

• 0 means consider windows on all visible or iconified frames.

• A frame means consider windows on that frame only.

• Any other value means consider windows on the selected frame.

Note that these meanings differ slightly from those of the all-frames argument to
next-window (see Section 28.8 [Cyclic Window Ordering], page 34). This function
may be changed in a future version of Emacs to eliminate this discrepancy.

[Function]get-buffer-window-list &optional buffer-or-name minibuf all-frames
This function returns a list of all windows currently displaying buffer-or-name. buffer-
or-name should be a buffer or the name of an existing buffer. If omitted or nil, it
defaults to the current buffer.

The arguments minibuf and all-frames have the same meanings as in the function
next-window (see Section 28.8 [Cyclic Window Ordering], page 34). Note that the
all-frames argument does not behave exactly like in get-buffer-window.

[Command]replace-buffer-in-windows &optional buffer-or-name
This command replaces buffer-or-name with some other buffer, in all windows dis-
playing it. buffer-or-name should be a buffer, or the name of an existing buffer; if
omitted or nil, it defaults to the current buffer.

The replacement buffer in each window is chosen via switch-to-prev-buffer (see
Section 28.14 [Window History], page 45). Any dedicated window displaying buffer-
or-name is deleted (see Section 28.15 [Dedicated Windows], page 46), unless it is the
only window on its frame—if it is the only window, and that frame is not the only
frame on its terminal, the frame is “dismissed” by calling the function specified by
frame-auto-hide-function (see Section 28.16 [Quitting Windows], page 47). If the
dedicated window is the only window on the only frame on its terminal, the buffer is
replaced anyway.

28.10 Switching to a Buffer in a Window

This section describes high-level functions for switching to a specified buffer in some window.

Do not use these functions to make a buffer temporarily current just so a Lisp program
can access or modify it. They have side-effects, such as changing window histories (see
Section 28.14 [Window History], page 45), which will surprise the user if used that way.
If you want to make a buffer current to modify it in Lisp, use with-current-buffer,
save-current-buffer, or set-buffer. See Section 27.2 [Current Buffer], page 1.

Chapter 28: Windows 38

[Command]switch-to-buffer buffer-or-name &optional norecord
force-same-window

This function displays buffer-or-name in the selected window, and makes it the current
buffer. (In contrast, set-buffer makes the buffer current but does not display it; see
Section 27.2 [Current Buffer], page 1). It is often used interactively (as the binding
of C-x b), as well as in Lisp programs. The return value is the buffer switched to.

If buffer-or-name is nil, it defaults to the buffer returned by other-buffer (see
Section 27.8 [The Buffer List], page 10). If buffer-or-name is a string that is not the
name of any existing buffer, this function creates a new buffer with that name; the
new buffer’s major mode is determined by the variable major-mode (see Section 23.2
[Major Modes], page 399, vol. 1).

Normally the specified buffer is put at the front of the buffer list—both the global
buffer list and the selected frame’s buffer list (see Section 27.8 [The Buffer List],
page 10). However, this is not done if the optional argument norecord is non-nil.

If this function is unable to display the buffer in the selected window—usually because
the selected window is a minibuffer window or is strongly dedicated to its buffer (see
Section 28.15 [Dedicated Windows], page 46)—then it normally tries to display the
buffer in some other window, in the manner of pop-to-buffer (see below). However,
if the optional argument force-same-window is non-nil, it signals an error instead.

The next two functions are similar to switch-to-buffer, except for the described fea-
tures.

[Command]switch-to-buffer-other-window buffer-or-name &optional norecord
This function makes the buffer specified by buffer-or-name current and displays it in
some window other than the selected window. It uses the function pop-to-buffer

internally (see below).

If the selected window already displays the specified buffer, it continues to do so, but
another window is nonetheless found to display it as well.

The buffer-or-name and norecord arguments have the same meanings as in switch-

to-buffer.

[Command]switch-to-buffer-other-frame buffer-or-name &optional norecord
This function makes the buffer specified by buffer-or-name current and displays it,
usually in a new frame. It uses the function pop-to-buffer (see below).

If the specified buffer is already displayed in another window, in any frame on the cur-
rent terminal, this switches to that window instead of creating a new frame. However,
the selected window is never used for this.

The buffer-or-name and norecord arguments have the same meanings as in switch-

to-buffer.

The above commands use the function pop-to-buffer, which flexibly displays a buffer in
some window and selects that window for editing. In turn, pop-to-buffer uses display-
buffer for displaying the buffer. Hence, all the variables affecting display-buffer will
affect it as well. See Section 28.11 [Choosing Window], page 39, for the documentation of
display-buffer.

Chapter 28: Windows 39

[Command]pop-to-buffer buffer-or-name &optional action norecord
This function makes buffer-or-name the current buffer and displays it in some window,
preferably not the window previously selected. It then selects the displaying window.
If that window is on a different graphical frame, that frame is given input focus if
possible (see Section 29.9 [Input Focus], page 83). The return value is the buffer that
was switched to.

If buffer-or-name is nil, it defaults to the buffer returned by other-buffer (see
Section 27.8 [The Buffer List], page 10). If buffer-or-name is a string that is not the
name of any existing buffer, this function creates a new buffer with that name; the
new buffer’s major mode is determined by the variable major-mode (see Section 23.2
[Major Modes], page 399, vol. 1).

If action is non-nil, it should be a display action to pass to display-buffer (see
Section 28.11 [Choosing Window], page 39). Alternatively, a non-nil, non-list value
means to pop to a window other than the selected one—even if the buffer is already
displayed in the selected window.

Like switch-to-buffer, this function updates the buffer list unless norecord is non-
nil.

28.11 Choosing a Window for Display

The command display-buffer flexibly chooses a window for display, and displays a speci-
fied buffer in that window. It can be called interactively, via the key binding C-x 4 C-o. It is
also used as a subroutine by many functions and commands, including switch-to-buffer

and pop-to-buffer (see Section 28.10 [Switching Buffers], page 37).

This command performs several complex steps to find a window to display in. These
steps are described by means of display actions, which have the form (function . alist).
Here, function is either a function or a list of functions, which we refer to as action functions;
alist is an association list, which we refer to as action alists.

An action function accepts two arguments: the buffer to display and an action alist.
It attempts to display the buffer in some window, picking or creating a window according
to its own criteria. If successful, it returns the window; otherwise, it returns nil. See
Section 28.12 [Display Action Functions], page 40, for a list of predefined action functions.

display-buffer works by combining display actions from several sources, and calling
the action functions in turn, until one of them manages to display the buffer and returns a
non-nil value.

[Command]display-buffer buffer-or-name &optional action frame
This command makes buffer-or-name appear in some window, without selecting the
window or making the buffer current. The argument buffer-or-name must be a buffer
or the name of an existing buffer. The return value is the window chosen to display
the buffer.

The optional argument action, if non-nil, should normally be a display action (de-
scribed above). display-buffer builds a list of action functions and an action alist,
by consolidating display actions from the following sources (in order):

• The variable display-buffer-overriding-action.

• The user option display-buffer-alist.

Chapter 28: Windows 40

• A special action for handling special-display-buffer-names and special-

display-regexps, if either of those variables is non-nil. See Section 28.13
[Choosing Window Options], page 41.

• The action argument.

• The user option display-buffer-base-action.

• The constant display-buffer-fallback-action.

Each action function is called in turn, passing the buffer as the first argument and
the combined action alist as the second argument, until one of the functions returns
non-nil.

The argument action can also have a non-nil, non-list value. This has the special
meaning that the buffer should be displayed in a window other than the selected one,
even if the selected window is already displaying it. If called interactively with a
prefix argument, action is t.

The optional argument frame, if non-nil, specifies which frames to check when de-
ciding whether the buffer is already displayed. It is equivalent to adding an element
(reusable-frames . frame) to the action alist of action. See Section 28.12 [Display
Action Functions], page 40.

[Variable]display-buffer-overriding-action
The value of this variable should be a display action, which is treated with the highest
priority by display-buffer. The default value is empty, i.e. (nil . nil).

[User Option]display-buffer-alist
The value of this option is an alist mapping regular expressions to display actions.
If the name of the buffer passed to display-buffer matches a regular expression in
this alist, then display-buffer uses the corresponding display action.

[User Option]display-buffer-base-action
The value of this option should be a display action. This option can be used to define
a “standard” display action for calls to display-buffer.

[Constant]display-buffer-fallback-action
This display action specifies the fallback behavior for display-buffer if no other
display actions are given.

28.12 Action Functions for display-buffer

The following basic action functions are defined in Emacs. Each of these functions takes
two arguments: buffer, the buffer to display, and alist, an action alist. Each action function
returns the window if it succeeds, and nil if it fails.

[Function]display-buffer-same-window buffer alist
This function tries to display buffer in the selected window. It fails if the selected
window is a minibuffer window or is dedicated to another buffer (see Section 28.15
[Dedicated Windows], page 46). It also fails if alist has a non-nil inhibit-same-

window entry.

Chapter 28: Windows 41

[Function]display-buffer-reuse-window buffer alist
This function tries to “display” buffer by finding a window that is already displaying
it.

If alist has a non-nil inhibit-same-window entry, the selected window is not eligible
for reuse. If alist contains a reusable-frames entry, its value determines which
frames to search for a reusable window:

• nil means consider windows on the selected frame. (Actually, the last non-
minibuffer frame.)

• t means consider windows on all frames.

• visible means consider windows on all visible frames.

• 0 means consider windows on all visible or iconified frames.

• A frame means consider windows on that frame only.

If alist contains no reusable-frames entry, this function normally searches just the
selected frame; however, if either the variable display-buffer-reuse-frames or the
variable pop-up-frames is non-nil, it searches all frames on the current terminal.
See Section 28.13 [Choosing Window Options], page 41.

If this function chooses a window on another frame, it makes that frame visible and
raises it if necessary.

[Function]display-buffer-pop-up-frame buffer alist
This function creates a new frame, and displays the buffer in that frame’s window.
It actually performs the frame creation by calling the function specified in pop-up-

frame-function (see Section 28.13 [Choosing Window Options], page 41).

[Function]display-buffer-pop-up-window buffer alist
This function tries to display buffer by splitting the largest or least recently-used
window (typically one on the selected frame). It actually performs the split by call-
ing the function specified in split-window-preferred-function (see Section 28.13
[Choosing Window Options], page 41).

It can fail if no window splitting can be performed for some reason (e.g. if there is
just one frame and it has an unsplittable frame parameter; see Section 29.3.3.5
[Buffer Parameters], page 75).

[Function]display-buffer-use-some-window buffer alist
This function tries to display buffer by choosing an existing window and displaying
the buffer in that window. It can fail if all windows are dedicated to another buffer
(see Section 28.15 [Dedicated Windows], page 46).

28.13 Additional Options for Displaying Buffers

The behavior of the standard display actions of display-buffer (see Section 28.11 [Choos-
ing Window], page 39) can be modified by a variety of user options.

[User Option]display-buffer-reuse-frames
If the value of this variable is non-nil, display-buffer may search all frames on the
current terminal when looking for a window already displaying the specified buffer.
The default is nil. This variable is consulted by the action function display-buffer-

reuse-window (see Section 28.12 [Display Action Functions], page 40).

Chapter 28: Windows 42

[User Option]pop-up-windows
If the value of this variable is non-nil, display-buffer is allowed to split an existing
window to make a new window for displaying in. This is the default.

This variable is provided mainly for backward compatibility. It is obeyed by
display-buffer via a special mechanism in display-buffer-fallback-action,
which only calls the action function display-buffer-pop-up-window (see
Section 28.12 [Display Action Functions], page 40) when the value is nil. It is not
consulted by display-buffer-pop-up-window itself, which the user may specify
directly in display-buffer-alist etc.

[User Option]split-window-preferred-function
This variable specifies a function for splitting a window, in order to make a new win-
dow for displaying a buffer. It is used by the display-buffer-pop-up-window action
function to actually split the window (see Section 28.12 [Display Action Functions],
page 40).

The default value is split-window-sensibly, which is documented below. The value
must be a function that takes one argument, a window, and return either a new
window (which is used to display the desired buffer) or nil (which means the splitting
failed).

[Function]split-window-sensibly window
This function tries to split window, and return the newly created window. If window
cannot be split, it returns nil.

This function obeys the usual rules that determine when a window may be split (see
Section 28.5 [Splitting Windows], page 26). It first tries to split by placing the new
window below, subject to the restriction imposed by split-height-threshold (see
below), in addition to any other restrictions. If that fails, it tries to split by placing
the new window to the right, subject to split-width-threshold (see below). If that
fails, and the window is the only window on its frame, this function again tries to
split and place the new window below, disregarding split-height-threshold. If
this fails as well, this function gives up and returns nil.

[User Option]split-height-threshold
This variable, used by split-window-sensibly, specifies whether to split the window
placing the new window below. If it is an integer, that means to split only if the
original window has at least that many lines. If it is nil, that means not to split this
way.

[User Option]split-width-threshold
This variable, used by split-window-sensibly, specifies whether to split the window
placing the new window to the right. If the value is an integer, that means to split
only if the original window has at least that many columns. If the value is nil, that
means not to split this way.

[User Option]pop-up-frames
If the value of this variable is non-nil, that means display-buffer may display
buffers by making new frames. The default is nil.

Chapter 28: Windows 43

A non-nil value also means that when display-buffer is looking for a window
already displaying buffer-or-name, it can search any visible or iconified frame, not
just the selected frame.

This variable is provided mainly for backward compatibility. It is obeyed by display-
buffer via a special mechanism in display-buffer-fallback-action, which calls
the action function display-buffer-pop-up-frame (see Section 28.12 [Display Ac-
tion Functions], page 40) if the value is non-nil. (This is done before attempting to
split a window.) This variable is not consulted by display-buffer-pop-up-frame

itself, which the user may specify directly in display-buffer-alist etc.

[User Option]pop-up-frame-function
This variable specifies a function for creating a new frame, in order to make a new
window for displaying a buffer. It is used by the display-buffer-pop-up-frame

action function (see Section 28.12 [Display Action Functions], page 40).

The value should be a function that takes no arguments and returns a frame, or nil
if no frame could be created. The default value is a function that creates a frame
using the parameters specified by pop-up-frame-alist (see below).

[User Option]pop-up-frame-alist
This variable holds an alist of frame parameters (see Section 29.3 [Frame Parameters],
page 70), which is used by the default function in pop-up-frame-function to make
a new frame. The default is nil.

[User Option]special-display-buffer-names
A list of buffer names identifying buffers that should be displayed specially. If the
name of buffer-or-name is in this list, display-buffer handles the buffer specially.
By default, special display means to give the buffer a dedicated frame.

If an element is a list, instead of a string, then the car of that list is the buffer name,
and the rest of that list says how to create the frame. There are two possibilities for
the rest of that list (its cdr): It can be an alist, specifying frame parameters, or it
can contain a function and arguments to give to it. (The function’s first argument is
always the buffer to be displayed; the arguments from the list come after that.)

For example:

(("myfile" (minibuffer) (menu-bar-lines . 0)))

specifies to display a buffer named ‘myfile’ in a dedicated frame with specified
minibuffer and menu-bar-lines parameters.

The list of frame parameters can also use the phony frame parameters same-frame
and same-window. If the specified frame parameters include (same-window . value)

and value is non-nil, that means to display the buffer in the current selected window.
Otherwise, if they include (same-frame . value) and value is non-nil, that means
to display the buffer in a new window in the currently selected frame.

[User Option]special-display-regexps
A list of regular expressions specifying buffers that should be displayed specially. If
the buffer’s name matches any of the regular expressions in this list, display-buffer
handles the buffer specially. By default, special display means to give the buffer a
dedicated frame.

Chapter 28: Windows 44

If an element is a list, instead of a string, then the car of the list is the regular
expression, and the rest of the list says how to create the frame. See special-

display-buffer-names above.

[Function]special-display-p buffer-name
This function returns non-nil if displaying a buffer named buffer-name with display-

buffer would create a special frame. The value is t if it would use the default frame
parameters, or else the specified list of frame parameters.

[User Option]special-display-function
This variable holds the function to call to display a buffer specially. It receives the
buffer as an argument, and should return the window in which it is displayed. The
default value of this variable is special-display-popup-frame, see below.

[Function]special-display-popup-frame buffer &optional args
This function tries to make buffer visible in a frame of its own. If buffer is already
displayed in some window, it makes that window’s frame visible and raises it. Oth-
erwise, it creates a frame that is dedicated to buffer. The return value is the window
used to display buffer.

If args is an alist, it specifies frame parameters for the new frame. If args is a list
whose car is a symbol, then (car args) is a function to actually create and set up
the frame; it is called with buffer as first argument, and (cdr args) as additional
arguments.

This function always uses an existing window displaying buffer, whether or not it is in
a frame of its own; but if you set up the above variables in your init file, before buffer
was created, then presumably the window was previously made by this function.

[User Option]special-display-frame-alist
This variable holds frame parameters for special-display-popup-frame to use when
it creates a frame.

[User Option]same-window-buffer-names
A list of buffer names for buffers that should be displayed in the selected window. If
a buffer’s name is in this list, display-buffer handles the buffer by switching to it
in the selected window.

[User Option]same-window-regexps
A list of regular expressions that specify buffers that should be displayed in the
selected window. If the buffer’s name matches any of the regular expressions in this
list, display-buffer handles the buffer by switching to it in the selected window.

[Function]same-window-p buffer-name
This function returns t if displaying a buffer named buffer-name with display-

buffer would put it in the selected window.

[User Option]display-buffer-function
This variable is the most flexible way to customize the behavior of display-buffer.
If it is non-nil, it should be a function that display-buffer calls to do the work.

Chapter 28: Windows 45

The function should accept two arguments, the first two arguments that display-

buffer received. It should choose or create a window, display the specified buffer in
it, and then return the window.

This variable takes precedence over all the other options described above.

28.14 Window History

Each window remembers the buffers it has previously displayed, and the order in which
these buffers were removed from it. This history is used, for example, by replace-buffer-

in-windows (see Section 28.9 [Buffers and Windows], page 36). This list is automatically
maintained by Emacs, but you can use the following functions to explicitly inspect or alter
it:

[Function]window-prev-buffers &optional window
This function returns a list specifying the previous contents of window, which should
be a live window and defaults to the selected window.

Each list element has the form (buffer window-start window-pos), where buffer is
a buffer previously shown in the window, window-start is the window start position
when that buffer was last shown, and window-pos is the point position when that
buffer was last shown.

The list is ordered so that earlier elements correspond to more recently-shown buffers,
and the first element usually corresponds to the buffer most recently removed from
the window.

[Function]set-window-prev-buffers window prev-buffers
This function sets window ’s previous buffers to the value of prev-buffers. The argu-
ment window must be a live window and defaults to the selected one. The argument
prev-buffers should be a list of the same form as that returned by window-prev-

buffers.

In addition, each buffer maintains a list of next buffers, which is a list of buffers re-shown
by switch-to-prev-buffer (see below). This list is mainly used by switch-to-prev-

buffer and switch-to-next-buffer for choosing buffers to switch to.

[Function]window-next-buffers &optional window
This function returns the list of buffers recently re-shown in window via switch-to-

prev-buffer. The window argument must denote a live window or nil (meaning
the selected window).

[Function]set-window-next-buffers window next-buffers
This function sets the next buffer list of window to next-buffers. The window argu-
ment should be a live window or nil (meaning the selected window). The argument
next-buffers should be a list of buffers.

The following commands can be used to cycle through the global buffer list, much like
bury-buffer and unbury-buffer. However, they cycle according to the specified window’s
history list, rather than the global buffer list. In addition, they restore window-specific

Chapter 28: Windows 46

window start and point positions, and may show a buffer even if it is already shown in an-
other window. The switch-to-prev-buffer command, in particular, is used by replace-

buffer-in-windows, bury-buffer and quit-window to find a replacement buffer for a
window.

[Command]switch-to-prev-buffer &optional window bury-or-kill
This command displays the previous buffer in window. The argument window should
be a live window or nil (meaning the selected window). If the optional argument
bury-or-kill is non-nil, this means that the buffer currently shown in window is about
to be buried or killed and consequently should not be switched to in future invocations
of this command.

The previous buffer is usually the buffer shown before the buffer currently shown
in window. However, a buffer that has been buried or killed, or has been already
shown by a recent invocation of switch-to-prev-buffer, does not qualify as previous
buffer.

If repeated invocations of this command have already shown all buffers previously
shown in window, further invocations will show buffers from the buffer list of the
frame window appears on (see Section 27.8 [The Buffer List], page 10), trying to skip
buffers that are already shown in another window on that frame.

[Command]switch-to-next-buffer &optional window
This command switches to the next buffer in window, thus undoing the effect of the
last switch-to-prev-buffer command in window. The argument window must be
a live window and defaults to the selected one.

If there is no recent invocation of switch-to-prev-buffer that can be undone, this
function tries to show a buffer from the buffer list of the frame window appears on
(see Section 27.8 [The Buffer List], page 10).

By default switch-to-prev-buffer and switch-to-next-buffer can switch to a buffer
that is already shown in another window on the same frame. The following option can be
used to override this behavior.

[User Option]switch-to-visible-buffer
If this variable is non-nil, switch-to-prev-buffer and switch-to-next-buffer

may switch to a buffer that is already visible on the same frame, provided the buffer
was shown in the relevant window before. If it is nil, switch-to-prev-buffer and
switch-to-next-buffer always try to avoid switching to a buffer that is already
visible in another window on the same frame.

28.15 Dedicated Windows

Functions for displaying a buffer can be told to not use specific windows by marking these
windows as dedicated to their buffers. display-buffer (see Section 28.11 [Choosing Win-
dow], page 39) never uses a dedicated window for displaying another buffer in it. get-lru-
window and get-largest-window (see Section 28.7 [Selecting Windows], page 33) do not
consider dedicated windows as candidates when their dedicated argument is non-nil. The
behavior of set-window-buffer (see Section 28.9 [Buffers and Windows], page 36) with
respect to dedicated windows is slightly different, see below.

Chapter 28: Windows 47

When delete-windows-on (see Section 28.6 [Deleting Windows], page 31) wants to
delete a dedicated window and that window is the only window on its frame, it deletes the
window’s frame too, provided there are other frames left. replace-buffer-in-windows (see
Section 28.10 [Switching Buffers], page 37) tries to delete all dedicated windows showing
its buffer argument. When such a window is the only window on its frame, that frame is
deleted, provided there are other frames left. If there are no more frames left, some other
buffer is displayed in the window, and the window is marked as non-dedicated.

When you kill a buffer (see Section 27.10 [Killing Buffers], page 13) displayed in a dedi-
cated window, any such window usually gets deleted too, since kill-buffer calls replace-
buffer-in-windows for cleaning up windows. Burying a buffer (see Section 27.8 [The Buffer
List], page 10) deletes the selected window if it is dedicated to that buffer. If, however, that
window is the only window on its frame, bury-buffer displays another buffer in it and
iconifies the frame.

[Function]window-dedicated-p &optional window
This function returns non-nil if window is dedicated to its buffer and nil otherwise.
More precisely, the return value is the value assigned by the last call of set-window-
dedicated-p for window, or nil if that function was never called with window as its
argument. The default for window is the selected window.

[Function]set-window-dedicated-p window flag
This function marks window as dedicated to its buffer if flag is non-nil, and non-
dedicated otherwise.

As a special case, if flag is t, window becomes strongly dedicated to its buffer. set-
window-buffer signals an error when the window it acts upon is strongly dedicated
to its buffer and does not already display the buffer it is asked to display. Other
functions do not treat t differently from any non-nil value.

28.16 Quitting Windows

When you want to get rid of a window used for displaying a buffer, you can call delete-
window or delete-windows-on (see Section 28.6 [Deleting Windows], page 31) to remove
that window from its frame. If the buffer is shown on a separate frame, you might want to
call delete-frame (see Section 29.6 [Deleting Frames], page 82) instead. If, on the other
hand, a window has been reused for displaying the buffer, you might prefer showing the
buffer previously shown in that window, by calling the function switch-to-prev-buffer

(see Section 28.14 [Window History], page 45). Finally, you might want to either bury (see
Section 27.8 [The Buffer List], page 10) or kill (see Section 27.10 [Killing Buffers], page 13)
the window’s buffer.

The following function uses information on how the window for displaying the buffer was
obtained in the first place, thus attempting to automate the above decisions for you.

[Command]quit-window &optional kill window
This command quits window and buries its buffer. The argument window must be a
live window and defaults to the selected one. With prefix argument kill non-nil, it
kills the buffer instead of burying it.

Quitting window means to proceed as follows: If window was created specially for
displaying its current buffer, delete window provided its frame contains at least one

Chapter 28: Windows 48

other live window. If window is the only window on its frame and there are other
frames on the frame’s terminal, the value of kill determines how to proceed with the
window. If kill is nil, the fate of the frame is determined by calling frame-auto-

hide-function (see below) with that frame as sole argument. If kill is non-nil, the
frame is deleted unconditionally.

If window was reused for displaying its buffer, this command tries to display the buffer
previously shown in it. It also tries to restore the window start (see Section 28.18
[Window Start and End], page 49) and point (see Section 28.17 [Window Point],
page 48) positions of the previously shown buffer. If, in addition, the current buffer
was temporarily resized, this command will also try to restore the original height of
window.

The three cases described so far require that the buffer shown in window is still the
buffer displayed by the last buffer display function for this window. If another buffer
has been shown in the meantime, or the buffer previously shown no longer exists,
this command calls switch-to-prev-buffer (see Section 28.14 [Window History],
page 45) to show some other buffer instead.

The function quit-window bases its decisions on information stored in window ’s quit-
restore window parameter (see Section 28.24 [Window Parameters], page 62), and resets
that parameter to nil after it’s done.

The following option specifies how to deal with a frame containing just one window that
should be either quit, or whose buffer should be buried.

[User Option]frame-auto-hide-function
The function specified by this option is called to automatically hide frames. This
function is called with one argument—a frame.

The function specified here is called by bury-buffer (see Section 27.8 [The Buffer
List], page 10) when the selected window is dedicated and shows the buffer that
should be buried. It is also called by quit-window (see above) when the frame of the
window that should be quit has been specially created for displaying that window’s
buffer and the buffer should be buried.

The default is to call iconify-frame (see Section 29.10 [Visibility of Frames],
page 85). Alternatively, you may specify either delete-frame (see Section 29.6
[Deleting Frames], page 82) to remove the frame from its display, ignore to leave the
frame unchanged, or any other function that can take a frame as its sole argument.

Note that the function specified by this option is called if and only if there is at least
one other frame on the terminal of the frame it’s supposed to handle, and that frame
contains only one live window.

28.17 Windows and Point

Each window has its own value of point (see Section 30.1 [Point], page 99), independent
of the value of point in other windows displaying the same buffer. This makes it useful to
have multiple windows showing one buffer.

• The window point is established when a window is first created; it is initialized from
the buffer’s point, or from the window point of another window opened on the buffer
if such a window exists.

Chapter 28: Windows 49

• Selecting a window sets the value of point in its buffer from the window’s value of
point. Conversely, deselecting a window sets the window’s value of point from that of
the buffer. Thus, when you switch between windows that display a given buffer, the
point value for the selected window is in effect in the buffer, while the point values for
the other windows are stored in those windows.

• As long as the selected window displays the current buffer, the window’s point and the
buffer’s point always move together; they remain equal.

As far as the user is concerned, point is where the cursor is, and when the user switches
to another buffer, the cursor jumps to the position of point in that buffer.

[Function]window-point &optional window
This function returns the current position of point in window. For a nonselected
window, this is the value point would have (in that window’s buffer) if that window
were selected. The default for window is the selected window.

When window is the selected window and its buffer is also the current buffer, the
value returned is the same as point in that buffer. Strictly speaking, it would be
more correct to return the “top-level” value of point, outside of any save-excursion

forms. But that value is hard to find.

[Function]set-window-point window position
This function positions point in window at position position in window ’s buffer. It
returns position.

If window is selected, and its buffer is current, this simply does goto-char.

[Variable]window-point-insertion-type
This variable specifies the marker insertion type (see Section 31.5 [Marker Insertion
Types], page 116) of window-point. The default is nil, so window-point will stay
behind text inserted there.

28.18 The Window Start and End Positions

Each window maintains a marker used to keep track of a buffer position that specifies where
in the buffer display should start. This position is called the display-start position of the
window (or just the start). The character after this position is the one that appears at the
upper left corner of the window. It is usually, but not inevitably, at the beginning of a text
line.

After switching windows or buffers, and in some other cases, if the window start is in the
middle of a line, Emacs adjusts the window start to the start of a line. This prevents certain
operations from leaving the window start at a meaningless point within a line. This feature
may interfere with testing some Lisp code by executing it using the commands of Lisp mode,
because they trigger this readjustment. To test such code, put it into a command and bind
the command to a key.

[Function]window-start &optional window
This function returns the display-start position of window window. If window is nil,
the selected window is used.

Chapter 28: Windows 50

When you create a window, or display a different buffer in it, the display-start position
is set to a display-start position recently used for the same buffer, or to point-min if
the buffer doesn’t have any.

Redisplay updates the window-start position (if you have not specified it explicitly
since the previous redisplay)—to make sure point appears on the screen. Nothing
except redisplay automatically changes the window-start position; if you move point,
do not expect the window-start position to change in response until after the next
redisplay.

[Function]window-end &optional window update
This function returns the position where display of its buffer ends in window. The
default for window is the selected window.

Simply changing the buffer text or moving point does not update the value that
window-end returns. The value is updated only when Emacs redisplays and redisplay
completes without being preempted.

If the last redisplay of window was preempted, and did not finish, Emacs does not
know the position of the end of display in that window. In that case, this function
returns nil.

If update is non-nil, window-end always returns an up-to-date value for where display
ends, based on the current window-start value. If a previously saved value of that
position is still valid, window-end returns that value; otherwise it computes the correct
value by scanning the buffer text.

Even if update is non-nil, window-end does not attempt to scroll the display if point
has moved off the screen, the way real redisplay would do. It does not alter the
window-start value. In effect, it reports where the displayed text will end if scrolling
is not required.

[Function]set-window-start window position &optional noforce
This function sets the display-start position of window to position in window ’s buffer.
It returns position.

The display routines insist that the position of point be visible when a buffer is dis-
played. Normally, they change the display-start position (that is, scroll the window)
whenever necessary to make point visible. However, if you specify the start position
with this function using nil for noforce, it means you want display to start at position
even if that would put the location of point off the screen. If this does place point off
screen, the display routines move point to the left margin on the middle line in the
window.

For example, if point is 1 and you set the start of the window to 37, the start of the
next line, point will be “above” the top of the window. The display routines will
automatically move point if it is still 1 when redisplay occurs. Here is an example:

;; Here is what ‘foo’ looks like before executing
;; the set-window-start expression.

Chapter 28: Windows 51

---------- Buffer: foo ----------

?This is the contents of buffer foo.

2

3

4

5

6

---------- Buffer: foo ----------

(set-window-start

(selected-window)

(save-excursion

(goto-char 1)

(forward-line 1)

(point)))

⇒ 37

;; Here is what ‘foo’ looks like after executing
;; the set-window-start expression.
---------- Buffer: foo ----------

2

3

?4
5

6

---------- Buffer: foo ----------

If noforce is non-nil, and position would place point off screen at the next redisplay,
then redisplay computes a new window-start position that works well with point, and
thus position is not used.

[Function]pos-visible-in-window-p &optional position window partially
This function returns non-nil if position is within the range of text currently visible
on the screen in window. It returns nil if position is scrolled vertically out of view.
Locations that are partially obscured are not considered visible unless partially is
non-nil. The argument position defaults to the current position of point in window ;
window, to the selected window. If position is t, that means to check the last visible
position in window.

This function considers only vertical scrolling. If position is out of view only because
window has been scrolled horizontally, pos-visible-in-window-p returns non-nil
anyway. See Section 28.21 [Horizontal Scrolling], page 56.

If position is visible, pos-visible-in-window-p returns t if partially is nil; if par-
tially is non-nil, and the character following position is fully visible, it returns a list
of the form (x y), where x and y are the pixel coordinates relative to the top left
corner of the window; otherwise it returns an extended list of the form (x y rtop

rbot rowh vpos), where rtop and rbot specify the number of off-window pixels at
the top and bottom of the row at position, rowh specifies the visible height of that
row, and vpos specifies the vertical position (zero-based row number) of that row.

Chapter 28: Windows 52

Here is an example:

;; If point is off the screen now, recenter it now.
(or (pos-visible-in-window-p

(point) (selected-window))

(recenter 0))

[Function]window-line-height &optional line window
This function returns the height of text line line in window. If line is one of header-
line or mode-line, window-line-height returns information about the correspond-
ing line of the window. Otherwise, line is a text line number starting from 0. A
negative number counts from the end of the window. The default for line is the
current line in window ; the default for window is the selected window.

If the display is not up to date, window-line-height returns nil. In that case,
pos-visible-in-window-p may be used to obtain related information.

If there is no line corresponding to the specified line, window-line-height returns
nil. Otherwise, it returns a list (height vpos ypos offbot), where height is the
height in pixels of the visible part of the line, vpos and ypos are the vertical position
in lines and pixels of the line relative to the top of the first text line, and offbot is the
number of off-window pixels at the bottom of the text line. If there are off-window
pixels at the top of the (first) text line, ypos is negative.

28.19 Textual Scrolling

Textual scrolling means moving the text up or down through a window. It works by
changing the window’s display-start location. It may also change the value of window-
point to keep point on the screen (see Section 28.17 [Window Point], page 48).

The basic textual scrolling functions are scroll-up (which scrolls forward) and scroll-

down (which scrolls backward). In these function names, “up” and “down” refer to the
direction of motion of the buffer text relative to the window. Imagine that the text is
written on a long roll of paper and that the scrolling commands move the paper up and
down. Thus, if you are looking at the middle of a buffer and repeatedly call scroll-down,
you will eventually see the beginning of the buffer.

Unfortunately, this sometimes causes confusion, because some people tend to think in
terms of the opposite convention: they imagine the window moving over text that remains
in place, so that “down” commands take you to the end of the buffer. This convention is
consistent with fact that such a command is bound to a key named PageDown on modern
keyboards.

Textual scrolling functions (aside from scroll-other-window) have unpredictable re-
sults if the current buffer is not the one displayed in the selected window. See Section 27.2
[Current Buffer], page 1.

If the window contains a row taller than the height of the window (for example in
the presence of a large image), the scroll functions will adjust the window’s vertical scroll
position to scroll the partially visible row. Lisp callers can disable this feature by binding
the variable auto-window-vscroll to nil (see Section 28.20 [Vertical Scrolling], page 55).

[Command]scroll-up &optional count
This function scrolls forward by count lines in the selected window.

Chapter 28: Windows 53

If count is negative, it scrolls backward instead. If count is nil (or omitted), the
distance scrolled is next-screen-context-lines lines less than the height of the
window’s text area.

If the selected window cannot be scrolled any further, this function signals an error.
Otherwise, it returns nil.

[Command]scroll-down &optional count
This function scrolls backward by count lines in the selected window.

If count is negative, it scrolls forward instead. In other respects, it behaves the same
way as scroll-up does.

[Command]scroll-up-command &optional count
This behaves like scroll-up, except that if the selected window cannot be scrolled
any further and the value of the variable scroll-error-top-bottom is t, it tries to
move to the end of the buffer instead. If point is already there, it signals an error.

[Command]scroll-down-command &optional count
This behaves like scroll-down, except that if the selected window cannot be scrolled
any further and the value of the variable scroll-error-top-bottom is t, it tries to
move to the beginning of the buffer instead. If point is already there, it signals an
error.

[Command]scroll-other-window &optional count
This function scrolls the text in another window upward count lines. Negative values
of count, or nil, are handled as in scroll-up.

You can specify which buffer to scroll by setting the variable other-window-scroll-
buffer to a buffer. If that buffer isn’t already displayed, scroll-other-window

displays it in some window.

When the selected window is the minibuffer, the next window is normally the left-
most one immediately above it. You can specify a different window to scroll, when
the minibuffer is selected, by setting the variable minibuffer-scroll-window. This
variable has no effect when any other window is selected. When it is non-nil and the
minibuffer is selected, it takes precedence over other-window-scroll-buffer. See
[Definition of minibuffer-scroll-window], page 313, vol. 1.

When the minibuffer is active, it is the next window if the selected window is the one
at the bottom right corner. In this case, scroll-other-window attempts to scroll
the minibuffer. If the minibuffer contains just one line, it has nowhere to scroll to,
so the line reappears after the echo area momentarily displays the message ‘End of

buffer’.

[Variable]other-window-scroll-buffer
If this variable is non-nil, it tells scroll-other-window which buffer’s window to
scroll.

[User Option]scroll-margin
This option specifies the size of the scroll margin—a minimum number of lines between
point and the top or bottom of a window. Whenever point gets within this many
lines of the top or bottom of the window, redisplay scrolls the text automatically (if
possible) to move point out of the margin, closer to the center of the window.

Chapter 28: Windows 54

[User Option]scroll-conservatively
This variable controls how scrolling is done automatically when point moves off the
screen (or into the scroll margin). If the value is a positive integer n, then redisplay
scrolls the text up to n lines in either direction, if that will bring point back into proper
view. This behavior is called conservative scrolling. Otherwise, scrolling happens in
the usual way, under the control of other variables such as scroll-up-aggressively
and scroll-down-aggressively.

The default value is zero, which means that conservative scrolling never happens.

[User Option]scroll-down-aggressively
The value of this variable should be either nil or a fraction f between 0 and 1. If
it is a fraction, that specifies where on the screen to put point when scrolling down.
More precisely, when a window scrolls down because point is above the window start,
the new start position is chosen to put point f part of the window height from the
top. The larger f, the more aggressive the scrolling.

A value of nil is equivalent to .5, since its effect is to center point. This variable
automatically becomes buffer-local when set in any fashion.

[User Option]scroll-up-aggressively
Likewise, for scrolling up. The value, f, specifies how far point should be placed from
the bottom of the window; thus, as with scroll-up-aggressively, a larger value
scrolls more aggressively.

[User Option]scroll-step
This variable is an older variant of scroll-conservatively. The difference is that
if its value is n, that permits scrolling only by precisely n lines, not a smaller number.
This feature does not work with scroll-margin. The default value is zero.

[User Option]scroll-preserve-screen-position
If this option is t, whenever a scrolling command moves point off-window, Emacs
tries to adjust point to keep the cursor at its old vertical position in the window,
rather than the window edge.

If the value is non-nil and not t, Emacs adjusts point to keep the cursor at the same
vertical position, even if the scrolling command didn’t move point off-window.

This option affects all scroll commands that have a non-nil scroll-command symbol
property.

[User Option]next-screen-context-lines
The value of this variable is the number of lines of continuity to retain when scrolling
by full screens. For example, scroll-up with an argument of nil scrolls so that this
many lines at the bottom of the window appear instead at the top. The default value
is 2.

[User Option]scroll-error-top-bottom
If this option is nil (the default), scroll-up-command and scroll-down-command

simply signal an error when no more scrolling is possible.

If the value is t, these commands instead move point to the beginning or end of the
buffer (depending on scrolling direction); only if point is already on that position do
they signal an error.

Chapter 28: Windows 55

[Command]recenter &optional count
This function scrolls the text in the selected window so that point is displayed at a
specified vertical position within the window. It does not “move point” with respect
to the text.

If count is a non-negative number, that puts the line containing point count lines
down from the top of the window. If count is a negative number, then it counts
upward from the bottom of the window, so that −1 stands for the last usable line in
the window.

If count is nil (or a non-nil list), recenter puts the line containing point in the
middle of the window. If count is nil, this function may redraw the frame, according
to the value of recenter-redisplay.

When recenter is called interactively, count is the raw prefix argument. Thus, typing
C-u as the prefix sets the count to a non-nil list, while typing C-u 4 sets count to 4,
which positions the current line four lines from the top.

With an argument of zero, recenter positions the current line at the top of the win-
dow. The command recenter-top-bottom offers a more convenient way to achieve
this.

[User Option]recenter-redisplay
If this variable is non-nil, calling recenter with a nil argument redraws the frame.
The default value is tty, which means only redraw the frame if it is a tty frame.

[Command]recenter-top-bottom &optional count
This command, which is the default binding for C-l, acts like recenter, except if
called with no argument. In that case, successive calls place point according to the
cycling order defined by the variable recenter-positions.

[User Option]recenter-positions
This variable controls how recenter-top-bottom behaves when called with no ar-
gument. The default value is (middle top bottom), which means that successive
calls of recenter-top-bottom with no argument cycle between placing point at the
middle, top, and bottom of the window.

28.20 Vertical Fractional Scrolling

Vertical fractional scrolling means shifting text in a window up or down by a specified
multiple or fraction of a line. Each window has a vertical scroll position, which is a number,
never less than zero. It specifies how far to raise the contents of the window. Raising the
window contents generally makes all or part of some lines disappear off the top, and all or
part of some other lines appear at the bottom. The usual value is zero.

The vertical scroll position is measured in units of the normal line height, which is the
height of the default font. Thus, if the value is .5, that means the window contents are
scrolled up half the normal line height. If it is 3.3, that means the window contents are
scrolled up somewhat over three times the normal line height.

What fraction of a line the vertical scrolling covers, or how many lines, depends on what
the lines contain. A value of .5 could scroll a line whose height is very short off the screen,
while a value of 3.3 could scroll just part of the way through a tall line or an image.

Chapter 28: Windows 56

[Function]window-vscroll &optional window pixels-p
This function returns the current vertical scroll position of window. The default for
window is the selected window. If pixels-p is non-nil, the return value is measured
in pixels, rather than in units of the normal line height.

(window-vscroll)

⇒ 0

[Function]set-window-vscroll window lines &optional pixels-p
This function sets window ’s vertical scroll position to lines. If window is nil, the
selected window is used. The argument lines should be zero or positive; if not, it is
taken as zero.

The actual vertical scroll position must always correspond to an integral number of
pixels, so the value you specify is rounded accordingly.

The return value is the result of this rounding.

(set-window-vscroll (selected-window) 1.2)

⇒ 1.13

If pixels-p is non-nil, lines specifies a number of pixels. In this case, the return value
is lines.

[Variable]auto-window-vscroll
If this variable is non-nil, the line-move, scroll-up, and scroll-down functions will
automatically modify the vertical scroll position to scroll through display rows that
are taller than the height of the window, for example in the presence of large images.

28.21 Horizontal Scrolling

Horizontal scrolling means shifting the image in the window left or right by a specified
multiple of the normal character width. Each window has a horizontal scroll position,
which is a number, never less than zero. It specifies how far to shift the contents left.
Shifting the window contents left generally makes all or part of some characters disappear
off the left, and all or part of some other characters appear at the right. The usual value is
zero.

The horizontal scroll position is measured in units of the normal character width, which
is the width of space in the default font. Thus, if the value is 5, that means the window
contents are scrolled left by 5 times the normal character width. How many characters
actually disappear off to the left depends on their width, and could vary from line to line.

Because we read from side to side in the “inner loop”, and from top to bottom in the
“outer loop”, the effect of horizontal scrolling is not like that of textual or vertical scrolling.
Textual scrolling involves selection of a portion of text to display, and vertical scrolling
moves the window contents contiguously; but horizontal scrolling causes part of each line
to go off screen.

Usually, no horizontal scrolling is in effect; then the leftmost column is at the left edge of
the window. In this state, scrolling to the right is meaningless, since there is no data to the
left of the edge to be revealed by it; so this is not allowed. Scrolling to the left is allowed; it
scrolls the first columns of text off the edge of the window and can reveal additional columns
on the right that were truncated before. Once a window has a nonzero amount of leftward

Chapter 28: Windows 57

horizontal scrolling, you can scroll it back to the right, but only so far as to reduce the net
horizontal scroll to zero. There is no limit to how far left you can scroll, but eventually all
the text will disappear off the left edge.

If auto-hscroll-mode is set, redisplay automatically alters the horizontal scrolling of
a window as necessary to ensure that point is always visible. However, you can still set
the horizontal scrolling value explicitly. The value you specify serves as a lower bound for
automatic scrolling, i.e. automatic scrolling will not scroll a window to a column less than
the specified one.

[Command]scroll-left &optional count set-minimum
This function scrolls the selected window count columns to the left (or to the right if
count is negative). The default for count is the window width, minus 2.

The return value is the total amount of leftward horizontal scrolling in effect after the
change—just like the value returned by window-hscroll (below).

Once you scroll a window as far right as it can go, back to its normal position where
the total leftward scrolling is zero, attempts to scroll any farther right have no effect.

If set-minimum is non-nil, the new scroll amount becomes the lower bound for au-
tomatic scrolling; that is, automatic scrolling will not scroll a window to a column
less than the value returned by this function. Interactive calls pass non-nil for set-
minimum.

[Command]scroll-right &optional count set-minimum
This function scrolls the selected window count columns to the right (or to the left if
count is negative). The default for count is the window width, minus 2. Aside from
the direction of scrolling, this works just like scroll-left.

[Function]window-hscroll &optional window
This function returns the total leftward horizontal scrolling of window—the number
of columns by which the text in window is scrolled left past the left margin. The
default for window is the selected window.

The return value is never negative. It is zero when no horizontal scrolling has been
done in window (which is usually the case).

(window-hscroll)

⇒ 0

(scroll-left 5)

⇒ 5

(window-hscroll)

⇒ 5

[Function]set-window-hscroll window columns
This function sets horizontal scrolling of window. The value of columns specifies the
amount of scrolling, in terms of columns from the left margin. The argument columns
should be zero or positive; if not, it is taken as zero. Fractional values of columns are
not supported at present.

Note that set-window-hscroll may appear not to work if you test it by evaluating a
call with M-: in a simple way. What happens is that the function sets the horizontal
scroll value and returns, but then redisplay adjusts the horizontal scrolling to make

Chapter 28: Windows 58

point visible, and this overrides what the function did. You can observe the function’s
effect if you call it while point is sufficiently far from the left margin that it will remain
visible.

The value returned is columns.

(set-window-hscroll (selected-window) 10)

⇒ 10

Here is how you can determine whether a given position position is off the screen due to
horizontal scrolling:

(defun hscroll-on-screen (window position)

(save-excursion

(goto-char position)

(and

(>= (- (current-column) (window-hscroll window)) 0)

(< (- (current-column) (window-hscroll window))

(window-width window)))))

28.22 Coordinates and Windows

This section describes functions that report the position of a window. Most of these func-
tions report positions relative to the window’s frame. In this case, the coordinate origin
‘(0,0)’ lies near the upper left corner of the frame. For technical reasons, on graphical
displays the origin is not located at the exact corner of the graphical window as it appears
on the screen. If Emacs is built with the GTK+ toolkit, the origin is at the upper left corner
of the frame area used for displaying Emacs windows, below the title-bar, GTK+ menu bar,
and tool bar (since these are drawn by the window manager and/or GTK+, not by Emacs).
But if Emacs is not built with GTK+, the origin is at the upper left corner of the tool bar
(since in this case Emacs itself draws the tool bar). In both cases, the X and Y coordinates
increase rightward and downward respectively.

Except where noted, X and Y coordinates are reported in integer character units, i.e.
numbers of lines and columns respectively. On a graphical display, each “line” and “column”
corresponds to the height and width of a default character specified by the frame’s default
font.

[Function]window-edges &optional window
This function returns a list of the edge coordinates of window. If window is omitted
or nil, it defaults to the selected window.

The return value has the form (left top right bottom). These list elements are,
respectively, the X coordinate of the leftmost column occupied by the window, the
Y coordinate of the topmost row, the X coordinate one column to the right of the
rightmost column, and the Y coordinate one row down from the bottommost row.

Note that these are the actual outer edges of the window, including any header line,
mode line, scroll bar, fringes, and display margins. On a text terminal, if the window
has a neighbor on its right, its right edge includes the separator line between the
window and its neighbor.

Chapter 28: Windows 59

[Function]window-inside-edges &optional window
This function is similar to window-edges, but the returned edge values are for the
text area of the window. They exclude any header line, mode line, scroll bar, fringes,
display margins, and vertical separator.

[Function]window-top-line &optional window
This function returns the Y coordinate of the topmost row of window, equivalent to
the top entry in the list returned by window-edges.

[Function]window-left-column &optional window
This function returns the X coordinate of the leftmost column of window, equivalent
to the left entry in the list returned by window-edges.

The following functions can be used to relate a set of frame-relative coordinates to a
window:

[Function]window-at x y &optional frame
This function returns the live window at the frame-relative coordinates x and y, on
frame frame. If there is no window at that position, the return value is nil. If frame
is omitted or nil, it defaults to the selected frame.

[Function]coordinates-in-window-p coordinates window
This function checks whether a window window occupies the frame-relative coordi-
nates coordinates, and if so, which part of the window that is. window should be a
live window. coordinates should be a cons cell of the form (x . y), where x and y
are frame-relative coordinates.

If there is no window at the specified position, the return value is nil . Otherwise,
the return value is one of the following:

(relx . rely)

The coordinates are inside window. The numbers relx and rely are the
equivalent window-relative coordinates for the specified position, counting
from 0 at the top left corner of the window.

mode-line

The coordinates are in the mode line of window.

header-line

The coordinates are in the header line of window.

vertical-line

The coordinates are in the vertical line between window and its neighbor
to the right. This value occurs only if the window doesn’t have a scroll
bar; positions in a scroll bar are considered outside the window for these
purposes.

left-fringe

right-fringe

The coordinates are in the left or right fringe of the window.

left-margin

right-margin

The coordinates are in the left or right margin of the window.

Chapter 28: Windows 60

nil The coordinates are not in any part of window.

The function coordinates-in-window-p does not require a frame as argument be-
cause it always uses the frame that window is on.

The following functions return window positions in pixels, rather than character units.
Though mostly useful on graphical displays, they can also be called on text terminals, where
the screen area of each text character is taken to be “one pixel”.

[Function]window-pixel-edges &optional window
This function returns a list of pixel coordinates for the edges of window. If window
is omitted or nil, it defaults to the selected window.

The return value has the form (left top right bottom). The list elements are,
respectively, the X pixel coordinate of the left window edge, the Y pixel coordinate of
the top edge, one more than the X pixel coordinate of the right edge, and one more
than the Y pixel coordinate of the bottom edge.

[Function]window-inside-pixel-edges &optional window
This function is like window-pixel-edges, except that it returns the pixel coordinates
for the edges of the window’s text area, rather than the pixel coordinates for the edges
of the window itself. window must specify a live window.

The following functions return window positions in pixels, relative to the display screen
rather than the frame:

[Function]window-absolute-pixel-edges &optional window
This function is like window-pixel-edges, except that it returns the edge pixel co-
ordinates relative to the top left corner of the display screen.

[Function]window-inside-absolute-pixel-edges &optional window
This function is like window-inside-pixel-edges, except that it returns the edge
pixel coordinates relative to the top left corner of the display screen. window must
specify a live window.

28.23 Window Configurations

A window configuration records the entire layout of one frame—all windows, their sizes,
which buffers they contain, how those buffers are scrolled, and their values of point and
the mark; also their fringes, margins, and scroll bar settings. It also includes the value of
minibuffer-scroll-window. As a special exception, the window configuration does not
record the value of point in the selected window for the current buffer.

You can bring back an entire frame layout by restoring a previously saved window
configuration. If you want to record the layout of all frames instead of just one, use a frame
configuration instead of a window configuration. See Section 29.12 [Frame Configurations],
page 86.

[Function]current-window-configuration &optional frame
This function returns a new object representing frame’s current window configura-
tion. The default for frame is the selected frame. The variable window-persistent-
parameters specifies which window parameters (if any) are saved by this function.
See Section 28.24 [Window Parameters], page 62.

Chapter 28: Windows 61

[Function]set-window-configuration configuration
This function restores the configuration of windows and buffers as specified by con-
figuration, for the frame that configuration was created for.

The argument configuration must be a value that was previously returned by
current-window-configuration. The configuration is restored in the frame
from which configuration was made, whether that frame is selected or not.
This always counts as a window size change and triggers execution of the
window-size-change-functions (see Section 28.25 [Window Hooks], page 64),
because set-window-configuration doesn’t know how to tell whether the new
configuration actually differs from the old one.

If the frame from which configuration was saved is dead, all this function does is
restore the three variables window-min-height, window-min-width and minibuffer-
scroll-window. In this case, the function returns nil. Otherwise, it returns t.

Here is a way of using this function to get the same effect as save-window-excursion:

(let ((config (current-window-configuration)))

(unwind-protect

(progn (split-window-below nil)

...)

(set-window-configuration config)))

[Macro]save-window-excursion forms. . .
This special form records the window configuration, executes forms in sequence, then
restores the earlier window configuration. The window configuration includes, for
each window, the value of point and the portion of the buffer that is visible. It also
includes the choice of selected window. However, it does not include the value of
point in the current buffer; use save-excursion also, if you wish to preserve that.

Don’t use this construct when save-selected-window is sufficient.

Exit from save-window-excursion always triggers execution of window-size-

change-functions. (It doesn’t know how to tell whether the restored configuration
actually differs from the one in effect at the end of the forms.)

The return value is the value of the final form in forms. For example:

(split-window)

⇒ #<window 25 on control.texi>

(setq w (selected-window))

⇒ #<window 19 on control.texi>

(save-window-excursion

(delete-other-windows w)

(switch-to-buffer "foo")

’do-something)

⇒ do-something

;; The screen is now split again.

[Function]window-configuration-p object
This function returns t if object is a window configuration.

Chapter 28: Windows 62

[Function]compare-window-configurations config1 config2
This function compares two window configurations as regards the structure of win-
dows, but ignores the values of point and mark and the saved scrolling positions—it
can return t even if those aspects differ.

The function equal can also compare two window configurations; it regards configu-
rations as unequal if they differ in any respect, even a saved point or mark.

[Function]window-configuration-frame config
This function returns the frame for which the window configuration config was made.

Other primitives to look inside of window configurations would make sense, but are
not implemented because we did not need them. See the file ‘winner.el’ for some more
operations on windows configurations.

The objects returned by current-window-configuration die together with the Emacs
process. In order to store a window configuration on disk and read it back in another Emacs
session, you can use the functions described next. These functions are also useful to clone
the state of a frame into an arbitrary live window (set-window-configuration effectively
clones the windows of a frame into the root window of that very frame only).

[Function]window-state-get &optional window writable
This function returns the state of window as a Lisp object. The argument window
can be any window and defaults to the root window of the selected frame.

If the optional argument writable is non-nil, this means to not use markers for
sampling positions like window-point or window-start. This argument should be
non-nil when the state will be written to disk and read back in another session.

Together, the argument writable and the variable window-persistent-parameters

specify which window parameters are saved by this function. See Section 28.24 [Win-
dow Parameters], page 62.

The value returned by window-state-get can be used in the same session to make a
clone of a window in another window. It can be also written to disk and read back in another
session. In either case, use the following function to restore the state of the window.

[Function]window-state-put state &optional window ignore
This function puts the window state state into window. The argument state should
be the state of a window returned by an earlier invocation of window-state-get, see
above. The optional argument window must specify a live window and defaults to
the selected one.

If the optional argument ignore is non-nil, it means to ignore minimum window sizes
and fixed-size restrictions. If ignore is safe, this means windows can get as small as
one line and/or two columns.

28.24 Window Parameters

This section describes how window parameters can be used to associate additional informa-
tion with windows.

Chapter 28: Windows 63

[Function]window-parameter window parameter
This function returns window ’s value for parameter. The default for window is the
selected window. If window has no setting for parameter, this function returns nil.

[Function]window-parameters &optional window
This function returns all parameters of window and their values. The default for
window is the selected window. The return value is either nil, or an association list
whose elements have the form (parameter . value).

[Function]set-window-parameter window parameter value
This function sets window ’s value of parameter to value and returns value. The
default for window is the selected window.

By default, the functions that save and restore window configurations or the states of
windows (see Section 28.23 [Window Configurations], page 60) do not care about window
parameters. This means that when you change the value of a parameter within the body
of a save-window-excursion, the previous value is not restored when that macro exits. It
also means that when you restore via window-state-put a window state saved earlier by
window-state-get, all cloned windows have their parameters reset to nil. The following
variable allows you to override the standard behavior:

[Variable]window-persistent-parameters
This variable is an alist specifying which parameters get saved by current-window-

configuration and window-state-get, and subsequently restored by set-window-

configuration and window-state-put. See Section 28.23 [Window Configurations],
page 60.

The car of each entry of this alist is a symbol specifying the parameter. The cdr
should be one of the following:

nil This value means the parameter is saved neither by window-state-get

nor by current-window-configuration.

t This value specifies that the parameter is saved by current-window-

configuration and (provided its writable argument is nil) by window-

state-get.

writable This means that the parameter is saved unconditionally by both current-

window-configuration and window-state-get. This value should not
be used for parameters whose values do not have a read syntax. Oth-
erwise, invoking window-state-put in another session may fail with an
invalid-read-syntax error.

Some functions (notably delete-window, delete-other-windows and split-window),
may behave specially when their window argument has a parameter set. You can override
such special behavior by binding the following variable to a non-nil value:

[Variable]ignore-window-parameters
If this variable is non-nil, some standard functions do not process window parameters.
The functions currently affected by this are split-window, delete-window, delete-
other-windows, and other-window.

Chapter 28: Windows 64

An application can bind this variable to a non-nil value around calls to these func-
tions. If it does so, the application is fully responsible for correctly assigning the
parameters of all involved windows when exiting that function.

The following parameters are currently used by the window management code:

delete-window

This parameter affects the execution of delete-window (see Section 28.6 [Delet-
ing Windows], page 31).

delete-other-windows

This parameter affects the execution of delete-other-windows (see
Section 28.6 [Deleting Windows], page 31).

split-window

This parameter affects the execution of split-window (see Section 28.5 [Split-
ting Windows], page 26).

other-window

This parameter affects the execution of other-window (see Section 28.8 [Cyclic
Window Ordering], page 34).

no-other-window

This parameter marks the window as not selectable by other-window (see
Section 28.8 [Cyclic Window Ordering], page 34).

clone-of This parameter specifies the window that this one has been cloned from. It
is installed by window-state-get (see Section 28.23 [Window Configurations],
page 60).

quit-restore

This parameter specifies what to do with a window when the buffer it shows
is not needed any more. It is installed by the buffer display functions (see
Section 28.11 [Choosing Window], page 39), and consulted by the function
quit-window (see Section 28.16 [Quitting Windows], page 47).

There are additional parameters window-atom and window-side; these are reserved and
should not be used by applications.

28.25 Hooks for Window Scrolling and Changes

This section describes how a Lisp program can take action whenever a window displays a
different part of its buffer or a different buffer. There are three actions that can change this:
scrolling the window, switching buffers in the window, and changing the size of the window.
The first two actions run window-scroll-functions; the last runs window-size-change-
functions.

[Variable]window-scroll-functions
This variable holds a list of functions that Emacs should call before redisplaying a
window with scrolling. Displaying a different buffer in the window also runs these
functions.

This variable is not a normal hook, because each function is called with two arguments:
the window, and its new display-start position.

Chapter 28: Windows 65

These functions must take care when using window-end (see Section 28.18 [Window
Start and End], page 49); if you need an up-to-date value, you must use the update
argument to ensure you get it.

Warning: don’t use this feature to alter the way the window is scrolled. It’s not
designed for that, and such use probably won’t work.

[Variable]window-size-change-functions
This variable holds a list of functions to be called if the size of any window changes
for any reason. The functions are called just once per redisplay, and just once for
each frame on which size changes have occurred.

Each function receives the frame as its sole argument. There is no direct way to find
out which windows on that frame have changed size, or precisely how. However, if a
size-change function records, at each call, the existing windows and their sizes, it can
also compare the present sizes and the previous sizes.

Creating or deleting windows counts as a size change, and therefore causes these
functions to be called. Changing the frame size also counts, because it changes the
sizes of the existing windows.

It is not a good idea to use save-window-excursion (see Section 28.23 [Window
Configurations], page 60) in these functions, because that always counts as a size
change, and it would cause these functions to be called over and over. In most cases,
save-selected-window (see Section 28.7 [Selecting Windows], page 33) is what you
need here.

[Variable]window-configuration-change-hook
A normal hook that is run every time you change the window configuration of an
existing frame. This includes splitting or deleting windows, changing the sizes of
windows, or displaying a different buffer in a window.

The buffer-local part of this hook is run once for each window on the affected frame,
with the relevant window selected and its buffer current. The global part is run once
for the modified frame, with that frame selected.

In addition, you can use jit-lock-register to register a Font Lock fontification func-
tion, which will be called whenever parts of a buffer are (re)fontified because a window was
scrolled or its size changed. See Section 23.6.4 [Other Font Lock Variables], page 435, vol. 1.

Chapter 29: Frames 66

29 Frames

A frame is a screen object that contains one or more Emacs windows (see Chapter 28
[Windows], page 18). It is the kind of object called a “window” in the terminology of
graphical environments; but we can’t call it a “window” here, because Emacs uses that
word in a different way. In Emacs Lisp, a frame object is a Lisp object that represents a
frame on the screen. See Section 2.4.4 [Frame Type], page 25, vol. 1.

A frame initially contains a single main window and/or a minibuffer window; you can
subdivide the main window vertically or horizontally into smaller windows. See Section 28.5
[Splitting Windows], page 26.

A terminal is a display device capable of displaying one or more Emacs frames. In
Emacs Lisp, a terminal object is a Lisp object that represents a terminal. See Section 2.4.5
[Terminal Type], page 25, vol. 1.

There are two classes of terminals: text terminals and graphical terminals. Text termi-
nals are non-graphics-capable displays, including xterm and other terminal emulators. On
a text terminal, each Emacs frame occupies the terminal’s entire screen; although you can
create additional frames and switch between them, the terminal only shows one frame at a
time. Graphical terminals, on the other hand, are managed by graphical display systems
such as the X Window System, which allow Emacs to show multiple frames simultaneously
on the same display.

On GNU and Unix systems, you can create additional frames on any available terminal,
within a single Emacs session, regardless of whether Emacs was started on a text or graphical
terminal. Emacs can display on both graphical and text terminals simultaneously. This
comes in handy, for instance, when you connect to the same session from several remote
locations. See Section 29.2 [Multiple Terminals], page 67.

[Function]framep object
This predicate returns a non-nil value if object is a frame, and nil otherwise. For a
frame, the value indicates which kind of display the frame uses:

t The frame is displayed on a text terminal.

x The frame is displayed on an X graphical terminal.

w32 The frame is displayed on a MS-Windows graphical terminal.

ns The frame is displayed on a GNUstep or Macintosh Cocoa graphical ter-
minal.

pc The frame is displayed on an MS-DOS terminal.

[Function]frame-terminal &optional frame
This function returns the terminal object that displays frame. If frame is nil or
unspecified, it defaults to the selected frame.

[Function]terminal-live-p object
This predicate returns a non-nil value if object is a terminal that is live (i.e. not
deleted), and nil otherwise. For live terminals, the return value indicates what kind
of frames are displayed on that terminal; the list of possible values is the same as for
framep above.

Chapter 29: Frames 67

29.1 Creating Frames

To create a new frame, call the function make-frame.

[Command]make-frame &optional alist
This function creates and returns a new frame, displaying the current buffer.

The alist argument is an alist that specifies frame parameters for the new frame. See
Section 29.3 [Frame Parameters], page 70. If you specify the terminal parameter
in alist, the new frame is created on that terminal. Otherwise, if you specify the
window-system frame parameter in alist, that determines whether the frame should
be displayed on a text terminal or a graphical terminal. See Section 38.22 [Window
Systems], page 382. If neither is specified, the new frame is created in the same
terminal as the selected frame.

Any parameters not mentioned in alist default to the values in the alist default-

frame-alist (see Section 29.3.2 [Initial Parameters], page 70); parameters not spec-
ified there default from the X resources or its equivalent on your operating system
(see Section “X Resources” in The GNU Emacs Manual). After the frame is created,
Emacs applies any parameters listed in frame-inherited-parameters (see below)
and not present in the argument, taking the values from the frame that was selected
when make-frame was called.

This function itself does not make the new frame the selected frame. See Section 29.9
[Input Focus], page 83. The previously selected frame remains selected. On graphical
terminals, however, the windowing system may select the new frame for its own
reasons.

[Variable]before-make-frame-hook
A normal hook run by make-frame before it creates the frame.

[Variable]after-make-frame-functions
An abnormal hook run by make-frame after it creates the frame. Each function in
after-make-frame-functions receives one argument, the frame just created.

[Variable]frame-inherited-parameters
This variable specifies the list of frame parameters that a newly created frame inherits
from the currently selected frame. For each parameter (a symbol) that is an element
in the list and is not present in the argument to make-frame, the function sets the
value of that parameter in the created frame to its value in the selected frame.

29.2 Multiple Terminals

Emacs represents each terminal as a terminal object data type (see Section 2.4.5 [Terminal
Type], page 25, vol. 1). On GNU and Unix systems, Emacs can use multiple terminals
simultaneously in each session. On other systems, it can only use a single terminal. Each
terminal object has the following attributes:

• The name of the device used by the terminal (e.g. ‘:0.0’ or ‘/dev/tty’).

• The terminal and keyboard coding systems used on the terminal. See Section 33.9.8
[Terminal I/O Encoding], page 205.

Chapter 29: Frames 68

• The kind of display associated with the terminal. This is the symbol returned by the
function terminal-live-p (i.e. x, t, w32, ns, or pc). See Chapter 29 [Frames], page 66.

• A list of terminal parameters. See Section 29.4 [Terminal Parameters], page 80.

There is no primitive for creating terminal objects. Emacs creates them as needed, such
as when you call make-frame-on-display (described below).

[Function]terminal-name &optional terminal
This function returns the file name of the device used by terminal. If terminal is
omitted or nil, it defaults to the selected frame’s terminal. terminal can also be a
frame, meaning that frame’s terminal.

[Function]terminal-list
This function returns a list of all live terminal objects.

[Function]get-device-terminal device
This function returns a terminal whose device name is given by device. If device is a
string, it can be either the file name of a terminal device, or the name of an X display
of the form ‘host:server.screen’. If device is a frame, this function returns that
frame’s terminal; nil means the selected frame. Finally, if device is a terminal object
that represents a live terminal, that terminal is returned. The function signals an
error if its argument is none of the above.

[Function]delete-terminal &optional terminal force
This function deletes all frames on terminal and frees the resources used by it. It runs
the abnormal hook delete-terminal-functions, passing terminal as the argument
to each function.

If terminal is omitted or nil, it defaults to the selected frame’s terminal. terminal
can also be a frame, meaning that frame’s terminal.

Normally, this function signals an error if you attempt to delete the sole active ter-
minal, but if force is non-nil, you are allowed to do so. Emacs automatically calls
this function when the last frame on a terminal is deleted (see Section 29.6 [Deleting
Frames], page 82).

[Variable]delete-terminal-functions
An abnormal hook run by delete-terminal. Each function receives one argument,
the terminal argument passed to delete-terminal. Due to technical details, the
functions may be called either just before the terminal is deleted, or just afterwards.

A few Lisp variables are terminal-local; that is, they have a separate binding for each
terminal. The binding in effect at any time is the one for the terminal that the currently
selected frame belongs to. These variables include default-minibuffer-frame, defining-
kbd-macro, last-kbd-macro, and system-key-alist. They are always terminal-local, and
can never be buffer-local (see Section 11.10 [Buffer-Local Variables], page 150, vol. 1).

On GNU and Unix systems, each X display is a separate graphical terminal. When
Emacs is started from within the X window system, it uses the X display specified by the
DISPLAY environment variable, or by the ‘--display’ option (see Section “Initial Options”
in The GNU Emacs Manual). Emacs can connect to other X displays via the command

Chapter 29: Frames 69

make-frame-on-display. Each X display has its own selected frame and its own minibuffer
windows; however, only one of those frames is “the selected frame” at any given moment
(see Section 29.9 [Input Focus], page 83). Emacs can even connect to other text terminals,
by interacting with the emacsclient program. See Section “Emacs Server” in The GNU
Emacs Manual.

A single X server can handle more than one display. Each X display has a three-part
name, ‘host:server.screen’. The first two parts, host and server, identify the X server;
the third part, screen, identifies a screen number on that X server. When you use two or
more screens belonging to one server, Emacs knows by the similarity in their names that
they share a single keyboard.

On some “multi-monitor” setups, a single X display outputs to more than one physical
monitor. Currently, there is no way for Emacs to distinguish between the different physical
monitors.

[Command]make-frame-on-display display &optional parameters
This function creates and returns a new frame on display, taking the other frame
parameters from the alist parameters. display should be the name of an X display (a
string).

Before creating the frame, this function ensures that Emacs is “set up” to display
graphics. For instance, if Emacs has not processed X resources (e.g. if it was started
on a text terminal), it does so at this time. In all other respects, this function behaves
like make-frame (see Section 29.1 [Creating Frames], page 67).

[Function]x-display-list
This function returns a list that indicates which X displays Emacs has a connection
to. The elements of the list are strings, and each one is a display name.

[Function]x-open-connection display &optional xrm-string must-succeed
This function opens a connection to the X display display, without creating a frame
on that display. Normally, Emacs Lisp programs need not call this function, as make-
frame-on-display calls it automatically. The only reason for calling it is to check
whether communication can be established with a given X display.

The optional argument xrm-string, if not nil, is a string of resource names and values,
in the same format used in the ‘.Xresources’ file. See Section “X Resources” in The
GNU Emacs Manual. These values apply to all Emacs frames created on this display,
overriding the resource values recorded in the X server. Here’s an example of what
this string might look like:

"*BorderWidth: 3\n*InternalBorder: 2\n"

If must-succeed is non-nil, failure to open the connection terminates Emacs. Other-
wise, it is an ordinary Lisp error.

[Function]x-close-connection display
This function closes the connection to display display. Before you can do this, you
must first delete all the frames that were open on that display (see Section 29.6
[Deleting Frames], page 82).

Chapter 29: Frames 70

29.3 Frame Parameters

A frame has many parameters that control its appearance and behavior. Just what param-
eters a frame has depends on what display mechanism it uses.

Frame parameters exist mostly for the sake of graphical displays. Most frame parameters
have no effect when applied to a frame on a text terminal; only the height, width, name,
title, menu-bar-lines, buffer-list and buffer-predicate parameters do something
special. If the terminal supports colors, the parameters foreground-color, background-
color, background-mode and display-type are also meaningful. If the terminal supports
frame transparency, the parameter alpha is also meaningful.

29.3.1 Access to Frame Parameters

These functions let you read and change the parameter values of a frame.

[Function]frame-parameter frame parameter
This function returns the value of the parameter parameter (a symbol) of frame. If
frame is nil, it returns the selected frame’s parameter. If frame has no setting for
parameter, this function returns nil.

[Function]frame-parameters &optional frame
The function frame-parameters returns an alist listing all the parameters of frame
and their values. If frame is nil or omitted, this returns the selected frame’s param-
eters

[Function]modify-frame-parameters frame alist
This function alters the parameters of frame frame based on the elements of alist.
Each element of alist has the form (parm . value), where parm is a symbol naming
a parameter. If you don’t mention a parameter in alist, its value doesn’t change. If
frame is nil, it defaults to the selected frame.

[Function]set-frame-parameter frame parm value
This function sets the frame parameter parm to the specified value. If frame is nil,
it defaults to the selected frame.

[Function]modify-all-frames-parameters alist
This function alters the frame parameters of all existing frames according to alist,
then modifies default-frame-alist (and, if necessary, initial-frame-alist) to
apply the same parameter values to frames that will be created henceforth.

29.3.2 Initial Frame Parameters

You can specify the parameters for the initial startup frame by setting initial-frame-

alist in your init file (see Section 39.1.2 [Init File], page 389).

[User Option]initial-frame-alist
This variable’s value is an alist of parameter values used when creating the initial
frame. You can set this variable to specify the appearance of the initial frame without
altering subsequent frames. Each element has the form:

(parameter . value)

Chapter 29: Frames 71

Emacs creates the initial frame before it reads your init file. After reading that
file, Emacs checks initial-frame-alist, and applies the parameter settings in the
altered value to the already created initial frame.

If these settings affect the frame geometry and appearance, you’ll see the frame appear
with the wrong ones and then change to the specified ones. If that bothers you, you
can specify the same geometry and appearance with X resources; those do take effect
before the frame is created. See Section “X Resources” in The GNU Emacs Manual.

X resource settings typically apply to all frames. If you want to specify some X
resources solely for the sake of the initial frame, and you don’t want them to apply to
subsequent frames, here’s how to achieve this. Specify parameters in default-frame-

alist to override the X resources for subsequent frames; then, to prevent these from
affecting the initial frame, specify the same parameters in initial-frame-alist with
values that match the X resources.

If these parameters specify a separate minibuffer-only frame with (minibuffer . nil),
and you have not created one, Emacs creates one for you.

[User Option]minibuffer-frame-alist
This variable’s value is an alist of parameter values used when creating an ini-
tial minibuffer-only frame. This is the minibuffer-only frame that Emacs creates
if initial-frame-alist specifies a frame with no minibuffer.

[User Option]default-frame-alist
This is an alist specifying default values of frame parameters for all Emacs frames—
the first frame, and subsequent frames. When using the X Window System, you can
get the same results by means of X resources in many cases.

Setting this variable does not affect existing frames.

Functions that display a buffer in a separate frame can override the default parameters
by supplying their own parameters. See [Definition of special-display-frame-alist], page 44.

If you invoke Emacs with command-line options that specify frame appearance, those
options take effect by adding elements to either initial-frame-alist or default-frame-
alist. Options which affect just the initial frame, such as ‘-geometry’ and ‘--maximized’,
add to initial-frame-alist; the others add to default-frame-alist. see Section “Com-
mand Line Arguments for Emacs Invocation” in The GNU Emacs Manual.

29.3.3 Window Frame Parameters

Just what parameters a frame has depends on what display mechanism it uses. This section
describes the parameters that have special meanings on some or all kinds of terminals. Of
these, name, title, height, width, buffer-list and buffer-predicate provide mean-
ingful information in terminal frames, and tty-color-mode is meaningful only for frames
on text terminals.

29.3.3.1 Basic Parameters

These frame parameters give the most basic information about the frame. title and name

are meaningful on all terminals.

Chapter 29: Frames 72

display The display on which to open this frame. It should be a string of the form
"host:dpy.screen", just like the DISPLAY environment variable.

display-type

This parameter describes the range of possible colors that can be used in this
frame. Its value is color, grayscale or mono.

title If a frame has a non-nil title, it appears in the window system’s title
bar at the top of the frame, and also in the mode line of windows in that
frame if mode-line-frame-identification uses ‘%F’ (see Section 23.4.5
[%-Constructs], page 424, vol. 1). This is normally the case when Emacs is
not using a window system, and can only display one frame at a time. See
Section 29.5 [Frame Titles], page 81.

name The name of the frame. The frame name serves as a default for the frame title, if
the title parameter is unspecified or nil. If you don’t specify a name, Emacs
sets the frame name automatically (see Section 29.5 [Frame Titles], page 81).

If you specify the frame name explicitly when you create the frame, the name
is also used (instead of the name of the Emacs executable) when looking up X
resources for the frame.

explicit-name

If the frame name was specified explicitly when the frame was created, this pa-
rameter will be that name. If the frame wasn’t explicitly named, this parameter
will be nil.

29.3.3.2 Position Parameters

Position parameters’ values are normally measured in pixels, but on text terminals they
count characters or lines instead.

left The position, in pixels, of the left (or right) edge of the frame with respect to
the left (or right) edge of the screen. The value may be:

an integer A positive integer relates the left edge of the frame to the left edge
of the screen. A negative integer relates the right frame edge to the
right screen edge.

(+ pos) This specifies the position of the left frame edge relative to the
left screen edge. The integer pos may be positive or negative; a
negative value specifies a position outside the screen.

(- pos) This specifies the position of the right frame edge relative to the
right screen edge. The integer pos may be positive or negative; a
negative value specifies a position outside the screen.

Some window managers ignore program-specified positions. If you want to be
sure the position you specify is not ignored, specify a non-nil value for the
user-position parameter as well.

top The screen position of the top (or bottom) edge, in pixels, with respect to the
top (or bottom) edge of the screen. It works just like left, except vertically
instead of horizontally.

Chapter 29: Frames 73

icon-left

The screen position of the left edge of the frame’s icon, in pixels, counting from
the left edge of the screen. This takes effect when the frame is iconified, if the
window manager supports this feature. If you specify a value for this parameter,
then you must also specify a value for icon-top and vice versa.

icon-top The screen position of the top edge of the frame’s icon, in pixels, counting from
the top edge of the screen. This takes effect when the frame is iconified, if the
window manager supports this feature.

user-position

When you create a frame and specify its screen position with the left and
top parameters, use this parameter to say whether the specified position was
user-specified (explicitly requested in some way by a human user) or merely
program-specified (chosen by a program). A non-nil value says the position
was user-specified.

Window managers generally heed user-specified positions, and some heed
program-specified positions too. But many ignore program-specified positions,
placing the window in a default fashion or letting the user place it with the
mouse. Some window managers, including twm, let the user specify whether to
obey program-specified positions or ignore them.

When you call make-frame, you should specify a non-nil value for this param-
eter if the values of the left and top parameters represent the user’s stated
preference; otherwise, use nil.

29.3.3.3 Size Parameters

Frame parameters specify frame sizes in character units. On graphical displays, the default
face determines the actual pixel sizes of these character units (see Section 38.12.2 [Face
Attributes], page 327).

height The height of the frame contents, in characters. (To get the height in pixels,
call frame-pixel-height; see Section 29.3.4 [Size and Position], page 79.)

width The width of the frame contents, in characters. (To get the width in pixels, call
frame-pixel-width; see Section 29.3.4 [Size and Position], page 79.)

user-size

This does for the size parameters height and width what the user-position
parameter (see Section 29.3.3.2 [Position Parameters], page 72) does for the
position parameters top and left.

fullscreen

Specify that width, height or both shall be maximized. The value fullwidth

specifies that width shall be as wide as possible. The value fullheight specifies
that height shall be as tall as possible. The value fullboth specifies that
both the width and the height shall be set to the size of the screen. The
value maximized specifies that the frame shall be maximized. The difference
between maximized and fullboth is that the former still has window manager
decorations while the latter really covers the whole screen.

Chapter 29: Frames 74

29.3.3.4 Layout Parameters

These frame parameters enable or disable various parts of the frame, or control their sizes.

border-width

The width in pixels of the frame’s border.

internal-border-width

The distance in pixels between text (or fringe) and the frame’s border.

vertical-scroll-bars

Whether the frame has scroll bars for vertical scrolling, and which side of the
frame they should be on. The possible values are left, right, and nil for no
scroll bars.

scroll-bar-width

The width of vertical scroll bars, in pixels, or nil meaning to use the default
width.

left-fringe

right-fringe

The default width of the left and right fringes of windows in this frame (see
Section 38.13 [Fringes], page 344). If either of these is zero, that effectively
removes the corresponding fringe.

When you use frame-parameter to query the value of either of these two frame
parameters, the return value is always an integer. When using set-frame-

parameter, passing a nil value imposes an actual default value of 8 pixels.

The combined fringe widths must add up to an integral number of columns, so
the actual default fringe widths for the frame, as reported by frame-parameter,
may be larger than what you specify. Any extra width is distributed evenly
between the left and right fringe. However, you can force one fringe or the
other to a precise width by specifying that width as a negative integer. If both
widths are negative, only the left fringe gets the specified width.

menu-bar-lines

The number of lines to allocate at the top of the frame for a menu bar. The
default is 1 if Menu Bar mode is enabled, and 0 otherwise. See Section “Menu
Bars” in The GNU Emacs Manual.

tool-bar-lines

The number of lines to use for the tool bar. The default is 1 if Tool Bar mode is
enabled, and 0 otherwise. See Section “Tool Bars” in The GNU Emacs Manual.

tool-bar-position

The position of the tool bar. Currently only for the GTK tool bar. Value can
be one of top, bottom left, right. The default is top.

line-spacing

Additional space to leave below each text line, in pixels (a positive integer).
See Section 38.11 [Line Height], page 324, for more information.

Chapter 29: Frames 75

29.3.3.5 Buffer Parameters

These frame parameters, meaningful on all kinds of terminals, deal with which buffers have
been, or should, be displayed in the frame.

minibuffer

Whether this frame has its own minibuffer. The value t means yes, nil means
no, only means this frame is just a minibuffer. If the value is a minibuffer
window (in some other frame), the frame uses that minibuffer.

This frame parameter takes effect when the frame is created, and can not be
changed afterwards.

buffer-predicate

The buffer-predicate function for this frame. The function other-buffer uses
this predicate (from the selected frame) to decide which buffers it should con-
sider, if the predicate is not nil. It calls the predicate with one argument, a
buffer, once for each buffer; if the predicate returns a non-nil value, it considers
that buffer.

buffer-list

A list of buffers that have been selected in this frame, ordered most-recently-
selected first.

unsplittable

If non-nil, this frame’s window is never split automatically.

29.3.3.6 Window Management Parameters

The following frame parameters control various aspects of the frame’s interaction with the
window manager. They have no effect on text terminals.

visibility

The state of visibility of the frame. There are three possibilities: nil for invisi-
ble, t for visible, and icon for iconified. See Section 29.10 [Visibility of Frames],
page 85.

auto-raise

If non-nil, Emacs automatically raises the frame when it is selected. Some
window managers do not allow this.

auto-lower

If non-nil, Emacs automatically lowers the frame when it is deselected. Some
window managers do not allow this.

icon-type

The type of icon to use for this frame. If the value is a string, that specifies a
file containing a bitmap to use; nil specifies no icon (in which case the window
manager decides what to show); any other non-nil value specifies the default
Emacs icon.

icon-name

The name to use in the icon for this frame, when and if the icon appears. If
this is nil, the frame’s title is used.

Chapter 29: Frames 76

window-id

The ID number which the graphical display uses for this frame. Emacs assigns
this parameter when the frame is created; changing the parameter has no effect
on the actual ID number.

outer-window-id

The ID number of the outermost window-system window in which the frame
exists. As with window-id, changing this parameter has no actual effect.

wait-for-wm

If non-nil, tell Xt to wait for the window manager to confirm geometry changes.
Some window managers, including versions of Fvwm2 and KDE, fail to confirm,
so Xt hangs. Set this to nil to prevent hanging with those window managers.

sticky If non-nil, the frame is visible on all virtual desktops on systems with virtual
desktops.

29.3.3.7 Cursor Parameters

This frame parameter controls the way the cursor looks.

cursor-type

How to display the cursor. Legitimate values are:

box Display a filled box. (This is the default.)

hollow Display a hollow box.

nil Don’t display a cursor.

bar Display a vertical bar between characters.

(bar . width)

Display a vertical bar width pixels wide between characters.

hbar Display a horizontal bar.

(hbar . height)

Display a horizontal bar height pixels high.

The cursor-type frame parameter may be overridden by the variables cursor-type

and cursor-in-non-selected-windows:

[Variable]cursor-type
This buffer-local variable controls how the cursor looks in a selected window showing
the buffer. If its value is t, that means to use the cursor specified by the cursor-type
frame parameter. Otherwise, the value should be one of the cursor types listed above,
and it overrides the cursor-type frame parameter.

[User Option]cursor-in-non-selected-windows
This buffer-local variable controls how the cursor looks in a window that is not se-
lected. It supports the same values as the cursor-type frame parameter; also, nil
means don’t display a cursor in nonselected windows, and t (the default) means use
a standard modification of the usual cursor type (solid box becomes hollow box, and
bar becomes a narrower bar).

Chapter 29: Frames 77

[User Option]blink-cursor-alist
This variable specifies how to blink the cursor. Each element has the form (on-state

. off-state). Whenever the cursor type equals on-state (comparing using equal),
the corresponding off-state specifies what the cursor looks like when it blinks “off”.
Both on-state and off-state should be suitable values for the cursor-type frame
parameter.

There are various defaults for how to blink each type of cursor, if the type is not men-
tioned as an on-state here. Changes in this variable do not take effect immediately,
only when you specify the cursor-type frame parameter.

29.3.3.8 Font and Color Parameters

These frame parameters control the use of fonts and colors.

font-backend

A list of symbols, specifying the font backends to use for drawing fonts in
the frame, in order of priority. On X, there are currently two available font
backends: x (the X core font driver) and xft (the Xft font driver). OnWindows,
there are currently two available font backends: gdi and uniscribe (see Section
“Windows Fonts” in The GNU Emacs Manual). On other systems, there is
only one available font backend, so it does not make sense to modify this frame
parameter.

background-mode

This parameter is either dark or light, according to whether the background
color is a light one or a dark one.

tty-color-mode

This parameter overrides the terminal’s color support as given by the system’s
terminal capabilities database in that this parameter’s value specifies the color
mode to use on a text terminal. The value can be either a symbol or a number.
A number specifies the number of colors to use (and, indirectly, what commands
to issue to produce each color). For example, (tty-color-mode . 8) specifies
use of the ANSI escape sequences for 8 standard text colors. A value of -1 turns
off color support.

If the parameter’s value is a symbol, it specifies a number through the value of
tty-color-mode-alist, and the associated number is used instead.

screen-gamma

If this is a number, Emacs performs “gamma correction” which adjusts the
brightness of all colors. The value should be the screen gamma of your display,
a floating point number.

Usual PC monitors have a screen gamma of 2.2, so color values in Emacs, and in
X windows generally, are calibrated to display properly on a monitor with that
gamma value. If you specify 2.2 for screen-gamma, that means no correction is
needed. Other values request correction, designed to make the corrected colors
appear on your screen the way they would have appeared without correction
on an ordinary monitor with a gamma value of 2.2.

Chapter 29: Frames 78

If your monitor displays colors too light, you should specify a screen-gamma

value smaller than 2.2. This requests correction that makes colors darker. A
screen gamma value of 1.5 may give good results for LCD color displays.

alpha This parameter specifies the opacity of the frame, on graphical displays that
support variable opacity. It should be an integer between 0 and 100, where 0
means completely transparent and 100 means completely opaque. It can also
have a nil value, which tells Emacs not to set the frame opacity (leaving it to
the window manager).

To prevent the frame from disappearing completely from view, the variable
frame-alpha-lower-limit defines a lower opacity limit. If the value of the
frame parameter is less than the value of this variable, Emacs uses the latter.
By default, frame-alpha-lower-limit is 20.

The alpha frame parameter can also be a cons cell (‘active’ . ‘inactive’),
where ‘active’ is the opacity of the frame when it is selected, and ‘inactive’
is the opacity when it is not selected.

The following frame parameters are semi-obsolete in that they are automatically equiv-
alent to particular face attributes of particular faces (see Section “Standard Faces” in The
Emacs Manual):

font The name of the font for displaying text in the frame. This is a string, ei-
ther a valid font name for your system or the name of an Emacs fontset (see
Section 38.12.11 [Fontsets], page 339). It is equivalent to the font attribute of
the default face.

foreground-color

The color to use for the image of a character. It is equivalent to the :foreground
attribute of the default face.

background-color

The color to use for the background of characters. It is equivalent to the
:background attribute of the default face.

mouse-color

The color for the mouse pointer. It is equivalent to the :background attribute
of the mouse face.

cursor-color

The color for the cursor that shows point. It is equivalent to the :background
attribute of the cursor face.

border-color

The color for the border of the frame. It is equivalent to the :background

attribute of the border face.

scroll-bar-foreground

If non-nil, the color for the foreground of scroll bars. It is equivalent to the
:foreground attribute of the scroll-bar face.

scroll-bar-background

If non-nil, the color for the background of scroll bars. It is equivalent to the
:background attribute of the scroll-bar face.

Chapter 29: Frames 79

29.3.4 Frame Size And Position

You can read or change the size and position of a frame using the frame parameters left,
top, height, and width. Whatever geometry parameters you don’t specify are chosen by
the window manager in its usual fashion.

Here are some special features for working with sizes and positions. (For the pre-
cise meaning of “selected frame” used by these functions, see Section 29.9 [Input Focus],
page 83.)

[Function]set-frame-position frame left top
This function sets the position of the top left corner of frame to left and top. These
arguments are measured in pixels, and normally count from the top left corner of the
screen.

Negative parameter values position the bottom edge of the window up from the bot-
tom edge of the screen, or the right window edge to the left of the right edge of the
screen. It would probably be better if the values were always counted from the left
and top, so that negative arguments would position the frame partly off the top or
left edge of the screen, but it seems inadvisable to change that now.

[Function]frame-height &optional frame
[Function]frame-width &optional frame

These functions return the height and width of frame, measured in lines and columns.
If you don’t supply frame, they use the selected frame.

[Function]frame-pixel-height &optional frame
[Function]frame-pixel-width &optional frame

These functions return the height and width of the main display area of frame, mea-
sured in pixels. If you don’t supply frame, they use the selected frame. For a text
terminal, the results are in characters rather than pixels.

These values include the internal borders, and windows’ scroll bars and fringes (which
belong to individual windows, not to the frame itself). The exact value of the heights
depends on the window-system and toolkit in use. With GTK+, the height does not
include any tool bar or menu bar. With the Motif or Lucid toolkits, it includes the
tool bar but not the menu bar. In a graphical version with no toolkit, it includes both
the tool bar and menu bar. For a text terminal, the result includes the menu bar.

[Function]frame-char-height &optional frame
[Function]frame-char-width &optional frame

These functions return the height and width of a character in frame, measured in
pixels. The values depend on the choice of font. If you don’t supply frame, these
functions use the selected frame.

[Function]set-frame-size frame cols rows
This function sets the size of frame, measured in characters; cols and rows specify
the new width and height.

To set the size based on values measured in pixels, use frame-char-height and
frame-char-width to convert them to units of characters.

Chapter 29: Frames 80

[Function]set-frame-height frame lines &optional pretend
This function resizes frame to a height of lines lines. The sizes of existing windows
in frame are altered proportionally to fit.

If pretend is non-nil, then Emacs displays lines lines of output in frame, but does
not change its value for the actual height of the frame. This is only useful on text
terminals. Using a smaller height than the terminal actually implements may be useful
to reproduce behavior observed on a smaller screen, or if the terminal malfunctions
when using its whole screen. Setting the frame height “for real” does not always
work, because knowing the correct actual size may be necessary for correct cursor
positioning on text terminals.

[Function]set-frame-width frame width &optional pretend
This function sets the width of frame, measured in characters. The argument pretend
has the same meaning as in set-frame-height.

29.3.5 Geometry

Here’s how to examine the data in an X-style window geometry specification:

[Function]x-parse-geometry geom
The function x-parse-geometry converts a standard X window geometry string to
an alist that you can use as part of the argument to make-frame.

The alist describes which parameters were specified in geom, and gives the values
specified for them. Each element looks like (parameter . value). The possible
parameter values are left, top, width, and height.

For the size parameters, the value must be an integer. The position parameter names
left and top are not totally accurate, because some values indicate the position of
the right or bottom edges instead. The value possibilities for the position parame-
ters are: an integer, a list (+ pos), or a list (- pos); as previously described (see
Section 29.3.3.2 [Position Parameters], page 72).

Here is an example:

(x-parse-geometry "35x70+0-0")

⇒ ((height . 70) (width . 35)

(top - 0) (left . 0))

29.4 Terminal Parameters

Each terminal has a list of associated parameters. These terminal parameters are mostly a
convenient way of storage for terminal-local variables, but some terminal parameters have
a special meaning.

This section describes functions to read and change the parameter values of a terminal.
They all accept as their argument either a terminal or a frame; the latter means use that
frame’s terminal. An argument of nil means the selected frame’s terminal.

[Function]terminal-parameters &optional terminal
This function returns an alist listing all the parameters of terminal and their values.

Chapter 29: Frames 81

[Function]terminal-parameter terminal parameter
This function returns the value of the parameter parameter (a symbol) of terminal.
If terminal has no setting for parameter, this function returns nil.

[Function]set-terminal-parameter terminal parameter value
This function sets the parameter parm of terminal to the specified value, and returns
the previous value of that parameter.

Here’s a list of a few terminal parameters that have a special meaning:

background-mode

The classification of the terminal’s background color, either light or dark.

normal-erase-is-backspace

Value is either 1 or 0, depending on whether normal-erase-is-backspace-

mode is turned on or off on this terminal. See Section “DEL Does Not Delete”
in The Emacs Manual.

terminal-initted

After the terminal is initialized, this is set to the terminal-specific initialization
function.

29.5 Frame Titles

Every frame has a name parameter; this serves as the default for the frame title which
window systems typically display at the top of the frame. You can specify a name explicitly
by setting the name frame property.

Normally you don’t specify the name explicitly, and Emacs computes the frame name
automatically based on a template stored in the variable frame-title-format. Emacs
recomputes the name each time the frame is redisplayed.

[Variable]frame-title-format
This variable specifies how to compute a name for a frame when you have not explicitly
specified one. The variable’s value is actually a mode line construct, just like mode-

line-format, except that the ‘%c’ and ‘%l’ constructs are ignored. See Section 23.4.2
[Mode Line Data], page 419, vol. 1.

[Variable]icon-title-format
This variable specifies how to compute the name for an iconified frame, when you
have not explicitly specified the frame title. This title appears in the icon itself.

[Variable]multiple-frames
This variable is set automatically by Emacs. Its value is t when there are two or
more frames (not counting minibuffer-only frames or invisible frames). The default
value of frame-title-format uses multiple-frames so as to put the buffer name in
the frame title only when there is more than one frame.

The value of this variable is not guaranteed to be accurate except while processing
frame-title-format or icon-title-format.

Chapter 29: Frames 82

29.6 Deleting Frames

A live frame is one that has not been deleted. When a frame is deleted, it is removed from
its terminal display, although it may continue to exist as a Lisp object until there are no
more references to it.

[Command]delete-frame &optional frame force
This function deletes the frame frame. Unless frame is a tooltip, it first runs the hook
delete-frame-functions (each function gets one argument, frame). By default,
frame is the selected frame.

A frame cannot be deleted if its minibuffer is used by other frames. Normally, you
cannot delete a frame if all other frames are invisible, but if force is non-nil, then
you are allowed to do so.

[Function]frame-live-p frame
The function frame-live-p returns non-nil if the frame frame has not been deleted.
The possible non-nil return values are like those of framep. See Chapter 29 [Frames],
page 66.

Some window managers provide a command to delete a window. These work by sending
a special message to the program that operates the window. When Emacs gets one of these
commands, it generates a delete-frame event, whose normal definition is a command that
calls the function delete-frame. See Section 21.7.10 [Misc Events], page 334, vol. 1.

29.7 Finding All Frames

[Function]frame-list
This function returns a list of all the live frames, i.e. those that have not been deleted.
It is analogous to buffer-list for buffers, and includes frames on all terminals. The
list that you get is newly created, so modifying the list doesn’t have any effect on the
internals of Emacs.

[Function]visible-frame-list
This function returns a list of just the currently visible frames. See Section 29.10
[Visibility of Frames], page 85. Frames on text terminals always count as “visible”,
even though only the selected one is actually displayed.

[Function]next-frame &optional frame minibuf
This function lets you cycle conveniently through all the frames on the current display
from an arbitrary starting point. It returns the “next” frame after frame in the cycle.
If frame is omitted or nil, it defaults to the selected frame (see Section 29.9 [Input
Focus], page 83).

The second argument, minibuf, says which frames to consider:

nil Exclude minibuffer-only frames.

visible Consider all visible frames.

0 Consider all visible or iconified frames.

a window Consider only the frames using that particular window as their minibuffer.

Chapter 29: Frames 83

anything else
Consider all frames.

[Function]previous-frame &optional frame minibuf
Like next-frame, but cycles through all frames in the opposite direction.

See also next-window and previous-window, in Section 28.8 [Cyclic Window Ordering],
page 34.

29.8 Minibuffers and Frames

Normally, each frame has its own minibuffer window at the bottom, which is used whenever
that frame is selected. If the frame has a minibuffer, you can get it with minibuffer-window

(see [Definition of minibuffer-window], page 312, vol. 1).

However, you can also create a frame with no minibuffer. Such a frame must use the
minibuffer window of some other frame. When you create the frame, you can explicitly
specify the minibuffer window to use (in some other frame). If you don’t, then the minibuffer
is found in the frame which is the value of the variable default-minibuffer-frame. Its
value should be a frame that does have a minibuffer.

If you use a minibuffer-only frame, you might want that frame to raise when you enter
the minibuffer. If so, set the variable minibuffer-auto-raise to t. See Section 29.11
[Raising and Lowering], page 86.

[Variable]default-minibuffer-frame
This variable specifies the frame to use for the minibuffer window, by default. It does
not affect existing frames. It is always local to the current terminal and cannot be
buffer-local. See Section 29.2 [Multiple Terminals], page 67.

29.9 Input Focus

At any time, one frame in Emacs is the selected frame. The selected window always resides
on the selected frame.

When Emacs displays its frames on several terminals (see Section 29.2 [Multiple Ter-
minals], page 67), each terminal has its own selected frame. But only one of these is “the
selected frame”: it’s the frame that belongs to the terminal from which the most recent
input came. That is, when Emacs runs a command that came from a certain terminal, the
selected frame is the one of that terminal. Since Emacs runs only a single command at any
given time, it needs to consider only one selected frame at a time; this frame is what we
call the selected frame in this manual. The display on which the selected frame is shown is
the selected frame’s display.

[Function]selected-frame
This function returns the selected frame.

Some window systems and window managers direct keyboard input to the window object
that the mouse is in; others require explicit clicks or commands to shift the focus to various
window objects. Either way, Emacs automatically keeps track of which frame has the
focus. To explicitly switch to a different frame from a Lisp function, call select-frame-
set-input-focus.

Chapter 29: Frames 84

Lisp programs can also switch frames “temporarily” by calling the function select-

frame. This does not alter the window system’s concept of focus; rather, it escapes from
the window manager’s control until that control is somehow reasserted.

When using a text terminal, only one frame can be displayed at a time on the terminal,
so after a call to select-frame, the next redisplay actually displays the newly selected
frame. This frame remains selected until a subsequent call to select-frame. Each frame
on a text terminal has a number which appears in the mode line before the buffer name
(see Section 23.4.4 [Mode Line Variables], page 422, vol. 1).

[Function]select-frame-set-input-focus frame &optional norecord
This function selects frame, raises it (should it happen to be obscured by other frames)
and tries to give it the X server’s focus. On a text terminal, the next redisplay displays
the new frame on the entire terminal screen. The optional argument norecord has the
same meaning as for select-frame (see below). The return value of this function is
not significant.

[Command]select-frame frame &optional norecord
This function selects frame frame, temporarily disregarding the focus of the X server
if any. The selection of frame lasts until the next time the user does something to
select a different frame, or until the next time this function is called. (If you are using
a window system, the previously selected frame may be restored as the selected frame
after return to the command loop, because it still may have the window system’s
input focus.)

The specified frame becomes the selected frame, and its terminal becomes the se-
lected terminal. This function then calls select-window as a subroutine, passing
the window selected within frame as its first argument and norecord as its second
argument (hence, if norecord is non-nil, this avoids changing the order of recently
selected windows nor the buffer list). See Section 28.7 [Selecting Windows], page 33.

This function returns frame, or nil if frame has been deleted.

In general, you should never use select-frame in a way that could switch to a
different terminal without switching back when you’re done.

Emacs cooperates with the window system by arranging to select frames as the server
and window manager request. It does so by generating a special kind of input event, called
a focus event, when appropriate. The command loop handles a focus event by calling
handle-switch-frame. See Section 21.7.9 [Focus Events], page 334, vol. 1.

[Command]handle-switch-frame frame
This function handles a focus event by selecting frame frame.

Focus events normally do their job by invoking this command. Don’t call it for any
other reason.

[Function]redirect-frame-focus frame &optional focus-frame
This function redirects focus from frame to focus-frame. This means that focus-
frame will receive subsequent keystrokes and events intended for frame. After such
an event, the value of last-event-frame will be focus-frame. Also, switch-frame
events specifying frame will instead select focus-frame.

Chapter 29: Frames 85

If focus-frame is omitted or nil, that cancels any existing redirection for frame, which
therefore once again receives its own events.

One use of focus redirection is for frames that don’t have minibuffers. These frames
use minibuffers on other frames. Activating a minibuffer on another frame redirects
focus to that frame. This puts the focus on the minibuffer’s frame, where it belongs,
even though the mouse remains in the frame that activated the minibuffer.

Selecting a frame can also change focus redirections. Selecting frame bar, when foo

had been selected, changes any redirections pointing to foo so that they point to bar

instead. This allows focus redirection to work properly when the user switches from
one frame to another using select-window.

This means that a frame whose focus is redirected to itself is treated differently from
a frame whose focus is not redirected. select-frame affects the former but not the
latter.

The redirection lasts until redirect-frame-focus is called to change it.

[User Option]focus-follows-mouse
This option is how you inform Emacs whether the window manager transfers focus
when the user moves the mouse. Non-nil says that it does. When this is so, the com-
mand other-frame moves the mouse to a position consistent with the new selected
frame.

29.10 Visibility of Frames

A frame on a graphical display may be visible, invisible, or iconified. If it is visible, its con-
tents are displayed in the usual manner. If it is iconified, its contents are not displayed, but
there is a little icon somewhere to bring the frame back into view (some window managers
refer to this state as minimized rather than iconified, but from Emacs’ point of view they
are the same thing). If a frame is invisible, it is not displayed at all.

Visibility is meaningless on text terminals, since only the selected one is actually dis-
played in any case.

[Function]frame-visible-p frame
This function returns the visibility status of frame frame. The value is t if frame is
visible, nil if it is invisible, and icon if it is iconified.

On a text terminal, all frames are considered visible, whether they are currently being
displayed or not.

[Command]iconify-frame &optional frame
This function iconifies frame frame. If you omit frame, it iconifies the selected frame.

[Command]make-frame-visible &optional frame
This function makes frame frame visible. If you omit frame, it makes the selected
frame visible. This does not raise the frame, but you can do that with raise-frame

if you wish (see Section 29.11 [Raising and Lowering], page 86).

[Command]make-frame-invisible &optional frame force
This function makes frame frame invisible. If you omit frame, it makes the selected
frame invisible.

Chapter 29: Frames 86

Unless force is non-nil, this function refuses to make frame invisible if all other frames
are invisible..

The visibility status of a frame is also available as a frame parameter. You can read or
change it as such. See Section 29.3.3.6 [Management Parameters], page 75. The user can
also iconify and deiconify frames with the window manager. This happens below the level
at which Emacs can exert any control, but Emacs does provide events that you can use to
keep track of such changes. See Section 21.7.10 [Misc Events], page 334, vol. 1.

29.11 Raising and Lowering Frames

Most window systems use a desktop metaphor. Part of this metaphor is the idea that
windows are stacked in a notional third dimension perpendicular to the screen surface, and
thus ordered from “highest” to “lowest”. Where two windows overlap, the one higher up
covers the one underneath. Even a window at the bottom of the stack can be seen if no
other window overlaps it.

A window’s place in this ordering is not fixed; in fact, users tend to change the order
frequently. Raising a window means moving it “up”, to the top of the stack. Lowering a
window means moving it to the bottom of the stack. This motion is in the notional third
dimension only, and does not change the position of the window on the screen.

With Emacs, frames constitute the windows in the metaphor sketched above. You can
raise and lower frames using these functions:

[Command]raise-frame &optional frame
This function raises frame frame (default, the selected frame). If frame is invisible or
iconified, this makes it visible.

[Command]lower-frame &optional frame
This function lowers frame frame (default, the selected frame).

[User Option]minibuffer-auto-raise
If this is non-nil, activation of the minibuffer raises the frame that the minibuffer
window is in.

You can also enable auto-raise (raising automatically when a frame is selected) or auto-
lower (lowering automatically when it is deselected) for any frame using frame parameters.
See Section 29.3.3.6 [Management Parameters], page 75.

29.12 Frame Configurations

A frame configuration records the current arrangement of frames, all their properties, and
the window configuration of each one. (See Section 28.23 [Window Configurations], page 60.)

[Function]current-frame-configuration
This function returns a frame configuration list that describes the current arrangement
of frames and their contents.

[Function]set-frame-configuration configuration &optional nodelete
This function restores the state of frames described in configuration. However, this
function does not restore deleted frames.

Chapter 29: Frames 87

Ordinarily, this function deletes all existing frames not listed in configuration. But if
nodelete is non-nil, the unwanted frames are iconified instead.

29.13 Mouse Tracking

Sometimes it is useful to track the mouse, which means to display something to indicate
where the mouse is and move the indicator as the mouse moves. For efficient mouse tracking,
you need a way to wait until the mouse actually moves.

The convenient way to track the mouse is to ask for events to represent mouse motion.
Then you can wait for motion by waiting for an event. In addition, you can easily handle
any other sorts of events that may occur. That is useful, because normally you don’t want
to track the mouse forever—only until some other event, such as the release of a button.

[Special Form]track-mouse body. . .
This special form executes body, with generation of mouse motion events enabled.
Typically, body would use read-event to read the motion events and modify the
display accordingly. See Section 21.7.8 [Motion Events], page 334, vol. 1, for the
format of mouse motion events.

The value of track-mouse is that of the last form in body. You should design body to
return when it sees the up-event that indicates the release of the button, or whatever
kind of event means it is time to stop tracking.

The usual purpose of tracking mouse motion is to indicate on the screen the consequences
of pushing or releasing a button at the current position.

In many cases, you can avoid the need to track the mouse by using the mouse-face text
property (see Section 32.19.4 [Special Properties], page 162). That works at a much lower
level and runs more smoothly than Lisp-level mouse tracking.

29.14 Mouse Position

The functions mouse-position and set-mouse-position give access to the current position
of the mouse.

[Function]mouse-position
This function returns a description of the position of the mouse. The value looks like
(frame x . y), where x and y are integers giving the position in characters relative
to the top left corner of the inside of frame.

[Variable]mouse-position-function
If non-nil, the value of this variable is a function for mouse-position to call. mouse-
position calls this function just before returning, with its normal return value as the
sole argument, and it returns whatever this function returns to it.

This abnormal hook exists for the benefit of packages like ‘xt-mouse.el’ that need
to do mouse handling at the Lisp level.

[Function]set-mouse-position frame x y
This function warps the mouse to position x, y in frame frame. The arguments x and
y are integers, giving the position in characters relative to the top left corner of the
inside of frame. If frame is not visible, this function does nothing. The return value
is not significant.

Chapter 29: Frames 88

[Function]mouse-pixel-position
This function is like mouse-position except that it returns coordinates in units of
pixels rather than units of characters.

[Function]set-mouse-pixel-position frame x y
This function warps the mouse like set-mouse-position except that x and y are in
units of pixels rather than units of characters. These coordinates are not required to
be within the frame.

If frame is not visible, this function does nothing. The return value is not significant.

[Function]frame-pointer-visible-p &optional frame
This predicate function returns non-nil if the mouse pointer displayed on frame is
visible; otherwise it returns nil. frame omitted or nil means the selected frame.
This is useful when make-pointer-invisible is set to t: it allows to know if the
pointer has been hidden. See Section “Mouse Avoidance” in The Emacs Manual.

29.15 Pop-Up Menus

When using a window system, a Lisp program can pop up a menu so that the user can
choose an alternative with the mouse.

[Function]x-popup-menu position menu
This function displays a pop-up menu and returns an indication of what selection the
user makes.

The argument position specifies where on the screen to put the top left corner of the
menu. It can be either a mouse button event (which says to put the menu where the
user actuated the button) or a list of this form:

((xoffset yoffset) window)

where xoffset and yoffset are coordinates, measured in pixels, counting from the top
left corner of window. window may be a window or a frame.

If position is t, it means to use the current mouse position. If position is nil, it
means to precompute the key binding equivalents for the keymaps specified in menu,
without actually displaying or popping up the menu.

The argument menu says what to display in the menu. It can be a keymap or a list
of keymaps (see Section 22.17 [Menu Keymaps], page 384, vol. 1). In this case, the
return value is the list of events corresponding to the user’s choice. This list has more
than one element if the choice occurred in a submenu. (Note that x-popup-menu does
not actually execute the command bound to that sequence of events.) On toolkits
that support menu titles, the title is taken from the prompt string of menu if menu
is a keymap, or from the prompt string of the first keymap in menu if it is a list of
keymaps (see Section 22.17.1 [Defining Menus], page 384, vol. 1).

Alternatively, menu can have the following form:

(title pane1 pane2...)

where each pane is a list of form

Chapter 29: Frames 89

(title item1 item2...)

Each item should normally be a cons cell (line . value), where line is a string, and
value is the value to return if that line is chosen. An item can also be a string; this
makes a non-selectable line in the menu.

If the user gets rid of the menu without making a valid choice, for instance by clicking
the mouse away from a valid choice or by typing keyboard input, then this normally
results in a quit and x-popup-menu does not return. But if position is a mouse button
event (indicating that the user invoked the menu with the mouse) then no quit occurs
and x-popup-menu returns nil.

Usage note: Don’t use x-popup-menu to display a menu if you could do the job with a
prefix key defined with a menu keymap. If you use a menu keymap to implement a menu,
C-h c and C-h a can see the individual items in that menu and provide help for them. If
instead you implement the menu by defining a command that calls x-popup-menu, the help
facilities cannot know what happens inside that command, so they cannot give any help for
the menu’s items.

The menu bar mechanism, which lets you switch between submenus by moving the
mouse, cannot look within the definition of a command to see that it calls x-popup-menu.
Therefore, if you try to implement a submenu using x-popup-menu, it cannot work with the
menu bar in an integrated fashion. This is why all menu bar submenus are implemented with
menu keymaps within the parent menu, and never with x-popup-menu. See Section 22.17.5
[Menu Bar], page 391, vol. 1.

If you want a menu bar submenu to have contents that vary, you should still use a menu
keymap to implement it. To make the contents vary, add a hook function to menu-bar-

update-hook to update the contents of the menu keymap as necessary.

29.16 Dialog Boxes

A dialog box is a variant of a pop-up menu—it looks a little different, it always appears
in the center of a frame, and it has just one level and one or more buttons. The main use
of dialog boxes is for asking questions that the user can answer with “yes”, “no”, and a
few other alternatives. With a single button, they can also force the user to acknowledge
important information. The functions y-or-n-p and yes-or-no-p use dialog boxes instead
of the keyboard, when called from commands invoked by mouse clicks.

[Function]x-popup-dialog position contents &optional header
This function displays a pop-up dialog box and returns an indication of what selection
the user makes. The argument contents specifies the alternatives to offer; it has this
format:

(title (string . value)...)

which looks like the list that specifies a single pane for x-popup-menu.

The return value is value from the chosen alternative.

As for x-popup-menu, an element of the list may be just a string instead of a cons
cell (string . value). That makes a box that cannot be selected.

If nil appears in the list, it separates the left-hand items from the right-hand items;
items that precede the nil appear on the left, and items that follow the nil appear

Chapter 29: Frames 90

on the right. If you don’t include a nil in the list, then approximately half the items
appear on each side.

Dialog boxes always appear in the center of a frame; the argument position specifies
which frame. The possible values are as in x-popup-menu, but the precise coordinates
or the individual window don’t matter; only the frame matters.

If header is non-nil, the frame title for the box is ‘Information’, otherwise it is
‘Question’. The former is used for message-box (see [message-box], page 303).

In some configurations, Emacs cannot display a real dialog box; so instead it displays
the same items in a pop-up menu in the center of the frame.

If the user gets rid of the dialog box without making a valid choice, for instance using
the window manager, then this produces a quit and x-popup-dialog does not return.

29.17 Pointer Shape

You can specify the mouse pointer style for particular text or images using the pointer

text property, and for images with the :pointer and :map image properties. The values
you can use in these properties are text (or nil), arrow, hand, vdrag, hdrag, modeline,
and hourglass. text stands for the usual mouse pointer style used over text.

Over void parts of the window (parts that do not correspond to any of the buffer con-
tents), the mouse pointer usually uses the arrow style, but you can specify a different style
(one of those above) by setting void-text-area-pointer.

[User Option]void-text-area-pointer
This variable specifies the mouse pointer style for void text areas. These include the
areas after the end of a line or below the last line in the buffer. The default is to use
the arrow (non-text) pointer style.

When using X, you can specify what the text pointer style really looks like by setting
the variable x-pointer-shape.

[Variable]x-pointer-shape
This variable specifies the pointer shape to use ordinarily in the Emacs frame, for the
text pointer style.

[Variable]x-sensitive-text-pointer-shape
This variable specifies the pointer shape to use when the mouse is over mouse-sensitive
text.

These variables affect newly created frames. They do not normally affect existing frames;
however, if you set the mouse color of a frame, that also installs the current value of those
two variables. See Section 29.3.3.8 [Font and Color Parameters], page 77.

The values you can use, to specify either of these pointer shapes, are defined in the file
‘lisp/term/x-win.el’. Use M-x apropos RET x-pointer RET to see a list of them.

Chapter 29: Frames 91

29.18 Window System Selections

In the X window system, data can be transferred between different applications by means
of selections. X defines an arbitrary number of selection types, each of which can store its
own data; however, only three are commonly used: the clipboard, primary selection, and
secondary selection. See Section “Cut and Paste” in The GNU Emacs Manual, for Emacs
commands that make use of these selections. This section documents the low-level functions
for reading and setting X selections.

[Command]x-set-selection type data
This function sets an X selection. It takes two arguments: a selection type type, and
the value to assign to it, data.

type should be a symbol; it is usually one of PRIMARY, SECONDARY or CLIPBOARD. These
are symbols with upper-case names, in accord with X Window System conventions.
If type is nil, that stands for PRIMARY.

If data is nil, it means to clear out the selection. Otherwise, data may be a string,
a symbol, an integer (or a cons of two integers or list of two integers), an overlay, or
a cons of two markers pointing to the same buffer. An overlay or a pair of markers
stands for text in the overlay or between the markers. The argument data may also
be a vector of valid non-vector selection values.

This function returns data.

[Function]x-get-selection &optional type data-type
This function accesses selections set up by Emacs or by other X clients. It takes two
optional arguments, type and data-type. The default for type, the selection type, is
PRIMARY.

The data-type argument specifies the form of data conversion to use, to convert the
raw data obtained from another X client into Lisp data. Meaningful values include
TEXT, STRING, UTF8_STRING, TARGETS, LENGTH, DELETE, FILE_NAME, CHARACTER_

POSITION, NAME, LINE_NUMBER, COLUMN_NUMBER, OWNER_OS, HOST_NAME, USER, CLASS,
ATOM, and INTEGER. (These are symbols with upper-case names in accord with X
conventions.) The default for data-type is STRING.

[User Option]selection-coding-system
This variable specifies the coding system to use when reading and writing selections or
the clipboard. See Section 33.9 [Coding Systems], page 193. The default is compound-
text-with-extensions, which converts to the text representation that X11 normally
uses.

When Emacs runs on MS-Windows, it does not implement X selections in general, but
it does support the clipboard. x-get-selection and x-set-selection on MS-Windows
support the text data type only; if the clipboard holds other types of data, Emacs treats
the clipboard as empty.

29.19 Drag and Drop

When a user drags something from another application over Emacs, that other application
expects Emacs to tell it if Emacs can handle the data that is dragged. The variable x-

dnd-test-function is used by Emacs to determine what to reply. The default value is

Chapter 29: Frames 92

x-dnd-default-test-function which accepts drops if the type of the data to be dropped
is present in x-dnd-known-types. You can customize x-dnd-test-function and/or x-

dnd-known-types if you want Emacs to accept or reject drops based on some other criteria.

If you want to change the way Emacs handles drop of different types or add a new
type, customize x-dnd-types-alist. This requires detailed knowledge of what types other
applications use for drag and drop.

When an URL is dropped on Emacs it may be a file, but it may also be another URL
type (ftp, http, etc.). Emacs first checks dnd-protocol-alist to determine what to do
with the URL. If there is no match there and if browse-url-browser-function is an alist,
Emacs looks for a match there. If no match is found the text for the URL is inserted. If
you want to alter Emacs behavior, you can customize these variables.

29.20 Color Names

A color name is text (usually in a string) that specifies a color. Symbolic names such
as ‘black’, ‘white’, ‘red’, etc., are allowed; use M-x list-colors-display to see a list
of defined names. You can also specify colors numerically in forms such as ‘#rgb’ and
‘RGB:r/g/b’, where r specifies the red level, g specifies the green level, and b specifies the
blue level. You can use either one, two, three, or four hex digits for r; then you must use
the same number of hex digits for all g and b as well, making either 3, 6, 9 or 12 hex digits
in all. (See the documentation of the X Window System for more details about numerical
RGB specification of colors.)

These functions provide a way to determine which color names are valid, and what they
look like. In some cases, the value depends on the selected frame, as described below; see
Section 29.9 [Input Focus], page 83, for the meaning of the term “selected frame”.

To read user input of color names with completion, use read-color (see Section 20.6.4
[High-Level Completion], page 298, vol. 1).

[Function]color-defined-p color &optional frame
This function reports whether a color name is meaningful. It returns t if so; otherwise,
nil. The argument frame says which frame’s display to ask about; if frame is omitted
or nil, the selected frame is used.

Note that this does not tell you whether the display you are using really supports
that color. When using X, you can ask for any defined color on any kind of display,
and you will get some result—typically, the closest it can do. To determine whether
a frame can really display a certain color, use color-supported-p (see below).

This function used to be called x-color-defined-p, and that name is still supported
as an alias.

[Function]defined-colors &optional frame
This function returns a list of the color names that are defined and supported on
frame frame (default, the selected frame). If frame does not support colors, the value
is nil.

This function used to be called x-defined-colors, and that name is still supported
as an alias.

Chapter 29: Frames 93

[Function]color-supported-p color &optional frame background-p
This returns t if frame can really display the color color (or at least something close
to it). If frame is omitted or nil, the question applies to the selected frame.

Some terminals support a different set of colors for foreground and background. If
background-p is non-nil, that means you are asking whether color can be used as a
background; otherwise you are asking whether it can be used as a foreground.

The argument color must be a valid color name.

[Function]color-gray-p color &optional frame
This returns t if color is a shade of gray, as defined on frame’s display. If frame is
omitted or nil, the question applies to the selected frame. If color is not a valid color
name, this function returns nil.

[Function]color-values color &optional frame
This function returns a value that describes what color should ideally look like on
frame. If color is defined, the value is a list of three integers, which give the amount
of red, the amount of green, and the amount of blue. Each integer ranges in principle
from 0 to 65535, but some displays may not use the full range. This three-element
list is called the rgb values of the color.

If color is not defined, the value is nil.

(color-values "black")

⇒ (0 0 0)

(color-values "white")

⇒ (65280 65280 65280)

(color-values "red")

⇒ (65280 0 0)

(color-values "pink")

⇒ (65280 49152 51968)

(color-values "hungry")

⇒ nil

The color values are returned for frame’s display. If frame is omitted or nil, the
information is returned for the selected frame’s display. If the frame cannot display
colors, the value is nil.

This function used to be called x-color-values, and that name is still supported as
an alias.

29.21 Text Terminal Colors

Text terminals usually support only a small number of colors, and the computer uses small
integers to select colors on the terminal. This means that the computer cannot reliably tell
what the selected color looks like; instead, you have to inform your application which small
integers correspond to which colors. However, Emacs does know the standard set of colors
and will try to use them automatically.

The functions described in this section control how terminal colors are used by Emacs.

Several of these functions use or return rgb values, described in Section 29.20 [Color
Names], page 92.

Chapter 29: Frames 94

These functions accept a display (either a frame or the name of a terminal) as an optional
argument. We hope in the future to make Emacs support different colors on different text
terminals; then this argument will specify which terminal to operate on (the default being
the selected frame’s terminal; see Section 29.9 [Input Focus], page 83). At present, though,
the frame argument has no effect.

[Function]tty-color-define name number &optional rgb frame
This function associates the color name name with color number number on the
terminal.

The optional argument rgb, if specified, is an rgb value, a list of three numbers that
specify what the color actually looks like. If you do not specify rgb, then this color
cannot be used by tty-color-approximate to approximate other colors, because
Emacs will not know what it looks like.

[Function]tty-color-clear &optional frame
This function clears the table of defined colors for a text terminal.

[Function]tty-color-alist &optional frame
This function returns an alist recording the known colors supported by a text terminal.

Each element has the form (name number . rgb) or (name number). Here, name is
the color name, number is the number used to specify it to the terminal. If present,
rgb is a list of three color values (for red, green, and blue) that says what the color
actually looks like.

[Function]tty-color-approximate rgb &optional frame
This function finds the closest color, among the known colors supported for display,
to that described by the rgb value rgb (a list of color values). The return value is an
element of tty-color-alist.

[Function]tty-color-translate color &optional frame
This function finds the closest color to color among the known colors supported for
display and returns its index (an integer). If the name color is not defined, the value
is nil.

29.22 X Resources

This section describes some of the functions and variables for querying and using X re-
sources, or their equivalent on your operating system. See Section “X Resources” in The
GNU Emacs Manual, for more information about X resources.

[Function]x-get-resource attribute class &optional component subclass
The function x-get-resource retrieves a resource value from the X Window defaults
database.

Resources are indexed by a combination of a key and a class. This function searches
using a key of the form ‘instance.attribute’ (where instance is the name under
which Emacs was invoked), and using ‘Emacs.class’ as the class.

The optional arguments component and subclass add to the key and the class, re-
spectively. You must specify both of them or neither. If you specify them, the key is
‘instance.component.attribute’, and the class is ‘Emacs.class.subclass’.

Chapter 29: Frames 95

[Variable]x-resource-class
This variable specifies the application name that x-get-resource should look up.
The default value is "Emacs". You can examine X resources for application names
other than “Emacs” by binding this variable to some other string, around a call to
x-get-resource.

[Variable]x-resource-name
This variable specifies the instance name that x-get-resource should look up. The
default value is the name Emacs was invoked with, or the value specified with the
‘-name’ or ‘-rn’ switches.

To illustrate some of the above, suppose that you have the line:

xterm.vt100.background: yellow

in your X resources file (whose name is usually ‘~/.Xdefaults’ or ‘~/.Xresources’). Then:

(let ((x-resource-class "XTerm") (x-resource-name "xterm"))

(x-get-resource "vt100.background" "VT100.Background"))

⇒ "yellow"

(let ((x-resource-class "XTerm") (x-resource-name "xterm"))

(x-get-resource "background" "VT100" "vt100" "Background"))

⇒ "yellow"

[Variable]inhibit-x-resources
If this variable is non-nil, Emacs does not look up X resources, and X resources do
not have any effect when creating new frames.

29.23 Display Feature Testing

The functions in this section describe the basic capabilities of a particular display. Lisp
programs can use them to adapt their behavior to what the display can do. For example,
a program that ordinarily uses a popup menu could use the minibuffer if popup menus are
not supported.

The optional argument display in these functions specifies which display to ask the
question about. It can be a display name, a frame (which designates the display that frame
is on), or nil (which refers to the selected frame’s display, see Section 29.9 [Input Focus],
page 83).

See Section 29.20 [Color Names], page 92, Section 29.21 [Text Terminal Colors], page 93,
for other functions to obtain information about displays.

[Function]display-popup-menus-p &optional display
This function returns t if popup menus are supported on display, nil if not. Support
for popup menus requires that the mouse be available, since the user cannot choose
menu items without a mouse.

[Function]display-graphic-p &optional display
This function returns t if display is a graphic display capable of displaying several
frames and several different fonts at once. This is true for displays that use a window
system such as X, and false for text terminals.

Chapter 29: Frames 96

[Function]display-mouse-p &optional display
This function returns t if display has a mouse available, nil if not.

[Function]display-color-p &optional display
This function returns t if the screen is a color screen. It used to be called x-display-

color-p, and that name is still supported as an alias.

[Function]display-grayscale-p &optional display
This function returns t if the screen can display shades of gray. (All color displays
can do this.)

[Function]display-supports-face-attributes-p attributes &optional display
This function returns non-nil if all the face attributes in attributes are supported
(see Section 38.12.2 [Face Attributes], page 327).

The definition of ‘supported’ is somewhat heuristic, but basically means that a face
containing all the attributes in attributes, when merged with the default face for
display, can be represented in a way that’s

1. different in appearance than the default face, and

2. ‘close in spirit’ to what the attributes specify, if not exact.

Point (2) implies that a :weight black attribute will be satisfied by any display
that can display bold, as will :foreground "yellow" as long as some yellowish color
can be displayed, but :slant italic will not be satisfied by the tty display code’s
automatic substitution of a ‘dim’ face for italic.

[Function]display-selections-p &optional display
This function returns t if display supports selections. Windowed displays normally
support selections, but they may also be supported in some other cases.

[Function]display-images-p &optional display
This function returns t if display can display images. Windowed displays ought in
principle to handle images, but some systems lack the support for that. On a display
that does not support images, Emacs cannot display a tool bar.

[Function]display-screens &optional display
This function returns the number of screens associated with the display.

[Function]display-pixel-height &optional display
This function returns the height of the screen in pixels. On a character terminal, it
gives the height in characters.

For graphical terminals, note that on “multi-monitor” setups this refers to the pixel
width for all physical monitors associated with display. See Section 29.2 [Multiple
Terminals], page 67.

[Function]display-pixel-width &optional display
This function returns the width of the screen in pixels. On a character terminal, it
gives the width in characters.

For graphical terminals, note that on “multi-monitor” setups this refers to the pixel
width for all physical monitors associated with display. See Section 29.2 [Multiple
Terminals], page 67.

Chapter 29: Frames 97

[Function]display-mm-height &optional display
This function returns the height of the screen in millimeters, or nil if Emacs cannot
get that information.

[Function]display-mm-width &optional display
This function returns the width of the screen in millimeters, or nil if Emacs cannot
get that information.

[User Option]display-mm-dimensions-alist
This variable allows the user to specify the dimensions of graphical displays returned
by display-mm-height and display-mm-width in case the system provides incorrect
values.

[Function]display-backing-store &optional display
This function returns the backing store capability of the display. Backing store means
recording the pixels of windows (and parts of windows) that are not exposed, so that
when exposed they can be displayed very quickly.

Values can be the symbols always, when-mapped, or not-useful. The function can
also return nil when the question is inapplicable to a certain kind of display.

[Function]display-save-under &optional display
This function returns non-nil if the display supports the SaveUnder feature. That
feature is used by pop-up windows to save the pixels they obscure, so that they can
pop down quickly.

[Function]display-planes &optional display
This function returns the number of planes the display supports. This is typically
the number of bits per pixel. For a tty display, it is log to base two of the number of
colors supported.

[Function]display-visual-class &optional display
This function returns the visual class for the screen. The value is one of the symbols
static-gray (a limited, unchangeable number of grays), gray-scale (a full range of
grays), static-color (a limited, unchangeable number of colors), pseudo-color (a
limited number of colors), true-color (a full range of colors), and direct-color (a
full range of colors).

[Function]display-color-cells &optional display
This function returns the number of color cells the screen supports.

These functions obtain additional information specifically about X displays.

[Function]x-server-version &optional display
This function returns the list of version numbers of the X server running the display.
The value is a list of three integers: the major and minor version numbers of the X
protocol, and the distributor-specific release number of the X server software itself.

[Function]x-server-vendor &optional display
This function returns the “vendor” that provided the X server software (as a string).
Really this means whoever distributes the X server.

Chapter 29: Frames 98

When the developers of X labeled software distributors as “vendors”, they showed
their false assumption that no system could ever be developed and distributed non-
commercially.

Chapter 30: Positions 99

30 Positions

A position is the index of a character in the text of a buffer. More precisely, a position
identifies the place between two characters (or before the first character, or after the last
character), so we can speak of the character before or after a given position. However, we
often speak of the character “at” a position, meaning the character after that position.

Positions are usually represented as integers starting from 1, but can also be represented
as markers—special objects that relocate automatically when text is inserted or deleted
so they stay with the surrounding characters. Functions that expect an argument to be a
position (an integer), but accept a marker as a substitute, normally ignore which buffer the
marker points into; they convert the marker to an integer, and use that integer, exactly as
if you had passed the integer as the argument, even if the marker points to the “wrong”
buffer. A marker that points nowhere cannot convert to an integer; using it instead of an
integer causes an error. See Chapter 31 [Markers], page 112.

See also the “field” feature (see Section 32.19.9 [Fields], page 172), which provides func-
tions that are used by many cursor-motion commands.

30.1 Point

Point is a special buffer position used by many editing commands, including the self-
inserting typed characters and text insertion functions. Other commands move point
through the text to allow editing and insertion at different places.

Like other positions, point designates a place between two characters (or before the first
character, or after the last character), rather than a particular character. Usually terminals
display the cursor over the character that immediately follows point; point is actually before
the character on which the cursor sits.

The value of point is a number no less than 1, and no greater than the buffer size plus 1.
If narrowing is in effect (see Section 30.4 [Narrowing], page 109), then point is constrained
to fall within the accessible portion of the buffer (possibly at one end of it).

Each buffer has its own value of point, which is independent of the value of point in
other buffers. Each window also has a value of point, which is independent of the value of
point in other windows on the same buffer. This is why point can have different values in
various windows that display the same buffer. When a buffer appears in only one window,
the buffer’s point and the window’s point normally have the same value, so the distinction
is rarely important. See Section 28.17 [Window Point], page 48, for more details.

[Function]point
This function returns the value of point in the current buffer, as an integer.

(point)

⇒ 175

[Function]point-min
This function returns the minimum accessible value of point in the current buffer.
This is normally 1, but if narrowing is in effect, it is the position of the start of the
region that you narrowed to. (See Section 30.4 [Narrowing], page 109.)

Chapter 30: Positions 100

[Function]point-max
This function returns the maximum accessible value of point in the current buffer.
This is (1+ (buffer-size)), unless narrowing is in effect, in which case it is the
position of the end of the region that you narrowed to. (See Section 30.4 [Narrowing],
page 109.)

[Function]buffer-end flag
This function returns (point-max) if flag is greater than 0, (point-min) otherwise.
The argument flag must be a number.

[Function]buffer-size &optional buffer
This function returns the total number of characters in the current buffer. In the
absence of any narrowing (see Section 30.4 [Narrowing], page 109), point-max returns
a value one larger than this.

If you specify a buffer, buffer, then the value is the size of buffer.

(buffer-size)

⇒ 35

(point-max)

⇒ 36

30.2 Motion

Motion functions change the value of point, either relative to the current value of point,
relative to the beginning or end of the buffer, or relative to the edges of the selected window.
See Section 30.1 [Point], page 99.

30.2.1 Motion by Characters

These functions move point based on a count of characters. goto-char is the fundamental
primitive; the other functions use that.

[Command]goto-char position
This function sets point in the current buffer to the value position. If position is less
than 1, it moves point to the beginning of the buffer. If position is greater than the
length of the buffer, it moves point to the end.

If narrowing is in effect, position still counts from the beginning of the buffer, but
point cannot go outside the accessible portion. If position is out of range, goto-char
moves point to the beginning or the end of the accessible portion.

When this function is called interactively, position is the numeric prefix argument, if
provided; otherwise it is read from the minibuffer.

goto-char returns position.

[Command]forward-char &optional count
This function moves point count characters forward, towards the end of the buffer (or
backward, towards the beginning of the buffer, if count is negative). If count is nil,
the default is 1.

If this attempts to move past the beginning or end of the buffer (or the limits of the
accessible portion, when narrowing is in effect), it signals an error with error symbol
beginning-of-buffer or end-of-buffer.

Chapter 30: Positions 101

In an interactive call, count is the numeric prefix argument.

[Command]backward-char &optional count
This is just like forward-char except that it moves in the opposite direction.

30.2.2 Motion by Words

These functions for parsing words use the syntax table to decide whether a given character
is part of a word. See Chapter 35 [Syntax Tables], page 234.

[Command]forward-word &optional count
This function moves point forward count words (or backward if count is negative). If
count is nil, it moves forward one word.

“Moving one word” means moving until point crosses a word-constituent character
and then encounters a word-separator character. However, this function cannot move
point past the boundary of the accessible portion of the buffer, or across a field
boundary (see Section 32.19.9 [Fields], page 172). The most common case of a field
boundary is the end of the prompt in the minibuffer.

If it is possible to move count words, without being stopped prematurely by the buffer
boundary or a field boundary, the value is t. Otherwise, the return value is nil and
point stops at the buffer boundary or field boundary.

If inhibit-field-text-motion is non-nil, this function ignores field boundaries.

In an interactive call, count is specified by the numeric prefix argument. If count is
omitted or nil, it defaults to 1.

[Command]backward-word &optional count
This function is just like forward-word, except that it moves backward until encoun-
tering the front of a word, rather than forward.

[User Option]words-include-escapes
This variable affects the behavior of forward-word and everything that uses it. If
it is non-nil, then characters in the “escape” and “character quote” syntax classes
count as part of words. Otherwise, they do not.

[Variable]inhibit-field-text-motion
If this variable is non-nil, certain motion functions including forward-word,
forward-sentence, and forward-paragraph ignore field boundaries.

30.2.3 Motion to an End of the Buffer

To move point to the beginning of the buffer, write:

(goto-char (point-min))

Likewise, to move to the end of the buffer, use:

(goto-char (point-max))

Here are two commands that users use to do these things. They are documented here to
warn you not to use them in Lisp programs, because they set the mark and display messages
in the echo area.

Chapter 30: Positions 102

[Command]beginning-of-buffer &optional n
This function moves point to the beginning of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position (except
in Transient Mark mode, if the mark is already active, it does not set the mark.)

If n is non-nil, then it puts point n tenths of the way from the beginning of the ac-
cessible portion of the buffer. In an interactive call, n is the numeric prefix argument,
if provided; otherwise n defaults to nil.

Warning: Don’t use this function in Lisp programs!

[Command]end-of-buffer &optional n
This function moves point to the end of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position (except
in Transient Mark mode when the mark is already active). If n is non-nil, then it
puts point n tenths of the way from the end of the accessible portion of the buffer.

In an interactive call, n is the numeric prefix argument, if provided; otherwise n
defaults to nil.

Warning: Don’t use this function in Lisp programs!

30.2.4 Motion by Text Lines

Text lines are portions of the buffer delimited by newline characters, which are regarded as
part of the previous line. The first text line begins at the beginning of the buffer, and the
last text line ends at the end of the buffer whether or not the last character is a newline.
The division of the buffer into text lines is not affected by the width of the window, by line
continuation in display, or by how tabs and control characters are displayed.

[Command]beginning-of-line &optional count
This function moves point to the beginning of the current line. With an argument
count not nil or 1, it moves forward count−1 lines and then to the beginning of the
line.

This function does not move point across a field boundary (see Section 32.19.9 [Fields],
page 172) unless doing so would move beyond there to a different line; therefore, if
count is nil or 1, and point starts at a field boundary, point does not move. To
ignore field boundaries, either bind inhibit-field-text-motion to t, or use the
forward-line function instead. For instance, (forward-line 0) does the same thing
as (beginning-of-line), except that it ignores field boundaries.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point there. No error is signaled.

[Function]line-beginning-position &optional count
Return the position that (beginning-of-line count) would move to.

[Command]end-of-line &optional count
This function moves point to the end of the current line. With an argument count
not nil or 1, it moves forward count−1 lines and then to the end of the line.

This function does not move point across a field boundary (see Section 32.19.9 [Fields],
page 172) unless doing so would move beyond there to a different line; therefore, if

Chapter 30: Positions 103

count is nil or 1, and point starts at a field boundary, point does not move. To ignore
field boundaries, bind inhibit-field-text-motion to t.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point there. No error is signaled.

[Function]line-end-position &optional count
Return the position that (end-of-line count) would move to.

[Command]forward-line &optional count
This function moves point forward count lines, to the beginning of the line. If count
is negative, it moves point −count lines backward, to the beginning of a line. If count
is zero, it moves point to the beginning of the current line. If count is nil, that means
1.

If forward-line encounters the beginning or end of the buffer (or of the accessible
portion) before finding that many lines, it sets point there. No error is signaled.

forward-line returns the difference between count and the number of lines actually
moved. If you attempt to move down five lines from the beginning of a buffer that
has only three lines, point stops at the end of the last line, and the value will be 2.

In an interactive call, count is the numeric prefix argument.

[Function]count-lines start end
This function returns the number of lines between the positions start and end in the
current buffer. If start and end are equal, then it returns 0. Otherwise it returns at
least 1, even if start and end are on the same line. This is because the text between
them, considered in isolation, must contain at least one line unless it is empty.

[Command]count-words start end
This function returns the number of words between the positions start and end in the
current buffer.

This function can also be called interactively. In that case, it prints a message re-
porting the number of lines, words, and characters in the buffer, or in the region if
the region is active.

[Function]line-number-at-pos &optional pos
This function returns the line number in the current buffer corresponding to the buffer
position pos. If pos is nil or omitted, the current buffer position is used.

Also see the functions bolp and eolp in Section 32.1 [Near Point], page 122. These
functions do not move point, but test whether it is already at the beginning or end of a
line.

30.2.5 Motion by Screen Lines

The line functions in the previous section count text lines, delimited only by newline char-
acters. By contrast, these functions count screen lines, which are defined by the way the
text appears on the screen. A text line is a single screen line if it is short enough to fit the
width of the selected window, but otherwise it may occupy several screen lines.

Chapter 30: Positions 104

In some cases, text lines are truncated on the screen rather than continued onto addi-
tional screen lines. In these cases, vertical-motion moves point much like forward-line.
See Section 38.3 [Truncation], page 300.

Because the width of a given string depends on the flags that control the appearance of
certain characters, vertical-motion behaves differently, for a given piece of text, depending
on the buffer it is in, and even on the selected window (because the width, the truncation
flag, and display table may vary between windows). See Section 38.20.1 [Usual Display],
page 376.

These functions scan text to determine where screen lines break, and thus take time
proportional to the distance scanned. If you intend to use them heavily, Emacs provides
caches which may improve the performance of your code. See Section 38.3 [Truncation],
page 300.

[Function]vertical-motion count &optional window
This function moves point to the start of the screen line count screen lines down from
the screen line containing point. If count is negative, it moves up instead.

The count argument can be a cons cell, (cols . lines), instead of an integer. Then
the function moves by lines screen lines, and puts point cols columns from the start
of that screen line.

The return value is the number of screen lines over which point was moved. The value
may be less in absolute value than count if the beginning or end of the buffer was
reached.

The window window is used for obtaining parameters such as the width, the horizontal
scrolling, and the display table. But vertical-motion always operates on the current
buffer, even if window currently displays some other buffer.

[Function]count-screen-lines &optional beg end count-final-newline window
This function returns the number of screen lines in the text from beg to end. The
number of screen lines may be different from the number of actual lines, due to line
continuation, the display table, etc. If beg and end are nil or omitted, they default
to the beginning and end of the accessible portion of the buffer.

If the region ends with a newline, that is ignored unless the optional third argument
count-final-newline is non-nil.

The optional fourth argument window specifies the window for obtaining parameters
such as width, horizontal scrolling, and so on. The default is to use the selected
window’s parameters.

Like vertical-motion, count-screen-lines always uses the current buffer, regard-
less of which buffer is displayed in window. This makes possible to use count-screen-
lines in any buffer, whether or not it is currently displayed in some window.

[Command]move-to-window-line count
This function moves point with respect to the text currently displayed in the selected
window. It moves point to the beginning of the screen line count screen lines from
the top of the window. If count is negative, that specifies a position −count lines
from the bottom (or the last line of the buffer, if the buffer ends above the specified
screen position).

Chapter 30: Positions 105

If count is nil, then point moves to the beginning of the line in the middle of the
window. If the absolute value of count is greater than the size of the window, then
point moves to the place that would appear on that screen line if the window were tall
enough. This will probably cause the next redisplay to scroll to bring that location
onto the screen.

In an interactive call, count is the numeric prefix argument.

The value returned is the window line number point has moved to, with the top line
in the window numbered 0.

[Function]compute-motion from frompos to topos width offsets window
This function scans the current buffer, calculating screen positions. It scans the
buffer forward from position from, assuming that is at screen coordinates frompos, to
position to or coordinates topos, whichever comes first. It returns the ending buffer
position and screen coordinates.

The coordinate arguments frompos and topos are cons cells of the form (hpos .

vpos).

The argument width is the number of columns available to display text; this affects
handling of continuation lines. nil means the actual number of usable text columns
in the window, which is equivalent to the value returned by (window-width window).

The argument offsets is either nil or a cons cell of the form (hscroll . tab-offset).
Here hscroll is the number of columns not being displayed at the left margin; most
callers get this by calling window-hscroll. Meanwhile, tab-offset is the offset between
column numbers on the screen and column numbers in the buffer. This can be nonzero
in a continuation line, when the previous screen lines’ widths do not add up to a
multiple of tab-width. It is always zero in a non-continuation line.

The window window serves only to specify which display table to use. compute-

motion always operates on the current buffer, regardless of what buffer is displayed
in window.

The return value is a list of five elements:

(pos hpos vpos prevhpos contin)

Here pos is the buffer position where the scan stopped, vpos is the vertical screen
position, and hpos is the horizontal screen position.

The result prevhpos is the horizontal position one character back from pos. The result
contin is t if the last line was continued after (or within) the previous character.

For example, to find the buffer position of column col of screen line line of a certain
window, pass the window’s display start location as from and the window’s upper-left
coordinates as frompos. Pass the buffer’s (point-max) as to, to limit the scan to the
end of the accessible portion of the buffer, and pass line and col as topos. Here’s a
function that does this:

(defun coordinates-of-position (col line)

(car (compute-motion (window-start)

’(0 . 0)

(point-max)

(cons col line)

Chapter 30: Positions 106

(window-width)

(cons (window-hscroll) 0)

(selected-window))))

When you use compute-motion for the minibuffer, you need to use minibuffer-

prompt-width to get the horizontal position of the beginning of the first screen line.
See Section 20.12 [Minibuffer Contents], page 312, vol. 1.

30.2.6 Moving over Balanced Expressions

Here are several functions concerned with balanced-parenthesis expressions (also called
sexps in connection with moving across them in Emacs). The syntax table controls how
these functions interpret various characters; see Chapter 35 [Syntax Tables], page 234. See
Section 35.6 [Parsing Expressions], page 242, for lower-level primitives for scanning sexps or
parts of sexps. For user-level commands, see Section “Commands for Editing with Paren-
theses” in The GNU Emacs Manual.

[Command]forward-list &optional arg
This function moves forward across arg (default 1) balanced groups of parentheses.
(Other syntactic entities such as words or paired string quotes are ignored.)

[Command]backward-list &optional arg
This function moves backward across arg (default 1) balanced groups of parentheses.
(Other syntactic entities such as words or paired string quotes are ignored.)

[Command]up-list &optional arg
This function moves forward out of arg (default 1) levels of parentheses. A negative
argument means move backward but still to a less deep spot.

[Command]down-list &optional arg
This function moves forward into arg (default 1) levels of parentheses. A negative
argument means move backward but still go deeper in parentheses (−arg levels).

[Command]forward-sexp &optional arg
This function moves forward across arg (default 1) balanced expressions. Balanced
expressions include both those delimited by parentheses and other kinds, such as
words and string constants. See Section 35.6 [Parsing Expressions], page 242. For
example,

---------- Buffer: foo ----------

(concat? "foo " (car x) y z)

---------- Buffer: foo ----------

(forward-sexp 3)

⇒ nil

---------- Buffer: foo ----------

(concat "foo " (car x) y? z)

---------- Buffer: foo ----------

[Command]backward-sexp &optional arg
This function moves backward across arg (default 1) balanced expressions.

Chapter 30: Positions 107

[Command]beginning-of-defun &optional arg
This function moves back to the argth beginning of a defun. If arg is negative, this
actually moves forward, but it still moves to the beginning of a defun, not to the end
of one. arg defaults to 1.

[Command]end-of-defun &optional arg
This function moves forward to the argth end of a defun. If arg is negative, this
actually moves backward, but it still moves to the end of a defun, not to the beginning
of one. arg defaults to 1.

[User Option]defun-prompt-regexp
If non-nil, this buffer-local variable holds a regular expression that specifies what
text can appear before the open-parenthesis that starts a defun. That is to say, a
defun begins on a line that starts with a match for this regular expression, followed
by a character with open-parenthesis syntax.

[User Option]open-paren-in-column-0-is-defun-start
If this variable’s value is non-nil, an open parenthesis in column 0 is considered to
be the start of a defun. If it is nil, an open parenthesis in column 0 has no special
meaning. The default is t.

[Variable]beginning-of-defun-function
If non-nil, this variable holds a function for finding the beginning of a defun. The
function beginning-of-defun calls this function instead of using its normal method,
passing it its optional argument. If the argument is non-nil, the function should
move back by that many functions, like beginning-of-defun does.

[Variable]end-of-defun-function
If non-nil, this variable holds a function for finding the end of a defun. The function
end-of-defun calls this function instead of using its normal method.

30.2.7 Skipping Characters

The following two functions move point over a specified set of characters. For example,
they are often used to skip whitespace. For related functions, see Section 35.5 [Motion and
Syntax], page 241.

These functions convert the set string to multibyte if the buffer is multibyte, and they
convert it to unibyte if the buffer is unibyte, as the search functions do (see Chapter 34
[Searching and Matching], page 209).

[Function]skip-chars-forward character-set &optional limit
This function moves point in the current buffer forward, skipping over a given set
of characters. It examines the character following point, then advances point if the
character matches character-set. This continues until it reaches a character that does
not match. The function returns the number of characters moved over.

The argument character-set is a string, like the inside of a ‘[...]’ in a regular ex-
pression except that ‘]’ does not terminate it, and ‘\’ quotes ‘^’, ‘-’ or ‘\’. Thus,
"a-zA-Z" skips over all letters, stopping before the first nonletter, and "^a-zA-Z"

Chapter 30: Positions 108

skips nonletters stopping before the first letter. See See Section 34.3 [Regular Ex-
pressions], page 211. Character classes can also be used, e.g. "[:alnum:]". See see
Section 34.3.1.2 [Char Classes], page 215.

If limit is supplied (it must be a number or a marker), it specifies the maximum
position in the buffer that point can be skipped to. Point will stop at or before limit.

In the following example, point is initially located directly before the ‘T’. After the
form is evaluated, point is located at the end of that line (between the ‘t’ of ‘hat’
and the newline). The function skips all letters and spaces, but not newlines.

---------- Buffer: foo ----------

I read "?The cat in the hat

comes back" twice.

---------- Buffer: foo ----------

(skip-chars-forward "a-zA-Z ")

⇒ 18

---------- Buffer: foo ----------

I read "The cat in the hat?
comes back" twice.

---------- Buffer: foo ----------

[Function]skip-chars-backward character-set &optional limit
This function moves point backward, skipping characters that match character-set,
until limit. It is just like skip-chars-forward except for the direction of motion.

The return value indicates the distance traveled. It is an integer that is zero or less.

30.3 Excursions

It is often useful to move point “temporarily” within a localized portion of the program.
This is called an excursion, and it is done with the save-excursion special form. This
construct remembers the initial identity of the current buffer, and its values of point and
the mark, and restores them after the excursion completes. It is the standard way to move
point within one part of a program and avoid affecting the rest of the program, and is used
thousands of times in the Lisp sources of Emacs.

If you only need to save and restore the identity of the current buffer, use save-current-
buffer or with-current-buffer instead (see Section 27.2 [Current Buffer], page 1). If you
need to save or restore window configurations, see the forms described in Section 28.23
[Window Configurations], page 60 and in Section 29.12 [Frame Configurations], page 86.

[Special Form]save-excursion body. . .
This special form saves the identity of the current buffer and the values of point and
the mark in it, evaluates body, and finally restores the buffer and its saved values of
point and the mark. All three saved values are restored even in case of an abnormal
exit via throw or error (see Section 10.5 [Nonlocal Exits], page 126, vol. 1).

The value returned by save-excursion is the result of the last form in body, or nil
if no body forms were given.

Chapter 30: Positions 109

Because save-excursion only saves point and mark for the buffer that was current
at the start of the excursion, any changes made to point and/or mark in other buffers,
during the excursion, will remain in effect afterward. This frequently leads to unintended
consequences, so the byte compiler warns if you call set-buffer during an excursion:

Warning: Use ‘with-current-buffer’ rather than

save-excursion+set-buffer

To avoid such problems, you should call save-excursion only after setting the desired
current buffer, as in the following example:

(defun append-string-to-buffer (string buffer)

"Append STRING to the end of BUFFER."

(with-current-buffer buffer

(save-excursion

(goto-char (point-max))

(insert string))))

Likewise, save-excursion does not restore window-buffer correspondences altered by
functions such as switch-to-buffer. One way to restore these correspondences, and the se-
lected window, is to use save-window-excursion inside save-excursion (see Section 28.23
[Window Configurations], page 60).

Warning: Ordinary insertion of text adjacent to the saved point value relocates the
saved value, just as it relocates all markers. More precisely, the saved value is a marker
with insertion type nil. See Section 31.5 [Marker Insertion Types], page 116. Therefore,
when the saved point value is restored, it normally comes before the inserted text.

Although save-excursion saves the location of the mark, it does not prevent functions
which modify the buffer from setting deactivate-mark, and thus causing the deactivation
of the mark after the command finishes. See Section 31.7 [The Mark], page 117.

30.4 Narrowing

Narrowing means limiting the text addressable by Emacs editing commands to a limited
range of characters in a buffer. The text that remains addressable is called the accessible
portion of the buffer.

Narrowing is specified with two buffer positions which become the beginning and end
of the accessible portion. For most editing commands and most Emacs primitives, these
positions replace the values of the beginning and end of the buffer. While narrowing is in
effect, no text outside the accessible portion is displayed, and point cannot move outside
the accessible portion.

Values such as positions or line numbers, which usually count from the beginning of the
buffer, do so despite narrowing, but the functions which use them refuse to operate on text
that is inaccessible.

The commands for saving buffers are unaffected by narrowing; they save the entire buffer
regardless of any narrowing.

If you need to display in a single buffer several very different types of text, consider using
an alternative facility described in Section 27.12 [Swapping Text], page 16.

Chapter 30: Positions 110

[Command]narrow-to-region start end
This function sets the accessible portion of the current buffer to start at start and
end at end. Both arguments should be character positions.

In an interactive call, start and end are set to the bounds of the current region (point
and the mark, with the smallest first).

[Command]narrow-to-page &optional move-count
This function sets the accessible portion of the current buffer to include just the
current page. An optional first argument move-count non-nil means to move forward
or backward by move-count pages and then narrow to one page. The variable page-
delimiter specifies where pages start and end (see Section 34.8 [Standard Regexps],
page 233).

In an interactive call, move-count is set to the numeric prefix argument.

[Command]widen
This function cancels any narrowing in the current buffer, so that the entire contents
are accessible. This is called widening. It is equivalent to the following expression:

(narrow-to-region 1 (1+ (buffer-size)))

[Special Form]save-restriction body. . .
This special form saves the current bounds of the accessible portion, evaluates the
body forms, and finally restores the saved bounds, thus restoring the same state of
narrowing (or absence thereof) formerly in effect. The state of narrowing is restored
even in the event of an abnormal exit via throw or error (see Section 10.5 [Nonlocal
Exits], page 126, vol. 1). Therefore, this construct is a clean way to narrow a buffer
temporarily.

The value returned by save-restriction is that returned by the last form in body,
or nil if no body forms were given.

Caution: it is easy to make a mistake when using the save-restriction construct.
Read the entire description here before you try it.

If body changes the current buffer, save-restriction still restores the restrictions
on the original buffer (the buffer whose restrictions it saved from), but it does not
restore the identity of the current buffer.

save-restriction does not restore point and the mark; use save-excursion for
that. If you use both save-restriction and save-excursion together, save-

excursion should come first (on the outside). Otherwise, the old point value would
be restored with temporary narrowing still in effect. If the old point value were outside
the limits of the temporary narrowing, this would fail to restore it accurately.

Here is a simple example of correct use of save-restriction:

---------- Buffer: foo ----------

This is the contents of foo

This is the contents of foo

This is the contents of foo?
---------- Buffer: foo ----------

Chapter 30: Positions 111

(save-excursion

(save-restriction

(goto-char 1)

(forward-line 2)

(narrow-to-region 1 (point))

(goto-char (point-min))

(replace-string "foo" "bar")))

---------- Buffer: foo ----------

This is the contents of bar

This is the contents of bar

This is the contents of foo?
---------- Buffer: foo ----------

Chapter 31: Markers 112

31 Markers

A marker is a Lisp object used to specify a position in a buffer relative to the surrounding
text. A marker changes its offset from the beginning of the buffer automatically whenever
text is inserted or deleted, so that it stays with the two characters on either side of it.

31.1 Overview of Markers

A marker specifies a buffer and a position in that buffer. A marker can be used to represent
a position in functions that require one, just as an integer could be used. In that case, the
marker’s buffer is normally ignored. Of course, a marker used in this way usually points to
a position in the buffer that the function operates on, but that is entirely the programmer’s
responsibility. See Chapter 30 [Positions], page 99, for a complete description of positions.

A marker has three attributes: the marker position, the marker buffer, and the insertion
type. The marker position is an integer that is equivalent (at a given time) to the marker
as a position in that buffer. But the marker’s position value can change during the life of
the marker, and often does. Insertion and deletion of text in the buffer relocate the marker.
The idea is that a marker positioned between two characters remains between those two
characters despite insertion and deletion elsewhere in the buffer. Relocation changes the
integer equivalent of the marker.

Deleting text around a marker’s position leaves the marker between the characters imme-
diately before and after the deleted text. Inserting text at the position of a marker normally
leaves the marker either in front of or after the new text, depending on the marker’s in-
sertion type (see Section 31.5 [Marker Insertion Types], page 116)—unless the insertion is
done with insert-before-markers (see Section 32.4 [Insertion], page 126).

Insertion and deletion in a buffer must check all the markers and relocate them if neces-
sary. This slows processing in a buffer with a large number of markers. For this reason, it
is a good idea to make a marker point nowhere if you are sure you don’t need it any more.
Markers that can no longer be accessed are eventually removed (see Section E.3 [Garbage
Collection], page 459).

Because it is common to perform arithmetic operations on a marker position, most of
these operations (including + and -) accept markers as arguments. In such cases, the marker
stands for its current position.

Here are examples of creating markers, setting markers, and moving point to markers:

;; Make a new marker that initially does not point anywhere:
(setq m1 (make-marker))

⇒ #<marker in no buffer>

;; Set m1 to point between the 99th and 100th characters
;; in the current buffer:
(set-marker m1 100)

⇒ #<marker at 100 in markers.texi>

Chapter 31: Markers 113

;; Now insert one character at the beginning of the buffer:
(goto-char (point-min))

⇒ 1

(insert "Q")

⇒ nil

;; m1 is updated appropriately.
m1

⇒ #<marker at 101 in markers.texi>

;; Two markers that point to the same position
;; are not eq, but they are equal.
(setq m2 (copy-marker m1))

⇒ #<marker at 101 in markers.texi>

(eq m1 m2)

⇒ nil

(equal m1 m2)

⇒ t

;; When you are finished using a marker, make it point nowhere.
(set-marker m1 nil)

⇒ #<marker in no buffer>

31.2 Predicates on Markers

You can test an object to see whether it is a marker, or whether it is either an integer or
a marker. The latter test is useful in connection with the arithmetic functions that work
with both markers and integers.

[Function]markerp object
This function returns t if object is a marker, nil otherwise. Note that integers are
not markers, even though many functions will accept either a marker or an integer.

[Function]integer-or-marker-p object
This function returns t if object is an integer or a marker, nil otherwise.

[Function]number-or-marker-p object
This function returns t if object is a number (either integer or floating point) or a
marker, nil otherwise.

31.3 Functions that Create Markers

When you create a new marker, you can make it point nowhere, or point to the present
position of point, or to the beginning or end of the accessible portion of the buffer, or to
the same place as another given marker.

The next four functions all return markers with insertion type nil. See Section 31.5
[Marker Insertion Types], page 116.

Chapter 31: Markers 114

[Function]make-marker
This function returns a newly created marker that does not point anywhere.

(make-marker)

⇒ #<marker in no buffer>

[Function]point-marker
This function returns a new marker that points to the present position of point in the
current buffer. See Section 30.1 [Point], page 99. For an example, see copy-marker,
below.

[Function]point-min-marker
This function returns a new marker that points to the beginning of the accessible
portion of the buffer. This will be the beginning of the buffer unless narrowing is in
effect. See Section 30.4 [Narrowing], page 109.

[Function]point-max-marker
This function returns a new marker that points to the end of the accessible portion
of the buffer. This will be the end of the buffer unless narrowing is in effect. See
Section 30.4 [Narrowing], page 109.

Here are examples of this function and point-min-marker, shown in a buffer con-
taining a version of the source file for the text of this chapter.

(point-min-marker)

⇒ #<marker at 1 in markers.texi>

(point-max-marker)

⇒ #<marker at 24080 in markers.texi>

(narrow-to-region 100 200)

⇒ nil

(point-min-marker)

⇒ #<marker at 100 in markers.texi>

(point-max-marker)

⇒ #<marker at 200 in markers.texi>

[Function]copy-marker &optional marker-or-integer insertion-type
If passed a marker as its argument, copy-marker returns a new marker that points
to the same place and the same buffer as does marker-or-integer. If passed an integer
as its argument, copy-marker returns a new marker that points to position marker-
or-integer in the current buffer.

The new marker’s insertion type is specified by the argument insertion-type. See
Section 31.5 [Marker Insertion Types], page 116.

If passed an integer argument less than 1, copy-marker returns a new marker that
points to the beginning of the current buffer. If passed an integer argument greater
than the length of the buffer, copy-marker returns a new marker that points to the
end of the buffer.

(copy-marker 0)

⇒ #<marker at 1 in markers.texi>

Chapter 31: Markers 115

(copy-marker 90000)

⇒ #<marker at 24080 in markers.texi>

An error is signaled if marker is neither a marker nor an integer.

Two distinct markers are considered equal (even though not eq) to each other if they
have the same position and buffer, or if they both point nowhere.

(setq p (point-marker))

⇒ #<marker at 2139 in markers.texi>

(setq q (copy-marker p))

⇒ #<marker at 2139 in markers.texi>

(eq p q)

⇒ nil

(equal p q)

⇒ t

31.4 Information from Markers

This section describes the functions for accessing the components of a marker object.

[Function]marker-position marker
This function returns the position that marker points to, or nil if it points nowhere.

[Function]marker-buffer marker
This function returns the buffer that marker points into, or nil if it points nowhere.

(setq m (make-marker))

⇒ #<marker in no buffer>

(marker-position m)

⇒ nil

(marker-buffer m)

⇒ nil

(set-marker m 3770 (current-buffer))

⇒ #<marker at 3770 in markers.texi>

(marker-buffer m)

⇒ #<buffer markers.texi>

(marker-position m)

⇒ 3770

[Function]buffer-has-markers-at position
This function returns t if one or more markers point at position position in the current
buffer.

Chapter 31: Markers 116

31.5 Marker Insertion Types

When you insert text directly at the place where a marker points, there are two possible
ways to relocate that marker: it can point before the inserted text, or point after it. You
can specify which one a given marker should do by setting its insertion type. Note that use
of insert-before-markers ignores markers’ insertion types, always relocating a marker to
point after the inserted text.

[Function]set-marker-insertion-type marker type
This function sets the insertion type of marker marker to type. If type is t, marker
will advance when text is inserted at its position. If type is nil, marker does not
advance when text is inserted there.

[Function]marker-insertion-type marker
This function reports the current insertion type of marker.

Most functions that create markers, without an argument allowing to specify the inser-
tion type, create them with insertion type nil. Also, the mark has, by default, insertion
type nil.

31.6 Moving Marker Positions

This section describes how to change the position of an existing marker. When you do this,
be sure you know whether the marker is used outside of your program, and, if so, what
effects will result from moving it—otherwise, confusing things may happen in other parts
of Emacs.

[Function]set-marker marker position &optional buffer
This function moves marker to position in buffer. If buffer is not provided, it defaults
to the current buffer.

If position is less than 1, set-marker moves marker to the beginning of the buffer. If
position is greater than the size of the buffer, set-marker moves marker to the end
of the buffer. If position is nil or a marker that points nowhere, then marker is set
to point nowhere.

The value returned is marker.

(setq m (point-marker))

⇒ #<marker at 4714 in markers.texi>

(set-marker m 55)

⇒ #<marker at 55 in markers.texi>

(setq b (get-buffer "foo"))

⇒ #<buffer foo>

(set-marker m 0 b)

⇒ #<marker at 1 in foo>

[Function]move-marker marker position &optional buffer
This is another name for set-marker.

Chapter 31: Markers 117

31.7 The Mark

Each buffer has a special marker, which is designated the mark. When a buffer is newly
created, this marker exists but does not point anywhere; this means that the mark “doesn’t
exist” in that buffer yet. Subsequent commands can set the mark.

The mark specifies a position to bound a range of text for many commands, such as
kill-region and indent-rigidly. These commands typically act on the text between
point and the mark, which is called the region. If you are writing a command that operates
on the region, don’t examine the mark directly; instead, use interactive with the ‘r’
specification. This provides the values of point and the mark as arguments to the command
in an interactive call, but permits other Lisp programs to specify arguments explicitly. See
Section 21.2.2 [Interactive Codes], page 318, vol. 1.

Some commands set the mark as a side-effect. Commands should do this only if it has
a potential use to the user, and never for their own internal purposes. For example, the
replace-regexp command sets the mark to the value of point before doing any replace-
ments, because this enables the user to move back there conveniently after the replace is
finished.

Once the mark “exists” in a buffer, it normally never ceases to exist. However, it may
become inactive, if Transient Mark mode is enabled. The buffer-local variable mark-active,
if non-nil, means that the mark is active. A command can call the function deactivate-

mark to deactivate the mark directly, or it can request deactivation of the mark upon return
to the editor command loop by setting the variable deactivate-mark to a non-nil value.

If Transient Mark mode is enabled, certain editing commands that normally apply to
text near point, apply instead to the region when the mark is active. This is the main
motivation for using Transient Mark mode. (Another is that this enables highlighting of
the region when the mark is active. See Chapter 38 [Display], page 299.)

In addition to the mark, each buffer has a mark ring which is a list of markers contain-
ing previous values of the mark. When editing commands change the mark, they should
normally save the old value of the mark on the mark ring. The variable mark-ring-max

specifies the maximum number of entries in the mark ring; once the list becomes this long,
adding a new element deletes the last element.

There is also a separate global mark ring, but that is used only in a few particular
user-level commands, and is not relevant to Lisp programming. So we do not describe it
here.

[Function]mark &optional force
This function returns the current buffer’s mark position as an integer, or nil if no
mark has ever been set in this buffer.

If Transient Mark mode is enabled, and mark-even-if-inactive is nil, mark signals
an error if the mark is inactive. However, if force is non-nil, then mark disregards
inactivity of the mark, and returns the mark position (or nil) anyway.

[Function]mark-marker
This function returns the marker that represents the current buffer’s mark. It is not
a copy, it is the marker used internally. Therefore, changing this marker’s position
will directly affect the buffer’s mark. Don’t do that unless that is the effect you want.

Chapter 31: Markers 118

(setq m (mark-marker))

⇒ #<marker at 3420 in markers.texi>

(set-marker m 100)

⇒ #<marker at 100 in markers.texi>

(mark-marker)

⇒ #<marker at 100 in markers.texi>

Like any marker, this marker can be set to point at any buffer you like. If you make
it point at any buffer other than the one of which it is the mark, it will yield perfectly
consistent, but rather odd, results. We recommend that you not do it!

[Function]set-mark position
This function sets the mark to position, and activates the mark. The old value of the
mark is not pushed onto the mark ring.

Please note: Use this function only if you want the user to see that the mark has
moved, and you want the previous mark position to be lost. Normally, when a new
mark is set, the old one should go on the mark-ring. For this reason, most applica-
tions should use push-mark and pop-mark, not set-mark.

Novice Emacs Lisp programmers often try to use the mark for the wrong purposes.
The mark saves a location for the user’s convenience. An editing command should
not alter the mark unless altering the mark is part of the user-level functionality of
the command. (And, in that case, this effect should be documented.) To remember a
location for internal use in the Lisp program, store it in a Lisp variable. For example:

(let ((beg (point)))

(forward-line 1)

(delete-region beg (point))).

[Function]push-mark &optional position nomsg activate
This function sets the current buffer’s mark to position, and pushes a copy of the
previous mark onto mark-ring. If position is nil, then the value of point is used.

The function push-mark normally does not activate the mark. To do that, specify t

for the argument activate.

A ‘Mark set’ message is displayed unless nomsg is non-nil.

[Function]pop-mark
This function pops off the top element of mark-ring and makes that mark become
the buffer’s actual mark. This does not move point in the buffer, and it does nothing
if mark-ring is empty. It deactivates the mark.

[User Option]transient-mark-mode
This variable, if non-nil, enables Transient Mark mode. In Transient Mark mode,
every buffer-modifying primitive sets deactivate-mark. As a consequence, most
commands that modify the buffer also deactivate the mark.

When Transient Mark mode is enabled and the mark is active, many commands that
normally apply to the text near point instead apply to the region. Such commands
should use the function use-region-p to test whether they should operate on the
region. See Section 31.8 [The Region], page 120.

Chapter 31: Markers 119

Lisp programs can set transient-mark-mode to non-nil, non-t values to enable
Transient Mark mode temporarily. If the value is lambda, Transient Mark mode is
automatically turned off after any action, such as buffer modification, that would
normally deactivate the mark. If the value is (only . oldval), then transient-

mark-mode is set to the value oldval after any subsequent command that moves point
and is not shift-translated (see Section 21.8.1 [Key Sequence Input], page 342, vol. 1),
or after any other action that would normally deactivate the mark.

[User Option]mark-even-if-inactive
If this is non-nil, Lisp programs and the Emacs user can use the mark even when it is
inactive. This option affects the behavior of Transient Mark mode. When the option
is non-nil, deactivation of the mark turns off region highlighting, but commands that
use the mark behave as if the mark were still active.

[Variable]deactivate-mark
If an editor command sets this variable non-nil, then the editor command loop
deactivates the mark after the command returns (if Transient Mark mode is enabled).
All the primitives that change the buffer set deactivate-mark, to deactivate the mark
when the command is finished.

To write Lisp code that modifies the buffer without causing deactivation of the mark
at the end of the command, bind deactivate-mark to nil around the code that does
the modification. For example:

(let (deactivate-mark)

(insert " "))

[Function]deactivate-mark &optional force
If Transient Mark mode is enabled or force is non-nil, this function deactivates the
mark and runs the normal hook deactivate-mark-hook. Otherwise, it does nothing.

[Variable]mark-active
The mark is active when this variable is non-nil. This variable is always buffer-local
in each buffer. Do not use the value of this variable to decide whether a command
that normally operates on text near point should operate on the region instead. Use
the function use-region-p for that (see Section 31.8 [The Region], page 120).

[Variable]activate-mark-hook
[Variable]deactivate-mark-hook

These normal hooks are run, respectively, when the mark becomes active and when
it becomes inactive. The hook activate-mark-hook is also run at the end of the
command loop if the mark is active and it is possible that the region may have
changed.

[Function]handle-shift-selection
This function implements the “shift-selection” behavior of point-motion commands.
See Section “Shift Selection” in The GNU Emacs Manual. It is called automati-
cally by the Emacs command loop whenever a command with a ‘^’ character in its
interactive spec is invoked, before the command itself is executed (see Section 21.2.2
[Interactive Codes], page 318, vol. 1).

Chapter 31: Markers 120

If shift-select-mode is non-nil and the current command was invoked via shift
translation (see Section 21.8.1 [Key Sequence Input], page 342, vol. 1), this function
sets the mark and temporarily activates the region, unless the region was already
temporarily activated in this way. Otherwise, if the region has been activated tem-
porarily, it deactivates the mark and restores the variable transient-mark-mode to
its earlier value.

[Variable]mark-ring
The value of this buffer-local variable is the list of saved former marks of the current
buffer, most recent first.

mark-ring

⇒ (#<marker at 11050 in markers.texi>

#<marker at 10832 in markers.texi>

...)

[User Option]mark-ring-max
The value of this variable is the maximum size of mark-ring. If more marks than
this are pushed onto the mark-ring, push-mark discards an old mark when it adds a
new one.

31.8 The Region

The text between point and the mark is known as the region. Various functions operate on
text delimited by point and the mark, but only those functions specifically related to the
region itself are described here.

The next two functions signal an error if the mark does not point anywhere. If Transient
Mark mode is enabled and mark-even-if-inactive is nil, they also signal an error if the
mark is inactive.

[Function]region-beginning
This function returns the position of the beginning of the region (as an integer). This
is the position of either point or the mark, whichever is smaller.

[Function]region-end
This function returns the position of the end of the region (as an integer). This is the
position of either point or the mark, whichever is larger.

Instead of using region-beginning and region-end, a command designed to operate on
a region should normally use interactive with the ‘r’ specification to find the beginning
and end of the region. This lets other Lisp programs specify the bounds explicitly as
arguments. See Section 21.2.2 [Interactive Codes], page 318, vol. 1.

[Function]use-region-p
This function returns t if Transient Mark mode is enabled, the mark is active, and
there is a valid region in the buffer. This function is intended to be used by commands
that operate on the region, instead of on text near point, when the mark is active.

A region is valid if it has a non-zero size, or if the user option use-empty-active-

region is non-nil (by default, it is nil). The function region-active-p is similar
to use-region-p, but considers all regions as valid. In most cases, you should not

Chapter 31: Markers 121

use region-active-p, since if the region is empty it is often more appropriate to
operate on point.

Chapter 32: Text 122

32 Text

This chapter describes the functions that deal with the text in a buffer. Most examine,
insert, or delete text in the current buffer, often operating at point or on text adjacent to
point. Many are interactive. All the functions that change the text provide for undoing the
changes (see Section 32.9 [Undo], page 137).

Many text-related functions operate on a region of text defined by two buffer positions
passed in arguments named start and end. These arguments should be either markers (see
Chapter 31 [Markers], page 112) or numeric character positions (see Chapter 30 [Positions],
page 99). The order of these arguments does not matter; it is all right for start to be
the end of the region and end the beginning. For example, (delete-region 1 10) and
(delete-region 10 1) are equivalent. An args-out-of-range error is signaled if either
start or end is outside the accessible portion of the buffer. In an interactive call, point and
the mark are used for these arguments.

Throughout this chapter, “text” refers to the characters in the buffer, together with their
properties (when relevant). Keep in mind that point is always between two characters, and
the cursor appears on the character after point.

32.1 Examining Text Near Point

Many functions are provided to look at the characters around point. Several simple functions
are described here. See also looking-at in Section 34.4 [Regexp Search], page 221.

In the following four functions, “beginning” or “end” of buffer refers to the beginning or
end of the accessible portion.

[Function]char-after &optional position
This function returns the character in the current buffer at (i.e., immediately after)
position position. If position is out of range for this purpose, either before the begin-
ning of the buffer, or at or beyond the end, then the value is nil. The default for
position is point.

In the following example, assume that the first character in the buffer is ‘@’:

(string (char-after 1))

⇒ "@"

[Function]char-before &optional position
This function returns the character in the current buffer immediately before position
position. If position is out of range for this purpose, either at or before the beginning
of the buffer, or beyond the end, then the value is nil. The default for position is
point.

[Function]following-char
This function returns the character following point in the current buffer. This is
similar to (char-after (point)). However, if point is at the end of the buffer, then
following-char returns 0.

Remember that point is always between characters, and the cursor normally appears
over the character following point. Therefore, the character returned by following-

char is the character the cursor is over.

In this example, point is between the ‘a’ and the ‘c’.

Chapter 32: Text 123

---------- Buffer: foo ----------

Gentlemen may cry ‘‘Pea?ce! Peace!,’’

but there is no peace.

---------- Buffer: foo ----------

(string (preceding-char))

⇒ "a"

(string (following-char))

⇒ "c"

[Function]preceding-char
This function returns the character preceding point in the current buffer. See above,
under following-char, for an example. If point is at the beginning of the buffer,
preceding-char returns 0.

[Function]bobp
This function returns t if point is at the beginning of the buffer. If narrowing is
in effect, this means the beginning of the accessible portion of the text. See also
point-min in Section 30.1 [Point], page 99.

[Function]eobp
This function returns t if point is at the end of the buffer. If narrowing is in effect,
this means the end of accessible portion of the text. See also point-max in See
Section 30.1 [Point], page 99.

[Function]bolp
This function returns t if point is at the beginning of a line. See Section 30.2.4 [Text
Lines], page 102. The beginning of the buffer (or of its accessible portion) always
counts as the beginning of a line.

[Function]eolp
This function returns t if point is at the end of a line. The end of the buffer (or of
its accessible portion) is always considered the end of a line.

32.2 Examining Buffer Contents

This section describes functions that allow a Lisp program to convert any portion of the
text in the buffer into a string.

[Function]buffer-substring start end
This function returns a string containing a copy of the text of the region defined by
positions start and end in the current buffer. If the arguments are not positions in the
accessible portion of the buffer, buffer-substring signals an args-out-of-range

error.

Here’s an example which assumes Font-Lock mode is not enabled:

---------- Buffer: foo ----------

This is the contents of buffer foo

---------- Buffer: foo ----------

Chapter 32: Text 124

(buffer-substring 1 10)

⇒ "This is t"

(buffer-substring (point-max) 10)

⇒ "he contents of buffer foo\n"

If the text being copied has any text properties, these are copied into the string along
with the characters they belong to. See Section 32.19 [Text Properties], page 156.
However, overlays (see Section 38.9 [Overlays], page 315) in the buffer and their
properties are ignored, not copied.

For example, if Font-Lock mode is enabled, you might get results like these:

(buffer-substring 1 10)

⇒ #("This is t" 0 1 (fontified t) 1 9 (fontified t))

[Function]buffer-substring-no-properties start end
This is like buffer-substring, except that it does not copy text properties, just the
characters themselves. See Section 32.19 [Text Properties], page 156.

[Function]buffer-string
This function returns the contents of the entire accessible portion of the current buffer,
as a string.

[Function]filter-buffer-substring start end &optional delete
This function passes the buffer text between start and end through the filter functions
specified by the wrapper hook filter-buffer-substring-functions, and returns
the result. The obsolete variable buffer-substring-filters is also consulted. If
both of these variables are nil, the value is the unaltered text from the buffer, i.e.
what buffer-substring would return.

If delete is non-nil, this function deletes the text between start and end after copying
it, like delete-and-extract-region.

Lisp code should use this function instead of buffer-substring, buffer-substring-
no-properties, or delete-and-extract-region when copying into user-accessible
data structures such as the kill-ring, X clipboard, and registers. Major and minor
modes can add functions to filter-buffer-substring-functions to alter such text
as it is copied out of the buffer.

[Variable]filter-buffer-substring-functions
This variable is a wrapper hook (see Section 23.1.1 [Running Hooks], page 396, vol. 1),
whose members should be functions that accept four arguments: fun, start, end, and
delete. fun is a function that takes three arguments (start, end, and delete), and
returns a string. In both cases, the start, end, and delete arguments are the same as
those of filter-buffer-substring.

The first hook function is passed a fun that is equivalent to the default operation of
filter-buffer-substring, i.e. it returns the buffer-substring between start and end
(processed by any buffer-substring-filters) and optionally deletes the original
text from the buffer. In most cases, the hook function will call fun once, and then do
its own processing of the result. The next hook function receives a fun equivalent to
this, and so on. The actual return value is the result of all the hook functions acting
in sequence.

Chapter 32: Text 125

[Variable]buffer-substring-filters
This variable is obsoleted by filter-buffer-substring-functions, but is still sup-
ported for backward compatibility. Its value should should be a list of functions
which accept a single string argument and return another string. filter-buffer-

substring passes the buffer substring to the first function in this list, and the return
value of each function is passed to the next function. The return value of the last
function is passed to filter-buffer-substring-functions.

[Function]current-word &optional strict really-word
This function returns the symbol (or word) at or near point, as a string. The return
value includes no text properties.

If the optional argument really-word is non-nil, it finds a word; otherwise, it finds a
symbol (which includes both word characters and symbol constituent characters).

If the optional argument strict is non-nil, then point must be in or next to the symbol
or word—if no symbol or word is there, the function returns nil. Otherwise, a nearby
symbol or word on the same line is acceptable.

[Function]thing-at-point thing
Return the thing around or next to point, as a string.

The argument thing is a symbol which specifies a kind of syntactic entity. Possibilities
include symbol, list, sexp, defun, filename, url, word, sentence, whitespace,
line, page, and others.

---------- Buffer: foo ----------

Gentlemen may cry ‘‘Pea?ce! Peace!,’’

but there is no peace.

---------- Buffer: foo ----------

(thing-at-point ’word)

⇒ "Peace"

(thing-at-point ’line)

⇒ "Gentlemen may cry ‘‘Peace! Peace!,’’\n"

(thing-at-point ’whitespace)

⇒ nil

32.3 Comparing Text

This function lets you compare portions of the text in a buffer, without copying them into
strings first.

[Function]compare-buffer-substrings buffer1 start1 end1 buffer2 start2 end2
This function lets you compare two substrings of the same buffer or two different
buffers. The first three arguments specify one substring, giving a buffer (or a buffer
name) and two positions within the buffer. The last three arguments specify the other
substring in the same way. You can use nil for buffer1, buffer2, or both to stand for
the current buffer.

The value is negative if the first substring is less, positive if the first is greater, and
zero if they are equal. The absolute value of the result is one plus the index of the
first differing characters within the substrings.

Chapter 32: Text 126

This function ignores case when comparing characters if case-fold-search is non-
nil. It always ignores text properties.

Suppose the current buffer contains the text ‘foobarbar haha!rara!’; then in this
example the two substrings are ‘rbar ’ and ‘rara!’. The value is 2 because the first
substring is greater at the second character.

(compare-buffer-substrings nil 6 11 nil 16 21)

⇒ 2

32.4 Inserting Text

Insertion means adding new text to a buffer. The inserted text goes at point—between the
character before point and the character after point. Some insertion functions leave point
before the inserted text, while other functions leave it after. We call the former insertion
after point and the latter insertion before point.

Insertion moves markers located at positions after the insertion point, so that they stay
with the surrounding text (see Chapter 31 [Markers], page 112). When a marker points
at the place of insertion, insertion may or may not relocate the marker, depending on the
marker’s insertion type (see Section 31.5 [Marker Insertion Types], page 116). Certain
special functions such as insert-before-markers relocate all such markers to point after
the inserted text, regardless of the markers’ insertion type.

Insertion functions signal an error if the current buffer is read-only or if they insert
within read-only text.

These functions copy text characters from strings and buffers along with their properties.
The inserted characters have exactly the same properties as the characters they were copied
from. By contrast, characters specified as separate arguments, not part of a string or buffer,
inherit their text properties from the neighboring text.

The insertion functions convert text from unibyte to multibyte in order to insert in a
multibyte buffer, and vice versa—if the text comes from a string or from a buffer. However,
they do not convert unibyte character codes 128 through 255 to multibyte characters, not
even if the current buffer is a multibyte buffer. See Section 33.2 [Converting Representa-
tions], page 183.

[Function]insert &rest args
This function inserts the strings and/or characters args into the current buffer, at
point, moving point forward. In other words, it inserts the text before point. An
error is signaled unless all args are either strings or characters. The value is nil.

[Function]insert-before-markers &rest args
This function inserts the strings and/or characters args into the current buffer, at
point, moving point forward. An error is signaled unless all args are either strings or
characters. The value is nil.

This function is unlike the other insertion functions in that it relocates markers ini-
tially pointing at the insertion point, to point after the inserted text. If an overlay
begins at the insertion point, the inserted text falls outside the overlay; if a nonempty
overlay ends at the insertion point, the inserted text falls inside that overlay.

Chapter 32: Text 127

[Function]insert-char character count &optional inherit
This function inserts count instances of character into the current buffer before point.
The argument count should be an integer, and character must be a character. The
value is nil.

This function does not convert unibyte character codes 128 through 255 to multibyte
characters, not even if the current buffer is a multibyte buffer. See Section 33.2
[Converting Representations], page 183.

If inherit is non-nil, then the inserted characters inherit sticky text properties from
the two characters before and after the insertion point. See Section 32.19.6 [Sticky
Properties], page 167.

[Function]insert-buffer-substring from-buffer-or-name &optional start end
This function inserts a portion of buffer from-buffer-or-name (which must already
exist) into the current buffer before point. The text inserted is the region between
start and end. (These arguments default to the beginning and end of the accessible
portion of that buffer.) This function returns nil.

In this example, the form is executed with buffer ‘bar’ as the current buffer. We
assume that buffer ‘bar’ is initially empty.

---------- Buffer: foo ----------

We hold these truths to be self-evident, that all

---------- Buffer: foo ----------

(insert-buffer-substring "foo" 1 20)

⇒ nil

---------- Buffer: bar ----------

We hold these truth?
---------- Buffer: bar ----------

[Function]insert-buffer-substring-no-properties from-buffer-or-name
&optional start end

This is like insert-buffer-substring except that it does not copy any text prop-
erties.

See Section 32.19.6 [Sticky Properties], page 167, for other insertion functions that inherit
text properties from the nearby text in addition to inserting it. Whitespace inserted by
indentation functions also inherits text properties.

32.5 User-Level Insertion Commands

This section describes higher-level commands for inserting text, commands intended pri-
marily for the user but useful also in Lisp programs.

[Command]insert-buffer from-buffer-or-name
This command inserts the entire accessible contents of from-buffer-or-name (which
must exist) into the current buffer after point. It leaves the mark after the inserted
text. The value is nil.

Chapter 32: Text 128

[Command]self-insert-command count
This command inserts the last character typed; it does so count times, before point,
and returns nil. Most printing characters are bound to this command. In routine use,
self-insert-command is the most frequently called function in Emacs, but programs
rarely use it except to install it on a keymap.

In an interactive call, count is the numeric prefix argument.

Self-insertion translates the input character through translation-table-for-input.
See Section 33.8 [Translation of Characters], page 191.

This command calls auto-fill-function whenever that is non-nil and the character
inserted is in the table auto-fill-chars (see Section 32.14 [Auto Filling], page 146).

This command performs abbrev expansion if Abbrev mode is enabled and the in-
serted character does not have word-constituent syntax. (See Chapter 36 [Abbrevs],
page 250, and Section 35.2.1 [Syntax Class Table], page 235.) It is also responsible
for calling blink-paren-function when the inserted character has close parenthesis
syntax (see Section 38.19 [Blinking], page 375).

The final thing this command does is to run the hook post-self-insert-hook. You
could use this to automatically reindent text as it is typed, for example.

Do not try substituting your own definition of self-insert-command for the standard
one. The editor command loop handles this function specially.

[Command]newline &optional number-of-newlines
This command inserts newlines into the current buffer before point. If number-of-
newlines is supplied, that many newline characters are inserted.

This function calls auto-fill-function if the current column number is greater than
the value of fill-column and number-of-newlines is nil. Typically what auto-fill-
function does is insert a newline; thus, the overall result in this case is to insert two
newlines at different places: one at point, and another earlier in the line. newline

does not auto-fill if number-of-newlines is non-nil.

This command indents to the left margin if that is not zero. See Section 32.12
[Margins], page 143.

The value returned is nil. In an interactive call, count is the numeric prefix argument.

[Variable]overwrite-mode
This variable controls whether overwrite mode is in effect. The value should be
overwrite-mode-textual, overwrite-mode-binary, or nil. overwrite-mode-

textual specifies textual overwrite mode (treats newlines and tabs specially), and
overwrite-mode-binary specifies binary overwrite mode (treats newlines and tabs
like any other characters).

32.6 Deleting Text

Deletion means removing part of the text in a buffer, without saving it in the kill ring (see
Section 32.8 [The Kill Ring], page 132). Deleted text can’t be yanked, but can be reinserted
using the undo mechanism (see Section 32.9 [Undo], page 137). Some deletion functions do
save text in the kill ring in some special cases.

All of the deletion functions operate on the current buffer.

Chapter 32: Text 129

[Command]erase-buffer
This function deletes the entire text of the current buffer (not just the accessible por-
tion), leaving it empty. If the buffer is read-only, it signals a buffer-read-only error;
if some of the text in it is read-only, it signals a text-read-only error. Otherwise,
it deletes the text without asking for any confirmation. It returns nil.

Normally, deleting a large amount of text from a buffer inhibits further auto-saving
of that buffer “because it has shrunk”. However, erase-buffer does not do this, the
idea being that the future text is not really related to the former text, and its size
should not be compared with that of the former text.

[Command]delete-region start end
This command deletes the text between positions start and end in the current buffer,
and returns nil. If point was inside the deleted region, its value afterward is start.
Otherwise, point relocates with the surrounding text, as markers do.

[Function]delete-and-extract-region start end
This function deletes the text between positions start and end in the current buffer,
and returns a string containing the text just deleted.

If point was inside the deleted region, its value afterward is start. Otherwise, point
relocates with the surrounding text, as markers do.

[Command]delete-char count &optional killp
This command deletes count characters directly after point, or before point if count
is negative. If killp is non-nil, then it saves the deleted characters in the kill ring.

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

[Command]delete-backward-char count &optional killp
This command deletes count characters directly before point, or after point if count
is negative. If killp is non-nil, then it saves the deleted characters in the kill ring.

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

[Command]backward-delete-char-untabify count &optional killp
This command deletes count characters backward, changing tabs into spaces. When
the next character to be deleted is a tab, it is first replaced with the proper number
of spaces to preserve alignment and then one of those spaces is deleted instead of the
tab. If killp is non-nil, then the command saves the deleted characters in the kill
ring.

Conversion of tabs to spaces happens only if count is positive. If it is negative, exactly
−count characters after point are deleted.

Chapter 32: Text 130

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

[User Option]backward-delete-char-untabify-method
This option specifies how backward-delete-char-untabify should deal with white-
space. Possible values include untabify, the default, meaning convert a tab to many
spaces and delete one; hungry, meaning delete all tabs and spaces before point with
one command; all meaning delete all tabs, spaces and newlines before point, and
nil, meaning do nothing special for whitespace characters.

32.7 User-Level Deletion Commands

This section describes higher-level commands for deleting text, commands intended primar-
ily for the user but useful also in Lisp programs.

[Command]delete-horizontal-space &optional backward-only
This function deletes all spaces and tabs around point. It returns nil.

If backward-only is non-nil, the function deletes spaces and tabs before point, but
not after point.

In the following examples, we call delete-horizontal-space four times, once on
each line, with point between the second and third characters on the line each time.

---------- Buffer: foo ----------

I ?thought
I ? thought

We? thought

Yo?u thought

---------- Buffer: foo ----------

(delete-horizontal-space) ; Four times.
⇒ nil

---------- Buffer: foo ----------

Ithought

Ithought

Wethought

You thought

---------- Buffer: foo ----------

[Command]delete-indentation &optional join-following-p
This function joins the line point is on to the previous line, deleting any whitespace
at the join and in some cases replacing it with one space. If join-following-p is non-
nil, delete-indentation joins this line to the following line instead. The function
returns nil.

Chapter 32: Text 131

If there is a fill prefix, and the second of the lines being joined starts with the pre-
fix, then delete-indentation deletes the fill prefix before joining the lines. See
Section 32.12 [Margins], page 143.

In the example below, point is located on the line starting ‘events’, and it makes no
difference if there are trailing spaces in the preceding line.

---------- Buffer: foo ----------

When in the course of human

? events, it becomes necessary

---------- Buffer: foo ----------

(delete-indentation)
⇒ nil

---------- Buffer: foo ----------

When in the course of human? events, it becomes necessary

---------- Buffer: foo ----------

After the lines are joined, the function fixup-whitespace is responsible for deciding
whether to leave a space at the junction.

[Command]fixup-whitespace
This function replaces all the horizontal whitespace surrounding point with either one
space or no space, according to the context. It returns nil.

At the beginning or end of a line, the appropriate amount of space is none. Before
a character with close parenthesis syntax, or after a character with open parenthesis
or expression-prefix syntax, no space is also appropriate. Otherwise, one space is
appropriate. See Section 35.2.1 [Syntax Class Table], page 235.

In the example below, fixup-whitespace is called the first time with point before
the word ‘spaces’ in the first line. For the second invocation, point is directly after
the ‘(’.

---------- Buffer: foo ----------

This has too many ?spaces
This has too many spaces at the start of (? this list)

---------- Buffer: foo ----------

(fixup-whitespace)
⇒ nil

(fixup-whitespace)
⇒ nil

---------- Buffer: foo ----------

This has too many spaces

This has too many spaces at the start of (this list)

---------- Buffer: foo ----------

[Command]just-one-space &optional n
This command replaces any spaces and tabs around point with a single space, or n
spaces if n is specified. It returns nil.

[Command]delete-blank-lines
This function deletes blank lines surrounding point. If point is on a blank line with
one or more blank lines before or after it, then all but one of them are deleted. If

Chapter 32: Text 132

point is on an isolated blank line, then it is deleted. If point is on a nonblank line,
the command deletes all blank lines immediately following it.

A blank line is defined as a line containing only tabs and spaces.

delete-blank-lines returns nil.

32.8 The Kill Ring

Kill functions delete text like the deletion functions, but save it so that the user can reinsert
it by yanking. Most of these functions have ‘kill-’ in their name. By contrast, the functions
whose names start with ‘delete-’ normally do not save text for yanking (though they can
still be undone); these are “deletion” functions.

Most of the kill commands are primarily for interactive use, and are not described here.
What we do describe are the functions provided for use in writing such commands. You
can use these functions to write commands for killing text. When you need to delete text
for internal purposes within a Lisp function, you should normally use deletion functions, so
as not to disturb the kill ring contents. See Section 32.6 [Deletion], page 128.

Killed text is saved for later yanking in the kill ring. This is a list that holds a number
of recent kills, not just the last text kill. We call this a “ring” because yanking treats it as
having elements in a cyclic order. The list is kept in the variable kill-ring, and can be
operated on with the usual functions for lists; there are also specialized functions, described
in this section, that treat it as a ring.

Some people think this use of the word “kill” is unfortunate, since it refers to operations
that specifically do not destroy the entities “killed”. This is in sharp contrast to ordinary life,
in which death is permanent and “killed” entities do not come back to life. Therefore, other
metaphors have been proposed. For example, the term “cut ring” makes sense to people
who, in pre-computer days, used scissors and paste to cut up and rearrange manuscripts.
However, it would be difficult to change the terminology now.

32.8.1 Kill Ring Concepts

The kill ring records killed text as strings in a list, most recent first. A short kill ring, for
example, might look like this:

("some text" "a different piece of text" "even older text")

When the list reaches kill-ring-max entries in length, adding a new entry automatically
deletes the last entry.

When kill commands are interwoven with other commands, each kill command makes
a new entry in the kill ring. Multiple kill commands in succession build up a single kill
ring entry, which would be yanked as a unit; the second and subsequent consecutive kill
commands add text to the entry made by the first one.

For yanking, one entry in the kill ring is designated the “front” of the ring. Some yank
commands “rotate” the ring by designating a different element as the “front”. But this
virtual rotation doesn’t change the list itself—the most recent entry always comes first in
the list.

32.8.2 Functions for Killing

kill-region is the usual subroutine for killing text. Any command that calls this function
is a “kill command” (and should probably have ‘kill’ in its name). kill-region puts the

Chapter 32: Text 133

newly killed text in a new element at the beginning of the kill ring or adds it to the most
recent element. It determines automatically (using last-command) whether the previous
command was a kill command, and if so appends the killed text to the most recent entry.

[Command]kill-region start end
This function kills the text in the region defined by start and end. The text is deleted
but saved in the kill ring, along with its text properties. The value is always nil.

In an interactive call, start and end are point and the mark.

If the buffer or text is read-only, kill-region modifies the kill ring just the same,
then signals an error without modifying the buffer. This is convenient because it lets
the user use a series of kill commands to copy text from a read-only buffer into the
kill ring.

[User Option]kill-read-only-ok
If this option is non-nil, kill-region does not signal an error if the buffer or text
is read-only. Instead, it simply returns, updating the kill ring but not changing the
buffer.

[Command]copy-region-as-kill start end
This command saves the region defined by start and end on the kill ring (including
text properties), but does not delete the text from the buffer. It returns nil.

The command does not set this-command to kill-region, so a subsequent kill com-
mand does not append to the same kill ring entry.

In Lisp programs, it is better to use kill-new or kill-append instead of this com-
mand. See Section 32.8.5 [Low-Level Kill Ring], page 135.

32.8.3 Yanking

Yanking means inserting text from the kill ring, but it does not insert the text blindly. Yank
commands and some other commands use insert-for-yank to perform special processing
on the text that they copy into the buffer.

[Function]insert-for-yank string
This function normally works like insert except that it doesn’t insert the text proper-
ties (see Section 32.19 [Text Properties], page 156) in the list variable yank-excluded-
properties. However, if any part of string has a non-nil yank-handler text prop-
erty, that property can do various special processing on that part of the text being
inserted.

[Function]insert-buffer-substring-as-yank buf &optional start end
This function resembles insert-buffer-substring except that it doesn’t insert the
text properties in the yank-excluded-properties list.

You can put a yank-handler text property on all or part of the text to control how
it will be inserted if it is yanked. The insert-for-yank function looks for that property.
The property value must be a list of one to four elements, with the following format (where
elements after the first may be omitted):

(function param noexclude undo)

Here is what the elements do:

Chapter 32: Text 134

function When function is present and non-nil, it is called instead of insert to insert
the string. function takes one argument—the string to insert.

param If param is present and non-nil, it replaces string (or the part of string being
processed) as the object passed to function (or insert); for example, if function
is yank-rectangle, param should be a list of strings to insert as a rectangle.

noexclude If noexclude is present and non-nil, the normal removal of the yank-excluded-
properties is not performed; instead function is responsible for removing those
properties. This may be necessary if function adjusts point before or after
inserting the object.

undo If undo is present and non-nil, it is a function that will be called by yank-pop

to undo the insertion of the current object. It is called with two arguments,
the start and end of the current region. function can set yank-undo-function
to override the undo value.

[User Option]yank-excluded-properties
Yanking discards certain text properties from the yanked text, as described above.
The value of this variable is the list of properties to discard. Its default value contains
properties that might lead to annoying results, such as causing the text to respond
to the mouse or specifying key bindings.

32.8.4 Functions for Yanking

This section describes higher-level commands for yanking, which are intended primarily
for the user but useful also in Lisp programs. Both yank and yank-pop honor the yank-

excluded-properties variable and yank-handler text property (see Section 32.8.3 [Yank-
ing], page 133).

[Command]yank &optional arg
This command inserts before point the text at the front of the kill ring. It sets the
mark at the beginning of that text, using push-mark (see Section 31.7 [The Mark],
page 117), and puts point at the end.

If arg is a non-nil list (which occurs interactively when the user types C-u with
no digits), then yank inserts the text as described above, but puts point before the
yanked text and sets the mark after it.

If arg is a number, then yank inserts the argth most recently killed text—the argth
element of the kill ring list, counted cyclically from the front, which is considered the
first element for this purpose.

yank does not alter the contents of the kill ring, unless it used text provided by
another program, in which case it pushes that text onto the kill ring. However if arg
is an integer different from one, it rotates the kill ring to place the yanked string at
the front.

yank returns nil.

[Command]yank-pop &optional arg
This command replaces the just-yanked entry from the kill ring with a different entry
from the kill ring.

Chapter 32: Text 135

This is allowed only immediately after a yank or another yank-pop. At such a time,
the region contains text that was just inserted by yanking. yank-pop deletes that
text and inserts in its place a different piece of killed text. It does not add the deleted
text to the kill ring, since it is already in the kill ring somewhere. It does however
rotate the kill ring to place the newly yanked string at the front.

If arg is nil, then the replacement text is the previous element of the kill ring. If
arg is numeric, the replacement is the argth previous kill. If arg is negative, a more
recent kill is the replacement.

The sequence of kills in the kill ring wraps around, so that after the oldest one comes
the newest one, and before the newest one goes the oldest.

The return value is always nil.

[Variable]yank-undo-function
If this variable is non-nil, the function yank-pop uses its value instead of delete-
region to delete the text inserted by the previous yank or yank-pop command. The
value must be a function of two arguments, the start and end of the current region.

The function insert-for-yank automatically sets this variable according to the undo
element of the yank-handler text property, if there is one.

32.8.5 Low-Level Kill Ring

These functions and variables provide access to the kill ring at a lower level, but are still
convenient for use in Lisp programs, because they take care of interaction with window
system selections (see Section 29.18 [Window System Selections], page 91).

[Function]current-kill n &optional do-not-move
The function current-kill rotates the yanking pointer, which designates the “front”
of the kill ring, by n places (from newer kills to older ones), and returns the text at
that place in the ring.

If the optional second argument do-not-move is non-nil, then current-kill doesn’t
alter the yanking pointer; it just returns the nth kill, counting from the current
yanking pointer.

If n is zero, indicating a request for the latest kill, current-kill calls the value of
interprogram-paste-function (documented below) before consulting the kill ring.
If that value is a function and calling it returns a string or a list of several string,
current-kill pushes the strings onto the kill ring and returns the first string. It also
sets the yanking pointer to point to the kill-ring entry of the first string returned by
interprogram-paste-function, regardless of the value of do-not-move. Otherwise,
current-kill does not treat a zero value for n specially: it returns the entry pointed
at by the yanking pointer and does not move the yanking pointer.

[Function]kill-new string &optional replace
This function pushes the text string onto the kill ring and makes the yanking pointer
point to it. It discards the oldest entry if appropriate. It also invokes the value of
interprogram-cut-function (see below).

If replace is non-nil, then kill-new replaces the first element of the kill ring with
string, rather than pushing string onto the kill ring.

Chapter 32: Text 136

[Function]kill-append string before-p
This function appends the text string to the first entry in the kill ring and makes the
yanking pointer point to the combined entry. Normally string goes at the end of the
entry, but if before-p is non-nil, it goes at the beginning. This function also invokes
the value of interprogram-cut-function (see below).

[Variable]interprogram-paste-function
This variable provides a way of transferring killed text from other programs, when
you are using a window system. Its value should be nil or a function of no arguments.

If the value is a function, current-kill calls it to get the “most recent kill”. If the
function returns a non-nil value, then that value is used as the “most recent kill”. If
it returns nil, then the front of the kill ring is used.

To facilitate support for window systems that support multiple selections, this func-
tion may also return a list of strings. In that case, the first string is used as the “most
recent kill”, and all the other strings are pushed onto the kill ring, for easy access by
yank-pop.

The normal use of this function is to get the window system’s clipboard as the most
recent kill, even if the selection belongs to another application. See Section 29.18
[Window System Selections], page 91. However, if the clipboard contents come from
the current Emacs session, this function should return nil.

[Variable]interprogram-cut-function
This variable provides a way of communicating killed text to other programs, when
you are using a window system. Its value should be nil or a function of one required
argument.

If the value is a function, kill-new and kill-append call it with the new first element
of the kill ring as the argument.

The normal use of this function is to put newly killed text in the window system’s
clipboard. See Section 29.18 [Window System Selections], page 91.

32.8.6 Internals of the Kill Ring

The variable kill-ring holds the kill ring contents, in the form of a list of strings. The
most recent kill is always at the front of the list.

The kill-ring-yank-pointer variable points to a link in the kill ring list, whose car
is the text to yank next. We say it identifies the “front” of the ring. Moving kill-ring-

yank-pointer to a different link is called rotating the kill ring. We call the kill ring a
“ring” because the functions that move the yank pointer wrap around from the end of the
list to the beginning, or vice-versa. Rotation of the kill ring is virtual; it does not change
the value of kill-ring.

Both kill-ring and kill-ring-yank-pointer are Lisp variables whose values are nor-
mally lists. The word “pointer” in the name of the kill-ring-yank-pointer indicates
that the variable’s purpose is to identify one element of the list for use by the next yank
command.

The value of kill-ring-yank-pointer is always eq to one of the links in the kill ring
list. The element it identifies is the car of that link. Kill commands, which change the kill

Chapter 32: Text 137

ring, also set this variable to the value of kill-ring. The effect is to rotate the ring so
that the newly killed text is at the front.

Here is a diagram that shows the variable kill-ring-yank-pointer pointing to the sec-
ond entry in the kill ring ("some text" "a different piece of text" "yet older text").

kill-ring ---- kill-ring-yank-pointer

| |

| v

| --- --- --- --- --- ---

--> | | |------> | | |--> | | |--> nil

--- --- --- --- --- ---

| | |

| | |

| | -->"yet older text"

| |

| --> "a different piece of text"

|

--> "some text"

This state of affairs might occur after C-y (yank) immediately followed by M-y (yank-pop).

[Variable]kill-ring
This variable holds the list of killed text sequences, most recently killed first.

[Variable]kill-ring-yank-pointer
This variable’s value indicates which element of the kill ring is at the “front” of the
ring for yanking. More precisely, the value is a tail of the value of kill-ring, and its
car is the kill string that C-y should yank.

[User Option]kill-ring-max
The value of this variable is the maximum length to which the kill ring can grow,
before elements are thrown away at the end. The default value for kill-ring-max is
60.

32.9 Undo

Most buffers have an undo list, which records all changes made to the buffer’s text so that
they can be undone. (The buffers that don’t have one are usually special-purpose buffers
for which Emacs assumes that undoing is not useful. In particular, any buffer whose name
begins with a space has its undo recording off by default; see Section 27.3 [Buffer Names],
page 4.) All the primitives that modify the text in the buffer automatically add elements
to the front of the undo list, which is in the variable buffer-undo-list.

[Variable]buffer-undo-list
This buffer-local variable’s value is the undo list of the current buffer. A value of t
disables the recording of undo information.

Here are the kinds of elements an undo list can have:

position This kind of element records a previous value of point; undoing this element
moves point to position. Ordinary cursor motion does not make any sort of

Chapter 32: Text 138

undo record, but deletion operations use these entries to record where point
was before the command.

(beg . end)

This kind of element indicates how to delete text that was inserted. Upon
insertion, the text occupied the range beg–end in the buffer.

(text . position)

This kind of element indicates how to reinsert text that was deleted. The
deleted text itself is the string text. The place to reinsert it is (abs position).
If position is positive, point was at the beginning of the deleted text, otherwise
it was at the end.

(t high . low)

This kind of element indicates that an unmodified buffer became modified. The
elements high and low are two integers, each recording 16 bits of the visited file’s
modification time as of when it was previously visited or saved. primitive-

undo uses those values to determine whether to mark the buffer as unmodified
once again; it does so only if the file’s modification time matches those numbers.

(nil property value beg . end)

This kind of element records a change in a text property. Here’s how you might
undo the change:

(put-text-property beg end property value)

(marker . adjustment)

This kind of element records the fact that the marker marker was relocated
due to deletion of surrounding text, and that it moved adjustment character
positions. Undoing this element moves marker − adjustment characters.

(apply funname . args)

This is an extensible undo item, which is undone by calling funname with
arguments args.

(apply delta beg end funname . args)

This is an extensible undo item, which records a change limited to the range
beg to end, which increased the size of the buffer by delta. It is undone by
calling funname with arguments args.

This kind of element enables undo limited to a region to determine whether the
element pertains to that region.

nil This element is a boundary. The elements between two boundaries are called
a change group; normally, each change group corresponds to one keyboard
command, and undo commands normally undo an entire group as a unit.

[Function]undo-boundary
This function places a boundary element in the undo list. The undo command stops
at such a boundary, and successive undo commands undo to earlier and earlier bound-
aries. This function returns nil.

The editor command loop automatically calls undo-boundary just before executing
each key sequence, so that each undo normally undoes the effects of one command.

Chapter 32: Text 139

As an exception, the command self-insert-command, which produces self-inserting
input characters (see Section 32.5 [Commands for Insertion], page 127), may remove
the boundary inserted by the command loop: a boundary is accepted for the first
such character, the next 19 consecutive self-inserting input characters do not have
boundaries, and then the 20th does; and so on as long as the self-inserting characters
continue. Hence, sequences of consecutive character insertions can be undone as a
group.

All buffer modifications add a boundary whenever the previous undoable change was
made in some other buffer. This is to ensure that each command makes a boundary
in each buffer where it makes changes.

Calling this function explicitly is useful for splitting the effects of a command into
more than one unit. For example, query-replace calls undo-boundary after each
replacement, so that the user can undo individual replacements one by one.

[Variable]undo-in-progress
This variable is normally nil, but the undo commands bind it to t. This is so
that various kinds of change hooks can tell when they’re being called for the sake of
undoing.

[Function]primitive-undo count list
This is the basic function for undoing elements of an undo list. It undoes the first
count elements of list, returning the rest of list.

primitive-undo adds elements to the buffer’s undo list when it changes the buffer.
Undo commands avoid confusion by saving the undo list value at the beginning of a
sequence of undo operations. Then the undo operations use and update the saved
value. The new elements added by undoing are not part of this saved value, so they
don’t interfere with continuing to undo.

This function does not bind undo-in-progress.

32.10 Maintaining Undo Lists

This section describes how to enable and disable undo information for a given buffer. It
also explains how the undo list is truncated automatically so it doesn’t get too big.

Recording of undo information in a newly created buffer is normally enabled to start
with; but if the buffer name starts with a space, the undo recording is initially disabled.
You can explicitly enable or disable undo recording with the following two functions, or by
setting buffer-undo-list yourself.

[Command]buffer-enable-undo &optional buffer-or-name
This command enables recording undo information for buffer buffer-or-name, so that
subsequent changes can be undone. If no argument is supplied, then the current
buffer is used. This function does nothing if undo recording is already enabled in the
buffer. It returns nil.

In an interactive call, buffer-or-name is the current buffer. You cannot specify any
other buffer.

Chapter 32: Text 140

[Command]buffer-disable-undo &optional buffer-or-name
This function discards the undo list of buffer-or-name, and disables further recording
of undo information. As a result, it is no longer possible to undo either previous
changes or any subsequent changes. If the undo list of buffer-or-name is already
disabled, this function has no effect.

This function returns nil.

As editing continues, undo lists get longer and longer. To prevent them from using up all
available memory space, garbage collection trims them back to size limits you can set. (For
this purpose, the “size” of an undo list measures the cons cells that make up the list, plus
the strings of deleted text.) Three variables control the range of acceptable sizes: undo-

limit, undo-strong-limit and undo-outer-limit. In these variables, size is counted as
the number of bytes occupied, which includes both saved text and other data.

[User Option]undo-limit
This is the soft limit for the acceptable size of an undo list. The change group at
which this size is exceeded is the last one kept.

[User Option]undo-strong-limit
This is the upper limit for the acceptable size of an undo list. The change group at
which this size is exceeded is discarded itself (along with all older change groups).
There is one exception: the very latest change group is only discarded if it exceeds
undo-outer-limit.

[User Option]undo-outer-limit
If at garbage collection time the undo info for the current command exceeds this limit,
Emacs discards the info and displays a warning. This is a last ditch limit to prevent
memory overflow.

[User Option]undo-ask-before-discard
If this variable is non-nil, when the undo info exceeds undo-outer-limit, Emacs
asks in the echo area whether to discard the info. The default value is nil, which
means to discard it automatically.

This option is mainly intended for debugging. Garbage collection is inhibited while
the question is asked, which means that Emacs might leak memory if the user waits
too long before answering the question.

32.11 Filling

Filling means adjusting the lengths of lines (by moving the line breaks) so that they are
nearly (but no greater than) a specified maximum width. Additionally, lines can be justified,
which means inserting spaces to make the left and/or right margins line up precisely. The
width is controlled by the variable fill-column. For ease of reading, lines should be no
longer than 70 or so columns.

You can use Auto Fill mode (see Section 32.14 [Auto Filling], page 146) to fill text
automatically as you insert it, but changes to existing text may leave it improperly filled.
Then you must fill the text explicitly.

Most of the commands in this section return values that are not meaningful. All the
functions that do filling take note of the current left margin, current right margin, and

Chapter 32: Text 141

current justification style (see Section 32.12 [Margins], page 143). If the current justification
style is none, the filling functions don’t actually do anything.

Several of the filling functions have an argument justify. If it is non-nil, that requests
some kind of justification. It can be left, right, full, or center, to request a specific
style of justification. If it is t, that means to use the current justification style for this part
of the text (see current-justification, below). Any other value is treated as full.

When you call the filling functions interactively, using a prefix argument implies the
value full for justify.

[Command]fill-paragraph &optional justify region
This command fills the paragraph at or after point. If justify is non-nil, each line is
justified as well. It uses the ordinary paragraph motion commands to find paragraph
boundaries. See Section “Paragraphs” in The GNU Emacs Manual.

When region is non-nil, then if Transient Mark mode is enabled and the mark is
active, this command calls fill-region to fill all the paragraphs in the region, instead
of filling only the current paragraph. When this command is called interactively,
region is t.

[Command]fill-region start end &optional justify nosqueeze to-eop
This command fills each of the paragraphs in the region from start to end. It justifies
as well if justify is non-nil.

If nosqueeze is non-nil, that means to leave whitespace other than line breaks un-
touched. If to-eop is non-nil, that means to keep filling to the end of the paragraph—
or the next hard newline, if use-hard-newlines is enabled (see below).

The variable paragraph-separate controls how to distinguish paragraphs. See
Section 34.8 [Standard Regexps], page 233.

[Command]fill-individual-paragraphs start end &optional justify
citation-regexp

This command fills each paragraph in the region according to its individual fill prefix.
Thus, if the lines of a paragraph were indented with spaces, the filled paragraph will
remain indented in the same fashion.

The first two arguments, start and end, are the beginning and end of the region to be
filled. The third and fourth arguments, justify and citation-regexp, are optional. If
justify is non-nil, the paragraphs are justified as well as filled. If citation-regexp is
non-nil, it means the function is operating on a mail message and therefore should
not fill the header lines. If citation-regexp is a string, it is used as a regular expression;
if it matches the beginning of a line, that line is treated as a citation marker.

Ordinarily, fill-individual-paragraphs regards each change in indentation as
starting a new paragraph. If fill-individual-varying-indent is non-nil, then
only separator lines separate paragraphs. That mode can handle indented paragraphs
with additional indentation on the first line.

[User Option]fill-individual-varying-indent
This variable alters the action of fill-individual-paragraphs as described above.

Chapter 32: Text 142

[Command]fill-region-as-paragraph start end &optional justify nosqueeze
squeeze-after

This command considers a region of text as a single paragraph and fills it. If the
region was made up of many paragraphs, the blank lines between paragraphs are
removed. This function justifies as well as filling when justify is non-nil.

If nosqueeze is non-nil, that means to leave whitespace other than line breaks un-
touched. If squeeze-after is non-nil, it specifies a position in the region, and means
don’t canonicalize spaces before that position.

In Adaptive Fill mode, this command calls fill-context-prefix to choose a fill
prefix by default. See Section 32.13 [Adaptive Fill], page 144.

[Command]justify-current-line &optional how eop nosqueeze
This command inserts spaces between the words of the current line so that the line
ends exactly at fill-column. It returns nil.

The argument how, if non-nil specifies explicitly the style of justification. It can
be left, right, full, center, or none. If it is t, that means to do follow speci-
fied justification style (see current-justification, below). nil means to do full
justification.

If eop is non-nil, that means do only left-justification if current-justification
specifies full justification. This is used for the last line of a paragraph; even if the
paragraph as a whole is fully justified, the last line should not be.

If nosqueeze is non-nil, that means do not change interior whitespace.

[User Option]default-justification
This variable’s value specifies the style of justification to use for text that doesn’t
specify a style with a text property. The possible values are left, right, full,
center, or none. The default value is left.

[Function]current-justification
This function returns the proper justification style to use for filling the text around
point.

This returns the value of the justification text property at point, or the variable
default-justification if there is no such text property. However, it returns nil rather
than none to mean “don’t justify”.

[User Option]sentence-end-double-space
If this variable is non-nil, a period followed by just one space does not count as the
end of a sentence, and the filling functions avoid breaking the line at such a place.

[User Option]sentence-end-without-period
If this variable is non-nil, a sentence can end without a period. This is used for
languages like Thai, where sentences end with a double space but without a period.

[User Option]sentence-end-without-space
If this variable is non-nil, it should be a string of characters that can end a sentence
without following spaces.

Chapter 32: Text 143

[Variable]fill-paragraph-function
This variable provides a way to override the filling of paragraphs. If its value is non-
nil, fill-paragraph calls this function to do the work. If the function returns a
non-nil value, fill-paragraph assumes the job is done, and immediately returns
that value.

The usual use of this feature is to fill comments in programming language modes. If
the function needs to fill a paragraph in the usual way, it can do so as follows:

(let ((fill-paragraph-function nil))

(fill-paragraph arg))

[Variable]fill-forward-paragraph-function
This variable provides a way to override how the filling functions, such as fill-

region and fill-paragraph, move forward to the next paragraph. Its value should
be a function, which is called with a single argument n, the number of paragraphs
to move, and should return the difference between n and the number of paragraphs
actually moved. The default value of this variable is forward-paragraph. See Section
“Paragraphs” in The GNU Emacs Manual.

[Variable]use-hard-newlines
If this variable is non-nil, the filling functions do not delete newlines that have the
hard text property. These “hard newlines” act as paragraph separators.

32.12 Margins for Filling

[User Option]fill-prefix
This buffer-local variable, if non-nil, specifies a string of text that appears at the
beginning of normal text lines and should be disregarded when filling them. Any line
that fails to start with the fill prefix is considered the start of a paragraph; so is any
line that starts with the fill prefix followed by additional whitespace. Lines that start
with the fill prefix but no additional whitespace are ordinary text lines that can be
filled together. The resulting filled lines also start with the fill prefix.

The fill prefix follows the left margin whitespace, if any.

[User Option]fill-column
This buffer-local variable specifies the maximum width of filled lines. Its value should
be an integer, which is a number of columns. All the filling, justification, and centering
commands are affected by this variable, including Auto Fill mode (see Section 32.14
[Auto Filling], page 146).

As a practical matter, if you are writing text for other people to read, you should set
fill-column to no more than 70. Otherwise the line will be too long for people to
read comfortably, and this can make the text seem clumsy.

The default value for fill-column is 70.

[Command]set-left-margin from to margin
This sets the left-margin property on the text from from to to to the value margin.
If Auto Fill mode is enabled, this command also refills the region to fit the new
margin.

Chapter 32: Text 144

[Command]set-right-margin from to margin
This sets the right-margin property on the text from from to to to the value margin.
If Auto Fill mode is enabled, this command also refills the region to fit the new margin.

[Function]current-left-margin
This function returns the proper left margin value to use for filling the text around
point. The value is the sum of the left-margin property of the character at the start
of the current line (or zero if none), and the value of the variable left-margin.

[Function]current-fill-column
This function returns the proper fill column value to use for filling the text around
point. The value is the value of the fill-column variable, minus the value of the
right-margin property of the character after point.

[Command]move-to-left-margin &optional n force
This function moves point to the left margin of the current line. The column moved
to is determined by calling the function current-left-margin. If the argument n is
non-nil, move-to-left-margin moves forward n−1 lines first.

If force is non-nil, that says to fix the line’s indentation if that doesn’t match the
left margin value.

[Function]delete-to-left-margin &optional from to
This function removes left margin indentation from the text between from and to.
The amount of indentation to delete is determined by calling current-left-margin.
In no case does this function delete non-whitespace. If from and to are omitted, they
default to the whole buffer.

[Function]indent-to-left-margin
This function adjusts the indentation at the beginning of the current line to the value
specified by the variable left-margin. (That may involve either inserting or deleting
whitespace.) This function is value of indent-line-function in Paragraph-Indent
Text mode.

[User Option]left-margin
This variable specifies the base left margin column. In Fundamental mode, C-j in-
dents to this column. This variable automatically becomes buffer-local when set in
any fashion.

[User Option]fill-nobreak-predicate
This variable gives major modes a way to specify not to break a line at certain places.
Its value should be a list of functions. Whenever filling considers breaking the line at
a certain place in the buffer, it calls each of these functions with no arguments and
with point located at that place. If any of the functions returns non-nil, then the
line won’t be broken there.

32.13 Adaptive Fill Mode

When Adaptive Fill Mode is enabled, Emacs determines the fill prefix automatically from
the text in each paragraph being filled rather than using a predetermined value. During

Chapter 32: Text 145

filling, this fill prefix gets inserted at the start of the second and subsequent lines of the
paragraph as described in Section 32.11 [Filling], page 140, and in Section 32.14 [Auto
Filling], page 146.

[User Option]adaptive-fill-mode
Adaptive Fill mode is enabled when this variable is non-nil. It is t by default.

[Function]fill-context-prefix from to
This function implements the heart of Adaptive Fill mode; it chooses a fill prefix
based on the text between from and to, typically the start and end of a paragraph.
It does this by looking at the first two lines of the paragraph, based on the variables
described below.

Usually, this function returns the fill prefix, a string. However, before doing this,
the function makes a final check (not specially mentioned in the following) that a
line starting with this prefix wouldn’t look like the start of a paragraph. Should this
happen, the function signals the anomaly by returning nil instead.

In detail, fill-context-prefix does this:

1. It takes a candidate for the fill prefix from the first line—it tries first the function
in adaptive-fill-function (if any), then the regular expression adaptive-

fill-regexp (see below). The first non-nil result of these, or the empty string
if they’re both nil, becomes the first line’s candidate.

2. If the paragraph has as yet only one line, the function tests the validity of the
prefix candidate just found. The function then returns the candidate if it’s valid,
or a string of spaces otherwise. (see the description of adaptive-fill-first-
line-regexp below).

3. When the paragraph already has two lines, the function next looks for a prefix
candidate on the second line, in just the same way it did for the first line. If it
doesn’t find one, it returns nil.

4. The function now compares the two candidate prefixes heuristically: if the non-
whitespace characters in the line 2 candidate occur in the same order in the line
1 candidate, the function returns the line 2 candidate. Otherwise, it returns the
largest initial substring which is common to both candidates (which might be
the empty string).

[User Option]adaptive-fill-regexp
Adaptive Fill mode matches this regular expression against the text starting after
the left margin whitespace (if any) on a line; the characters it matches are that line’s
candidate for the fill prefix.

The default value matches whitespace with certain punctuation characters intermin-
gled.

[User Option]adaptive-fill-first-line-regexp
Used only in one-line paragraphs, this regular expression acts as an additional check
of the validity of the one available candidate fill prefix: the candidate must match
this regular expression, or match comment-start-skip. If it doesn’t, fill-context-
prefix replaces the candidate with a string of spaces “of the same width” as it.

Chapter 32: Text 146

The default value of this variable is "\\‘[\t]*\\’", which matches only a string
of whitespace. The effect of this default is to force the fill prefixes found in one-line
paragraphs always to be pure whitespace.

[User Option]adaptive-fill-function
You can specify more complex ways of choosing a fill prefix automatically by setting
this variable to a function. The function is called with point after the left margin (if
any) of a line, and it must preserve point. It should return either “that line’s” fill
prefix or nil, meaning it has failed to determine a prefix.

32.14 Auto Filling

Auto Fill mode is a minor mode that fills lines automatically as text is inserted. This section
describes the hook used by Auto Fill mode. For a description of functions that you can call
explicitly to fill and justify existing text, see Section 32.11 [Filling], page 140.

Auto Fill mode also enables the functions that change the margins and justification style
to refill portions of the text. See Section 32.12 [Margins], page 143.

[Variable]auto-fill-function
The value of this buffer-local variable should be a function (of no arguments) to be
called after self-inserting a character from the table auto-fill-chars. It may be
nil, in which case nothing special is done in that case.

The value of auto-fill-function is do-auto-fill when Auto-Fill mode is enabled.
That is a function whose sole purpose is to implement the usual strategy for breaking
a line.

[Variable]normal-auto-fill-function
This variable specifies the function to use for auto-fill-function, if and when Auto
Fill is turned on. Major modes can set buffer-local values for this variable to alter
how Auto Fill works.

[Variable]auto-fill-chars
A char table of characters which invoke auto-fill-function when self-inserted—
space and newline in most language environments. They have an entry t in the
table.

32.15 Sorting Text

The sorting functions described in this section all rearrange text in a buffer. This is in
contrast to the function sort, which rearranges the order of the elements of a list (see
Section 5.6.3 [Rearrangement], page 76, vol. 1). The values returned by these functions are
not meaningful.

[Function]sort-subr reverse nextrecfun endrecfun &optional startkeyfun endkeyfun
predicate

This function is the general text-sorting routine that subdivides a buffer into records
and then sorts them. Most of the commands in this section use this function.

To understand how sort-subr works, consider the whole accessible portion of the
buffer as being divided into disjoint pieces called sort records. The records may or

Chapter 32: Text 147

may not be contiguous, but they must not overlap. A portion of each sort record
(perhaps all of it) is designated as the sort key. Sorting rearranges the records in
order by their sort keys.

Usually, the records are rearranged in order of ascending sort key. If the first argument
to the sort-subr function, reverse, is non-nil, the sort records are rearranged in order
of descending sort key.

The next four arguments to sort-subr are functions that are called to move point
across a sort record. They are called many times from within sort-subr.

1. nextrecfun is called with point at the end of a record. This function moves point
to the start of the next record. The first record is assumed to start at the position
of point when sort-subr is called. Therefore, you should usually move point to
the beginning of the buffer before calling sort-subr.

This function can indicate there are no more sort records by leaving point at the
end of the buffer.

2. endrecfun is called with point within a record. It moves point to the end of the
record.

3. startkeyfun is called to move point from the start of a record to the start of the
sort key. This argument is optional; if it is omitted, the whole record is the sort
key. If supplied, the function should either return a non-nil value to be used as
the sort key, or return nil to indicate that the sort key is in the buffer starting
at point. In the latter case, endkeyfun is called to find the end of the sort key.

4. endkeyfun is called to move point from the start of the sort key to the end of
the sort key. This argument is optional. If startkeyfun returns nil and this
argument is omitted (or nil), then the sort key extends to the end of the record.
There is no need for endkeyfun if startkeyfun returns a non-nil value.

The argument predicate is the function to use to compare keys. If keys are numbers,
it defaults to <; otherwise it defaults to string<.

As an example of sort-subr, here is the complete function definition for sort-lines:

;; Note that the first two lines of doc string
;; are effectively one line when viewed by a user.
(defun sort-lines (reverse beg end)

"Sort lines in region alphabetically;\

argument means descending order.

Called from a program, there are three arguments:

REVERSE (non-nil means reverse order),\

BEG and END (region to sort).

The variable ‘sort-fold-case’ determines\

whether alphabetic case affects

the sort order."

Chapter 32: Text 148

(interactive "P\nr")

(save-excursion

(save-restriction

(narrow-to-region beg end)

(goto-char (point-min))

(let ((inhibit-field-text-motion t))

(sort-subr reverse ’forward-line ’end-of-line)))))

Here forward-line moves point to the start of the next record, and end-of-line

moves point to the end of record. We do not pass the arguments startkeyfun and
endkeyfun, because the entire record is used as the sort key.

The sort-paragraphs function is very much the same, except that its sort-subr

call looks like this:

(sort-subr reverse

(function

(lambda ()

(while (and (not (eobp))

(looking-at paragraph-separate))

(forward-line 1))))

’forward-paragraph)

Markers pointing into any sort records are left with no useful position after sort-subr
returns.

[User Option]sort-fold-case
If this variable is non-nil, sort-subr and the other buffer sorting functions ignore
case when comparing strings.

[Command]sort-regexp-fields reverse record-regexp key-regexp start end
This command sorts the region between start and end alphabetically as specified
by record-regexp and key-regexp. If reverse is a negative integer, then sorting is in
reverse order.

Alphabetical sorting means that two sort keys are compared by comparing the first
characters of each, the second characters of each, and so on. If a mismatch is found,
it means that the sort keys are unequal; the sort key whose character is less at the
point of first mismatch is the lesser sort key. The individual characters are compared
according to their numerical character codes in the Emacs character set.

The value of the record-regexp argument specifies how to divide the buffer into sort
records. At the end of each record, a search is done for this regular expression, and the
text that matches it is taken as the next record. For example, the regular expression
‘^.+$’, which matches lines with at least one character besides a newline, would make
each such line into a sort record. See Section 34.3 [Regular Expressions], page 211,
for a description of the syntax and meaning of regular expressions.

The value of the key-regexp argument specifies what part of each record is the sort
key. The key-regexp could match the whole record, or only a part. In the latter case,
the rest of the record has no effect on the sorted order of records, but it is carried
along when the record moves to its new position.

Chapter 32: Text 149

The key-regexp argument can refer to the text matched by a subexpression of record-
regexp, or it can be a regular expression on its own.

If key-regexp is:

‘\digit’ then the text matched by the digitth ‘\(...\)’ parenthesis grouping in
record-regexp is the sort key.

‘\&’ then the whole record is the sort key.

a regular expression
then sort-regexp-fields searches for a match for the regular expression
within the record. If such a match is found, it is the sort key. If there
is no match for key-regexp within a record then that record is ignored,
which means its position in the buffer is not changed. (The other records
may move around it.)

For example, if you plan to sort all the lines in the region by the first word on each line
starting with the letter ‘f’, you should set record-regexp to ‘^.*$’ and set key-regexp
to ‘\<f\w*\>’. The resulting expression looks like this:

(sort-regexp-fields nil "^.*$" "\\<f\\w*\\>"

(region-beginning)

(region-end))

If you call sort-regexp-fields interactively, it prompts for record-regexp and key-
regexp in the minibuffer.

[Command]sort-lines reverse start end
This command alphabetically sorts lines in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

[Command]sort-paragraphs reverse start end
This command alphabetically sorts paragraphs in the region between start and end.
If reverse is non-nil, the sort is in reverse order.

[Command]sort-pages reverse start end
This command alphabetically sorts pages in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

[Command]sort-fields field start end
This command sorts lines in the region between start and end, comparing them
alphabetically by the fieldth field of each line. Fields are separated by whitespace
and numbered starting from 1. If field is negative, sorting is by the −fieldth field
from the end of the line. This command is useful for sorting tables.

[Command]sort-numeric-fields field start end
This command sorts lines in the region between start and end, comparing them
numerically by the fieldth field of each line. Fields are separated by whitespace and
numbered starting from 1. The specified field must contain a number in each line of
the region. Numbers starting with 0 are treated as octal, and numbers starting with
‘0x’ are treated as hexadecimal.

If field is negative, sorting is by the −fieldth field from the end of the line. This
command is useful for sorting tables.

Chapter 32: Text 150

[User Option]sort-numeric-base
This variable specifies the default radix for sort-numeric-fields to parse numbers.

[Command]sort-columns reverse &optional beg end
This command sorts the lines in the region between beg and end, comparing them
alphabetically by a certain range of columns. The column positions of beg and end
bound the range of columns to sort on.

If reverse is non-nil, the sort is in reverse order.

One unusual thing about this command is that the entire line containing position beg,
and the entire line containing position end, are included in the region sorted.

Note that sort-columns rejects text that contains tabs, because tabs could be split
across the specified columns. Use M-x untabify to convert tabs to spaces before
sorting.

When possible, this command actually works by calling the sort utility program.

32.16 Counting Columns

The column functions convert between a character position (counting characters from the
beginning of the buffer) and a column position (counting screen characters from the begin-
ning of a line).

These functions count each character according to the number of columns it occupies
on the screen. This means control characters count as occupying 2 or 4 columns, de-
pending upon the value of ctl-arrow, and tabs count as occupying a number of columns
that depends on the value of tab-width and on the column where the tab begins. See
Section 38.20.1 [Usual Display], page 376.

Column number computations ignore the width of the window and the amount of hor-
izontal scrolling. Consequently, a column value can be arbitrarily high. The first (or
leftmost) column is numbered 0. They also ignore overlays and text properties, aside from
invisibility.

[Function]current-column
This function returns the horizontal position of point, measured in columns, counting
from 0 at the left margin. The column position is the sum of the widths of all the
displayed representations of the characters between the start of the current line and
point.

For an example of using current-column, see the description of count-lines in
Section 30.2.4 [Text Lines], page 102.

[Command]move-to-column column &optional force
This function moves point to column in the current line. The calculation of col-
umn takes into account the widths of the displayed representations of the characters
between the start of the line and point.

When called interactively, column is the value of prefix numeric argument. If column
is not an integer, an error is signaled.

If column column is beyond the end of the line, point moves to the end of the line. If
column is negative, point moves to the beginning of the line.

Chapter 32: Text 151

If it is impossible to move to column column because that is in the middle of a multi-
column character such as a tab, point moves to the end of that character. However, if
force is non-nil, and column is in the middle of a tab, then move-to-column converts
the tab into spaces so that it can move precisely to column column. Other multi-
column characters can cause anomalies despite force, since there is no way to split
them.

The argument force also has an effect if the line isn’t long enough to reach column
column; if it is t, that means to add whitespace at the end of the line to reach that
column.

The return value is the column number actually moved to.

32.17 Indentation

The indentation functions are used to examine, move to, and change whitespace that is at
the beginning of a line. Some of the functions can also change whitespace elsewhere on a
line. Columns and indentation count from zero at the left margin.

32.17.1 Indentation Primitives

This section describes the primitive functions used to count and insert indentation. The
functions in the following sections use these primitives. See Section 38.10 [Width], page 323,
for related functions.

[Function]current-indentation
This function returns the indentation of the current line, which is the horizontal
position of the first nonblank character. If the contents are entirely blank, then this
is the horizontal position of the end of the line.

[Command]indent-to column &optional minimum
This function indents from point with tabs and spaces until column is reached. If
minimum is specified and non-nil, then at least that many spaces are inserted even
if this requires going beyond column. Otherwise the function does nothing if point is
already beyond column. The value is the column at which the inserted indentation
ends.

The inserted whitespace characters inherit text properties from the surrounding text
(usually, from the preceding text only). See Section 32.19.6 [Sticky Properties],
page 167.

[User Option]indent-tabs-mode
If this variable is non-nil, indentation functions can insert tabs as well as spaces.
Otherwise, they insert only spaces. Setting this variable automatically makes it buffer-
local in the current buffer.

32.17.2 Indentation Controlled by Major Mode

An important function of each major mode is to customize the TAB key to indent properly
for the language being edited. This section describes the mechanism of the TAB key and
how to control it. The functions in this section return unpredictable values.

Chapter 32: Text 152

[Command]indent-for-tab-command &optional rigid
This is the command bound to TAB in most editing modes. Its usual action is to
indent the current line, but it can alternatively insert a tab character or indent a
region.

Here is what it does:

• First, it checks whether Transient Mark mode is enabled and the region is ac-
tive. If so, it called indent-region to indent all the text in the region (see
Section 32.17.3 [Region Indent], page 153).

• Otherwise, if the indentation function in indent-line-function is indent-to-
left-margin (a trivial command that inserts a tab character), or if the variable
tab-always-indent specifies that a tab character ought to be inserted (see be-
low), then it inserts a tab character.

• Otherwise, it indents the current line; this is done by calling the function in
indent-line-function. If the line is already indented, and the value of tab-
always-indent is complete (see below), it tries completing the text at point.

If rigid is non-nil (interactively, with a prefix argument), then after this command
indents a line or inserts a tab, it also rigidly indents the entire balanced expression
which starts at the beginning of the current line, in order to reflect the new indenta-
tion. This argument is ignored if the command indents the region.

[Variable]indent-line-function
This variable’s value is the function to be used by indent-for-tab-command, and
various other indentation commands, to indent the current line. It is usually assigned
by the major mode; for instance, Lisp mode sets it to lisp-indent-line, C mode
sets it to c-indent-line, and so on. The default value is indent-relative. See
Section 23.7 [Auto-Indentation], page 440, vol. 1.

[Command]indent-according-to-mode
This command calls the function in indent-line-function to indent the current
line in a way appropriate for the current major mode.

[Command]newline-and-indent
This function inserts a newline, then indents the new line (the one following the
newline just inserted) according to the major mode. It does indentation by calling
indent-according-to-mode.

[Command]reindent-then-newline-and-indent
This command reindents the current line, inserts a newline at point, and then indents
the new line (the one following the newline just inserted). It does indentation on both
lines by calling indent-according-to-mode.

[User Option]tab-always-indent
This variable can be used to customize the behavior of the TAB (indent-for-tab-
command) command. If the value is t (the default), the command normally just
indents the current line. If the value is nil, the command indents the current line
only if point is at the left margin or in the line’s indentation; otherwise, it inserts a
tab character. If the value is complete, the command first tries to indent the current

Chapter 32: Text 153

line, and if the line was already indented, it calls completion-at-point to complete
the text at point (see Section 20.6.8 [Completion in Buffers], page 306, vol. 1).

32.17.3 Indenting an Entire Region

This section describes commands that indent all the lines in the region. They return un-
predictable values.

[Command]indent-region start end &optional to-column
This command indents each nonblank line starting between start (inclusive) and end
(exclusive). If to-column is nil, indent-region indents each nonblank line by calling
the current mode’s indentation function, the value of indent-line-function.

If to-column is non-nil, it should be an integer specifying the number of columns
of indentation; then this function gives each line exactly that much indentation, by
either adding or deleting whitespace.

If there is a fill prefix, indent-region indents each line by making it start with the
fill prefix.

[Variable]indent-region-function
The value of this variable is a function that can be used by indent-region as a
short cut. It should take two arguments, the start and end of the region. You should
design the function so that it will produce the same results as indenting the lines of
the region one by one, but presumably faster.

If the value is nil, there is no short cut, and indent-region actually works line by
line.

A short-cut function is useful in modes such as C mode and Lisp mode, where the
indent-line-function must scan from the beginning of the function definition: ap-
plying it to each line would be quadratic in time. The short cut can update the scan
information as it moves through the lines indenting them; this takes linear time. In
a mode where indenting a line individually is fast, there is no need for a short cut.

indent-region with a non-nil argument to-column has a different meaning and does
not use this variable.

[Command]indent-rigidly start end count
This command indents all lines starting between start (inclusive) and end (exclusive)
sideways by count columns. This “preserves the shape” of the affected region, moving
it as a rigid unit. Consequently, this command is useful not only for indenting regions
of unindented text, but also for indenting regions of formatted code.

For example, if count is 3, this command adds 3 columns of indentation to each of
the lines beginning in the region specified.

In Mail mode, C-c C-y (mail-yank-original) uses indent-rigidly to indent the
text copied from the message being replied to.

[Command]indent-code-rigidly start end columns &optional nochange-regexp
This is like indent-rigidly, except that it doesn’t alter lines that start within strings
or comments.

In addition, it doesn’t alter a line if nochange-regexp matches at the beginning of the
line (if nochange-regexp is non-nil).

Chapter 32: Text 154

32.17.4 Indentation Relative to Previous Lines

This section describes two commands that indent the current line based on the contents of
previous lines.

[Command]indent-relative &optional unindented-ok
This command inserts whitespace at point, extending to the same column as the
next indent point of the previous nonblank line. An indent point is a non-whitespace
character following whitespace. The next indent point is the first one at a column
greater than the current column of point. For example, if point is underneath and to
the left of the first non-blank character of a line of text, it moves to that column by
inserting whitespace.

If the previous nonblank line has no next indent point (i.e., none at a great enough
column position), indent-relative either does nothing (if unindented-ok is non-nil)
or calls tab-to-tab-stop. Thus, if point is underneath and to the right of the last
column of a short line of text, this command ordinarily moves point to the next tab
stop by inserting whitespace.

The return value of indent-relative is unpredictable.

In the following example, point is at the beginning of the second line:

This line is indented twelve spaces.

?The quick brown fox jumped.

Evaluation of the expression (indent-relative nil) produces the following:

This line is indented twelve spaces.

?The quick brown fox jumped.

In this next example, point is between the ‘m’ and ‘p’ of ‘jumped’:

This line is indented twelve spaces.

The quick brown fox jum?ped.

Evaluation of the expression (indent-relative nil) produces the following:

This line is indented twelve spaces.

The quick brown fox jum ?ped.

[Command]indent-relative-maybe
This command indents the current line like the previous nonblank line, by calling
indent-relative with t as the unindented-ok argument. The return value is unpre-
dictable.

If the previous nonblank line has no indent points beyond the current column, this
command does nothing.

32.17.5 Adjustable “Tab Stops”

This section explains the mechanism for user-specified “tab stops” and the mechanisms that
use and set them. The name “tab stops” is used because the feature is similar to that of
the tab stops on a typewriter. The feature works by inserting an appropriate number of
spaces and tab characters to reach the next tab stop column; it does not affect the display
of tab characters in the buffer (see Section 38.20.1 [Usual Display], page 376). Note that
the TAB character as input uses this tab stop feature only in a few major modes, such as
Text mode. See Section “Tab Stops” in The GNU Emacs Manual.

Chapter 32: Text 155

[Command]tab-to-tab-stop
This command inserts spaces or tabs before point, up to the next tab stop column
defined by tab-stop-list. It searches the list for an element greater than the current
column number, and uses that element as the column to indent to. It does nothing if
no such element is found.

[User Option]tab-stop-list
This variable is the list of tab stop columns used by tab-to-tab-stops. The elements
should be integers in increasing order. The tab stop columns need not be evenly
spaced.

Use M-x edit-tab-stops to edit the location of tab stops interactively.

32.17.6 Indentation-Based Motion Commands

These commands, primarily for interactive use, act based on the indentation in the text.

[Command]back-to-indentation
This command moves point to the first non-whitespace character in the current line
(which is the line in which point is located). It returns nil.

[Command]backward-to-indentation &optional arg
This command moves point backward arg lines and then to the first nonblank char-
acter on that line. It returns nil. If arg is omitted or nil, it defaults to 1.

[Command]forward-to-indentation &optional arg
This command moves point forward arg lines and then to the first nonblank character
on that line. It returns nil. If arg is omitted or nil, it defaults to 1.

32.18 Case Changes

The case change commands described here work on text in the current buffer. See Section 4.8
[Case Conversion], page 59, vol. 1, for case conversion functions that work on strings and
characters. See Section 4.9 [Case Tables], page 61, vol. 1, for how to customize which
characters are upper or lower case and how to convert them.

[Command]capitalize-region start end
This function capitalizes all words in the region defined by start and end. To capitalize
means to convert each word’s first character to upper case and convert the rest of
each word to lower case. The function returns nil.

If one end of the region is in the middle of a word, the part of the word within the
region is treated as an entire word.

When capitalize-region is called interactively, start and end are point and the
mark, with the smallest first.

---------- Buffer: foo ----------

This is the contents of the 5th foo.

---------- Buffer: foo ----------

Chapter 32: Text 156

(capitalize-region 1 44)

⇒ nil

---------- Buffer: foo ----------

This Is The Contents Of The 5th Foo.

---------- Buffer: foo ----------

[Command]downcase-region start end
This function converts all of the letters in the region defined by start and end to lower
case. The function returns nil.

When downcase-region is called interactively, start and end are point and the mark,
with the smallest first.

[Command]upcase-region start end
This function converts all of the letters in the region defined by start and end to
upper case. The function returns nil.

When upcase-region is called interactively, start and end are point and the mark,
with the smallest first.

[Command]capitalize-word count
This function capitalizes count words after point, moving point over as it does. To
capitalize means to convert each word’s first character to upper case and convert the
rest of each word to lower case. If count is negative, the function capitalizes the
−count previous words but does not move point. The value is nil.

If point is in the middle of a word, the part of the word before point is ignored when
moving forward. The rest is treated as an entire word.

When capitalize-word is called interactively, count is set to the numeric prefix
argument.

[Command]downcase-word count
This function converts the count words after point to all lower case, moving point
over as it does. If count is negative, it converts the −count previous words but does
not move point. The value is nil.

When downcase-word is called interactively, count is set to the numeric prefix argu-
ment.

[Command]upcase-word count
This function converts the count words after point to all upper case, moving point
over as it does. If count is negative, it converts the −count previous words but does
not move point. The value is nil.

When upcase-word is called interactively, count is set to the numeric prefix argument.

32.19 Text Properties

Each character position in a buffer or a string can have a text property list, much like the
property list of a symbol (see Section 8.4 [Property Lists], page 106, vol. 1). The properties
belong to a particular character at a particular place, such as, the letter ‘T’ at the beginning

Chapter 32: Text 157

of this sentence or the first ‘o’ in ‘foo’—if the same character occurs in two different places,
the two occurrences in general have different properties.

Each property has a name and a value. Both of these can be any Lisp object, but the
name is normally a symbol. Typically each property name symbol is used for a particular
purpose; for instance, the text property face specifies the faces for displaying the character
(see Section 32.19.4 [Special Properties], page 162). The usual way to access the property
list is to specify a name and ask what value corresponds to it.

If a character has a category property, we call it the property category of the character.
It should be a symbol. The properties of the symbol serve as defaults for the properties of
the character.

Copying text between strings and buffers preserves the properties along with the char-
acters; this includes such diverse functions as substring, insert, and buffer-substring.

32.19.1 Examining Text Properties

The simplest way to examine text properties is to ask for the value of a particular property
of a particular character. For that, use get-text-property. Use text-properties-at to
get the entire property list of a character. See Section 32.19.3 [Property Search], page 160,
for functions to examine the properties of a number of characters at once.

These functions handle both strings and buffers. Keep in mind that positions in a string
start from 0, whereas positions in a buffer start from 1.

[Function]get-text-property pos prop &optional object
This function returns the value of the prop property of the character after position
pos in object (a buffer or string). The argument object is optional and defaults to
the current buffer.

If there is no prop property strictly speaking, but the character has a property cat-
egory that is a symbol, then get-text-property returns the prop property of that
symbol.

[Function]get-char-property position prop &optional object
This function is like get-text-property, except that it checks overlays first and then
text properties. See Section 38.9 [Overlays], page 315.

The argument object may be a string, a buffer, or a window. If it is a window, then
the buffer displayed in that window is used for text properties and overlays, but only
the overlays active for that window are considered. If object is a buffer, then overlays
in that buffer are considered first, in order of decreasing priority, followed by the text
properties. If object is a string, only text properties are considered, since strings
never have overlays.

[Function]get-char-property-and-overlay position prop &optional object
This is like get-char-property, but gives extra information about the overlay that
the property value comes from.

Its value is a cons cell whose car is the property value, the same value get-char-

property would return with the same arguments. Its cdr is the overlay in which the
property was found, or nil, if it was found as a text property or not found at all.

If position is at the end of object, both the car and the cdr of the value are nil.

Chapter 32: Text 158

[Variable]char-property-alias-alist
This variable holds an alist which maps property names to a list of alternative prop-
erty names. If a character does not specify a direct value for a property, the alter-
native property names are consulted in order; the first non-nil value is used. This
variable takes precedence over default-text-properties, and category properties
take precedence over this variable.

[Function]text-properties-at position &optional object
This function returns the entire property list of the character at position in the string
or buffer object. If object is nil, it defaults to the current buffer.

[Variable]default-text-properties
This variable holds a property list giving default values for text properties. Whenever
a character does not specify a value for a property, neither directly, through a category
symbol, or through char-property-alias-alist, the value stored in this list is used
instead. Here is an example:

(setq default-text-properties ’(foo 69)

char-property-alias-alist nil)

;; Make sure character 1 has no properties of its own.
(set-text-properties 1 2 nil)

;; What we get, when we ask, is the default value.
(get-text-property 1 ’foo)

⇒ 69

32.19.2 Changing Text Properties

The primitives for changing properties apply to a specified range of text in a buffer or string.
The function set-text-properties (see end of section) sets the entire property list of the
text in that range; more often, it is useful to add, change, or delete just certain properties
specified by name.

Since text properties are considered part of the contents of the buffer (or string), and
can affect how a buffer looks on the screen, any change in buffer text properties marks the
buffer as modified. Buffer text property changes are undoable also (see Section 32.9 [Undo],
page 137). Positions in a string start from 0, whereas positions in a buffer start from 1.

[Function]put-text-property start end prop value &optional object
This function sets the prop property to value for the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

[Function]add-text-properties start end props &optional object
This function adds or overrides text properties for the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

The argument props specifies which properties to add. It should have the form of a
property list (see Section 8.4 [Property Lists], page 106, vol. 1): a list whose elements
include the property names followed alternately by the corresponding values.

The return value is t if the function actually changed some property’s value; nil
otherwise (if props is nil or its values agree with those in the text).

For example, here is how to set the comment and face properties of a range of text:

Chapter 32: Text 159

(add-text-properties start end

’(comment t face highlight))

[Function]remove-text-properties start end props &optional object
This function deletes specified text properties from the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

The argument props specifies which properties to delete. It should have the form
of a property list (see Section 8.4 [Property Lists], page 106, vol. 1): a list whose
elements are property names alternating with corresponding values. But only the
names matter—the values that accompany them are ignored. For example, here’s
how to remove the face property.

(remove-text-properties start end ’(face nil))

The return value is t if the function actually changed some property’s value; nil
otherwise (if props is nil or if no character in the specified text had any of those
properties).

To remove all text properties from certain text, use set-text-properties and specify
nil for the new property list.

[Function]remove-list-of-text-properties start end list-of-properties
&optional object

Like remove-text-properties except that list-of-properties is a list of property
names only, not an alternating list of property names and values.

[Function]set-text-properties start end props &optional object
This function completely replaces the text property list for the text between start and
end in the string or buffer object. If object is nil, it defaults to the current buffer.

The argument props is the new property list. It should be a list whose elements are
property names alternating with corresponding values.

After set-text-properties returns, all the characters in the specified range have
identical properties.

If props is nil, the effect is to get rid of all properties from the specified range of
text. Here’s an example:

(set-text-properties start end nil)

Do not rely on the return value of this function.

The easiest way to make a string with text properties is with propertize:

[Function]propertize string &rest properties
This function returns a copy of string which has the text properties properties. These
properties apply to all the characters in the string that is returned. Here is an example
that constructs a string with a face property and a mouse-face property:

(propertize "foo" ’face ’italic

’mouse-face ’bold-italic)
⇒ #("foo" 0 3 (mouse-face bold-italic face italic))

To put different properties on various parts of a string, you can construct each part
with propertize and then combine them with concat:

Chapter 32: Text 160

(concat

(propertize "foo" ’face ’italic

’mouse-face ’bold-italic)

" and "

(propertize "bar" ’face ’italic

’mouse-face ’bold-italic))
⇒ #("foo and bar"

0 3 (face italic mouse-face bold-italic)

3 8 nil

8 11 (face italic mouse-face bold-italic))

See Section 32.2 [Buffer Contents], page 123, for the function buffer-substring-no-

properties, which copies text from the buffer but does not copy its properties.

32.19.3 Text Property Search Functions

In typical use of text properties, most of the time several or many consecutive characters
have the same value for a property. Rather than writing your programs to examine char-
acters one by one, it is much faster to process chunks of text that have the same property
value.

Here are functions you can use to do this. They use eq for comparing property values.
In all cases, object defaults to the current buffer.

For good performance, it’s very important to use the limit argument to these functions,
especially the ones that search for a single property—otherwise, they may spend a long time
scanning to the end of the buffer, if the property you are interested in does not change.

These functions do not move point; instead, they return a position (or nil). Remember
that a position is always between two characters; the position returned by these functions
is between two characters with different properties.

[Function]next-property-change pos &optional object limit
The function scans the text forward from position pos in the string or buffer object
until it finds a change in some text property, then returns the position of the change.
In other words, it returns the position of the first character beyond pos whose prop-
erties are not identical to those of the character just after pos.

If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, this function returns limit.

The value is nil if the properties remain unchanged all the way to the end of object
and limit is nil. If the value is non-nil, it is a position greater than or equal to pos.
The value equals pos only when limit equals pos.

Here is an example of how to scan the buffer by chunks of text within which all
properties are constant:

(while (not (eobp))

(let ((plist (text-properties-at (point)))

(next-change

(or (next-property-change (point) (current-buffer))

(point-max))))

Process text from point to next-change . . .
(goto-char next-change)))

Chapter 32: Text 161

[Function]previous-property-change pos &optional object limit
This is like next-property-change, but scans back from pos instead of forward. If
the value is non-nil, it is a position less than or equal to pos; it equals pos only if
limit equals pos.

[Function]next-single-property-change pos prop &optional object limit
The function scans text for a change in the prop property, then returns the position
of the change. The scan goes forward from position pos in the string or buffer object.
In other words, this function returns the position of the first character beyond pos
whose prop property differs from that of the character just after pos.

If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, next-single-property-change returns limit.

The value is nil if the property remains unchanged all the way to the end of object
and limit is nil. If the value is non-nil, it is a position greater than or equal to pos;
it equals pos only if limit equals pos.

[Function]previous-single-property-change pos prop &optional object limit
This is like next-single-property-change, but scans back from pos instead of for-
ward. If the value is non-nil, it is a position less than or equal to pos; it equals pos
only if limit equals pos.

[Function]next-char-property-change pos &optional limit
This is like next-property-change except that it considers overlay properties as
well as text properties, and if no change is found before the end of the buffer, it
returns the maximum buffer position rather than nil (in this sense, it resembles the
corresponding overlay function next-overlay-change, rather than next-property-

change). There is no object operand because this function operates only on the
current buffer. It returns the next address at which either kind of property changes.

[Function]previous-char-property-change pos &optional limit
This is like next-char-property-change, but scans back from pos instead of forward,
and returns the minimum buffer position if no change is found.

[Function]next-single-char-property-change pos prop &optional object limit
This is like next-single-property-change except that it considers overlay proper-
ties as well as text properties, and if no change is found before the end of the object,
it returns the maximum valid position in object rather than nil. Unlike next-char-
property-change, this function does have an object operand; if object is not a buffer,
only text-properties are considered.

[Function]previous-single-char-property-change pos prop &optional object
limit

This is like next-single-char-property-change, but scans back from pos instead
of forward, and returns the minimum valid position in object if no change is found.

[Function]text-property-any start end prop value &optional object
This function returns non-nil if at least one character between start and end has a
property prop whose value is value. More precisely, it returns the position of the first
such character. Otherwise, it returns nil.

Chapter 32: Text 162

The optional fifth argument, object, specifies the string or buffer to scan. Positions
are relative to object. The default for object is the current buffer.

[Function]text-property-not-all start end prop value &optional object
This function returns non-nil if at least one character between start and end does
not have a property prop with value value. More precisely, it returns the position of
the first such character. Otherwise, it returns nil.

The optional fifth argument, object, specifies the string or buffer to scan. Positions
are relative to object. The default for object is the current buffer.

32.19.4 Properties with Special Meanings

Here is a table of text property names that have special built-in meanings. The follow-
ing sections list a few additional special property names that control filling and property
inheritance. All other names have no standard meaning, and you can use them as you like.

Note: the properties composition, display, invisible and intangible can also cause
point to move to an acceptable place, after each Emacs command. See Section 21.6 [Ad-
justing Point], page 326, vol. 1.

category If a character has a category property, we call it the property category of
the character. It should be a symbol. The properties of this symbol serve as
defaults for the properties of the character.

face The face property controls the appearance of the character, such as its font
and color. See Section 38.12 [Faces], page 325. The value of the property can
be the following:

• A face name (a symbol or string).

• A property list of face attributes. This has the form (keyword value . . .),
where each keyword is a face attribute name and value is a meaningful
value for that attribute. With this feature, you do not need to create a
face each time you want to specify a particular attribute for certain text.
See Section 38.12.2 [Face Attributes], page 327.

• A list, where each element uses one of the two forms listed above.

Font Lock mode (see Section 23.6 [Font Lock Mode], page 429, vol. 1) works
in most buffers by dynamically updating the face property of characters based
on the context.

font-lock-face

This property specifies a value for the face property that Font Lock mode
should apply to the underlying text. It is one of the fontification methods used
by Font Lock mode, and is useful for special modes that implement their own
highlighting. See Section 23.6.6 [Precalculated Fontification], page 436, vol. 1.
When Font Lock mode is disabled, font-lock-face has no effect.

mouse-face

This property is used instead of face when the mouse is on or near the character.
For this purpose, “near” means that all text between the character and where
the mouse is have the same mouse-face property value.

Chapter 32: Text 163

Emacs ignores all face attributes from the mouse-face property that alter the
text size (e.g. :height, :weight, and :slant). Those attributes are always
the same as for the unhighlighted text.

fontified

This property says whether the text is ready for display. If nil, Emacs’s
redisplay routine calls the functions in fontification-functions (see
Section 38.12.7 [Auto Faces], page 336) to prepare this part of the buffer before
it is displayed. It is used internally by the “just in time” font locking code.

display This property activates various features that change the way text is displayed.
For example, it can make text appear taller or shorter, higher or lower, wider
or narrow, or replaced with an image. See Section 38.15 [Display Property],
page 350.

help-echo

If text has a string as its help-echo property, then when you move the mouse
onto that text, Emacs displays that string in the echo area, or in the tooltip
window (see Section “Tooltips” in The GNU Emacs Manual).

If the value of the help-echo property is a function, that function is called
with three arguments, window, object and pos and should return a help string
or nil for none. The first argument, window is the window in which the help
was found. The second, object, is the buffer, overlay or string which had the
help-echo property. The pos argument is as follows:

• If object is a buffer, pos is the position in the buffer.

• If object is an overlay, that overlay has a help-echo property, and pos is
the position in the overlay’s buffer.

• If object is a string (an overlay string or a string displayed with the display
property), pos is the position in that string.

If the value of the help-echo property is neither a function nor a string, it is
evaluated to obtain a help string.

You can alter the way help text is displayed by setting the variable show-help-
function (see [Help display], page 167).

This feature is used in the mode line and for other active text.

keymap The keymap property specifies an additional keymap for commands. When this
keymap applies, it is used for key lookup before the minor mode keymaps and
before the buffer’s local map. See Section 22.7 [Active Keymaps], page 367,
vol. 1. If the property value is a symbol, the symbol’s function definition is
used as the keymap.

The property’s value for the character before point applies if it is non-nil and
rear-sticky, and the property’s value for the character after point applies if it
is non-nil and front-sticky. (For mouse clicks, the position of the click is used
instead of the position of point.)

local-map

This property works like keymap except that it specifies a keymap to use instead
of the buffer’s local map. For most purposes (perhaps all purposes), it is better
to use the keymap property.

Chapter 32: Text 164

syntax-table

The syntax-table property overrides what the syntax table says about this
particular character. See Section 35.4 [Syntax Properties], page 240.

read-only

If a character has the property read-only, then modifying that character is
not allowed. Any command that would do so gets an error, text-read-only.
If the property value is a string, that string is used as the error message.

Insertion next to a read-only character is an error if inserting ordinary text
there would inherit the read-only property due to stickiness. Thus, you can
control permission to insert next to read-only text by controlling the stickiness.
See Section 32.19.6 [Sticky Properties], page 167.

Since changing properties counts as modifying the buffer, it is not possible to
remove a read-only property unless you know the special trick: bind inhibit-

read-only to a non-nil value and then remove the property. See Section 27.7
[Read Only Buffers], page 9.

invisible

A non-nil invisible property can make a character invisible on the screen.
See Section 38.6 [Invisible Text], page 309, for details.

intangible

If a group of consecutive characters have equal and non-nil intangible prop-
erties, then you cannot place point between them. If you try to move point
forward into the group, point actually moves to the end of the group. If you
try to move point backward into the group, point actually moves to the start
of the group.

If consecutive characters have unequal non-nil intangible properties, they
belong to separate groups; each group is separately treated as described above.

When the variable inhibit-point-motion-hooks is non-nil, the intangible
property is ignored.

Beware: this property operates at a very low level, and affects a lot of code in
unexpected ways. So use it with extreme caution. A common misuse is to put
an intangible property on invisible text, which is actually unnecessary since the
command loop will move point outside of the invisible text at the end of each
command anyway. See Section 21.6 [Adjusting Point], page 326, vol. 1.

field Consecutive characters with the same field property constitute a field. Some
motion functions including forward-word and beginning-of-line stop mov-
ing at a field boundary. See Section 32.19.9 [Fields], page 172.

cursor Normally, the cursor is displayed at the beginning or the end of any overlay and
text property strings present at the current buffer position. You can place the
cursor on any desired character of these strings by giving that character a non-
nil cursor text property. In addition, if the value of the cursor property is an
integer number, it specifies the number of buffer’s character positions, starting
with the position where the overlay or the display property begins, for which
the cursor should be displayed on that character. Specifically, if the value of the
cursor property of a character is the number n, the cursor will be displayed on

Chapter 32: Text 165

this character for any buffer position in the range [ovpos..ovpos+n), where ov-
pos is the overlay’s starting position given by overlay-start (see Section 38.9.1
[Managing Overlays], page 316), or the position where the display text prop-
erty begins in the buffer.

In other words, the string character with the cursor property of any non-nil
value is the character where to display the cursor. The value of the property
says for which buffer positions to display the cursor there. If the value is an
integer number n, the cursor is displayed there when point is anywhere between
the beginning of the overlay or display property and n positions after that. If
the value is anything else and non-nil, the cursor is displayed there only when
point is at the beginning of the display property or at overlay-start.

When the buffer has many overlay strings (e.g., see Section 38.9.2 [Overlay
Properties], page 318) or display properties that are strings, it is a good idea
to use the cursor property on these strings to cue the Emacs display about
the places where to put the cursor while traversing these strings. This directly
communicates to the display engine where the Lisp program wants to put the
cursor, or where the user would expect the cursor.

pointer This specifies a specific pointer shape when the mouse pointer is over this text or
image. See Section 29.17 [Pointer Shape], page 90, for possible pointer shapes.

line-spacing

A newline can have a line-spacing text or overlay property that controls the
height of the display line ending with that newline. The property value overrides
the default frame line spacing and the buffer local line-spacing variable. See
Section 38.11 [Line Height], page 324.

line-height

A newline can have a line-height text or overlay property that controls the
total height of the display line ending in that newline. See Section 38.11 [Line
Height], page 324.

wrap-prefix

If text has a wrap-prefix property, the prefix it defines will be added at display
time to the beginning of every continuation line due to text wrapping (so if lines
are truncated, the wrap-prefix is never used). It may be a string or an image (see
Section 38.15.4 [Other Display Specs], page 353), or a stretch of whitespace such
as specified by the :width or :align-to display properties (see Section 38.15.2
[Specified Space], page 351).

A wrap-prefix may also be specified for an entire buffer using the wrap-prefix
buffer-local variable (however, a wrap-prefix text-property takes precedence
over the value of the wrap-prefix variable). See Section 38.3 [Truncation],
page 300.

line-prefix

If text has a line-prefix property, the prefix it defines will be added at display
time to the beginning of every non-continuation line. It may be a string or an
image (see Section 38.15.4 [Other Display Specs], page 353), or a stretch of
whitespace such as specified by the :width or :align-to display properties
(see Section 38.15.2 [Specified Space], page 351).

Chapter 32: Text 166

A line-prefix may also be specified for an entire buffer using the line-prefix

buffer-local variable (however, a line-prefix text-property takes precedence
over the value of the line-prefix variable). See Section 38.3 [Truncation],
page 300.

modification-hooks

If a character has the property modification-hooks, then its value should be
a list of functions; modifying that character calls all of those functions before
the actual modification. Each function receives two arguments: the beginning
and end of the part of the buffer being modified. Note that if a particular
modification hook function appears on several characters being modified by a
single primitive, you can’t predict how many times the function will be called.
Furthermore, insertion will not modify any existing character, so this hook will
only be run when removing some characters, replacing them with others, or
changing their text-properties.

If these functions modify the buffer, they should bind inhibit-modification-

hooks to t around doing so, to avoid confusing the internal mechanism that
calls these hooks.

Overlays also support the modification-hooks property, but the details are
somewhat different (see Section 38.9.2 [Overlay Properties], page 318).

insert-in-front-hooks

insert-behind-hooks

The operation of inserting text in a buffer also calls the functions listed in
the insert-in-front-hooks property of the following character and in the
insert-behind-hooks property of the preceding character. These functions
receive two arguments, the beginning and end of the inserted text. The func-
tions are called after the actual insertion takes place.

See also Section 32.27 [Change Hooks], page 180, for other hooks that are called
when you change text in a buffer.

point-entered

point-left

The special properties point-entered and point-left record hook functions
that report motion of point. Each time point moves, Emacs compares these
two property values:

• the point-left property of the character after the old location, and

• the point-entered property of the character after the new location.

If these two values differ, each of them is called (if not nil) with two arguments:
the old value of point, and the new one.

The same comparison is made for the characters before the old and new lo-
cations. The result may be to execute two point-left functions (which may
be the same function) and/or two point-entered functions (which may be
the same function). In any case, all the point-left functions are called first,
followed by all the point-entered functions.

Chapter 32: Text 167

It is possible to use char-after to examine characters at various buffer posi-
tions without moving point to those positions. Only an actual change in the
value of point runs these hook functions.

The variable inhibit-point-motion-hooks can inhibit running the point-

left and point-entered hooks, see [Inhibit point motion hooks], page 167.

composition

This text property is used to display a sequence of characters as a single glyph
composed from components. But the value of the property itself is completely
internal to Emacs and should not be manipulated directly by, for instance,
put-text-property.

[Variable]inhibit-point-motion-hooks
When this variable is non-nil, point-left and point-entered hooks are not run,
and the intangible property has no effect. Do not set this variable globally; bind it
with let.

[Variable]show-help-function
If this variable is non-nil, it specifies a function called to display help strings. These
may be help-echo properties, menu help strings (see Section 22.17.1.1 [Simple Menu
Items], page 384, vol. 1, see Section 22.17.1.2 [Extended Menu Items], page 385,
vol. 1), or tool bar help strings (see Section 22.17.6 [Tool Bar], page 392, vol. 1). The
specified function is called with one argument, the help string to display. Tooltip
mode (see Section “Tooltips” in The GNU Emacs Manual) provides an example.

32.19.5 Formatted Text Properties

These text properties affect the behavior of the fill commands. They are used for repre-
senting formatted text. See Section 32.11 [Filling], page 140, and Section 32.12 [Margins],
page 143.

hard If a newline character has this property, it is a “hard” newline. The fill com-
mands do not alter hard newlines and do not move words across them. How-
ever, this property takes effect only if the use-hard-newlines minor mode is
enabled. See Section “Hard and Soft Newlines” in The GNU Emacs Manual.

right-margin

This property specifies an extra right margin for filling this part of the text.

left-margin

This property specifies an extra left margin for filling this part of the text.

justification

This property specifies the style of justification for filling this part of the text.

32.19.6 Stickiness of Text Properties

Self-inserting characters normally take on the same properties as the preceding character.
This is called inheritance of properties.

A Lisp program can do insertion with inheritance or without, depending on the choice
of insertion primitive. The ordinary text insertion functions, such as insert, do not inherit
any properties. They insert text with precisely the properties of the string being inserted,

Chapter 32: Text 168

and no others. This is correct for programs that copy text from one context to another—for
example, into or out of the kill ring. To insert with inheritance, use the special primitives
described in this section. Self-inserting characters inherit properties because they work
using these primitives.

When you do insertion with inheritance, which properties are inherited, and from where,
depends on which properties are sticky. Insertion after a character inherits those of its
properties that are rear-sticky. Insertion before a character inherits those of its properties
that are front-sticky. When both sides offer different sticky values for the same property,
the previous character’s value takes precedence.

By default, a text property is rear-sticky but not front-sticky; thus, the default is to
inherit all the properties of the preceding character, and nothing from the following char-
acter.

You can control the stickiness of various text properties with two specific text proper-
ties, front-sticky and rear-nonsticky, and with the variable text-property-default-
nonsticky. You can use the variable to specify a different default for a given property. You
can use those two text properties to make any specific properties sticky or nonsticky in any
particular part of the text.

If a character’s front-sticky property is t, then all its properties are front-sticky. If the
front-sticky property is a list, then the sticky properties of the character are those whose
names are in the list. For example, if a character has a front-sticky property whose value
is (face read-only), then insertion before the character can inherit its face property and
its read-only property, but no others.

The rear-nonsticky property works the opposite way. Most properties are rear-sticky
by default, so the rear-nonsticky property says which properties are not rear-sticky. If
a character’s rear-nonsticky property is t, then none of its properties are rear-sticky. If
the rear-nonsticky property is a list, properties are rear-sticky unless their names are in
the list.

[Variable]text-property-default-nonsticky
This variable holds an alist which defines the default rear-stickiness of various text
properties. Each element has the form (property . nonstickiness), and it defines
the stickiness of a particular text property, property.

If nonstickiness is non-nil, this means that the property property is rear-nonsticky
by default. Since all properties are front-nonsticky by default, this makes property
nonsticky in both directions by default.

The text properties front-sticky and rear-nonsticky, when used, take precedence
over the default nonstickiness specified in text-property-default-nonsticky.

Here are the functions that insert text with inheritance of properties:

[Function]insert-and-inherit &rest strings
Insert the strings strings, just like the function insert, but inherit any sticky prop-
erties from the adjoining text.

[Function]insert-before-markers-and-inherit &rest strings
Insert the strings strings, just like the function insert-before-markers, but inherit
any sticky properties from the adjoining text.

Chapter 32: Text 169

See Section 32.4 [Insertion], page 126, for the ordinary insertion functions which do not
inherit.

32.19.7 Lazy Computation of Text Properties

Instead of computing text properties for all the text in the buffer, you can arrange to
compute the text properties for parts of the text when and if something depends on them.

The primitive that extracts text from the buffer along with its properties is buffer-

substring. Before examining the properties, this function runs the abnormal hook buffer-
access-fontify-functions.

[Variable]buffer-access-fontify-functions
This variable holds a list of functions for computing text properties. Before buffer-
substring copies the text and text properties for a portion of the buffer, it calls all
the functions in this list. Each of the functions receives two arguments that specify
the range of the buffer being accessed. (The buffer itself is always the current buffer.)

The function buffer-substring-no-properties does not call these functions, since it
ignores text properties anyway.

In order to prevent the hook functions from being called more than once for the same
part of the buffer, you can use the variable buffer-access-fontified-property.

[Variable]buffer-access-fontified-property
If this variable’s value is non-nil, it is a symbol which is used as a text property
name. A non-nil value for that text property means, “the other text properties for
this character have already been computed”.

If all the characters in the range specified for buffer-substring have a non-nil value
for this property, buffer-substring does not call the buffer-access-fontify-

functions functions. It assumes these characters already have the right text proper-
ties, and just copies the properties they already have.

The normal way to use this feature is that the buffer-access-fontify-functions

functions add this property, as well as others, to the characters they operate on. That
way, they avoid being called over and over for the same text.

32.19.8 Defining Clickable Text

Clickable text is text that can be clicked, with either the mouse or via a keyboard command,
to produce some result. Many major modes use clickable text to implement textual hyper-
links, or links for short.

The easiest way to insert and manipulate links is to use the button package. See
Section 38.17 [Buttons], page 366. In this section, we will explain how to manually set
up clickable text in a buffer, using text properties. For simplicity, we will refer to the
clickable text as a link.

Implementing a link involves three separate steps: (1) indicating clickability when the
mouse moves over the link; (2) making RET or Mouse-2 on that link do something; and (3)
setting up a follow-link condition so that the link obeys mouse-1-click-follows-link.

To indicate clickability, add the mouse-face text property to the text of the link; then
Emacs will highlight the link when the mouse moves over it. In addition, you should define

Chapter 32: Text 170

a tooltip or echo area message, using the help-echo text property. See Section 32.19.4
[Special Properties], page 162. For instance, here is how Dired indicates that file names are
clickable:

(if (dired-move-to-filename)

(add-text-properties

(point)

(save-excursion

(dired-move-to-end-of-filename)

(point))

’(mouse-face highlight

help-echo "mouse-2: visit this file in other window")))

To make the link clickable, bind RET and Mouse-2 to commands that perform the de-
sired action. Each command should check to see whether it was called on a link, and act
accordingly. For instance, Dired’s major mode keymap binds Mouse-2 to the following
command:

(defun dired-mouse-find-file-other-window (event)

"In Dired, visit the file or directory name you click on."

(interactive "e")

(let ((window (posn-window (event-end event)))

(pos (posn-point (event-end event)))

file)

(if (not (windowp window))

(error "No file chosen"))

(with-current-buffer (window-buffer window)

(goto-char pos)

(setq file (dired-get-file-for-visit)))

(if (file-directory-p file)

(or (and (cdr dired-subdir-alist)

(dired-goto-subdir file))

(progn

(select-window window)

(dired-other-window file)))

(select-window window)

(find-file-other-window (file-name-sans-versions file t)))))

This command uses the functions posn-window and posn-point to determine where the
click occurred, and dired-get-file-for-visit to determine which file to visit.

Instead of binding the mouse command in a major mode keymap, you can bind it within
the link text, using the keymap text property (see Section 32.19.4 [Special Properties],
page 162). For instance:

(let ((map (make-sparse-keymap)))

(define-key map [mouse-2] ’operate-this-button)

(put-text-property link-start link-end ’keymap map))

With this method, you can easily define different commands for different links. Furthermore,
the global definition of RET and Mouse-2 remain available for the rest of the text in the
buffer.

The basic Emacs command for clicking on links is Mouse-2. However, for compatibility
with other graphical applications, Emacs also recognizes Mouse-1 clicks on links, provided
the user clicks on the link quickly without moving the mouse. This behavior is controlled
by the user option mouse-1-click-follows-link. See Section “Mouse References” in The
GNU Emacs Manual.

Chapter 32: Text 171

To set up the link so that it obeys mouse-1-click-follows-link, you must either (1)
apply a follow-link text or overlay property to the link text, or (2) bind the follow-link
event to a keymap (which can be a major mode keymap or a local keymap specified via
the keymap text property). The value of the follow-link property, or the binding for the
follow-link event, acts as a “condition” for the link action. This condition tells Emacs
two things: the circumstances under which a Mouse-1 click should be regarded as occurring
“inside” the link, and how to compute an “action code” that says what to translate the
Mouse-1 click into. The link action condition can be one of the following:

mouse-face

If the condition is the symbol mouse-face, a position is inside a link if there is
a non-nil mouse-face property at that position. The action code is always t.

For example, here is how Info mode handles Mouse-1:
(define-key Info-mode-map [follow-link] ’mouse-face)

a function If the condition is a function, func, then a position pos is inside a link if (func
pos) evaluates to non-nil. The value returned by func serves as the action
code.

For example, here is how pcvs enables Mouse-1 to follow links on file names
only:

(define-key map [follow-link]

(lambda (pos)

(eq (get-char-property pos ’face) ’cvs-filename-face)))

anything else
If the condition value is anything else, then the position is inside a link and
the condition itself is the action code. Clearly, you should specify this kind of
condition only when applying the condition via a text or property overlay on
the link text (so that it does not apply to the entire buffer).

The action code tells Mouse-1 how to follow the link:

a string or vector
If the action code is a string or vector, the Mouse-1 event is translated into the
first element of the string or vector; i.e., the action of the Mouse-1 click is the
local or global binding of that character or symbol. Thus, if the action code is
"foo", Mouse-1 translates into f. If it is [foo], Mouse-1 translates into foo.

anything else
For any other non-nil action code, the Mouse-1 event is translated into a
Mouse-2 event at the same position.

To define Mouse-1 to activate a button defined with define-button-type, give the
button a follow-link property. The property value should be a link action condition, as
described above. See Section 38.17 [Buttons], page 366. For example, here is how Help
mode handles Mouse-1:

(define-button-type ’help-xref

’follow-link t

’action #’help-button-action)

To define Mouse-1 on a widget defined with define-widget, give the widget a :follow-
link property. The property value should be a link action condition, as described above.

Chapter 32: Text 172

For example, here is how the link widget specifies that a Mouse-1 click shall be translated
to RET:

(define-widget ’link ’item

"An embedded link."

:button-prefix ’widget-link-prefix

:button-suffix ’widget-link-suffix

:follow-link "\C-m"

:help-echo "Follow the link."

:format "%[%t%]")

[Function]mouse-on-link-p pos
This function returns non-nil if position pos in the current buffer is on a link. pos
can also be a mouse event location, as returned by event-start (see Section 21.7.13
[Accessing Mouse], page 338, vol. 1).

32.19.9 Defining and Using Fields

A field is a range of consecutive characters in the buffer that are identified by having the
same value (comparing with eq) of the field property (either a text-property or an overlay
property). This section describes special functions that are available for operating on fields.

You specify a field with a buffer position, pos. We think of each field as containing a
range of buffer positions, so the position you specify stands for the field containing that
position.

When the characters before and after pos are part of the same field, there is no doubt
which field contains pos: the one those characters both belong to. When pos is at a bound-
ary between fields, which field it belongs to depends on the stickiness of the field properties
of the two surrounding characters (see Section 32.19.6 [Sticky Properties], page 167). The
field whose property would be inherited by text inserted at pos is the field that contains
pos.

There is an anomalous case where newly inserted text at pos would not inherit the field
property from either side. This happens if the previous character’s field property is not
rear-sticky, and the following character’s field property is not front-sticky. In this case,
pos belongs to neither the preceding field nor the following field; the field functions treat it
as belonging to an empty field whose beginning and end are both at pos.

In all of these functions, if pos is omitted or nil, the value of point is used by default.
If narrowing is in effect, then pos should fall within the accessible portion. See Section 30.4
[Narrowing], page 109.

[Function]field-beginning &optional pos escape-from-edge limit
This function returns the beginning of the field specified by pos.

If pos is at the beginning of its field, and escape-from-edge is non-nil, then the return
value is always the beginning of the preceding field that ends at pos, regardless of the
stickiness of the field properties around pos.

If limit is non-nil, it is a buffer position; if the beginning of the field is before limit,
then limit will be returned instead.

[Function]field-end &optional pos escape-from-edge limit
This function returns the end of the field specified by pos.

Chapter 32: Text 173

If pos is at the end of its field, and escape-from-edge is non-nil, then the return value
is always the end of the following field that begins at pos, regardless of the stickiness
of the field properties around pos.

If limit is non-nil, it is a buffer position; if the end of the field is after limit, then
limit will be returned instead.

[Function]field-string &optional pos
This function returns the contents of the field specified by pos, as a string.

[Function]field-string-no-properties &optional pos
This function returns the contents of the field specified by pos, as a string, discarding
text properties.

[Function]delete-field &optional pos
This function deletes the text of the field specified by pos.

[Function]constrain-to-field new-pos old-pos &optional escape-from-edge
only-in-line inhibit-capture-property

This function “constrains” new-pos to the field that old-pos belongs to—in other
words, it returns the position closest to new-pos that is in the same field as old-pos.

If new-pos is nil, then constrain-to-field uses the value of point instead, and
moves point to the resulting position in addition to returning that position.

If old-pos is at the boundary of two fields, then the acceptable final positions depend
on the argument escape-from-edge. If escape-from-edge is nil, then new-pos must
be in the field whose field property equals what new characters inserted at old-
pos would inherit. (This depends on the stickiness of the field property for the
characters before and after old-pos.) If escape-from-edge is non-nil, new-pos can
be anywhere in the two adjacent fields. Additionally, if two fields are separated by
another field with the special value boundary, then any point within this special field
is also considered to be “on the boundary”.

Commands like C-a with no argument, that normally move backward to a specific
kind of location and stay there once there, probably should specify nil for escape-
from-edge. Other motion commands that check fields should probably pass t.

If the optional argument only-in-line is non-nil, and constraining new-pos in the
usual way would move it to a different line, new-pos is returned unconstrained. This
used in commands that move by line, such as next-line and beginning-of-line,
so that they respect field boundaries only in the case where they can still move to the
right line.

If the optional argument inhibit-capture-property is non-nil, and old-pos has a non-
nil property of that name, then any field boundaries are ignored.

You can cause constrain-to-field to ignore all field boundaries (and so never con-
strain anything) by binding the variable inhibit-field-text-motion to a non-nil
value.

Chapter 32: Text 174

32.19.10 Why Text Properties are not Intervals

Some editors that support adding attributes to text in the buffer do so by letting the
user specify “intervals” within the text, and adding the properties to the intervals. Those
editors permit the user or the programmer to determine where individual intervals start and
end. We deliberately provided a different sort of interface in Emacs Lisp to avoid certain
paradoxical behavior associated with text modification.

If the actual subdivision into intervals is meaningful, that means you can distinguish
between a buffer that is just one interval with a certain property, and a buffer containing
the same text subdivided into two intervals, both of which have that property.

Suppose you take the buffer with just one interval and kill part of the text. The text
remaining in the buffer is one interval, and the copy in the kill ring (and the undo list)
becomes a separate interval. Then if you yank back the killed text, you get two intervals
with the same properties. Thus, editing does not preserve the distinction between one
interval and two.

Suppose we “fix” this problem by coalescing the two intervals when the text is inserted.
That works fine if the buffer originally was a single interval. But suppose instead that we
have two adjacent intervals with the same properties, and we kill the text of one interval
and yank it back. The same interval-coalescence feature that rescues the other case causes
trouble in this one: after yanking, we have just one interval. One again, editing does not
preserve the distinction between one interval and two.

Insertion of text at the border between intervals also raises questions that have no
satisfactory answer.

However, it is easy to arrange for editing to behave consistently for questions of the
form, “What are the properties of this character?” So we have decided these are the only
questions that make sense; we have not implemented asking questions about where intervals
start or end.

In practice, you can usually use the text property search functions in place of explicit
interval boundaries. You can think of them as finding the boundaries of intervals, assuming
that intervals are always coalesced whenever possible. See Section 32.19.3 [Property Search],
page 160.

Emacs also provides explicit intervals as a presentation feature; see Section 38.9 [Over-
lays], page 315.

32.20 Substituting for a Character Code

The following functions replace characters within a specified region based on their character
codes.

[Function]subst-char-in-region start end old-char new-char &optional noundo
This function replaces all occurrences of the character old-char with the character
new-char in the region of the current buffer defined by start and end.

If noundo is non-nil, then subst-char-in-region does not record the change for
undo and does not mark the buffer as modified. This was useful for controlling the
old selective display feature (see Section 38.7 [Selective Display], page 312).

subst-char-in-region does not move point and returns nil.

Chapter 32: Text 175

---------- Buffer: foo ----------

This is the contents of the buffer before.

---------- Buffer: foo ----------

(subst-char-in-region 1 20 ?i ?X)

⇒ nil

---------- Buffer: foo ----------

ThXs Xs the contents of the buffer before.

---------- Buffer: foo ----------

[Command]translate-region start end table
This function applies a translation table to the characters in the buffer between po-
sitions start and end.

The translation table table is a string or a char-table; (aref table ochar) gives the
translated character corresponding to ochar. If table is a string, any characters with
codes larger than the length of table are not altered by the translation.

The return value of translate-region is the number of characters that were actually
changed by the translation. This does not count characters that were mapped into
themselves in the translation table.

32.21 Registers

A register is a sort of variable used in Emacs editing that can hold a variety of different
kinds of values. Each register is named by a single character. All ASCII characters and
their meta variants (but with the exception of C-g) can be used to name registers. Thus,
there are 255 possible registers. A register is designated in Emacs Lisp by the character
that is its name.

[Variable]register-alist
This variable is an alist of elements of the form (name . contents). Normally, there
is one element for each Emacs register that has been used.

The object name is a character (an integer) identifying the register.

The contents of a register can have several possible types:

a number A number stands for itself. If insert-register finds a number in the register,
it converts the number to decimal.

a marker A marker represents a buffer position to jump to.

a string A string is text saved in the register.

a rectangle
A rectangle is represented by a list of strings.

(window-configuration position)

This represents a window configuration to restore in one frame, and a position
to jump to in the current buffer.

Chapter 32: Text 176

(frame-configuration position)

This represents a frame configuration to restore, and a position to jump to in
the current buffer.

(file filename)
This represents a file to visit; jumping to this value visits file filename.

(file-query filename position)
This represents a file to visit and a position in it; jumping to this value visits file
filename and goes to buffer position position. Restoring this type of position
asks the user for confirmation first.

The functions in this section return unpredictable values unless otherwise stated.

[Function]get-register reg
This function returns the contents of the register reg, or nil if it has no contents.

[Function]set-register reg value
This function sets the contents of register reg to value. A register can be set to any
value, but the other register functions expect only certain data types. The return
value is value.

[Command]view-register reg
This command displays what is contained in register reg.

[Command]insert-register reg &optional beforep
This command inserts contents of register reg into the current buffer.

Normally, this command puts point before the inserted text, and the mark after it.
However, if the optional second argument beforep is non-nil, it puts the mark before
and point after. You can pass a non-nil second argument beforep to this function
interactively by supplying any prefix argument.

If the register contains a rectangle, then the rectangle is inserted with its upper left
corner at point. This means that text is inserted in the current line and underneath
it on successive lines.

If the register contains something other than saved text (a string) or a rectangle (a
list), currently useless things happen. This may be changed in the future.

32.22 Transposition of Text

This function can be used to transpose stretches of text:

[Function]transpose-regions start1 end1 start2 end2 &optional leave-markers
This function exchanges two nonoverlapping portions of the buffer. Arguments start1
and end1 specify the bounds of one portion and arguments start2 and end2 specify
the bounds of the other portion.

Normally, transpose-regions relocates markers with the transposed text; a marker
previously positioned within one of the two transposed portions moves along with
that portion, thus remaining between the same two characters in their new position.
However, if leave-markers is non-nil, transpose-regions does not do this—it leaves
all markers unrelocated.

Chapter 32: Text 177

32.23 Base 64 Encoding

Base 64 code is used in email to encode a sequence of 8-bit bytes as a longer sequence of
ASCII graphic characters. It is defined in Internet RFC12045. This section describes the
functions for converting to and from this code.

[Command]base64-encode-region beg end &optional no-line-break
This function converts the region from beg to end into base 64 code. It returns
the length of the encoded text. An error is signaled if a character in the region is
multibyte, i.e. in a multibyte buffer the region must contain only characters from the
charsets ascii, eight-bit-control and eight-bit-graphic.

Normally, this function inserts newline characters into the encoded text, to avoid
overlong lines. However, if the optional argument no-line-break is non-nil, these
newlines are not added, so the output is just one long line.

[Function]base64-encode-string string &optional no-line-break
This function converts the string string into base 64 code. It returns a string con-
taining the encoded text. As for base64-encode-region, an error is signaled if a
character in the string is multibyte.

Normally, this function inserts newline characters into the encoded text, to avoid
overlong lines. However, if the optional argument no-line-break is non-nil, these
newlines are not added, so the result string is just one long line.

[Command]base64-decode-region beg end
This function converts the region from beg to end from base 64 code into the corre-
sponding decoded text. It returns the length of the decoded text.

The decoding functions ignore newline characters in the encoded text.

[Function]base64-decode-string string
This function converts the string string from base 64 code into the corresponding
decoded text. It returns a unibyte string containing the decoded text.

The decoding functions ignore newline characters in the encoded text.

32.24 Checksum/Hash

Emacs has built-in support for computing cryptographic hashes. A cryptographic hash, or
checksum, is a digital “fingerprint” of a piece of data (e.g. a block of text) which can be
used to check that you have an unaltered copy of that data.

Emacs supports several common cryptographic hash algorithms: MD5, SHA-1, SHA-
2, SHA-224, SHA-256, SHA-384 and SHA-512. MD5 is the oldest of these algorithms,
and is commonly used in message digests to check the integrity of messages transmitted
over a network. MD5 is not “collision resistant” (i.e. it is possible to deliberately design
different pieces of data which have the same MD5 hash), so you should not used it for
anything security-related. A similar theoretical weakness also exists in SHA-1. Therefore,
for security-related applications you should use the other hash types, such as SHA-2.

1 An RFC, an acronym for Request for Comments, is a numbered Internet informational document
describing a standard. RFCs are usually written by technical experts acting on their own initiative, and
are traditionally written in a pragmatic, experience-driven manner.

Chapter 32: Text 178

[Function]secure-hash algorithm object &optional start end binary
This function returns a hash for object. The argument algorithm is a symbol stating
which hash to compute: one of md5, sha1, sha224, sha256, sha384 or sha512. The
argument object should be a buffer or a string.

The optional arguments start and end are character positions specifying the portion
of object to compute the message digest for. If they are nil or omitted, the hash is
computed for the whole of object.

If the argument binary is omitted or nil, the function returns the text form of the
hash, as an ordinary Lisp string. If binary is non-nil, it returns the hash in binary
form, as a sequence of bytes stored in a unibyte string.

This function does not compute the hash directly from the internal representation of
object’s text (see Section 33.1 [Text Representations], page 182). Instead, it encodes
the text using a coding system (see Section 33.9 [Coding Systems], page 193), and
computes the hash from that encoded text. If object is a buffer, the coding system
used is the one which would be chosen by default for writing the text into a file. If
object is a string, the user’s preferred coding system is used (see Section “Recognize
Coding” in GNU Emacs Manual).

[Function]md5 object &optional start end coding-system noerror
This function returns an MD5 hash. It is semi-obsolete, since for most purposes it is
equivalent to calling secure-hash with md5 as the algorithm argument. The object,
start and end arguments have the same meanings as in secure-hash.

If coding-system is non-nil, it specifies a coding system to use to encode the text; if
omitted or nil, the default coding system is used, like in secure-hash.

Normally, md5 signals an error if the text can’t be encoded using the specified or
chosen coding system. However, if noerror is non-nil, it silently uses raw-text

coding instead.

32.25 Parsing HTML and XML

When Emacs is compiled with libxml2 support, the following functions are available to
parse HTML or XML text into Lisp object trees.

[Function]libxml-parse-html-region start end &optional base-url
This function parses the text between start and end as HTML, and returns a list
representing the HTML parse tree. It attempts to handle “real world” HTML by
robustly coping with syntax mistakes.

The optional argument base-url, if non-nil, should be a string specifying the base
URL for relative URLs occurring in links.

In the parse tree, each HTML node is represented by a list in which the first element is
a symbol representing the node name, the second element is an alist of node attributes,
and the remaining elements are the subnodes.

The following example demonstrates this. Given this (malformed) HTML document:

<html><head></head><body width=101><div class=thing>Foo<div>Yes

A call to libxml-parse-html-region returns this:

Chapter 32: Text 179

(html ()

(head ())

(body ((width . "101"))

(div ((class . "thing"))

"Foo"

(div ()

"Yes"))))

[Function]libxml-parse-xml-region start end &optional base-url
This function is the same as libxml-parse-html-region, except that it parses the
text as XML rather than HTML (so it is stricter about syntax).

32.26 Atomic Change Groups

In database terminology, an atomic change is an indivisible change—it can succeed entirely
or it can fail entirely, but it cannot partly succeed. A Lisp program can make a series of
changes to one or several buffers as an atomic change group, meaning that either the entire
series of changes will be installed in their buffers or, in case of an error, none of them will
be.

To do this for one buffer, the one already current, simply write a call to atomic-change-
group around the code that makes the changes, like this:

(atomic-change-group

(insert foo)

(delete-region x y))

If an error (or other nonlocal exit) occurs inside the body of atomic-change-group, it
unmakes all the changes in that buffer that were during the execution of the body. This
kind of change group has no effect on any other buffers—any such changes remain.

If you need something more sophisticated, such as to make changes in various buffers
constitute one atomic group, you must directly call lower-level functions that atomic-

change-group uses.

[Function]prepare-change-group &optional buffer
This function sets up a change group for buffer buffer, which defaults to the current
buffer. It returns a “handle” that represents the change group. You must use this
handle to activate the change group and subsequently to finish it.

To use the change group, you must activate it. You must do this before making any
changes in the text of buffer.

[Function]activate-change-group handle
This function activates the change group that handle designates.

After you activate the change group, any changes you make in that buffer become part
of it. Once you have made all the desired changes in the buffer, you must finish the change
group. There are two ways to do this: you can either accept (and finalize) all the changes,
or cancel them all.

[Function]accept-change-group handle
This function accepts all the changes in the change group specified by handle, making
them final.

Chapter 32: Text 180

[Function]cancel-change-group handle
This function cancels and undoes all the changes in the change group specified by
handle.

Your code should use unwind-protect to make sure the group is always finished. The call
to activate-change-group should be inside the unwind-protect, in case the user types
C-g just after it runs. (This is one reason why prepare-change-group and activate-

change-group are separate functions, because normally you would call prepare-change-
group before the start of that unwind-protect.) Once you finish the group, don’t use the
handle again—in particular, don’t try to finish the same group twice.

To make a multibuffer change group, call prepare-change-group once for each buffer
you want to cover, then use nconc to combine the returned values, like this:

(nconc (prepare-change-group buffer-1)

(prepare-change-group buffer-2))

You can then activate the multibuffer change group with a single call to activate-

change-group, and finish it with a single call to accept-change-group or cancel-change-
group.

Nested use of several change groups for the same buffer works as you would expect.
Non-nested use of change groups for the same buffer will get Emacs confused, so don’t let it
happen; the first change group you start for any given buffer should be the last one finished.

32.27 Change Hooks

These hook variables let you arrange to take notice of all changes in all buffers (or in a par-
ticular buffer, if you make them buffer-local). See also Section 32.19.4 [Special Properties],
page 162, for how to detect changes to specific parts of the text.

The functions you use in these hooks should save and restore the match data if they do
anything that uses regular expressions; otherwise, they will interfere in bizarre ways with
the editing operations that call them.

[Variable]before-change-functions
This variable holds a list of functions to call before any buffer modification. Each
function gets two arguments, the beginning and end of the region that is about to
change, represented as integers. The buffer that is about to change is always the
current buffer.

[Variable]after-change-functions
This variable holds a list of functions to call after any buffer modification. Each
function receives three arguments: the beginning and end of the region just changed,
and the length of the text that existed before the change. All three arguments are
integers. The buffer has been changed is always the current buffer.

The length of the old text is the difference between the buffer positions before and
after that text as it was before the change. As for the changed text, its length is
simply the difference between the first two arguments.

Output of messages into the ‘*Messages*’ buffer does not call these functions.

Chapter 32: Text 181

[Macro]combine-after-change-calls body. . .
The macro executes body normally, but arranges to call the after-change functions
just once for a series of several changes—if that seems safe.

If a program makes several text changes in the same area of the buffer, using the
macro combine-after-change-calls around that part of the program can make it
run considerably faster when after-change hooks are in use. When the after-change
hooks are ultimately called, the arguments specify a portion of the buffer including
all of the changes made within the combine-after-change-calls body.

Warning: You must not alter the values of after-change-functions within the body
of a combine-after-change-calls form.

Warning: if the changes you combine occur in widely scattered parts of the buffer,
this will still work, but it is not advisable, because it may lead to inefficient behavior
for some change hook functions.

[Variable]first-change-hook
This variable is a normal hook that is run whenever a buffer is changed that was
previously in the unmodified state.

[Variable]inhibit-modification-hooks
If this variable is non-nil, all of the change hooks are disabled; none of them run.
This affects all the hook variables described above in this section, as well as the hooks
attached to certain special text properties (see Section 32.19.4 [Special Properties],
page 162) and overlay properties (see Section 38.9.2 [Overlay Properties], page 318).

Also, this variable is bound to non-nil while running those same hook variables,
so that by default modifying the buffer from a modification hook does not cause
other modification hooks to be run. If you do want modification hooks to be run
in a particular piece of code that is itself run from a modification hook, then rebind
locally inhibit-modification-hooks to nil.

Chapter 33: Non-ASCII Characters 182

33 Non-ASCII Characters

This chapter covers the special issues relating to characters and how they are stored in
strings and buffers.

33.1 Text Representations

Emacs buffers and strings support a large repertoire of characters from many different
scripts, allowing users to type and display text in almost any known written language.

To support this multitude of characters and scripts, Emacs closely follows the Unicode
Standard. The Unicode Standard assigns a unique number, called a codepoint, to each and
every character. The range of codepoints defined by Unicode, or the Unicode codespace,
is 0..#x10FFFF (in hexadecimal notation), inclusive. Emacs extends this range with code-
points in the range #x110000..#x3FFFFF, which it uses for representing characters that
are not unified with Unicode and raw 8-bit bytes that cannot be interpreted as characters.
Thus, a character codepoint in Emacs is a 22-bit integer number.

To conserve memory, Emacs does not hold fixed-length 22-bit numbers that are code-
points of text characters within buffers and strings. Rather, Emacs uses a variable-length
internal representation of characters, that stores each character as a sequence of 1 to 5 8-bit
bytes, depending on the magnitude of its codepoint1. For example, any ASCII character
takes up only 1 byte, a Latin-1 character takes up 2 bytes, etc. We call this representation
of text multibyte.

Outside Emacs, characters can be represented in many different encodings, such as ISO-
8859-1, GB-2312, Big-5, etc. Emacs converts between these external encodings and its
internal representation, as appropriate, when it reads text into a buffer or a string, or when
it writes text to a disk file or passes it to some other process.

Occasionally, Emacs needs to hold and manipulate encoded text or binary non-text data
in its buffers or strings. For example, when Emacs visits a file, it first reads the file’s text
verbatim into a buffer, and only then converts it to the internal representation. Before the
conversion, the buffer holds encoded text.

Encoded text is not really text, as far as Emacs is concerned, but rather a sequence of raw
8-bit bytes. We call buffers and strings that hold encoded text unibyte buffers and strings,
because Emacs treats them as a sequence of individual bytes. Usually, Emacs displays
unibyte buffers and strings as octal codes such as \237. We recommend that you never use
unibyte buffers and strings except for manipulating encoded text or binary non-text data.

In a buffer, the buffer-local value of the variable enable-multibyte-characters speci-
fies the representation used. The representation for a string is determined and recorded in
the string when the string is constructed.

[Variable]enable-multibyte-characters
This variable specifies the current buffer’s text representation. If it is non-nil, the
buffer contains multibyte text; otherwise, it contains unibyte encoded text or binary
non-text data.

1 This internal representation is based on one of the encodings defined by the Unicode Standard, called
UTF-8, for representing any Unicode codepoint, but Emacs extends UTF-8 to represent the additional
codepoints it uses for raw 8-bit bytes and characters not unified with Unicode.

Chapter 33: Non-ASCII Characters 183

You cannot set this variable directly; instead, use the function set-buffer-

multibyte to change a buffer’s representation.

[Function]position-bytes position
Buffer positions are measured in character units. This function returns the byte-
position corresponding to buffer position position in the current buffer. This is 1 at
the start of the buffer, and counts upward in bytes. If position is out of range, the
value is nil.

[Function]byte-to-position byte-position
Return the buffer position, in character units, corresponding to given byte-position
in the current buffer. If byte-position is out of range, the value is nil. In a multibyte
buffer, an arbitrary value of byte-position can be not at character boundary, but
inside a multibyte sequence representing a single character; in this case, this function
returns the buffer position of the character whose multibyte sequence includes byte-
position. In other words, the value does not change for all byte positions that belong
to the same character.

[Function]multibyte-string-p string
Return t if string is a multibyte string, nil otherwise.

[Function]string-bytes string
This function returns the number of bytes in string. If string is a multibyte string,
this can be greater than (length string).

[Function]unibyte-string &rest bytes
This function concatenates all its argument bytes and makes the result a unibyte
string.

33.2 Converting Text Representations

Emacs can convert unibyte text to multibyte; it can also convert multibyte text to unibyte,
provided that the multibyte text contains only ASCII and 8-bit raw bytes. In general, these
conversions happen when inserting text into a buffer, or when putting text from several
strings together in one string. You can also explicitly convert a string’s contents to either
representation.

Emacs chooses the representation for a string based on the text from which it is con-
structed. The general rule is to convert unibyte text to multibyte text when combining it
with other multibyte text, because the multibyte representation is more general and can
hold whatever characters the unibyte text has.

When inserting text into a buffer, Emacs converts the text to the buffer’s representation,
as specified by enable-multibyte-characters in that buffer. In particular, when you
insert multibyte text into a unibyte buffer, Emacs converts the text to unibyte, even though
this conversion cannot in general preserve all the characters that might be in the multibyte
text. The other natural alternative, to convert the buffer contents to multibyte, is not
acceptable because the buffer’s representation is a choice made by the user that cannot be
overridden automatically.

Chapter 33: Non-ASCII Characters 184

Converting unibyte text to multibyte text leaves ASCII characters unchanged, and con-
verts bytes with codes 128 through 255 to the multibyte representation of raw eight-bit
bytes.

Converting multibyte text to unibyte converts all ASCII and eight-bit characters to their
single-byte form, but loses information for non-ASCII characters by discarding all but the
low 8 bits of each character’s codepoint. Converting unibyte text to multibyte and back to
unibyte reproduces the original unibyte text.

The next two functions either return the argument string, or a newly created string with
no text properties.

[Function]string-to-multibyte string
This function returns a multibyte string containing the same sequence of characters
as string. If string is a multibyte string, it is returned unchanged. The function
assumes that string includes only ASCII characters and raw 8-bit bytes; the latter are
converted to their multibyte representation corresponding to the codepoints #x3FFF80
through #x3FFFFF, inclusive (see Section 33.1 [Text Representations], page 182).

[Function]string-to-unibyte string
This function returns a unibyte string containing the same sequence of characters as
string. It signals an error if string contains a non-ASCII character. If string is a
unibyte string, it is returned unchanged. Use this function for string arguments that
contain only ASCII and eight-bit characters.

[Function]byte-to-string byte
This function returns a unibyte string containing a single byte of character data,
character. It signals an error if character is not an integer between 0 and 255.

[Function]multibyte-char-to-unibyte char
This converts the multibyte character char to a unibyte character, and returns that
character. If char is neither ASCII nor eight-bit, the function returns -1.

[Function]unibyte-char-to-multibyte char
This convert the unibyte character char to a multibyte character, assuming char is
either ASCII or raw 8-bit byte.

33.3 Selecting a Representation

Sometimes it is useful to examine an existing buffer or string as multibyte when it was
unibyte, or vice versa.

[Function]set-buffer-multibyte multibyte
Set the representation type of the current buffer. If multibyte is non-nil, the buffer
becomes multibyte. If multibyte is nil, the buffer becomes unibyte.

This function leaves the buffer contents unchanged when viewed as a sequence of bytes.
As a consequence, it can change the contents viewed as characters; for instance, a se-
quence of three bytes which is treated as one character in multibyte representation will
count as three characters in unibyte representation. Eight-bit characters representing
raw bytes are an exception. They are represented by one byte in a unibyte buffer,

Chapter 33: Non-ASCII Characters 185

but when the buffer is set to multibyte, they are converted to two-byte sequences,
and vice versa.

This function sets enable-multibyte-characters to record which representation is
in use. It also adjusts various data in the buffer (including overlays, text properties
and markers) so that they cover the same text as they did before.

You cannot use set-buffer-multibyte on an indirect buffer, because indirect buffers
always inherit the representation of the base buffer.

[Function]string-as-unibyte string
If string is already a unibyte string, this function returns string itself. Otherwise,
it returns a new string with the same bytes as string, but treating each byte as a
separate character (so that the value may have more characters than string); as an
exception, each eight-bit character representing a raw byte is converted into a single
byte. The newly-created string contains no text properties.

[Function]string-as-multibyte string
If string is a multibyte string, this function returns string itself. Otherwise, it returns
a new string with the same bytes as string, but treating each multibyte sequence
as one character. This means that the value may have fewer characters than string
has. If a byte sequence in string is invalid as a multibyte representation of a single
character, each byte in the sequence is treated as a raw 8-bit byte. The newly-created
string contains no text properties.

33.4 Character Codes

The unibyte and multibyte text representations use different character codes. The valid
character codes for unibyte representation range from 0 to #xFF (255)—the values that can
fit in one byte. The valid character codes for multibyte representation range from 0 to
#x3FFFFF. In this code space, values 0 through #x7F (127) are for ASCII characters, and
values #x80 (128) through #x3FFF7F (4194175) are for non-ASCII characters.

Emacs character codes are a superset of the Unicode standard. Values 0 through
#x10FFFF (1114111) correspond to Unicode characters of the same codepoint; values
#x110000 (1114112) through #x3FFF7F (4194175) represent characters that are not unified
with Unicode; and values #x3FFF80 (4194176) through #x3FFFFF (4194303) represent
eight-bit raw bytes.

[Function]characterp charcode
This returns t if charcode is a valid character, and nil otherwise.

(characterp 65)

⇒ t

(characterp 4194303)

⇒ t

(characterp 4194304)

⇒ nil

[Function]max-char
This function returns the largest value that a valid character codepoint can have.

Chapter 33: Non-ASCII Characters 186

(characterp (max-char))

⇒ t

(characterp (1+ (max-char)))

⇒ nil

[Function]get-byte &optional pos string
This function returns the byte at character position pos in the current buffer. If
the current buffer is unibyte, this is literally the byte at that position. If the buffer
is multibyte, byte values of ASCII characters are the same as character codepoints,
whereas eight-bit raw bytes are converted to their 8-bit codes. The function signals
an error if the character at pos is non-ASCII.

The optional argument string means to get a byte value from that string instead of
the current buffer.

33.5 Character Properties

A character property is a named attribute of a character that specifies how the character
behaves and how it should be handled during text processing and display. Thus, character
properties are an important part of specifying the character’s semantics.

On the whole, Emacs follows the Unicode Standard in its implementation of character
properties. In particular, Emacs supports the Unicode Character Property Model, and the
Emacs character property database is derived from the Unicode Character Database (UCD).
See the Character Properties chapter of the Unicode Standard, for a detailed description
of Unicode character properties and their meaning. This section assumes you are already
familiar with that chapter of the Unicode Standard, and want to apply that knowledge to
Emacs Lisp programs.

In Emacs, each property has a name, which is a symbol, and a set of possible values,
whose types depend on the property; if a character does not have a certain property, the
value is nil. As a general rule, the names of character properties in Emacs are produced
from the corresponding Unicode properties by downcasing them and replacing each ‘_’
character with a dash ‘-’. For example, Canonical_Combining_Class becomes canonical-
combining-class. However, sometimes we shorten the names to make their use easier.

Some codepoints are left unassigned by the UCD—they don’t correspond to any char-
acter. The Unicode Standard defines default values of properties for such codepoints; they
are mentioned below for each property.

Here is the full list of value types for all the character properties that Emacs knows
about:

name Corresponds to the Name Unicode property. The value is a string consisting of
upper-case Latin letters A to Z, digits, spaces, and hyphen ‘-’ characters. For
unassigned codepoints, the value is an empty string.

general-category

Corresponds to the General_Category Unicode property. The value is a symbol
whose name is a 2-letter abbreviation of the character’s classification. For
unassigned codepoints, the value is Cn.

http://www.unicode.org/reports/tr23/
http://www.unicode.org/versions/Unicode5.0.0/ch04.pdf

Chapter 33: Non-ASCII Characters 187

canonical-combining-class

Corresponds to the Canonical_Combining_Class Unicode property. The value
is an integer number. For unassigned codepoints, the value is zero.

bidi-class

Corresponds to the Unicode Bidi_Class property. The value is a symbol whose
name is the Unicode directional type of the character. Emacs uses this property
when it reorders bidirectional text for display (see Section 38.23 [Bidirectional
Display], page 382). For unassigned codepoints, the value depends on the code
blocks to which the codepoint belongs: most unassigned codepoints get the
value of L (strong L), but some get values of AL (Arabic letter) or R (strong R).

decomposition

Corresponds to the Unicode properties Decomposition_Type and
Decomposition_Value. The value is a list, whose first element may be a
symbol representing a compatibility formatting tag, such as small2; the other
elements are characters that give the compatibility decomposition sequence of
this character. For unassigned codepoints, the value is the character itself.

decimal-digit-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Digit’. The value is an integer number. For unassigned
codepoints, the value is nil, which means NaN, or “not-a-number”.

digit-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Decimal’. The value is an integer number. Examples of such
characters include compatibility subscript and superscript digits, for which the
value is the corresponding number. For unassigned codepoints, the value is nil,
which means NaN.

numeric-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Numeric’. The value of this property is an integer or a
floating-point number. Examples of characters that have this property include
fractions, subscripts, superscripts, Roman numerals, currency numerators, and
encircled numbers. For example, the value of this property for the character
U+2155 (vulgar fraction one fifth) is 0.2. For unassigned codepoints,
the value is nil, which means NaN.

mirrored Corresponds to the Unicode Bidi_Mirrored property. The value of this prop-
erty is a symbol, either Y or N. For unassigned codepoints, the value is N.

mirroring

Corresponds to the Unicode Bidi_Mirroring_Glyph property. The value of this
property is a character whose glyph represents the mirror image of the char-
acter’s glyph, or nil if there’s no defined mirroring glyph. All the characters
whose mirrored property is N have nil as their mirroring property; however,

2 The Unicode specification writes these tag names inside ‘<..>’ brackets, but the tag names in Emacs do
not include the brackets; e.g. Unicode specifies ‘<small>’ where Emacs uses ‘small’.

Chapter 33: Non-ASCII Characters 188

some characters whose mirrored property is Y also have nil for mirroring,
because no appropriate characters exist with mirrored glyphs. Emacs uses
this property to display mirror images of characters when appropriate (see
Section 38.23 [Bidirectional Display], page 382). For unassigned codepoints,
the value is nil.

old-name Corresponds to the Unicode Unicode_1_Name property. The value is a string.
For unassigned codepoints, the value is an empty string.

iso-10646-comment

Corresponds to the Unicode ISO_Comment property. The value is a string. For
unassigned codepoints, the value is an empty string.

uppercase

Corresponds to the Unicode Simple_Uppercase_Mapping property. The value
of this property is a single character. For unassigned codepoints, the value is
nil, which means the character itself.

lowercase

Corresponds to the Unicode Simple_Lowercase_Mapping property. The value
of this property is a single character. For unassigned codepoints, the value is
nil, which means the character itself.

titlecase

Corresponds to the Unicode Simple_Titlecase_Mapping property. Title case
is a special form of a character used when the first character of a word needs to
be capitalized. The value of this property is a single character. For unassigned
codepoints, the value is nil, which means the character itself.

[Function]get-char-code-property char propname
This function returns the value of char’s propname property.

(get-char-code-property ? ’general-category)

⇒ Zs

(get-char-code-property ?1 ’general-category)

⇒ Nd

;; subscript 4

(get-char-code-property ?\u2084 ’digit-value)

⇒ 4

;; one fifth

(get-char-code-property ?\u2155 ’numeric-value)

⇒ 0.2

;; Roman IV

(get-char-code-property ?\u2163 ’numeric-value)

⇒ 4

[Function]char-code-property-description prop value
This function returns the description string of property prop’s value, or nil if value
has no description.

(char-code-property-description ’general-category ’Zs)

⇒ "Separator, Space"

Chapter 33: Non-ASCII Characters 189

(char-code-property-description ’general-category ’Nd)

⇒ "Number, Decimal Digit"

(char-code-property-description ’numeric-value ’1/5)

⇒ nil

[Function]put-char-code-property char propname value
This function stores value as the value of the property propname for the character
char.

[Variable]unicode-category-table
The value of this variable is a char-table (see Section 6.6 [Char-Tables], page 92,
vol. 1) that specifies, for each character, its Unicode General_Category property as
a symbol.

[Variable]char-script-table
The value of this variable is a char-table that specifies, for each character, a symbol
whose name is the script to which the character belongs, according to the Unicode
Standard classification of the Unicode code space into script-specific blocks. This
char-table has a single extra slot whose value is the list of all script symbols.

[Variable]char-width-table
The value of this variable is a char-table that specifies the width of each character in
columns that it will occupy on the screen.

[Variable]printable-chars
The value of this variable is a char-table that specifies, for each character, whether it
is printable or not. That is, if evaluating (aref printable-chars char) results in
t, the character is printable, and if it results in nil, it is not.

33.6 Character Sets

An Emacs character set, or charset, is a set of characters in which each character is assigned a
numeric code point. (The Unicode Standard calls this a coded character set.) Each Emacs
charset has a name which is a symbol. A single character can belong to any number of
different character sets, but it will generally have a different code point in each charset.
Examples of character sets include ascii, iso-8859-1, greek-iso8859-7, and windows-

1255. The code point assigned to a character in a charset is usually different from its code
point used in Emacs buffers and strings.

Emacs defines several special character sets. The character set unicode includes all the
characters whose Emacs code points are in the range 0..#x10FFFF. The character set emacs
includes all ASCII and non-ASCII characters. Finally, the eight-bit charset includes the
8-bit raw bytes; Emacs uses it to represent raw bytes encountered in text.

[Function]charsetp object
Returns t if object is a symbol that names a character set, nil otherwise.

[Variable]charset-list
The value is a list of all defined character set names.

Chapter 33: Non-ASCII Characters 190

[Function]charset-priority-list &optional highestp
This functions returns a list of all defined character sets ordered by their priority. If
highestp is non-nil, the function returns a single character set of the highest priority.

[Function]set-charset-priority &rest charsets
This function makes charsets the highest priority character sets.

[Function]char-charset character &optional restriction
This function returns the name of the character set of highest priority that character
belongs to. ASCII characters are an exception: for them, this function always returns
ascii.

If restriction is non-nil, it should be a list of charsets to search. Alternatively, it can
be a coding system, in which case the returned charset must be supported by that
coding system (see Section 33.9 [Coding Systems], page 193).

[Function]charset-plist charset
This function returns the property list of the character set charset. Although charset
is a symbol, this is not the same as the property list of that symbol. Charset properties
include important information about the charset, such as its documentation string,
short name, etc.

[Function]put-charset-property charset propname value
This function sets the propname property of charset to the given value.

[Function]get-charset-property charset propname
This function returns the value of charsets property propname.

[Command]list-charset-chars charset
This command displays a list of characters in the character set charset.

Emacs can convert between its internal representation of a character and the character’s
codepoint in a specific charset. The following two functions support these conversions.

[Function]decode-char charset code-point
This function decodes a character that is assigned a code-point in charset, to the
corresponding Emacs character, and returns it. If charset doesn’t contain a character
of that code point, the value is nil. If code-point doesn’t fit in a Lisp integer (see
Section 3.1 [Integer Basics], page 33, vol. 1), it can be specified as a cons cell (high
. low), where low are the lower 16 bits of the value and high are the high 16 bits.

[Function]encode-char char charset
This function returns the code point assigned to the character char in charset. If the
result does not fit in a Lisp integer, it is returned as a cons cell (high . low) that
fits the second argument of decode-char above. If charset doesn’t have a codepoint
for char, the value is nil.

The following function comes in handy for applying a certain function to all or part of
the characters in a charset:

Chapter 33: Non-ASCII Characters 191

[Function]map-charset-chars function charset &optional arg from-code to-code
Call function for characters in charset. function is called with two arguments. The
first one is a cons cell (from . to), where from and to indicate a range of characters
contained in charset. The second argument passed to function is arg.

By default, the range of codepoints passed to function includes all the characters
in charset, but optional arguments from-code and to-code limit that to the range
of characters between these two codepoints of charset. If either of them is nil, it
defaults to the first or last codepoint of charset, respectively.

33.7 Scanning for Character Sets

Sometimes it is useful to find out which character set a particular character belongs to.
One use for this is in determining which coding systems (see Section 33.9 [Coding Systems],
page 193) are capable of representing all of the text in question; another is to determine
the font(s) for displaying that text.

[Function]charset-after &optional pos
This function returns the charset of highest priority containing the character at po-
sition pos in the current buffer. If pos is omitted or nil, it defaults to the current
value of point. If pos is out of range, the value is nil.

[Function]find-charset-region beg end &optional translation
This function returns a list of the character sets of highest priority that contain
characters in the current buffer between positions beg and end.

The optional argument translation specifies a translation table to use for scanning the
text (see Section 33.8 [Translation of Characters], page 191). If it is non-nil, then
each character in the region is translated through this table, and the value returned
describes the translated characters instead of the characters actually in the buffer.

[Function]find-charset-string string &optional translation
This function returns a list of character sets of highest priority that contain characters
in string. It is just like find-charset-region, except that it applies to the contents
of string instead of part of the current buffer.

33.8 Translation of Characters

A translation table is a char-table (see Section 6.6 [Char-Tables], page 92, vol. 1) that speci-
fies a mapping of characters into characters. These tables are used in encoding and decoding,
and for other purposes. Some coding systems specify their own particular translation tables;
there are also default translation tables which apply to all other coding systems.

A translation table has two extra slots. The first is either nil or a translation table
that performs the reverse translation; the second is the maximum number of characters to
look up for translating sequences of characters (see the description of make-translation-
table-from-alist below).

[Function]make-translation-table &rest translations
This function returns a translation table based on the argument translations. Each
element of translations should be a list of elements of the form (from . to); this says
to translate the character from into to.

Chapter 33: Non-ASCII Characters 192

The arguments and the forms in each argument are processed in order, and if a
previous form already translates to to some other character, say to-alt, from is also
translated to to-alt.

During decoding, the translation table’s translations are applied to the characters that
result from ordinary decoding. If a coding system has the property :decode-translation-

table, that specifies the translation table to use, or a list of translation tables to apply in
sequence. (This is a property of the coding system, as returned by coding-system-get,
not a property of the symbol that is the coding system’s name. See Section 33.9.1 [Basic
Concepts of Coding Systems], page 193.) Finally, if standard-translation-table-for-
decode is non-nil, the resulting characters are translated by that table.

During encoding, the translation table’s translations are applied to the characters in
the buffer, and the result of translation is actually encoded. If a coding system has prop-
erty :encode-translation-table, that specifies the translation table to use, or a list of
translation tables to apply in sequence. In addition, if the variable standard-translation-
table-for-encode is non-nil, it specifies the translation table to use for translating the
result.

[Variable]standard-translation-table-for-decode
This is the default translation table for decoding. If a coding systems specifies its own
translation tables, the table that is the value of this variable, if non-nil, is applied
after them.

[Variable]standard-translation-table-for-encode
This is the default translation table for encoding. If a coding systems specifies its own
translation tables, the table that is the value of this variable, if non-nil, is applied
after them.

[Variable]translation-table-for-input
Self-inserting characters are translated through this translation table before they are
inserted. Search commands also translate their input through this table, so they can
compare more reliably with what’s in the buffer.

This variable automatically becomes buffer-local when set.

[Function]make-translation-table-from-vector vec
This function returns a translation table made from vec that is an array of 256
elements to map bytes (values 0 through #xFF) to characters. Elements may be nil
for untranslated bytes. The returned table has a translation table for reverse mapping
in the first extra slot, and the value 1 in the second extra slot.

This function provides an easy way to make a private coding system that maps each
byte to a specific character. You can specify the returned table and the reverse
translation table using the properties :decode-translation-table and :encode-

translation-table respectively in the props argument to define-coding-system.

[Function]make-translation-table-from-alist alist
This function is similar to make-translation-table but returns a complex trans-
lation table rather than a simple one-to-one mapping. Each element of alist is of
the form (from . to), where from and to are either characters or vectors specifying

Chapter 33: Non-ASCII Characters 193

a sequence of characters. If from is a character, that character is translated to to
(i.e. to a character or a character sequence). If from is a vector of characters, that
sequence is translated to to. The returned table has a translation table for reverse
mapping in the first extra slot, and the maximum length of all the from character
sequences in the second extra slot.

33.9 Coding Systems

When Emacs reads or writes a file, and when Emacs sends text to a subprocess or receives
text from a subprocess, it normally performs character code conversion and end-of-line
conversion as specified by a particular coding system.

How to define a coding system is an arcane matter, and is not documented here.

33.9.1 Basic Concepts of Coding Systems

Character code conversion involves conversion between the internal representation of charac-
ters used inside Emacs and some other encoding. Emacs supports many different encodings,
in that it can convert to and from them. For example, it can convert text to or from en-
codings such as Latin 1, Latin 2, Latin 3, Latin 4, Latin 5, and several variants of ISO
2022. In some cases, Emacs supports several alternative encodings for the same charac-
ters; for example, there are three coding systems for the Cyrillic (Russian) alphabet: ISO,
Alternativnyj, and KOI8.

Every coding system specifies a particular set of character code conversions, but the cod-
ing system undecided is special: it leaves the choice unspecified, to be chosen heuristically
for each file, based on the file’s data.

In general, a coding system doesn’t guarantee roundtrip identity: decoding a byte se-
quence using coding system, then encoding the resulting text in the same coding system,
can produce a different byte sequence. But some coding systems do guarantee that the byte
sequence will be the same as what you originally decoded. Here are a few examples:

iso-8859-1, utf-8, big5, shift jis, euc-jp

Encoding buffer text and then decoding the result can also fail to reproduce the original
text. For instance, if you encode a character with a coding system which does not support
that character, the result is unpredictable, and thus decoding it using the same coding
system may produce a different text. Currently, Emacs can’t report errors that result from
encoding unsupported characters.

End of line conversion handles three different conventions used on various systems for
representing end of line in files. The Unix convention, used on GNU and Unix systems, is to
use the linefeed character (also called newline). The DOS convention, used on MS-Windows
and MS-DOS systems, is to use a carriage-return and a linefeed at the end of a line. The
Mac convention is to use just carriage-return.

Base coding systems such as latin-1 leave the end-of-line conversion unspecified, to be
chosen based on the data. Variant coding systems such as latin-1-unix, latin-1-dos and
latin-1-mac specify the end-of-line conversion explicitly as well. Most base coding systems
have three corresponding variants whose names are formed by adding ‘-unix’, ‘-dos’ and
‘-mac’.

The coding system raw-text is special in that it prevents character code conversion,
and causes the buffer visited with this coding system to be a unibyte buffer. For historical

Chapter 33: Non-ASCII Characters 194

reasons, you can save both unibyte and multibyte text with this coding system. When you
use raw-text to encode multibyte text, it does perform one character code conversion: it
converts eight-bit characters to their single-byte external representation. raw-text does
not specify the end-of-line conversion, allowing that to be determined as usual by the data,
and has the usual three variants which specify the end-of-line conversion.

no-conversion (and its alias binary) is equivalent to raw-text-unix: it specifies no
conversion of either character codes or end-of-line.

The coding system utf-8-emacs specifies that the data is represented in the internal
Emacs encoding (see Section 33.1 [Text Representations], page 182). This is like raw-text
in that no code conversion happens, but different in that the result is multibyte data. The
name emacs-internal is an alias for utf-8-emacs.

[Function]coding-system-get coding-system property
This function returns the specified property of the coding system coding-system.
Most coding system properties exist for internal purposes, but one that you might
find useful is :mime-charset. That property’s value is the name used in MIME for
the character coding which this coding system can read and write. Examples:

(coding-system-get ’iso-latin-1 :mime-charset)

⇒ iso-8859-1

(coding-system-get ’iso-2022-cn :mime-charset)

⇒ iso-2022-cn

(coding-system-get ’cyrillic-koi8 :mime-charset)

⇒ koi8-r

The value of the :mime-charset property is also defined as an alias for the coding
system.

[Function]coding-system-aliases coding-system
This function returns the list of aliases of coding-system.

33.9.2 Encoding and I/O

The principal purpose of coding systems is for use in reading and writing files. The function
insert-file-contents uses a coding system to decode the file data, and write-region

uses one to encode the buffer contents.

You can specify the coding system to use either explicitly (see Section 33.9.6 [Specifying
Coding Systems], page 202), or implicitly using a default mechanism (see Section 33.9.5
[Default Coding Systems], page 199). But these methods may not completely specify what
to do. For example, they may choose a coding system such as undefined which leaves the
character code conversion to be determined from the data. In these cases, the I/O operation
finishes the job of choosing a coding system. Very often you will want to find out afterwards
which coding system was chosen.

[Variable]buffer-file-coding-system
This buffer-local variable records the coding system used for saving the buffer and
for writing part of the buffer with write-region. If the text to be written cannot
be safely encoded using the coding system specified by this variable, these operations
select an alternative encoding by calling the function select-safe-coding-system

(see Section 33.9.4 [User-Chosen Coding Systems], page 198). If selecting a different

Chapter 33: Non-ASCII Characters 195

encoding requires to ask the user to specify a coding system, buffer-file-coding-
system is updated to the newly selected coding system.

buffer-file-coding-system does not affect sending text to a subprocess.

[Variable]save-buffer-coding-system
This variable specifies the coding system for saving the buffer (by overriding buffer-

file-coding-system). Note that it is not used for write-region.

When a command to save the buffer starts out to use buffer-file-coding-system

(or save-buffer-coding-system), and that coding system cannot handle the ac-
tual text in the buffer, the command asks the user to choose another coding system
(by calling select-safe-coding-system). After that happens, the command also
updates buffer-file-coding-system to represent the coding system that the user
specified.

[Variable]last-coding-system-used
I/O operations for files and subprocesses set this variable to the coding system name
that was used. The explicit encoding and decoding functions (see Section 33.9.7
[Explicit Encoding], page 203) set it too.

Warning: Since receiving subprocess output sets this variable, it can change whenever
Emacs waits; therefore, you should copy the value shortly after the function call that
stores the value you are interested in.

The variable selection-coding-system specifies how to encode selections for the win-
dow system. See Section 29.18 [Window System Selections], page 91.

[Variable]file-name-coding-system
The variable file-name-coding-system specifies the coding system to use for en-
coding file names. Emacs encodes file names using that coding system for all file
operations. If file-name-coding-system is nil, Emacs uses a default coding system
determined by the selected language environment. In the default language environ-
ment, any non-ASCII characters in file names are not encoded specially; they appear
in the file system using the internal Emacs representation.

Warning: if you change file-name-coding-system (or the language environment) in
the middle of an Emacs session, problems can result if you have already visited files whose
names were encoded using the earlier coding system and are handled differently under the
new coding system. If you try to save one of these buffers under the visited file name, saving
may use the wrong file name, or it may get an error. If such a problem happens, use C-x

C-w to specify a new file name for that buffer.

33.9.3 Coding Systems in Lisp

Here are the Lisp facilities for working with coding systems:

[Function]coding-system-list &optional base-only
This function returns a list of all coding system names (symbols). If base-only is
non-nil, the value includes only the base coding systems. Otherwise, it includes alias
and variant coding systems as well.

Chapter 33: Non-ASCII Characters 196

[Function]coding-system-p object
This function returns t if object is a coding system name or nil.

[Function]check-coding-system coding-system
This function checks the validity of coding-system. If that is valid, it returns coding-
system. If coding-system is nil, the function return nil. For any other values, it
signals an error whose error-symbol is coding-system-error (see Section 10.5.3.1
[Signaling Errors], page 128, vol. 1).

[Function]coding-system-eol-type coding-system
This function returns the type of end-of-line (a.k.a. eol) conversion used by coding-
system. If coding-system specifies a certain eol conversion, the return value is an
integer 0, 1, or 2, standing for unix, dos, and mac, respectively. If coding-system
doesn’t specify eol conversion explicitly, the return value is a vector of coding systems,
each one with one of the possible eol conversion types, like this:

(coding-system-eol-type ’latin-1)

⇒ [latin-1-unix latin-1-dos latin-1-mac]

If this function returns a vector, Emacs will decide, as part of the text encoding or
decoding process, what eol conversion to use. For decoding, the end-of-line format
of the text is auto-detected, and the eol conversion is set to match it (e.g., DOS-
style CRLF format will imply dos eol conversion). For encoding, the eol conversion is
taken from the appropriate default coding system (e.g., default value of buffer-file-
coding-system for buffer-file-coding-system), or from the default eol conversion
appropriate for the underlying platform.

[Function]coding-system-change-eol-conversion coding-system eol-type
This function returns a coding system which is like coding-system except for its eol
conversion, which is specified by eol-type. eol-type should be unix, dos, mac, or
nil. If it is nil, the returned coding system determines the end-of-line conversion
from the data.

eol-type may also be 0, 1 or 2, standing for unix, dos and mac, respectively.

[Function]coding-system-change-text-conversion eol-coding text-coding
This function returns a coding system which uses the end-of-line conversion of eol-
coding, and the text conversion of text-coding. If text-coding is nil, it returns
undecided, or one of its variants according to eol-coding.

[Function]find-coding-systems-region from to
This function returns a list of coding systems that could be used to encode a text
between from and to. All coding systems in the list can safely encode any multibyte
characters in that portion of the text.

If the text contains no multibyte characters, the function returns the list (undecided).

[Function]find-coding-systems-string string
This function returns a list of coding systems that could be used to encode the text
of string. All coding systems in the list can safely encode any multibyte characters in
string. If the text contains no multibyte characters, this returns the list (undecided).

Chapter 33: Non-ASCII Characters 197

[Function]find-coding-systems-for-charsets charsets
This function returns a list of coding systems that could be used to encode all the
character sets in the list charsets.

[Function]check-coding-systems-region start end coding-system-list
This function checks whether coding systems in the list coding-system-list can
encode all the characters in the region between start and end. If all of the coding sys-
tems in the list can encode the specified text, the function returns nil. If some coding
systems cannot encode some of the characters, the value is an alist, each element of
which has the form (coding-system1 pos1 pos2 ...), meaning that coding-system1
cannot encode characters at buffer positions pos1, pos2,

start may be a string, in which case end is ignored and the returned value references
string indices instead of buffer positions.

[Function]detect-coding-region start end &optional highest
This function chooses a plausible coding system for decoding the text from start to
end. This text should be a byte sequence, i.e. unibyte text or multibyte text with only
ASCII and eight-bit characters (see Section 33.9.7 [Explicit Encoding], page 203).

Normally this function returns a list of coding systems that could handle decoding
the text that was scanned. They are listed in order of decreasing priority. But if
highest is non-nil, then the return value is just one coding system, the one that is
highest in priority.

If the region contains only ASCII characters except for such ISO-2022 control charac-
ters ISO-2022 as ESC, the value is undecided or (undecided), or a variant specifying
end-of-line conversion, if that can be deduced from the text.

If the region contains null bytes, the value is no-conversion, even if the region
contains text encoded in some coding system.

[Function]detect-coding-string string &optional highest
This function is like detect-coding-region except that it operates on the contents
of string instead of bytes in the buffer.

[Variable]inhibit-null-byte-detection
If this variable has a non-nil value, null bytes are ignored when detecting the encoding
of a region or a string. This allows to correctly detect the encoding of text that
contains null bytes, such as Info files with Index nodes.

[Variable]inhibit-iso-escape-detection
If this variable has a non-nil value, ISO-2022 escape sequences are ignored when
detecting the encoding of a region or a string. The result is that no text is ever
detected as encoded in some ISO-2022 encoding, and all escape sequences become
visible in a buffer. Warning: Use this variable with extreme caution, because many
files in the Emacs distribution use ISO-2022 encoding.

[Function]coding-system-charset-list coding-system
This function returns the list of character sets (see Section 33.6 [Character Sets],
page 189) supported by coding-system. Some coding systems that support too many
character sets to list them all yield special values:

Chapter 33: Non-ASCII Characters 198

• If coding-system supports all the ISO-2022 charsets, the value is iso-2022.

• If coding-system supports all Emacs characters, the value is (emacs).

• If coding-system supports all emacs-mule characters, the value is emacs-mule.

• If coding-system supports all Unicode characters, the value is (unicode).

See [Process Information], page 269, in particular the description of the functions
process-coding-system and set-process-coding-system, for how to examine or set
the coding systems used for I/O to a subprocess.

33.9.4 User-Chosen Coding Systems

[Function]select-safe-coding-system from to &optional default-coding-system
accept-default-p file

This function selects a coding system for encoding specified text, asking the user
to choose if necessary. Normally the specified text is the text in the current buffer
between from and to. If from is a string, the string specifies the text to encode, and
to is ignored.

If the specified text includes raw bytes (see Section 33.1 [Text Representations],
page 182), select-safe-coding-system suggests raw-text for its encoding.

If default-coding-system is non-nil, that is the first coding system to try; if that
can handle the text, select-safe-coding-system returns that coding system. It
can also be a list of coding systems; then the function tries each of them one by
one. After trying all of them, it next tries the current buffer’s value of buffer-
file-coding-system (if it is not undecided), then the default value of buffer-

file-coding-system and finally the user’s most preferred coding system, which the
user can set using the command prefer-coding-system (see Section “Recognizing
Coding Systems” in The GNU Emacs Manual).

If one of those coding systems can safely encode all the specified text, select-safe-
coding-system chooses it and returns it. Otherwise, it asks the user to choose from
a list of coding systems which can encode all the text, and returns the user’s choice.

default-coding-system can also be a list whose first element is t and whose other
elements are coding systems. Then, if no coding system in the list can handle the
text, select-safe-coding-system queries the user immediately, without trying any
of the three alternatives described above.

The optional argument accept-default-p, if non-nil, should be a function to determine
whether a coding system selected without user interaction is acceptable. select-

safe-coding-system calls this function with one argument, the base coding system
of the selected coding system. If accept-default-p returns nil, select-safe-coding-
system rejects the silently selected coding system, and asks the user to select a coding
system from a list of possible candidates.

If the variable select-safe-coding-system-accept-default-p is non-nil, it
should be a function taking a single argument. It is used in place of accept-default-p,
overriding any value supplied for this argument.

As a final step, before returning the chosen coding system, select-safe-coding-
system checks whether that coding system is consistent with what would be selected

Chapter 33: Non-ASCII Characters 199

if the contents of the region were read from a file. (If not, this could lead to data
corruption in a file subsequently re-visited and edited.) Normally, select-safe-

coding-system uses buffer-file-name as the file for this purpose, but if file is
non-nil, it uses that file instead (this can be relevant for write-region and similar
functions). If it detects an apparent inconsistency, select-safe-coding-system

queries the user before selecting the coding system.

Here are two functions you can use to let the user specify a coding system, with com-
pletion. See Section 20.6 [Completion], page 291, vol. 1.

[Function]read-coding-system prompt &optional default
This function reads a coding system using the minibuffer, prompting with string
prompt, and returns the coding system name as a symbol. If the user enters null
input, default specifies which coding system to return. It should be a symbol or a
string.

[Function]read-non-nil-coding-system prompt
This function reads a coding system using the minibuffer, prompting with string
prompt, and returns the coding system name as a symbol. If the user tries to enter
null input, it asks the user to try again. See Section 33.9 [Coding Systems], page 193.

33.9.5 Default Coding Systems

This section describes variables that specify the default coding system for certain files or
when running certain subprograms, and the function that I/O operations use to access
them.

The idea of these variables is that you set them once and for all to the defaults you want,
and then do not change them again. To specify a particular coding system for a particular
operation in a Lisp program, don’t change these variables; instead, override them using
coding-system-for-read and coding-system-for-write (see Section 33.9.6 [Specifying
Coding Systems], page 202).

[User Option]auto-coding-regexp-alist
This variable is an alist of text patterns and corresponding coding systems. Each
element has the form (regexp . coding-system); a file whose first few kilobytes
match regexp is decoded with coding-system when its contents are read into a buffer.
The settings in this alist take priority over coding: tags in the files and the contents
of file-coding-system-alist (see below). The default value is set so that Emacs
automatically recognizes mail files in Babyl format and reads them with no code
conversions.

[User Option]file-coding-system-alist
This variable is an alist that specifies the coding systems to use for reading and writing
particular files. Each element has the form (pattern . coding), where pattern is a
regular expression that matches certain file names. The element applies to file names
that match pattern.

The cdr of the element, coding, should be either a coding system, a cons cell con-
taining two coding systems, or a function name (a symbol with a function definition).
If coding is a coding system, that coding system is used for both reading the file and

Chapter 33: Non-ASCII Characters 200

writing it. If coding is a cons cell containing two coding systems, its car specifies
the coding system for decoding, and its cdr specifies the coding system for encoding.

If coding is a function name, the function should take one argument, a list of all ar-
guments passed to find-operation-coding-system. It must return a coding system
or a cons cell containing two coding systems. This value has the same meaning as
described above.

If coding (or what returned by the above function) is undecided, the normal code-
detection is performed.

[User Option]auto-coding-alist
This variable is an alist that specifies the coding systems to use for reading and writing
particular files. Its form is like that of file-coding-system-alist, but, unlike the
latter, this variable takes priority over any coding: tags in the file.

[Variable]process-coding-system-alist
This variable is an alist specifying which coding systems to use for a subprocess,
depending on which program is running in the subprocess. It works like file-coding-
system-alist, except that pattern is matched against the program name used to
start the subprocess. The coding system or systems specified in this alist are used
to initialize the coding systems used for I/O to the subprocess, but you can specify
other coding systems later using set-process-coding-system.

Warning: Coding systems such as undecided, which determine the coding system from
the data, do not work entirely reliably with asynchronous subprocess output. This is because
Emacs handles asynchronous subprocess output in batches, as it arrives. If the coding
system leaves the character code conversion unspecified, or leaves the end-of-line conversion
unspecified, Emacs must try to detect the proper conversion from one batch at a time, and
this does not always work.

Therefore, with an asynchronous subprocess, if at all possible, use a coding system which
determines both the character code conversion and the end of line conversion—that is, one
like latin-1-unix, rather than undecided or latin-1.

[Variable]network-coding-system-alist
This variable is an alist that specifies the coding system to use for network streams.
It works much like file-coding-system-alist, with the difference that the pattern
in an element may be either a port number or a regular expression. If it is a regular
expression, it is matched against the network service name used to open the network
stream.

[Variable]default-process-coding-system
This variable specifies the coding systems to use for subprocess (and network stream)
input and output, when nothing else specifies what to do.

The value should be a cons cell of the form (input-coding . output-coding). Here
input-coding applies to input from the subprocess, and output-coding applies to
output to it.

[User Option]auto-coding-functions
This variable holds a list of functions that try to determine a coding system for a file
based on its undecoded contents.

Chapter 33: Non-ASCII Characters 201

Each function in this list should be written to look at text in the current buffer, but
should not modify it in any way. The buffer will contain undecoded text of parts
of the file. Each function should take one argument, size, which tells it how many
characters to look at, starting from point. If the function succeeds in determining a
coding system for the file, it should return that coding system. Otherwise, it should
return nil.

If a file has a ‘coding:’ tag, that takes precedence, so these functions won’t be called.

[Function]find-auto-coding filename size
This function tries to determine a suitable coding system for filename. It examines
the buffer visiting the named file, using the variables documented above in sequence,
until it finds a match for one of the rules specified by these variables. It then returns
a cons cell of the form (coding . source), where coding is the coding system to use
and source is a symbol, one of auto-coding-alist, auto-coding-regexp-alist,
:coding, or auto-coding-functions, indicating which one supplied the matching
rule. The value :coding means the coding system was specified by the coding: tag
in the file (see Section “coding tag” in The GNU Emacs Manual). The order of looking
for a matching rule is auto-coding-alist first, then auto-coding-regexp-alist,
then the coding: tag, and lastly auto-coding-functions. If no matching rule was
found, the function returns nil.

The second argument size is the size of text, in characters, following point. The
function examines text only within size characters after point. Normally, the buffer
should be positioned at the beginning when this function is called, because one of the
places for the coding: tag is the first one or two lines of the file; in that case, size
should be the size of the buffer.

[Function]set-auto-coding filename size
This function returns a suitable coding system for file filename. It uses find-auto-
coding to find the coding system. If no coding system could be determined, the
function returns nil. The meaning of the argument size is like in find-auto-coding.

[Function]find-operation-coding-system operation &rest arguments
This function returns the coding system to use (by default) for performing operation
with arguments. The value has this form:

(decoding-system . encoding-system)

The first element, decoding-system, is the coding system to use for decoding (in case
operation does decoding), and encoding-system is the coding system for encoding (in
case operation does encoding).

The argument operation is a symbol; it should be one of write-region, start-

process, call-process, call-process-region, insert-file-contents, or open-
network-stream. These are the names of the Emacs I/O primitives that can do
character code and eol conversion.

The remaining arguments should be the same arguments that might be given to the
corresponding I/O primitive. Depending on the primitive, one of those arguments is
selected as the target. For example, if operation does file I/O, whichever argument
specifies the file name is the target. For subprocess primitives, the process name is
the target. For open-network-stream, the target is the service name or port number.

Chapter 33: Non-ASCII Characters 202

Depending on operation, this function looks up the target in file-coding-system-

alist, process-coding-system-alist, or network-coding-system-alist. If the
target is found in the alist, find-operation-coding-system returns its association
in the alist; otherwise it returns nil.

If operation is insert-file-contents, the argument corresponding to the target may
be a cons cell of the form (filename . buffer)). In that case, filename is a file name
to look up in file-coding-system-alist, and buffer is a buffer that contains the
file’s contents (not yet decoded). If file-coding-system-alist specifies a function
to call for this file, and that function needs to examine the file’s contents (as it usually
does), it should examine the contents of buffer instead of reading the file.

33.9.6 Specifying a Coding System for One Operation

You can specify the coding system for a specific operation by binding the variables coding-
system-for-read and/or coding-system-for-write.

[Variable]coding-system-for-read
If this variable is non-nil, it specifies the coding system to use for reading a file, or
for input from a synchronous subprocess.

It also applies to any asynchronous subprocess or network stream, but in a different
way: the value of coding-system-for-read when you start the subprocess or open
the network stream specifies the input decoding method for that subprocess or net-
work stream. It remains in use for that subprocess or network stream unless and until
overridden.

The right way to use this variable is to bind it with let for a specific I/O operation.
Its global value is normally nil, and you should not globally set it to any other value.
Here is an example of the right way to use the variable:

;; Read the file with no character code conversion.
;; Assume crlf represents end-of-line.
(let ((coding-system-for-read ’emacs-mule-dos))

(insert-file-contents filename))

When its value is non-nil, this variable takes precedence over all other methods of
specifying a coding system to use for input, including file-coding-system-alist,
process-coding-system-alist and network-coding-system-alist.

[Variable]coding-system-for-write
This works much like coding-system-for-read, except that it applies to output
rather than input. It affects writing to files, as well as sending output to subprocesses
and net connections.

When a single operation does both input and output, as do call-process-region

and start-process, both coding-system-for-read and coding-system-for-

write affect it.

[User Option]inhibit-eol-conversion
When this variable is non-nil, no end-of-line conversion is done, no matter which
coding system is specified. This applies to all the Emacs I/O and subprocess primi-
tives, and to the explicit encoding and decoding functions (see Section 33.9.7 [Explicit
Encoding], page 203).

Chapter 33: Non-ASCII Characters 203

Sometimes, you need to prefer several coding systems for some operation, rather than
fix a single one. Emacs lets you specify a priority order for using coding systems. This
ordering affects the sorting of lists of coding systems returned by functions such as find-
coding-systems-region (see Section 33.9.3 [Lisp and Coding Systems], page 195).

[Function]coding-system-priority-list &optional highestp
This function returns the list of coding systems in the order of their current priorities.
Optional argument highestp, if non-nil, means return only the highest priority coding
system.

[Function]set-coding-system-priority &rest coding-systems
This function puts coding-systems at the beginning of the priority list for coding
systems, thus making their priority higher than all the rest.

[Macro]with-coding-priority coding-systems &rest body. . .
This macro execute body, like progn does (see Section 10.1 [Sequencing], page 120,
vol. 1), with coding-systems at the front of the priority list for coding systems. coding-
systems should be a list of coding systems to prefer during execution of body.

33.9.7 Explicit Encoding and Decoding

All the operations that transfer text in and out of Emacs have the ability to use a coding
system to encode or decode the text. You can also explicitly encode and decode text using
the functions in this section.

The result of encoding, and the input to decoding, are not ordinary text. They logically
consist of a series of byte values; that is, a series of ASCII and eight-bit characters. In unibyte
buffers and strings, these characters have codes in the range 0 through #xFF (255). In a
multibyte buffer or string, eight-bit characters have character codes higher than #xFF (see
Section 33.1 [Text Representations], page 182), but Emacs transparently converts them to
their single-byte values when you encode or decode such text.

The usual way to read a file into a buffer as a sequence of bytes, so you can decode the
contents explicitly, is with insert-file-contents-literally (see Section 25.3 [Reading
from Files], page 467, vol. 1); alternatively, specify a non-nil rawfile argument when visiting
a file with find-file-noselect. These methods result in a unibyte buffer.

The usual way to use the byte sequence that results from explicitly encoding text is to
copy it to a file or process—for example, to write it with write-region (see Section 25.4
[Writing to Files], page 468, vol. 1), and suppress encoding by binding coding-system-

for-write to no-conversion.

Here are the functions to perform explicit encoding or decoding. The encoding functions
produce sequences of bytes; the decoding functions are meant to operate on sequences of
bytes. All of these functions discard text properties. They also set last-coding-system-
used to the precise coding system they used.

[Command]encode-coding-region start end coding-system &optional destination
This command encodes the text from start to end according to coding system coding-
system. Normally, the encoded text replaces the original text in the buffer, but the
optional argument destination can change that. If destination is a buffer, the encoded
text is inserted in that buffer after point (point does not move); if it is t, the command
returns the encoded text as a unibyte string without inserting it.

Chapter 33: Non-ASCII Characters 204

If encoded text is inserted in some buffer, this command returns the length of the
encoded text.

The result of encoding is logically a sequence of bytes, but the buffer remains multi-
byte if it was multibyte before, and any 8-bit bytes are converted to their multibyte
representation (see Section 33.1 [Text Representations], page 182).

Do not use undecided for coding-system when encoding text, since that may lead
to unexpected results. Instead, use select-safe-coding-system (see Section 33.9.4
[User-Chosen Coding Systems], page 198) to suggest a suitable encoding, if there’s no
obvious pertinent value for coding-system.

[Function]encode-coding-string string coding-system &optional nocopy buffer
This function encodes the text in string according to coding system coding-system.
It returns a new string containing the encoded text, except when nocopy is non-nil,
in which case the function may return string itself if the encoding operation is trivial.
The result of encoding is a unibyte string.

[Command]decode-coding-region start end coding-system &optional destination
This command decodes the text from start to end according to coding system coding-
system. To make explicit decoding useful, the text before decoding ought to be a
sequence of byte values, but both multibyte and unibyte buffers are acceptable (in
the multibyte case, the raw byte values should be represented as eight-bit characters).
Normally, the decoded text replaces the original text in the buffer, but the optional
argument destination can change that. If destination is a buffer, the decoded text
is inserted in that buffer after point (point does not move); if it is t, the command
returns the decoded text as a multibyte string without inserting it.

If decoded text is inserted in some buffer, this command returns the length of the
decoded text.

This command puts a charset text property on the decoded text. The value of the
property states the character set used to decode the original text.

[Function]decode-coding-string string coding-system &optional nocopy buffer
This function decodes the text in string according to coding-system. It returns a new
string containing the decoded text, except when nocopy is non-nil, in which case the
function may return string itself if the decoding operation is trivial. To make explicit
decoding useful, the contents of string ought to be a unibyte string with a sequence
of byte values, but a multibyte string is also acceptable (assuming it contains 8-bit
bytes in their multibyte form).

If optional argument buffer specifies a buffer, the decoded text is inserted in that
buffer after point (point does not move). In this case, the return value is the length
of the decoded text.

This function puts a charset text property on the decoded text. The value of the
property states the character set used to decode the original text:

(decode-coding-string "Gr\374ss Gott" ’latin-1)

⇒ #("Grüss Gott" 0 9 (charset iso-8859-1))

Chapter 33: Non-ASCII Characters 205

[Function]decode-coding-inserted-region from to filename &optional visit beg
end replace

This function decodes the text from from to to as if it were being read from file
filename using insert-file-contents using the rest of the arguments provided.

The normal way to use this function is after reading text from a file without decoding,
if you decide you would rather have decoded it. Instead of deleting the text and
reading it again, this time with decoding, you can call this function.

33.9.8 Terminal I/O Encoding

Emacs can decode keyboard input using a coding system, and encode terminal output.
This is useful for terminals that transmit or display text using a particular encoding such
as Latin-1. Emacs does not set last-coding-system-used for encoding or decoding of
terminal I/O.

[Function]keyboard-coding-system &optional terminal
This function returns the coding system that is in use for decoding keyboard input
from terminal—or nil if no coding system is to be used for that terminal. If terminal
is omitted or nil, it means the selected frame’s terminal. See Section 29.2 [Multiple
Terminals], page 67.

[Command]set-keyboard-coding-system coding-system &optional terminal
This command specifies coding-system as the coding system to use for decoding key-
board input from terminal. If coding-system is nil, that means do not decode key-
board input. If terminal is a frame, it means that frame’s terminal; if it is nil, that
means the currently selected frame’s terminal. See Section 29.2 [Multiple Terminals],
page 67.

[Function]terminal-coding-system &optional terminal
This function returns the coding system that is in use for encoding terminal output
from terminal—or nil if the output is not encoded. If terminal is a frame, it means
that frame’s terminal; if it is nil, that means the currently selected frame’s terminal.

[Command]set-terminal-coding-system coding-system &optional terminal
This command specifies coding-system as the coding system to use for encoding ter-
minal output from terminal. If coding-system is nil, terminal output is not encoded.
If terminal is a frame, it means that frame’s terminal; if it is nil, that means the
currently selected frame’s terminal.

33.9.9 MS-DOS File Types

On MS-DOS and Microsoft Windows, Emacs guesses the appropriate end-of-line conversion
for a file by looking at the file’s name. This feature classifies files as text files and binary
files. By “binary file” we mean a file of literal byte values that are not necessarily meant to
be characters; Emacs does no end-of-line conversion and no character code conversion for
them. On the other hand, the bytes in a text file are intended to represent characters; when
you create a new file whose name implies that it is a text file, Emacs uses DOS end-of-line
conversion.

Chapter 33: Non-ASCII Characters 206

[Variable]buffer-file-type
This variable, automatically buffer-local in each buffer, records the file type of the
buffer’s visited file. When a buffer does not specify a coding system with buffer-

file-coding-system, this variable is used to determine which coding system to use
when writing the contents of the buffer. It should be nil for text, t for binary. If it
is t, the coding system is no-conversion. Otherwise, undecided-dos is used.

Normally this variable is set by visiting a file; it is set to nil if the file was visited
without any actual conversion.

Its default value is used to decide how to handle files for which file-name-buffer-

file-type-alist says nothing about the type: If the default value is non-nil, then
these files are treated as binary: the coding system no-conversion is used. Other-
wise, nothing special is done for them—the coding system is deduced solely from the
file contents, in the usual Emacs fashion.

[User Option]file-name-buffer-file-type-alist
This variable holds an alist for recognizing text and binary files. Each element has
the form (regexp . type), where regexp is matched against the file name, and type
may be nil for text, t for binary, or a function to call to compute which. If it is a
function, then it is called with a single argument (the file name) and should return t

or nil.

When running on MS-DOS or MS-Windows, Emacs checks this alist to decide which
coding system to use when reading a file. For a text file, undecided-dos is used. For
a binary file, no-conversion is used.

If no element in this alist matches a given file name, then the default value of buffer-
file-type says how to treat the file.

33.10 Input Methods

Input methods provide convenient ways of entering non-ASCII characters from the keyboard.
Unlike coding systems, which translate non-ASCII characters to and from encodings meant
to be read by programs, input methods provide human-friendly commands. (See Section
“Input Methods” in The GNU Emacs Manual, for information on how users use input
methods to enter text.) How to define input methods is not yet documented in this manual,
but here we describe how to use them.

Each input method has a name, which is currently a string; in the future, symbols may
also be usable as input method names.

[Variable]current-input-method
This variable holds the name of the input method now active in the current buffer.
(It automatically becomes local in each buffer when set in any fashion.) It is nil if
no input method is active in the buffer now.

[User Option]default-input-method
This variable holds the default input method for commands that choose an input
method. Unlike current-input-method, this variable is normally global.

Chapter 33: Non-ASCII Characters 207

[Command]set-input-method input-method
This command activates input method input-method for the current buffer. It also
sets default-input-method to input-method. If input-method is nil, this command
deactivates any input method for the current buffer.

[Function]read-input-method-name prompt &optional default inhibit-null
This function reads an input method name with the minibuffer, prompting with
prompt. If default is non-nil, that is returned by default, if the user enters empty
input. However, if inhibit-null is non-nil, empty input signals an error.

The returned value is a string.

[Variable]input-method-alist
This variable defines all the supported input methods. Each element defines one input
method, and should have the form:

(input-method language-env activate-func

title description args...)

Here input-method is the input method name, a string; language-env is another string,
the name of the language environment this input method is recommended for. (That
serves only for documentation purposes.)

activate-func is a function to call to activate this method. The args, if any, are
passed as arguments to activate-func. All told, the arguments to activate-func are
input-method and the args.

title is a string to display in the mode line while this method is active. description is
a string describing this method and what it is good for.

The fundamental interface to input methods is through the variable input-method-

function. See Section 21.8.2 [Reading One Event], page 344, vol. 1, and Section 21.8.4
[Invoking the Input Method], page 347, vol. 1.

33.11 Locales

POSIX defines a concept of “locales” which control which language to use in language-
related features. These Emacs variables control how Emacs interacts with these features.

[Variable]locale-coding-system
This variable specifies the coding system to use for decoding system error messages
and—on X Window system only—keyboard input, for encoding the format argument
to format-time-string, and for decoding the return value of format-time-string.

[Variable]system-messages-locale
This variable specifies the locale to use for generating system error messages. Chang-
ing the locale can cause messages to come out in a different language or in a different
orthography. If the variable is nil, the locale is specified by environment variables in
the usual POSIX fashion.

[Variable]system-time-locale
This variable specifies the locale to use for formatting time values. Changing the locale
can cause messages to appear according to the conventions of a different language.
If the variable is nil, the locale is specified by environment variables in the usual
POSIX fashion.

Chapter 33: Non-ASCII Characters 208

[Function]locale-info item
This function returns locale data item for the current POSIX locale, if available. item
should be one of these symbols:

codeset Return the character set as a string (locale item CODESET).

days Return a 7-element vector of day names (locale items DAY_1 through
DAY_7);

months Return a 12-element vector of month names (locale items MON_1 through
MON_12).

paper Return a list (width height) for the default paper size measured in mil-
limeters (locale items PAPER_WIDTH and PAPER_HEIGHT).

If the system can’t provide the requested information, or if item is not one of those
symbols, the value is nil. All strings in the return value are decoded using locale-

coding-system. See Section “Locales” in The GNU Libc Manual, for more informa-
tion about locales and locale items.

Chapter 34: Searching and Matching 209

34 Searching and Matching

GNU Emacs provides two ways to search through a buffer for specified text: exact string
searches and regular expression searches. After a regular expression search, you can examine
the match data to determine which text matched the whole regular expression or various
portions of it.

The ‘skip-chars...’ functions also perform a kind of searching. See Section 30.2.7
[Skipping Characters], page 107. To search for changes in character properties, see
Section 32.19.3 [Property Search], page 160.

34.1 Searching for Strings

These are the primitive functions for searching through the text in a buffer. They are meant
for use in programs, but you may call them interactively. If you do so, they prompt for the
search string; the arguments limit and noerror are nil, and repeat is 1. For more details
on interactive searching, see Section “Searching and Replacement” in The GNU Emacs
Manual.

These search functions convert the search string to multibyte if the buffer is multibyte;
they convert the search string to unibyte if the buffer is unibyte. See Section 33.1 [Text
Representations], page 182.

[Command]search-forward string &optional limit noerror repeat
This function searches forward from point for an exact match for string. If successful,
it sets point to the end of the occurrence found, and returns the new value of point.
If no match is found, the value and side effects depend on noerror (see below).

In the following example, point is initially at the beginning of the line. Then (search-

forward "fox") moves point after the last letter of ‘fox’:

---------- Buffer: foo ----------

?The quick brown fox jumped over the lazy dog.

---------- Buffer: foo ----------

(search-forward "fox")

⇒ 20

---------- Buffer: foo ----------

The quick brown fox? jumped over the lazy dog.

---------- Buffer: foo ----------

The argument limit specifies the bound to the search, and should be a position in the
current buffer. No match extending after that position is accepted. If limit is omitted
or nil, it defaults to the end of the accessible portion of the buffer.

What happens when the search fails depends on the value of noerror. If noerror is
nil, a search-failed error is signaled. If noerror is t, search-forward returns nil
and does nothing. If noerror is neither nil nor t, then search-forward moves point
to the upper bound and returns nil.

The argument noerror only affects valid searches which fail to find a match. Invalid
arguments cause errors regardless of noerror.

Chapter 34: Searching and Matching 210

If repeat is a positive number n, it serves as a repeat count: the search is repeated n
times, each time starting at the end of the previous time’s match. If these successive
searches succeed, the function succeeds, moving point and returning its new value.
Otherwise the search fails, with results depending on the value of noerror, as described
above. If repeat is a negative number -n, it serves as a repeat count of n for a search
in the opposite (backward) direction.

[Command]search-backward string &optional limit noerror repeat
This function searches backward from point for string. It is like search-forward,
except that it searches backwards rather than forwards. Backward searches leave
point at the beginning of the match.

[Command]word-search-forward string &optional limit noerror repeat
This function searches forward from point for a “word” match for string. If it finds
a match, it sets point to the end of the match found, and returns the new value of
point.

Word matching regards string as a sequence of words, disregarding punctuation that
separates them. It searches the buffer for the same sequence of words. Each word
must be distinct in the buffer (searching for the word ‘ball’ does not match the word
‘balls’), but the details of punctuation and spacing are ignored (searching for ‘ball
boy’ does match ‘ball. Boy!’).

In this example, point is initially at the beginning of the buffer; the search leaves it
between the ‘y’ and the ‘!’.

---------- Buffer: foo ----------

?He said "Please! Find

the ball boy!"

---------- Buffer: foo ----------

(word-search-forward "Please find the ball, boy.")

⇒ 36

---------- Buffer: foo ----------

He said "Please! Find

the ball boy?!"
---------- Buffer: foo ----------

If limit is non-nil, it must be a position in the current buffer; it specifies the upper
bound to the search. The match found must not extend after that position.

If noerror is nil, then word-search-forward signals an error if the search fails. If
noerror is t, then it returns nil instead of signaling an error. If noerror is neither
nil nor t, it moves point to limit (or the end of the accessible portion of the buffer)
and returns nil.

If repeat is non-nil, then the search is repeated that many times. Point is positioned
at the end of the last match.

Internal, word-search-forward and related functions use the function word-search-

regexp to convert string to a regular expression that ignores punctuation.

Chapter 34: Searching and Matching 211

[Command]word-search-forward-lax string &optional limit noerror repeat
This command is identical to word-search-forward, except that the end of string
need not match a word boundary, unless string ends in whitespace. For instance,
searching for ‘ball boy’ matches ‘ball boyee’, but does not match ‘aball boy’.

[Command]word-search-backward string &optional limit noerror repeat
This function searches backward from point for a word match to string. This function
is just like word-search-forward except that it searches backward and normally
leaves point at the beginning of the match.

[Command]word-search-backward-lax string &optional limit noerror repeat
This command is identical to word-search-backward, except that the end of string
need not match a word boundary, unless string ends in whitespace.

34.2 Searching and Case

By default, searches in Emacs ignore the case of the text they are searching through; if you
specify searching for ‘FOO’, then ‘Foo’ or ‘foo’ is also considered a match. This applies to
regular expressions, too; thus, ‘[aB]’ would match ‘a’ or ‘A’ or ‘b’ or ‘B’.

If you do not want this feature, set the variable case-fold-search to nil. Then all
letters must match exactly, including case. This is a buffer-local variable; altering the
variable affects only the current buffer. (See Section 11.10.1 [Intro to Buffer-Local], page 150,
vol. 1.) Alternatively, you may change the default value. In Lisp code, you will more
typically use let to bind case-fold-search to the desired value.

Note that the user-level incremental search feature handles case distinctions differently.
When the search string contains only lower case letters, the search ignores case, but when
the search string contains one or more upper case letters, the search becomes case-sensitive.
But this has nothing to do with the searching functions used in Lisp code. See Section
“Incremental Search” in The GNU Emacs Manual.

[User Option]case-fold-search
This buffer-local variable determines whether searches should ignore case. If the
variable is nil they do not ignore case; otherwise (and by default) they do ignore
case.

[User Option]case-replace
This variable determines whether the higher-level replacement functions should pre-
serve case. If the variable is nil, that means to use the replacement text verbatim.
A non-nil value means to convert the case of the replacement text according to the
text being replaced.

This variable is used by passing it as an argument to the function replace-match.
See Section 34.6.1 [Replacing Match], page 225.

34.3 Regular Expressions

A regular expression, or regexp for short, is a pattern that denotes a (possibly infinite) set
of strings. Searching for matches for a regexp is a very powerful operation. This section
explains how to write regexps; the following section says how to search for them.

Chapter 34: Searching and Matching 212

For interactive development of regular expressions, you can use the M-x re-builder

command. It provides a convenient interface for creating regular expressions, by giving
immediate visual feedback in a separate buffer. As you edit the regexp, all its matches in
the target buffer are highlighted. Each parenthesized sub-expression of the regexp is shown
in a distinct face, which makes it easier to verify even very complex regexps.

34.3.1 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and the
rest are ordinary. An ordinary character is a simple regular expression that matches that
character and nothing else. The special characters are ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘^’, ‘$’, and ‘\’; no
new special characters will be defined in the future. The character ‘]’ is special if it ends a
character alternative (see later). The character ‘-’ is special inside a character alternative.
A ‘[:’ and balancing ‘:]’ enclose a character class inside a character alternative. Any other
character appearing in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string
‘fg’, but it does match a part of that string.) Likewise, ‘o’ is a regular expression that
matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular
expression that matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the
regular expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something
more powerful, you need to use one of the special regular expression constructs.

34.3.1.1 Special Characters in Regular Expressions

Here is a list of the characters that are special in a regular expression.

‘.’ (Period)
is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like ‘a.b’, which matches any
three-character string that begins with ‘a’ and ends with ‘b’.

‘*’ is not a construct by itself; it is a postfix operator that means to match the
preceding regular expression repetitively as many times as possible. Thus, ‘o*’
matches any number of ‘o’s (including no ‘o’s).

‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’
has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so on.

The matcher processes a ‘*’ construct by matching, immediately, as many rep-
etitions as can be found. Then it continues with the rest of the pattern. If that
fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in the hope that that will make it possible to match the rest of the
pattern. For example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’
first tries to match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is
only ‘r’ left to match, so this try fails. The next alternative is for ‘a*’ to match
only two ‘a’s. With this choice, the rest of the regexp matches successfully.

Chapter 34: Searching and Matching 213

Warning: Nested repetition operators can run for an indefinitely
long time, if they lead to ambiguous matching. For example, try-
ing to match the regular expression ‘\(x+y*\)*a’ against the string
‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz’ could take hours before it
ultimately fails. Emacs must try each way of grouping the ‘x’s before
concluding that none of them can work. Even worse, ‘\(x*\)*’ can match
the null string in infinitely many ways, so it causes an infinite loop. To avoid
these problems, check nested repetitions carefully, to make sure that they do
not cause combinatorial explosions in backtracking.

‘+’ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression at least once. So, for example, ‘ca+r’ matches the strings ‘car’ and
‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

‘?’ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’;
nothing else.

‘*?’, ‘+?’, ‘??’
These are “non-greedy” variants of the operators ‘*’, ‘+’ and ‘?’. Where those
operators match the largest possible substring (consistent with matching the en-
tire containing expression), the non-greedy variants match the smallest possible
substring (consistent with matching the entire containing expression).

For example, the regular expression ‘c[ad]*a’ when applied to the string
‘cdaaada’ matches the whole string; but the regular expression ‘c[ad]*?a’,
applied to that same string, matches just ‘cda’. (The smallest possible match
here for ‘[ad]*?’ that permits the whole expression to match is ‘d’.)

‘[...]’ is a character alternative, which begins with ‘[’ and is terminated by ‘]’. In the
simplest case, the characters between the two brackets are what this character
alternative can match.

Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string
composed of just ‘a’s and ‘d’s (including the empty string). It follows that
‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

You can also include character ranges in a character alternative, by writing the
starting and ending characters with a ‘-’ between them. Thus, ‘[a-z]’ matches
any lower-case ASCII letter. Ranges may be intermixed freely with individual
characters, as in ‘[a-z$%.]’, which matches any lower case ASCII letter or ‘$’,
‘%’ or period.

If case-fold-search is non-nil, ‘[a-z]’ also matches upper-case letters. Note
that a range like ‘[a-z]’ is not affected by the locale’s collation sequence, it
always represents a sequence in ASCII order.

Note also that the usual regexp special characters are not special inside a char-
acter alternative. A completely different set of characters is special inside char-
acter alternatives: ‘]’, ‘-’ and ‘^’.

To include a ‘]’ in a character alternative, you must make it the first character.
For example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ as the first or
last character of the character alternative, or put it after a range. Thus, ‘[]-]’

Chapter 34: Searching and Matching 214

matches both ‘]’ and ‘-’. (As explained below, you cannot use ‘\]’ to include
a ‘]’ inside a character alternative, since ‘\’ is not special there.)

To include ‘^’ in a character alternative, put it anywhere but at the beginning.

If a range starts with a unibyte character c and ends with a multibyte char-
acter c2, the range is divided into two parts: one spans the unibyte characters
‘c..?\377’, the other the multibyte characters ‘c1..c2’, where c1 is the first
character of the charset to which c2 belongs.

A character alternative can also specify named character classes (see
Section 34.3.1.2 [Char Classes], page 215). This is a POSIX feature. For
example, ‘[[:ascii:]]’ matches any ASCII character. Using a character class
is equivalent to mentioning each of the characters in that class; but the latter
is not feasible in practice, since some classes include thousands of different
characters.

‘[^ ...]’ ‘[^’ begins a complemented character alternative. This matches any character
except the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except
letters and digits.

‘^’ is not special in a character alternative unless it is the first character. The
character following the ‘^’ is treated as if it were first (in other words, ‘-’ and
‘]’ are not special there).

A complemented character alternative can match a newline, unless newline is
mentioned as one of the characters not to match. This is in contrast to the
handling of regexps in programs such as grep.

You can specify named character classes, just like in character alternatives.
For instance, ‘[^[:ascii:]]’ matches any non-ASCII character. See
Section 34.3.1.2 [Char Classes], page 215.

‘^’ When matching a buffer, ‘^’ matches the empty string, but only at the beginning
of a line in the text being matched (or the beginning of the accessible portion
of the buffer). Otherwise it fails to match anything. Thus, ‘^foo’ matches a
‘foo’ that occurs at the beginning of a line.

When matching a string instead of a buffer, ‘^’ matches at the beginning of the
string or after a newline character.

For historical compatibility reasons, ‘^’ can be used only at the beginning of
the regular expression, or after ‘\(’, ‘\(?:’ or ‘\|’.

‘$’ is similar to ‘^’ but matches only at the end of a line (or the end of the accessible
portion of the buffer). Thus, ‘x+$’ matches a string of one ‘x’ or more at the
end of a line.

When matching a string instead of a buffer, ‘$’ matches at the end of the string
or before a newline character.

For historical compatibility reasons, ‘$’ can be used only at the end of the
regular expression, or before ‘\)’ or ‘\|’.

‘\’ has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.

Chapter 34: Searching and Matching 215

Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.

Note that ‘\’ also has special meaning in the read syntax of Lisp strings (see
Section 2.3.8 [String Type], page 18, vol. 1), and must be quoted with ‘\’. For
example, the regular expression that matches the ‘\’ character is ‘\\’. To write
a Lisp string that contains the characters ‘\\’, Lisp syntax requires you to quote
each ‘\’ with another ‘\’. Therefore, the read syntax for a regular expression
matching ‘\’ is "\\\\".

Please note: For historical compatibility, special characters are treated as ordinary ones
if they are in contexts where their special meanings make no sense. For example, ‘*foo’
treats ‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is
poor practice to depend on this behavior; quote the special character anyway, regardless of
where it appears.

As a ‘\’ is not special inside a character alternative, it can never remove the special
meaning of ‘-’ or ‘]’. So you should not quote these characters when they have no special
meaning either. This would not clarify anything, since backslashes can legitimately precede
these characters where they have special meaning, as in ‘[^\]’ ("[^\\]" for Lisp string
syntax), which matches any single character except a backslash.

In practice, most ‘]’ that occur in regular expressions close a character alternative and
hence are special. However, occasionally a regular expression may try to match a complex
pattern of literal ‘[’ and ‘]’. In such situations, it sometimes may be necessary to carefully
parse the regexp from the start to determine which square brackets enclose a character al-
ternative. For example, ‘[^][]]’ consists of the complemented character alternative ‘[^][]’
(which matches any single character that is not a square bracket), followed by a literal ‘]’.

The exact rules are that at the beginning of a regexp, ‘[’ is special and ‘]’ not. This lasts
until the first unquoted ‘[’, after which we are in a character alternative; ‘[’ is no longer
special (except when it starts a character class) but ‘]’ is special, unless it immediately
follows the special ‘[’ or that ‘[’ followed by a ‘^’. This lasts until the next special ‘]’
that does not end a character class. This ends the character alternative and restores the
ordinary syntax of regular expressions; an unquoted ‘[’ is special again and a ‘]’ not.

34.3.1.2 Character Classes

Here is a table of the classes you can use in a character alternative, and what they mean:

‘[:ascii:]’
This matches any ASCII character (codes 0–127).

‘[:alnum:]’
This matches any letter or digit. (At present, for multibyte characters, it
matches anything that has word syntax.)

‘[:alpha:]’
This matches any letter. (At present, for multibyte characters, it matches
anything that has word syntax.)

‘[:blank:]’
This matches space and tab only.

Chapter 34: Searching and Matching 216

‘[:cntrl:]’
This matches any ASCII control character.

‘[:digit:]’
This matches ‘0’ through ‘9’. Thus, ‘[-+[:digit:]]’ matches any digit, as well
as ‘+’ and ‘-’.

‘[:graph:]’
This matches graphic characters—everything except ASCII control characters,
space, and the delete character.

‘[:lower:]’
This matches any lower-case letter, as determined by the current case table (see
Section 4.9 [Case Tables], page 61, vol. 1). If case-fold-search is non-nil,
this also matches any upper-case letter.

‘[:multibyte:]’
This matches any multibyte character (see Section 33.1 [Text Representations],
page 182).

‘[:nonascii:]’
This matches any non-ASCII character.

‘[:print:]’
This matches printing characters—everything except ASCII control characters
and the delete character.

‘[:punct:]’
This matches any punctuation character. (At present, for multibyte characters,
it matches anything that has non-word syntax.)

‘[:space:]’
This matches any character that has whitespace syntax (see Section 35.2.1
[Syntax Class Table], page 235).

‘[:unibyte:]’
This matches any unibyte character (see Section 33.1 [Text Representations],
page 182).

‘[:upper:]’
This matches any upper-case letter, as determined by the current case table (see
Section 4.9 [Case Tables], page 61, vol. 1). If case-fold-search is non-nil,
this also matches any lower-case letter.

‘[:word:]’
This matches any character that has word syntax (see Section 35.2.1 [Syntax
Class Table], page 235).

‘[:xdigit:]’
This matches the hexadecimal digits: ‘0’ through ‘9’, ‘a’ through ‘f’ and ‘A’
through ‘F’.

Chapter 34: Searching and Matching 217

34.3.1.3 Backslash Constructs in Regular Expressions

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: certain two-character sequences starting with ‘\’ that have
special meanings. (The character after the ‘\’ in such a sequence is always ordinary when
used on its own.) Here is a table of the special ‘\’ constructs.

‘\|’ specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches anything that either a or b matches.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|’ applies to the largest possible surrounding expressions. Only a surrounding
‘\(... \)’ grouping can limit the grouping power of ‘\|’.

If you need full backtracking capability to handle multiple uses of ‘\|’, use
the POSIX regular expression functions (see Section 34.5 [POSIX Regexps],
page 224).

‘\{m\}’ is a postfix operator that repeats the previous pattern exactly m times. Thus,
‘x\{5\}’ matches the string ‘xxxxx’ and nothing else. ‘c[ad]\{3\}r’ matches
string such as ‘caaar’, ‘cdddr’, ‘cadar’, and so on.

‘\{m,n\}’ is a more general postfix operator that specifies repetition with a minimum of
m repeats and a maximum of n repeats. If m is omitted, the minimum is 0; if
n is omitted, there is no maximum.

For example, ‘c[ad]\{1,2\}r’ matches the strings ‘car’, ‘cdr’, ‘caar’, ‘cadr’,
‘cdar’, and ‘cddr’, and nothing else.
‘\{0,1\}’ or ‘\{,1\}’ is equivalent to ‘?’.
‘\{0,\}’ or ‘\{,\}’ is equivalent to ‘*’.
‘\{1,\}’ is equivalent to ‘+’.

‘\(... \)’
is a grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations. Thus, the regular
expression ‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and
‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘ba’, ‘bana’, ‘banana’,
‘bananana’, etc., with any number (zero or more) of ‘na’ strings.

3. To record a matched substring for future reference with ‘\digit’ (see be-
low).

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that was assigned as a second meaning to the same ‘\(
... \)’ construct because, in practice, there was usually no conflict between
the two meanings. But occasionally there is a conflict, and that led to the
introduction of shy groups.

‘\(?: ... \)’
is the shy group construct. A shy group serves the first two purposes of an
ordinary group (controlling the nesting of other operators), but it does not get
a number, so you cannot refer back to its value with ‘\digit’. Shy groups are

Chapter 34: Searching and Matching 218

particularly useful for mechanically-constructed regular expressions, because
they can be added automatically without altering the numbering of ordinary,
non-shy groups.

Shy groups are also called non-capturing or unnumbered groups.

‘\(?num: ... \)’
is the explicitly numbered group construct. Normal groups get their number
implicitly, based on their position, which can be inconvenient. This construct
allows you to force a particular group number. There is no particular restriction
on the numbering, e.g. you can have several groups with the same number in
which case the last one to match (i.e. the rightmost match) will win. Implicitly
numbered groups always get the smallest integer larger than the one of any
previous group.

‘\digit’ matches the same text that matched the digitth occurrence of a grouping (‘\(
... \)’) construct.

In other words, after the end of a group, the matcher remembers the beginning
and end of the text matched by that group. Later on in the regular expression
you can use ‘\’ followed by digit to match that same text, whatever it may have
been.

The strings matching the first nine grouping constructs appearing in the entire
regular expression passed to a search or matching function are assigned num-
bers 1 through 9 in the order that the open parentheses appear in the regular
expression. So you can use ‘\1’ through ‘\9’ to refer to the text matched by
the corresponding grouping constructs.

For example, ‘\(.*\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\(.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.

If a ‘\(... \)’ construct matches more than once (which can happen, for
instance, if it is followed by ‘*’), only the last match is recorded.

If a particular grouping construct in the regular expression was never
matched—for instance, if it appears inside of an alternative that wasn’t used,
or inside of a repetition that repeated zero times—then the corresponding
‘\digit’ construct never matches anything. To use an artificial example,
‘\(foo\(b*\)\|lose\)\2’ cannot match ‘lose’: the second alternative inside
the larger group matches it, but then ‘\2’ is undefined and can’t match
anything. But it can match ‘foobb’, because the first alternative matches
‘foob’ and ‘\2’ matches ‘b’.

‘\w’ matches any word-constituent character. The editor syntax table determines
which characters these are. See Chapter 35 [Syntax Tables], page 234.

‘\W’ matches any character that is not a word constituent.

‘\scode’ matches any character whose syntax is code. Here code is a character that
represents a syntax code: thus, ‘w’ for word constituent, ‘-’ for whitespace, ‘(’
for open parenthesis, etc. To represent whitespace syntax, use either ‘-’ or a
space character. See Section 35.2.1 [Syntax Class Table], page 235, for a list of
syntax codes and the characters that stand for them.

Chapter 34: Searching and Matching 219

‘\Scode’ matches any character whose syntax is not code.

‘\cc’ matches any character whose category is c. Here c is a character that repre-
sents a category: thus, ‘c’ for Chinese characters or ‘g’ for Greek characters in
the standard category table. You can see the list of all the currently defined
categories with M-x describe-categories RET. You can also define your own
categories in addition to the standard ones using the define-category function
(see Section 35.9 [Categories], page 247).

‘\Cc’ matches any character whose category is not c.

The following regular expression constructs match the empty string—that is, they don’t
use up any characters—but whether they match depends on the context. For all, the
beginning and end of the accessible portion of the buffer are treated as if they were the
actual beginning and end of the buffer.

‘\‘’ matches the empty string, but only at the beginning of the buffer or string
being matched against.

‘\’’ matches the empty string, but only at the end of the buffer or string being
matched against.

‘\=’ matches the empty string, but only at point. (This construct is not defined
when matching against a string.)

‘\b’ matches the empty string, but only at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

‘\b’ matches at the beginning or end of the buffer (or string) regardless of what
text appears next to it.

‘\B’ matches the empty string, but not at the beginning or end of a word, nor at
the beginning or end of the buffer (or string).

‘\<’ matches the empty string, but only at the beginning of a word. ‘\<’ matches
at the beginning of the buffer (or string) only if a word-constituent character
follows.

‘\>’ matches the empty string, but only at the end of a word. ‘\>’ matches at the
end of the buffer (or string) only if the contents end with a word-constituent
character.

‘_<’ matches the empty string, but only at the beginning of a symbol. A symbol is a
sequence of one or more word or symbol constituent characters. ‘_<’ matches
at the beginning of the buffer (or string) only if a symbol-constituent character
follows.

‘_>’ matches the empty string, but only at the end of a symbol. ‘_>’ matches at the
end of the buffer (or string) only if the contents end with a symbol-constituent
character.

Not every string is a valid regular expression. For example, a string that ends inside a
character alternative without a terminating ‘]’ is invalid, and so is a string that ends with
a single ‘\’. If an invalid regular expression is passed to any of the search functions, an
invalid-regexp error is signaled.

Chapter 34: Searching and Matching 220

34.3.2 Complex Regexp Example

Here is a complicated regexp which was formerly used by Emacs to recognize the end of a
sentence together with any whitespace that follows. (Nowadays Emacs uses a similar but
more complex default regexp constructed by the function sentence-end. See Section 34.8
[Standard Regexps], page 233.)

Below, we show first the regexp as a string in Lisp syntax (to distinguish spaces from tab
characters), and then the result of evaluating it. The string constant begins and ends with
a double-quote. ‘\"’ stands for a double-quote as part of the string, ‘\\’ for a backslash as
part of the string, ‘\t’ for a tab and ‘\n’ for a newline.

"[.?!][]\"’)}]*\\($\\| $\\|\t\\| \\)[\t\n]*"

⇒ "[.?!][]\"’)}]*\\($\\| $\\| \\| \\)[

]*"

In the output, tab and newline appear as themselves.

This regular expression contains four parts in succession and can be deciphered as follows:

[.?!] The first part of the pattern is a character alternative that matches any one
of three characters: period, question mark, and exclamation mark. The match
must begin with one of these three characters. (This is one point where the
new default regexp used by Emacs differs from the old. The new value also
allows some non-ASCII characters that end a sentence without any following
whitespace.)

[]\"’)}]*

The second part of the pattern matches any closing braces and quotation marks,
zero or more of them, that may follow the period, question mark or exclamation
mark. The \" is Lisp syntax for a double-quote in a string. The ‘*’ at the
end indicates that the immediately preceding regular expression (a character
alternative, in this case) may be repeated zero or more times.

\\($\\| $\\|\t\\| \\)

The third part of the pattern matches the whitespace that follows the end of a
sentence: the end of a line (optionally with a space), or a tab, or two spaces.
The double backslashes mark the parentheses and vertical bars as regular ex-
pression syntax; the parentheses delimit a group and the vertical bars separate
alternatives. The dollar sign is used to match the end of a line.

[\t\n]* Finally, the last part of the pattern matches any additional whitespace beyond
the minimum needed to end a sentence.

34.3.3 Regular Expression Functions

These functions operate on regular expressions.

[Function]regexp-quote string
This function returns a regular expression whose only exact match is string. Using
this regular expression in looking-at will succeed only if the next characters in the
buffer are string ; using it in a search function will succeed if the text being searched
contains string. See Section 34.4 [Regexp Search], page 221.

This allows you to request an exact string match or search when calling a function
that wants a regular expression.

Chapter 34: Searching and Matching 221

(regexp-quote "^The cat$")

⇒ "\\^The cat\\$"

One use of regexp-quote is to combine an exact string match with context described
as a regular expression. For example, this searches for the string that is the value of
string, surrounded by whitespace:

(re-search-forward

(concat "\\s-" (regexp-quote string) "\\s-"))

[Function]regexp-opt strings &optional paren
This function returns an efficient regular expression that will match any of the strings
in the list strings. This is useful when you need to make matching or searching as
fast as possible—for example, for Font Lock mode1.

If the optional argument paren is non-nil, then the returned regular expression is
always enclosed by at least one parentheses-grouping construct. If paren is words,
then that construct is additionally surrounded by ‘\<’ and ‘\>’; alternatively, if paren
is symbols, then that construct is additionally surrounded by ‘_<’ and ‘_>’ (symbols
is often appropriate when matching programming-language keywords and the like).

This simplified definition of regexp-opt produces a regular expression which is equiv-
alent to the actual value (but not as efficient):

(defun regexp-opt (strings &optional paren)

(let ((open-paren (if paren "\\(" ""))

(close-paren (if paren "\\)" "")))

(concat open-paren

(mapconcat ’regexp-quote strings "\\|")

close-paren)))

[Function]regexp-opt-depth regexp
This function returns the total number of grouping constructs (parenthesized expres-
sions) in regexp. This does not include shy groups (see Section 34.3.1.3 [Regexp
Backslash], page 217).

[Function]regexp-opt-charset chars
This function returns a regular expression matching a character in the list of characters
chars.

(regexp-opt-charset ’(?a ?b ?c ?d ?e))

⇒ "[a-e]"

34.4 Regular Expression Searching

In GNU Emacs, you can search for the next match for a regular expression either incremen-
tally or not. For incremental search commands, see Section “Regular Expression Search” in
The GNU Emacs Manual. Here we describe only the search functions useful in programs.
The principal one is re-search-forward.

1 Note that regexp-opt does not guarantee that its result is absolutely the most efficient form possible.
A hand-tuned regular expression can sometimes be slightly more efficient, but is almost never worth the
effort.

Chapter 34: Searching and Matching 222

These search functions convert the regular expression to multibyte if the buffer is multi-
byte; they convert the regular expression to unibyte if the buffer is unibyte. See Section 33.1
[Text Representations], page 182.

[Command]re-search-forward regexp &optional limit noerror repeat
This function searches forward in the current buffer for a string of text that is matched
by the regular expression regexp. The function skips over any amount of text that
is not matched by regexp, and leaves point at the end of the first match found. It
returns the new value of point.

If limit is non-nil, it must be a position in the current buffer. It specifies the upper
bound to the search. No match extending after that position is accepted.

If repeat is supplied, it must be a positive number; the search is repeated that many
times; each repetition starts at the end of the previous match. If all these successive
searches succeed, the search succeeds, moving point and returning its new value.
Otherwise the search fails. What re-search-forward does when the search fails
depends on the value of noerror:

nil Signal a search-failed error.

t Do nothing and return nil.

anything else
Move point to limit (or the end of the accessible portion of the buffer)
and return nil.

In the following example, point is initially before the ‘T’. Evaluating the search call
moves point to the end of that line (between the ‘t’ of ‘hat’ and the newline).

---------- Buffer: foo ----------

I read "?The cat in the hat

comes back" twice.

---------- Buffer: foo ----------

(re-search-forward "[a-z]+" nil t 5)

⇒ 27

---------- Buffer: foo ----------

I read "The cat in the hat?
comes back" twice.

---------- Buffer: foo ----------

[Command]re-search-backward regexp &optional limit noerror repeat
This function searches backward in the current buffer for a string of text that is
matched by the regular expression regexp, leaving point at the beginning of the first
text found.

This function is analogous to re-search-forward, but they are not simple mirror
images. re-search-forward finds the match whose beginning is as close as possible
to the starting point. If re-search-backward were a perfect mirror image, it would
find the match whose end is as close as possible. However, in fact it finds the match
whose beginning is as close as possible (and yet ends before the starting point). The

Chapter 34: Searching and Matching 223

reason for this is that matching a regular expression at a given spot always works
from beginning to end, and starts at a specified beginning position.

A true mirror-image of re-search-forward would require a special feature for match-
ing regular expressions from end to beginning. It’s not worth the trouble of imple-
menting that.

[Function]string-match regexp string &optional start
This function returns the index of the start of the first match for the regular expression
regexp in string, or nil if there is no match. If start is non-nil, the search starts at
that index in string.

For example,

(string-match

"quick" "The quick brown fox jumped quickly.")

⇒ 4

(string-match

"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

The index of the first character of the string is 0, the index of the second character is
1, and so on.

After this function returns, the index of the first character beyond the match is
available as (match-end 0). See Section 34.6 [Match Data], page 225.

(string-match

"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

(match-end 0)

⇒ 32

[Function]string-match-p regexp string &optional start
This predicate function does what string-match does, but it avoids modifying the
match data.

[Function]looking-at regexp
This function determines whether the text in the current buffer directly following point
matches the regular expression regexp. “Directly following” means precisely that: the
search is “anchored” and it can succeed only starting with the first character following
point. The result is t if so, nil otherwise.

This function does not move point, but it does update the match data. See
Section 34.6 [Match Data], page 225. If you need to test for a match without
modifying the match data, use looking-at-p, described below.

In this example, point is located directly before the ‘T’. If it were anywhere else, the
result would be nil.

Chapter 34: Searching and Matching 224

---------- Buffer: foo ----------

I read "?The cat in the hat

comes back" twice.

---------- Buffer: foo ----------

(looking-at "The cat in the hat$")

⇒ t

[Function]looking-back regexp &optional limit greedy
This function returns t if regexp matches the text immediately before point (i.e.,
ending at point), and nil otherwise.

Because regular expression matching works only going forward, this is implemented
by searching backwards from point for a match that ends at point. That can be quite
slow if it has to search a long distance. You can bound the time required by specifying
limit, which says not to search before limit. In this case, the match that is found must
begin at or after limit.

If greedy is non-nil, this function extends the match backwards as far as possible,
stopping when a single additional previous character cannot be part of a match for
regexp. When the match is extended, its starting position is allowed to occur before
limit.

---------- Buffer: foo ----------

I read "?The cat in the hat

comes back" twice.

---------- Buffer: foo ----------

(looking-back "read \"" 3)

⇒ t

(looking-back "read \"" 4)

⇒ nil

As a general recommendation, try to avoid using looking-back wherever possible,
since it is slow. For this reason, there are no plans to add a looking-back-p function.

[Function]looking-at-p regexp
This predicate function works like looking-at, but without updating the match data.

[Variable]search-spaces-regexp
If this variable is non-nil, it should be a regular expression that says how to search for
whitespace. In that case, any group of spaces in a regular expression being searched
for stands for use of this regular expression. However, spaces inside of constructs such
as ‘[...]’ and ‘*’, ‘+’, ‘?’ are not affected by search-spaces-regexp.

Since this variable affects all regular expression search and match constructs, you
should bind it temporarily for as small as possible a part of the code.

34.5 POSIX Regular Expression Searching

The usual regular expression functions do backtracking when necessary to handle the ‘\|’
and repetition constructs, but they continue this only until they find some match. Then
they succeed and report the first match found.

Chapter 34: Searching and Matching 225

This section describes alternative search functions which perform the full backtracking
specified by the POSIX standard for regular expression matching. They continue back-
tracking until they have tried all possibilities and found all matches, so they can report
the longest match, as required by POSIX. This is much slower, so use these functions only
when you really need the longest match.

The POSIX search and match functions do not properly support the non-greedy repe-
tition operators (see Section 34.3.1.1 [Regexp Special], page 212). This is because POSIX
backtracking conflicts with the semantics of non-greedy repetition.

[Command]posix-search-forward regexp &optional limit noerror repeat
This is like re-search-forward except that it performs the full backtracking specified
by the POSIX standard for regular expression matching.

[Command]posix-search-backward regexp &optional limit noerror repeat
This is like re-search-backward except that it performs the full backtracking spec-
ified by the POSIX standard for regular expression matching.

[Function]posix-looking-at regexp
This is like looking-at except that it performs the full backtracking specified by the
POSIX standard for regular expression matching.

[Function]posix-string-match regexp string &optional start
This is like string-match except that it performs the full backtracking specified by
the POSIX standard for regular expression matching.

34.6 The Match Data

Emacs keeps track of the start and end positions of the segments of text found during a
search; this is called the match data. Thanks to the match data, you can search for a
complex pattern, such as a date in a mail message, and then extract parts of the match
under control of the pattern.

Because the match data normally describe the most recent search only, you must be
careful not to do another search inadvertently between the search you wish to refer back
to and the use of the match data. If you can’t avoid another intervening search, you must
save and restore the match data around it, to prevent it from being overwritten.

Notice that all functions are allowed to overwrite the match data unless they’re explicitly
documented not to do so. A consequence is that functions that are run implicitly in the
background (see Section 39.10 [Timers], page 406, and Section 39.11 [Idle Timers], page 408)
should likely save and restore the match data explicitly.

34.6.1 Replacing the Text that Matched

This function replaces all or part of the text matched by the last search. It works by means
of the match data.

[Function]replace-match replacement &optional fixedcase literal string subexp
This function replaces the text in the buffer (or in string) that was matched by the
last search. It replaces that text with replacement.

Chapter 34: Searching and Matching 226

If you did the last search in a buffer, you should specify nil for string and make sure
that the current buffer when you call replace-match is the one in which you did the
searching or matching. Then replace-match does the replacement by editing the
buffer; it leaves point at the end of the replacement text, and returns t.

If you did the search in a string, pass the same string as string. Then replace-match

does the replacement by constructing and returning a new string.

If fixedcase is non-nil, then replace-match uses the replacement text without case
conversion; otherwise, it converts the replacement text depending upon the capital-
ization of the text to be replaced. If the original text is all upper case, this converts
the replacement text to upper case. If all words of the original text are capitalized,
this capitalizes all the words of the replacement text. If all the words are one-letter
and they are all upper case, they are treated as capitalized words rather than all-
upper-case words.

If literal is non-nil, then replacement is inserted exactly as it is, the only alterations
being case changes as needed. If it is nil (the default), then the character ‘\’ is
treated specially. If a ‘\’ appears in replacement, then it must be part of one of the
following sequences:

‘\&’ ‘\&’ stands for the entire text being replaced.

‘\n’ ‘\n’, where n is a digit, stands for the text that matched the nth subex-
pression in the original regexp. Subexpressions are those expressions
grouped inside ‘\(...\)’. If the nth subexpression never matched, an
empty string is substituted.

‘\\’ ‘\\’ stands for a single ‘\’ in the replacement text.

These substitutions occur after case conversion, if any, so the strings they substitute
are never case-converted.

If subexp is non-nil, that says to replace just subexpression number subexp of the
regexp that was matched, not the entire match. For example, after matching ‘foo
\(ba*r\)’, calling replace-match with 1 as subexp means to replace just the text
that matched ‘\(ba*r\)’.

[Function]match-substitute-replacement replacement &optional fixedcase
literal string subexp

This function returns the text that would be inserted into the buffer by replace-

match, but without modifying the buffer. It is useful if you want to present the
user with actual replacement result, with constructs like ‘\n’ or ‘\&’ substituted with
matched groups. Arguments replacement and optional fixedcase, literal, string and
subexp have the same meaning as for replace-match.

34.6.2 Simple Match Data Access

This section explains how to use the match data to find out what was matched by the last
search or match operation, if it succeeded.

You can ask about the entire matching text, or about a particular parenthetical subex-
pression of a regular expression. The count argument in the functions below specifies which.
If count is zero, you are asking about the entire match. If count is positive, it specifies which
subexpression you want.

Chapter 34: Searching and Matching 227

Recall that the subexpressions of a regular expression are those expressions grouped
with escaped parentheses, ‘\(...\)’. The countth subexpression is found by counting oc-
currences of ‘\(’ from the beginning of the whole regular expression. The first subexpression
is numbered 1, the second 2, and so on. Only regular expressions can have subexpressions—
after a simple string search, the only information available is about the entire match.

Every successful search sets the match data. Therefore, you should query the match data
immediately after searching, before calling any other function that might perform another
search. Alternatively, you may save and restore the match data (see Section 34.6.4 [Saving
Match Data], page 229) around the call to functions that could perform another search. Or
use the functions that explicitly do not modify the match data; e.g. string-match-p.

A search which fails may or may not alter the match data. In the current implementation,
it does not, but we may change it in the future. Don’t try to rely on the value of the match
data after a failing search.

[Function]match-string count &optional in-string
This function returns, as a string, the text matched in the last search or match
operation. It returns the entire text if count is zero, or just the portion corresponding
to the countth parenthetical subexpression, if count is positive.

If the last such operation was done against a string with string-match, then you
should pass the same string as the argument in-string. After a buffer search or
match, you should omit in-string or pass nil for it; but you should make sure that the
current buffer when you call match-string is the one in which you did the searching
or matching. Failure to follow this advice will lead to incorrect results.

The value is nil if count is out of range, or for a subexpression inside a ‘\|’ alternative
that wasn’t used or a repetition that repeated zero times.

[Function]match-string-no-properties count &optional in-string
This function is like match-string except that the result has no text properties.

[Function]match-beginning count
This function returns the position of the start of the text matched by the last regular
expression searched for, or a subexpression of it.

If count is zero, then the value is the position of the start of the entire match. Oth-
erwise, count specifies a subexpression in the regular expression, and the value of the
function is the starting position of the match for that subexpression.

The value is nil for a subexpression inside a ‘\|’ alternative that wasn’t used or a
repetition that repeated zero times.

[Function]match-end count
This function is like match-beginning except that it returns the position of the end
of the match, rather than the position of the beginning.

Here is an example of using the match data, with a comment showing the positions
within the text:

(string-match "\\(qu\\)\\(ick\\)"

"The quick fox jumped quickly.")

;0123456789

⇒ 4

Chapter 34: Searching and Matching 228

(match-string 0 "The quick fox jumped quickly.")

⇒ "quick"

(match-string 1 "The quick fox jumped quickly.")

⇒ "qu"

(match-string 2 "The quick fox jumped quickly.")

⇒ "ick"

(match-beginning 1) ; The beginning of the match
⇒ 4 ; with ‘qu’ is at index 4.

(match-beginning 2) ; The beginning of the match
⇒ 6 ; with ‘ick’ is at index 6.

(match-end 1) ; The end of the match
⇒ 6 ; with ‘qu’ is at index 6.

(match-end 2) ; The end of the match
⇒ 9 ; with ‘ick’ is at index 9.

Here is another example. Point is initially located at the beginning of the line. Searching
moves point to between the space and the word ‘in’. The beginning of the entire match
is at the 9th character of the buffer (‘T’), and the beginning of the match for the first
subexpression is at the 13th character (‘c’).

(list

(re-search-forward "The \\(cat \\)")

(match-beginning 0)

(match-beginning 1))

⇒ (17 9 13)

---------- Buffer: foo ----------

I read "The cat ?in the hat comes back" twice.

^ ^

9 13

---------- Buffer: foo ----------

(In this case, the index returned is a buffer position; the first character of the buffer counts
as 1.)

34.6.3 Accessing the Entire Match Data

The functions match-data and set-match-data read or write the entire match data, all at
once.

[Function]match-data &optional integers reuse reseat
This function returns a list of positions (markers or integers) that record all the
information on the text that the last search matched. Element zero is the position of
the beginning of the match for the whole expression; element one is the position of
the end of the match for the expression. The next two elements are the positions of

Chapter 34: Searching and Matching 229

the beginning and end of the match for the first subexpression, and so on. In general,
element number 2n corresponds to (match-beginning n); and element number 2n+1
corresponds to (match-end n).

Normally all the elements are markers or nil, but if integers is non-nil, that means
to use integers instead of markers. (In that case, the buffer itself is appended as
an additional element at the end of the list, to facilitate complete restoration of the
match data.) If the last match was done on a string with string-match, then integers
are always used, since markers can’t point into a string.

If reuse is non-nil, it should be a list. In that case, match-data stores the match
data in reuse. That is, reuse is destructively modified. reuse does not need to have
the right length. If it is not long enough to contain the match data, it is extended.
If it is too long, the length of reuse stays the same, but the elements that were not
used are set to nil. The purpose of this feature is to reduce the need for garbage
collection.

If reseat is non-nil, all markers on the reuse list are reseated to point to nowhere.

As always, there must be no possibility of intervening searches between the call to a
search function and the call to match-data that is intended to access the match data
for that search.

(match-data)

⇒ (#<marker at 9 in foo>

#<marker at 17 in foo>

#<marker at 13 in foo>

#<marker at 17 in foo>)

[Function]set-match-data match-list &optional reseat
This function sets the match data from the elements of match-list, which should be
a list that was the value of a previous call to match-data. (More precisely, anything
that has the same format will work.)

If match-list refers to a buffer that doesn’t exist, you don’t get an error; that sets the
match data in a meaningless but harmless way.

If reseat is non-nil, all markers on thematch-list list are reseated to point to nowhere.

store-match-data is a semi-obsolete alias for set-match-data.

34.6.4 Saving and Restoring the Match Data

When you call a function that may search, you may need to save and restore the match
data around that call, if you want to preserve the match data from an earlier search for
later use. Here is an example that shows the problem that arises if you fail to save the
match data:

(re-search-forward "The \\(cat \\)")

⇒ 48

(foo) ; foo does more searching.
(match-end 0)

⇒ 61 ; Unexpected result—not 48!

You can save and restore the match data with save-match-data:

Chapter 34: Searching and Matching 230

[Macro]save-match-data body. . .
This macro executes body, saving and restoring the match data around it. The return
value is the value of the last form in body.

You could use set-match-data together with match-data to imitate the effect of the
special form save-match-data. Here is how:

(let ((data (match-data)))

(unwind-protect

... ; Ok to change the original match data.
(set-match-data data)))

Emacs automatically saves and restores the match data when it runs process filter func-
tions (see Section 37.9.2 [Filter Functions], page 273) and process sentinels (see Section 37.10
[Sentinels], page 276).

34.7 Search and Replace

If you want to find all matches for a regexp in part of the buffer, and replace them, the best
way is to write an explicit loop using re-search-forward and replace-match, like this:

(while (re-search-forward "foo[\t]+bar" nil t)

(replace-match "foobar"))

See Section 34.6.1 [Replacing the Text that Matched], page 225, for a description of
replace-match.

However, replacing matches in a string is more complex, especially if you want to do it
efficiently. So Emacs provides a function to do this.

[Function]replace-regexp-in-string regexp rep string &optional fixedcase
literal subexp start

This function copies string and searches it for matches for regexp, and replaces them
with rep. It returns the modified copy. If start is non-nil, the search for matches
starts at that index in string, so matches starting before that index are not changed.

This function uses replace-match to do the replacement, and it passes the optional
arguments fixedcase, literal and subexp along to replace-match.

Instead of a string, rep can be a function. In that case, replace-regexp-in-string
calls rep for each match, passing the text of the match as its sole argument. It collects
the value rep returns and passes that to replace-match as the replacement string.
The match data at this point are the result of matching regexp against a substring
of string.

If you want to write a command along the lines of query-replace, you can use perform-
replace to do the work.

[Function]perform-replace from-string replacements query-flag regexp-flag
delimited-flag &optional repeat-count map start end

This function is the guts of query-replace and related commands. It searches for
occurrences of from-string in the text between positions start and end and replaces
some or all of them. If start is nil (or omitted), point is used instead, and the end
of the buffer’s accessible portion is used for end.

Chapter 34: Searching and Matching 231

If query-flag is nil, it replaces all occurrences; otherwise, it asks the user what to do
about each one.

If regexp-flag is non-nil, then from-string is considered a regular expression; oth-
erwise, it must match literally. If delimited-flag is non-nil, then only replacements
surrounded by word boundaries are considered.

The argument replacements specifies what to replace occurrences with. If it is a
string, that string is used. It can also be a list of strings, to be used in cyclic order.

If replacements is a cons cell, (function . data), this means to call function after
each match to get the replacement text. This function is called with two arguments:
data, and the number of replacements already made.

If repeat-count is non-nil, it should be an integer. Then it specifies how many times
to use each of the strings in the replacements list before advancing cyclically to the
next one.

If from-string contains upper-case letters, then perform-replace binds case-fold-
search to nil, and it uses the replacements without altering their case.

Normally, the keymap query-replace-map defines the possible user responses for
queries. The argument map, if non-nil, specifies a keymap to use instead of query-
replace-map.

This function uses one of two functions to search for the next occurrence of from-
string. These functions are specified by the values of two variables: replace-re-

search-function and replace-search-function. The former is called when the
argument regexp-flag is non-nil, the latter when it is nil.

[Variable]query-replace-map
This variable holds a special keymap that defines the valid user responses for perform-
replace and the commands that use it, as well as y-or-n-p and map-y-or-n-p. This
map is unusual in two ways:

• The “key bindings” are not commands, just symbols that are meaningful to the
functions that use this map.

• Prefix keys are not supported; each key binding must be for a single-event key
sequence. This is because the functions don’t use read-key-sequence to get the
input; instead, they read a single event and look it up “by hand”.

Here are the meaningful “bindings” for query-replace-map. Several of them are mean-
ingful only for query-replace and friends.

act Do take the action being considered—in other words, “yes”.

skip Do not take action for this question—in other words, “no”.

exit Answer this question “no”, and give up on the entire series of questions, assum-
ing that the answers will be “no”.

exit-prefix

Like exit, but add the key that was pressed to unread-comment-events.

act-and-exit

Answer this question “yes”, and give up on the entire series of questions, as-
suming that subsequent answers will be “no”.

Chapter 34: Searching and Matching 232

act-and-show

Answer this question “yes”, but show the results—don’t advance yet to the
next question.

automatic

Answer this question and all subsequent questions in the series with “yes”,
without further user interaction.

backup Move back to the previous place that a question was asked about.

edit Enter a recursive edit to deal with this question—instead of any other action
that would normally be taken.

edit-replacement

Edit the replacement for this question in the minibuffer.

delete-and-edit

Delete the text being considered, then enter a recursive edit to replace it.

recenter Redisplay and center the window, then ask the same question again.

quit Perform a quit right away. Only y-or-n-p and related functions use this answer.

help Display some help, then ask again.

[Variable]multi-query-replace-map
This variable holds a keymap that extends query-replace-map by providing ad-
ditional keybindings that are useful in multi-buffer replacements. The additional
“bindings” are:

automatic-all

Answer this question and all subsequent questions in the series with “yes”,
without further user interaction, for all remaining buffers.

exit-current

Answer this question “no”, and give up on the entire series of questions
for the current buffer. Continue to the next buffer in the sequence.

[Variable]replace-search-function
This variable specifies a function that perform-replace calls to search for the next
string to replace. Its default value is search-forward. Any other value should name
a function of 3 arguments: the first 3 arguments of search-forward (see Section 34.1
[String Search], page 209).

[Variable]replace-re-search-function
This variable specifies a function that perform-replace calls to search for the next
regexp to replace. Its default value is re-search-forward. Any other value should
name a function of 3 arguments: the first 3 arguments of re-search-forward (see
Section 34.4 [Regexp Search], page 221).

Chapter 34: Searching and Matching 233

34.8 Standard Regular Expressions Used in Editing

This section describes some variables that hold regular expressions used for certain purposes
in editing:

[User Option]page-delimiter
This is the regular expression describing line-beginnings that separate pages. The
default value is "^\014" (i.e., "^^L" or "^\C-l"); this matches a line that starts with
a formfeed character.

The following two regular expressions should not assume the match always starts at the
beginning of a line; they should not use ‘^’ to anchor the match. Most often, the paragraph
commands do check for a match only at the beginning of a line, which means that ‘^’ would
be superfluous. When there is a nonzero left margin, they accept matches that start after
the left margin. In that case, a ‘^’ would be incorrect. However, a ‘^’ is harmless in modes
where a left margin is never used.

[User Option]paragraph-separate
This is the regular expression for recognizing the beginning of a line that separates
paragraphs. (If you change this, you may have to change paragraph-start also.) The
default value is "[\t\f]*$", which matches a line that consists entirely of spaces,
tabs, and form feeds (after its left margin).

[User Option]paragraph-start
This is the regular expression for recognizing the beginning of a line that starts or
separates paragraphs. The default value is "\f\\|[\t]*$", which matches a line
containing only whitespace or starting with a form feed (after its left margin).

[User Option]sentence-end
If non-nil, the value should be a regular expression describing the end of a sentence,
including the whitespace following the sentence. (All paragraph boundaries also end
sentences, regardless.)

If the value is nil, as it is by default, then the function sentence-end constructs the
regexp. That is why you should always call the function sentence-end to obtain the
regexp to be used to recognize the end of a sentence.

[Function]sentence-end
This function returns the value of the variable sentence-end, if non-nil. Other-
wise it returns a default value based on the values of the variables sentence-end-

double-space (see [Definition of sentence-end-double-space], page 142), sentence-
end-without-period, and sentence-end-without-space.

Chapter 35: Syntax Tables 234

35 Syntax Tables

A syntax table specifies the syntactic role of each character in a buffer. It can be used
to determine where words, symbols, and other syntactic constructs begin and end. This
information is used by many Emacs facilities, including Font Lock mode (see Section 23.6
[Font Lock Mode], page 429, vol. 1) and the various complex movement commands (see
Section 30.2 [Motion], page 100).

35.1 Syntax Table Concepts

A syntax table is a char-table (see Section 6.6 [Char-Tables], page 92, vol. 1). The element
at index c describes the character with code c. The element’s value should be a list that
encodes the syntax of the character in question.

Syntax tables are used only for moving across text, not for the Emacs Lisp reader. Emacs
Lisp uses built-in syntactic rules when reading Lisp expressions, and these rules cannot be
changed. (Some Lisp systems provide ways to redefine the read syntax, but we decided to
leave this feature out of Emacs Lisp for simplicity.)

Each buffer has its own major mode, and each major mode has its own idea of the
syntactic class of various characters. For example, in Lisp mode, the character ‘;’ begins a
comment, but in C mode, it terminates a statement. To support these variations, Emacs
makes the syntax table local to each buffer. Typically, each major mode has its own syntax
table and installs that table in each buffer that uses that mode. Changing this table alters
the syntax in all those buffers as well as in any buffers subsequently put in that mode.
Occasionally several similar modes share one syntax table. See Section 23.2.9 [Example
Major Modes], page 411, vol. 1, for an example of how to set up a syntax table.

A syntax table can inherit the data for some characters from the standard syntax table,
while specifying other characters itself. The “inherit” syntax class means “inherit this
character’s syntax from the standard syntax table”. Just changing the standard syntax for
a character affects all syntax tables that inherit from it.

[Function]syntax-table-p object
This function returns t if object is a syntax table.

35.2 Syntax Descriptors

The syntactic role of a character is called its syntax class. Each syntax table specifies the
syntax class of each character. There is no necessary relationship between the class of a
character in one syntax table and its class in any other table.

Each syntax class is designated by a mnemonic character, which serves as the name of the
class when you need to specify a class. Usually, this designator character is one that is often
assigned that class; however, its meaning as a designator is unvarying and independent of
what syntax that character currently has. Thus, ‘\’ as a designator character always means
“escape character” syntax, regardless of whether the ‘\’ character actually has that syntax
in the current syntax table.

A syntax descriptor is a Lisp string that describes the syntax classes and other syntactic
properties of a character. When you want to modify the syntax of a character, that is done

Chapter 35: Syntax Tables 235

by calling the function modify-syntax-entry and passing a syntax descriptor as one of its
arguments (see Section 35.3 [Syntax Table Functions], page 238).

The first character in a syntax descriptor designates the syntax class. The second char-
acter specifies a matching character (e.g. in Lisp, the matching character for ‘(’ is ‘)’); if
there is no matching character, put a space there. Then come the characters for any desired
flags.

If no matching character or flags are needed, only one character (specifying the syntax
class) is sufficient.

For example, the syntax descriptor for the character ‘*’ in C mode is ". 23" (i.e., punctu-
ation, matching character slot unused, second character of a comment-starter, first character
of a comment-ender), and the entry for ‘/’ is ‘. 14’ (i.e., punctuation, matching character
slot unused, first character of a comment-starter, second character of a comment-ender).

35.2.1 Table of Syntax Classes

Here is a table of syntax classes, the characters that designate them, their meanings, and
examples of their use.

Whitespace characters: ‘ ’ or ‘-’
Characters that separate symbols and words from each other. Typically, white-
space characters have no other syntactic significance, and multiple whitespace
characters are syntactically equivalent to a single one. Space, tab, and formfeed
are classified as whitespace in almost all major modes.

This syntax class can be designated by either ‘ ’ or ‘-’. Both designators are
equivalent.

Word constituents: ‘w’
Parts of words in human languages. These are typically used in variable and
command names in programs. All upper- and lower-case letters, and the digits,
are typically word constituents.

Symbol constituents: ‘_’
Extra characters used in variable and command names along with word con-
stituents. Examples include the characters ‘$&*+-_<>’ in Lisp mode, which may
be part of a symbol name even though they are not part of English words. In
standard C, the only non-word-constituent character that is valid in symbols is
underscore (‘_’).

Punctuation characters: ‘.’
Characters used as punctuation in a human language, or used in a programming
language to separate symbols from one another. Some programming language
modes, such as Emacs Lisp mode, have no characters in this class since the
few characters that are not symbol or word constituents all have other uses.
Other programming language modes, such as C mode, use punctuation syntax
for operators.

Open parenthesis characters: ‘(’
Close parenthesis characters: ‘)’

Characters used in dissimilar pairs to surround sentences or expressions. Such
a grouping is begun with an open parenthesis character and terminated with a

Chapter 35: Syntax Tables 236

close. Each open parenthesis character matches a particular close parenthesis
character, and vice versa. Normally, Emacs indicates momentarily the match-
ing open parenthesis when you insert a close parenthesis. See Section 38.19
[Blinking], page 375.

In human languages, and in C code, the parenthesis pairs are ‘()’, ‘[]’, and
‘{}’. In Emacs Lisp, the delimiters for lists and vectors (‘()’ and ‘[]’) are
classified as parenthesis characters.

String quotes: ‘"’
Characters used to delimit string constants. The same string quote character
appears at the beginning and the end of a string. Such quoted strings do not
nest.

The parsing facilities of Emacs consider a string as a single token. The usual
syntactic meanings of the characters in the string are suppressed.

The Lisp modes have two string quote characters: double-quote (‘"’) and ver-
tical bar (‘|’). ‘|’ is not used in Emacs Lisp, but it is used in Common Lisp. C
also has two string quote characters: double-quote for strings, and single-quote
(‘’’) for character constants.

Human text has no string quote characters. We do not want quotation marks
to turn off the usual syntactic properties of other characters in the quotation.

Escape-syntax characters: ‘\’
Characters that start an escape sequence, such as is used in string and character
constants. The character ‘\’ belongs to this class in both C and Lisp. (In C, it
is used thus only inside strings, but it turns out to cause no trouble to treat it
this way throughout C code.)

Characters in this class count as part of words if words-include-escapes is
non-nil. See Section 30.2.2 [Word Motion], page 101.

Character quotes: ‘/’
Characters used to quote the following character so that it loses its normal syn-
tactic meaning. This differs from an escape character in that only the character
immediately following is ever affected.

Characters in this class count as part of words if words-include-escapes is
non-nil. See Section 30.2.2 [Word Motion], page 101.

This class is used for backslash in TEX mode.

Paired delimiters: ‘$’
Similar to string quote characters, except that the syntactic properties of the
characters between the delimiters are not suppressed. Only TEX mode uses a
paired delimiter presently—the ‘$’ that both enters and leaves math mode.

Expression prefixes: ‘’’
Characters used for syntactic operators that are considered as part of an ex-
pression if they appear next to one. In Lisp modes, these characters include
the apostrophe, ‘’’ (used for quoting), the comma, ‘,’ (used in macros), and ‘#’
(used in the read syntax for certain data types).

Chapter 35: Syntax Tables 237

Comment starters: ‘<’
Comment enders: ‘>’

Characters used in various languages to delimit comments. Human text has
no comment characters. In Lisp, the semicolon (‘;’) starts a comment and a
newline or formfeed ends one.

Inherit standard syntax: ‘@’
This syntax class does not specify a particular syntax. It says to look in the
standard syntax table to find the syntax of this character.

Generic comment delimiters: ‘!’
Characters that start or end a special kind of comment. Any generic comment
delimiter matches any generic comment delimiter, but they cannot match a
comment starter or comment ender; generic comment delimiters can only match
each other.

This syntax class is primarily meant for use with the syntax-table text prop-
erty (see Section 35.4 [Syntax Properties], page 240). You can mark any range
of characters as forming a comment, by giving the first and last characters of
the range syntax-table properties identifying them as generic comment de-
limiters.

Generic string delimiters: ‘|’
Characters that start or end a string. This class differs from the string quote
class in that any generic string delimiter can match any other generic string
delimiter; but they do not match ordinary string quote characters.

This syntax class is primarily meant for use with the syntax-table text prop-
erty (see Section 35.4 [Syntax Properties], page 240). You can mark any range
of characters as forming a string constant, by giving the first and last charac-
ters of the range syntax-table properties identifying them as generic string
delimiters.

35.2.2 Syntax Flags

In addition to the classes, entries for characters in a syntax table can specify flags. There
are eight possible flags, represented by the characters ‘1’, ‘2’, ‘3’, ‘4’, ‘b’, ‘c’, ‘n’, and ‘p’.

All the flags except ‘p’ are used to describe comment delimiters. The digit flags are
used for comment delimiters made up of 2 characters. They indicate that a character can
also be part of a comment sequence, in addition to the syntactic properties associated with
its character class. The flags are independent of the class and each other for the sake of
characters such as ‘*’ in C mode, which is a punctuation character, and the second character
of a start-of-comment sequence (‘/*’), and the first character of an end-of-comment sequence
(‘*/’). The flags ‘b’, ‘c’, and ‘n’ are used to qualify the corresponding comment delimiter.

Here is a table of the possible flags for a character c, and what they mean:

• ‘1’ means c is the start of a two-character comment-start sequence.

• ‘2’ means c is the second character of such a sequence.

• ‘3’ means c is the start of a two-character comment-end sequence.

• ‘4’ means c is the second character of such a sequence.

Chapter 35: Syntax Tables 238

• ‘b’ means that c as a comment delimiter belongs to the alternative “b” comment style.
For a two-character comment starter, this flag is only significant on the second char,
and for a 2-character comment ender it is only significant on the first char.

• ‘c’ means that c as a comment delimiter belongs to the alternative “c” comment style.
For a two-character comment delimiter, ‘c’ on either character makes it of style “c”.

• ‘n’ on a comment delimiter character specifies that this kind of comment can be nested.
For a two-character comment delimiter, ‘n’ on either character makes it nestable.

Emacs supports several comment styles simultaneously in any one syntax table. A
comment style is a set of flags ‘b’, ‘c’, and ‘n’, so there can be up to 8 different comment
styles. Each comment delimiter has a style and only matches comment delimiters of
the same style. Thus if a comment starts with the comment-start sequence of style
“bn”, it will extend until the next matching comment-end sequence of style “bn”.

The appropriate comment syntax settings for C++ can be as follows:

‘/’ ‘124’

‘*’ ‘23b’

newline ‘>’

This defines four comment-delimiting sequences:

‘/*’ This is a comment-start sequence for “b” style because the second charac-
ter, ‘*’, has the ‘b’ flag.

‘//’ This is a comment-start sequence for “a” style because the second charac-
ter, ‘/’, does not have the ‘b’ flag.

‘*/’ This is a comment-end sequence for “b” style because the first character,
‘*’, has the ‘b’ flag.

newline This is a comment-end sequence for “a” style, because the newline character
does not have the ‘b’ flag.

• ‘p’ identifies an additional “prefix character” for Lisp syntax. These characters are
treated as whitespace when they appear between expressions. When they appear within
an expression, they are handled according to their usual syntax classes.

The function backward-prefix-chars moves back over these characters, as well as
over characters whose primary syntax class is prefix (‘’’). See Section 35.5 [Motion
and Syntax], page 241.

35.3 Syntax Table Functions

In this section we describe functions for creating, accessing and altering syntax tables.

[Function]make-syntax-table &optional table
This function creates a new syntax table, with all values initialized to nil. If table
is non-nil, it becomes the parent of the new syntax table, otherwise the standard
syntax table is the parent. Like all char-tables, a syntax table inherits from its parent.
Thus the original syntax of all characters in the returned syntax table is determined
by the parent. See Section 6.6 [Char-Tables], page 92, vol. 1.

Most major mode syntax tables are created in this way.

Chapter 35: Syntax Tables 239

[Function]copy-syntax-table &optional table
This function constructs a copy of table and returns it. If table is not supplied (or is
nil), it returns a copy of the standard syntax table. Otherwise, an error is signaled
if table is not a syntax table.

[Command]modify-syntax-entry char syntax-descriptor &optional table
This function sets the syntax entry for char according to syntax-descriptor. char
must be a character, or a cons cell of the form (min . max); in the latter case, the
function sets the syntax entries for all characters in the range between min and max,
inclusive.

The syntax is changed only for table, which defaults to the current buffer’s syntax
table, and not in any other syntax table.

The argument syntax-descriptor is a syntax descriptor for the desired syntax (i.e.
a string beginning with a class designator character, and optionally containing a
matching character and syntax flags). An error is signaled if the first character is not
one of the seventeen syntax class designators. See Section 35.2 [Syntax Descriptors],
page 234.

This function always returns nil. The old syntax information in the table for this
character is discarded.

Examples:

;; Put the space character in class whitespace.
(modify-syntax-entry ?\s " ")

⇒ nil

;; Make ‘$’ an open parenthesis character,
;; with ‘^’ as its matching close.
(modify-syntax-entry ?$ "(^")

⇒ nil

;; Make ‘^’ a close parenthesis character,
;; with ‘$’ as its matching open.
(modify-syntax-entry ?^ ")$")

⇒ nil

;; Make ‘/’ a punctuation character,
;; the first character of a start-comment sequence,
;; and the second character of an end-comment sequence.
;; This is used in C mode.
(modify-syntax-entry ?/ ". 14")

⇒ nil

[Function]char-syntax character
This function returns the syntax class of character, represented by its mnemonic
designator character. This returns only the class, not any matching parenthesis or
flags.

An error is signaled if char is not a character.

Chapter 35: Syntax Tables 240

The following examples apply to C mode. The first example shows that the syntax
class of space is whitespace (represented by a space). The second example shows that
the syntax of ‘/’ is punctuation. This does not show the fact that it is also part of
comment-start and -end sequences. The third example shows that open parenthesis
is in the class of open parentheses. This does not show the fact that it has a matching
character, ‘)’.

(string (char-syntax ?\s))

⇒ " "

(string (char-syntax ?/))

⇒ "."

(string (char-syntax ?\())

⇒ "("

We use string to make it easier to see the character returned by char-syntax.

[Function]set-syntax-table table
This function makes table the syntax table for the current buffer. It returns table.

[Function]syntax-table
This function returns the current syntax table, which is the table for the current
buffer.

[Macro]with-syntax-table table body. . .
This macro executes body using table as the current syntax table. It returns the
value of the last form in body, after restoring the old current syntax table.

Since each buffer has its own current syntax table, we should make that more precise:
with-syntax-table temporarily alters the current syntax table of whichever buffer
is current at the time the macro execution starts. Other buffers are not affected.

35.4 Syntax Properties

When the syntax table is not flexible enough to specify the syntax of a language, you can
override the syntax table for specific character occurrences in the buffer, by applying a
syntax-table text property. See Section 32.19 [Text Properties], page 156, for how to
apply text properties.

The valid values of syntax-table text property are:

syntax-table
If the property value is a syntax table, that table is used instead of the current
buffer’s syntax table to determine the syntax for the underlying text character.

(syntax-code . matching-char)

A cons cell of this format specifies the syntax for the underlying text character.
(see Section 35.8 [Syntax Table Internals], page 246)

nil If the property is nil, the character’s syntax is determined from the current
syntax table in the usual way.

Chapter 35: Syntax Tables 241

[Variable]parse-sexp-lookup-properties
If this is non-nil, the syntax scanning functions, like forward-sexp, pay attention
to syntax text properties. Otherwise they use only the current syntax table.

[Variable]syntax-propertize-function
This variable, if non-nil, should store a function for applying syntax-table proper-
ties to a specified stretch of text. It is intended to be used by major modes to install
a function which applies syntax-table properties in some mode-appropriate way.

The function is called by syntax-ppss (see Section 35.6.2 [Position Parse], page 243),
and by Font Lock mode during syntactic fontification (see Section 23.6.8 [Syntactic
Font Lock], page 437, vol. 1). It is called with two arguments, start and end, which
are the starting and ending positions of the text on which it should act. It is allowed
to call syntax-ppss on any position before end. However, it should not call syntax-
ppss-flush-cache; so, it is not allowed to call syntax-ppss on some position and
later modify the buffer at an earlier position.

[Variable]syntax-propertize-extend-region-functions
This abnormal hook is run by the syntax parsing code prior to calling syntax-

propertize-function. Its role is to help locate safe starting and ending buffer
positions for passing to syntax-propertize-function. For example, a major mode
can add a function to this hook to identify multi-line syntactic constructs, and ensure
that the boundaries do not fall in the middle of one.

Each function in this hook should accept two arguments, start and end. It should
return either a cons cell of two adjusted buffer positions, (new-start . new-end), or
nil if no adjustment is necessary. The hook functions are run in turn, repeatedly,
until they all return nil.

35.5 Motion and Syntax

This section describes functions for moving across characters that have certain syntax
classes.

[Function]skip-syntax-forward syntaxes &optional limit
This function moves point forward across characters having syntax classes mentioned
in syntaxes (a string of syntax class characters). It stops when it encounters the end
of the buffer, or position limit (if specified), or a character it is not supposed to skip.

If syntaxes starts with ‘^’, then the function skips characters whose syntax is not in
syntaxes.

The return value is the distance traveled, which is a nonnegative integer.

[Function]skip-syntax-backward syntaxes &optional limit
This function moves point backward across characters whose syntax classes are men-
tioned in syntaxes. It stops when it encounters the beginning of the buffer, or position
limit (if specified), or a character it is not supposed to skip.

If syntaxes starts with ‘^’, then the function skips characters whose syntax is not in
syntaxes.

The return value indicates the distance traveled. It is an integer that is zero or less.

Chapter 35: Syntax Tables 242

[Function]backward-prefix-chars
This function moves point backward over any number of characters with expression
prefix syntax. This includes both characters in the expression prefix syntax class, and
characters with the ‘p’ flag.

35.6 Parsing Expressions

This section describes functions for parsing and scanning balanced expressions. We will refer
to such expressions as sexps, following the terminology of Lisp, even though these functions
can act on languages other than Lisp. Basically, a sexp is either a balanced parenthetical
grouping, a string, or a “symbol” (i.e. a sequence of characters whose syntax is either word
constituent or symbol constituent). However, characters in the expression prefix syntax
class (see Section 35.2.1 [Syntax Class Table], page 235) are treated as part of the sexp if
they appear next to it.

The syntax table controls the interpretation of characters, so these functions can be
used for Lisp expressions when in Lisp mode and for C expressions when in C mode. See
Section 30.2.6 [List Motion], page 106, for convenient higher-level functions for moving over
balanced expressions.

A character’s syntax controls how it changes the state of the parser, rather than describ-
ing the state itself. For example, a string delimiter character toggles the parser state be-
tween “in-string” and “in-code”, but the syntax of characters does not directly say whether
they are inside a string. For example (note that 15 is the syntax code for generic string
delimiters),

(put-text-property 1 9 ’syntax-table ’(15 . nil))

does not tell Emacs that the first eight chars of the current buffer are a string, but rather
that they are all string delimiters. As a result, Emacs treats them as four consecutive empty
string constants.

35.6.1 Motion Commands Based on Parsing

This section describes simple point-motion functions that operate based on parsing expres-
sions.

[Function]scan-lists from count depth
This function scans forward count balanced parenthetical groupings from position
from. It returns the position where the scan stops. If count is negative, the scan
moves backwards.

If depth is nonzero, treat the starting position as being depth parentheses deep. The
scanner moves forward or backward through the buffer until the depth changes to
zero count times. Hence, a positive value for depth has the effect of moving out depth
levels of parenthesis from the starting position, while a negative depth has the effect
of moving deeper by -depth levels of parenthesis.

Scanning ignores comments if parse-sexp-ignore-comments is non-nil.

If the scan reaches the beginning or end of the accessible part of the buffer before it
has scanned over count parenthetical groupings, the return value is nil if the depth
at that point is zero; if the depth is non-zero, a scan-error error is signaled.

Chapter 35: Syntax Tables 243

[Function]scan-sexps from count
This function scans forward count sexps from position from. It returns the position
where the scan stops. If count is negative, the scan moves backwards.

Scanning ignores comments if parse-sexp-ignore-comments is non-nil.

If the scan reaches the beginning or end of (the accessible part of) the buffer while in
the middle of a parenthetical grouping, an error is signaled. If it reaches the beginning
or end between groupings but before count is used up, nil is returned.

[Function]forward-comment count
This function moves point forward across count complete comments (that is, includ-
ing the starting delimiter and the terminating delimiter if any), plus any whitespace
encountered on the way. It moves backward if count is negative. If it encounters any-
thing other than a comment or whitespace, it stops, leaving point at the place where
it stopped. This includes (for instance) finding the end of a comment when moving
forward and expecting the beginning of one. The function also stops immediately
after moving over the specified number of complete comments. If count comments
are found as expected, with nothing except whitespace between them, it returns t;
otherwise it returns nil.

This function cannot tell whether the “comments” it traverses are embedded within
a string. If they look like comments, it treats them as comments.

To move forward over all comments and whitespace following point, use (forward-

comment (buffer-size)). (buffer-size) is a good argument to use, because the
number of comments in the buffer cannot exceed that many.

35.6.2 Finding the Parse State for a Position

For syntactic analysis, such as in indentation, often the useful thing is to compute the syn-
tactic state corresponding to a given buffer position. This function does that conveniently.

[Function]syntax-ppss &optional pos
This function returns the parser state that the parser would reach at position pos
starting from the beginning of the buffer. See the next section for for a description of
the parser state.

The return value is the same as if you call the low-level parsing function parse-

partial-sexp to parse from the beginning of the buffer to pos (see Section 35.6.4
[Low-Level Parsing], page 245). However, syntax-ppss uses a cache to speed up
the computation. Due to this optimization, the second value (previous complete
subexpression) and sixth value (minimum parenthesis depth) in the returned parser
state are not meaningful.

This function has a side effect: it adds a buffer-local entry to before-change-

functions (see Section 32.27 [Change Hooks], page 180) for syntax-ppss-flush-

cache (see below). This entry keeps the cache consistent as the buffer is modified.
However, the cache might not be updated if syntax-ppss is called while before-

change-functions is temporarily let-bound, or if the buffer is modified without run-
ning the hook, such as when using inhibit-modification-hooks. In those cases, it
is necessary to call syntax-ppss-flush-cache explicitly.

Chapter 35: Syntax Tables 244

[Function]syntax-ppss-flush-cache beg &rest ignored-args
This function flushes the cache used by syntax-ppss, starting at position beg. The
remaining arguments, ignored-args, are ignored; this function accepts them so that it
can be directly used on hooks such as before-change-functions (see Section 32.27
[Change Hooks], page 180).

Major modes can make syntax-ppss run faster by specifying where it needs to start
parsing.

[Variable]syntax-begin-function
If this is non-nil, it should be a function that moves to an earlier buffer position
where the parser state is equivalent to nil—in other words, a position outside of
any comment, string, or parenthesis. syntax-ppss uses it to further optimize its
computations, when the cache gives no help.

35.6.3 Parser State

A parser state is a list of ten elements describing the state of the syntactic parser, after it
parses the text between a specified starting point and a specified end point in the buffer.
Parsing functions such as syntax-ppss return a parser state as the value. Some parsing
functions accept a parser state as an argument, for resuming parsing.

Here are the meanings of the elements of the parser state:

0. The depth in parentheses, counting from 0. Warning: this can be negative if there are
more close parens than open parens between the parser’s starting point and end point.

1. The character position of the start of the innermost parenthetical grouping containing
the stopping point; nil if none.

2. The character position of the start of the last complete subexpression terminated; nil
if none.

3. Non-nil if inside a string. More precisely, this is the character that will terminate the
string, or t if a generic string delimiter character should terminate it.

4. t if inside a non-nestable comment (of any comment style; see Section 35.2.2 [Syntax
Flags], page 237); or the comment nesting level if inside a comment that can be nested.

5. t if the end point is just after a quote character.

6. The minimum parenthesis depth encountered during this scan.

7. What kind of comment is active: nil if not in a comment or in a comment of style
‘a’; 1 for a comment of style ‘b’; 2 for a comment of style ‘c’; and syntax-table for a
comment that should be ended by a generic comment delimiter character.

8. The string or comment start position. While inside a comment, this is the position
where the comment began; while inside a string, this is the position where the string
began. When outside of strings and comments, this element is nil.

9. Internal data for continuing the parsing. The meaning of this data is subject to change;
it is used if you pass this list as the state argument to another call.

Elements 1, 2, and 6 are ignored in a state which you pass as an argument to continue
parsing, and elements 8 and 9 are used only in trivial cases. Those elements are mainly
used internally by the parser code.

Chapter 35: Syntax Tables 245

One additional piece of useful information is available from a parser state using this
function:

[Function]syntax-ppss-toplevel-pos state
This function extracts, from parser state state, the last position scanned in the parse
which was at top level in grammatical structure. “At top level” means outside of any
parentheses, comments, or strings.

The value is nil if state represents a parse which has arrived at a top level position.

35.6.4 Low-Level Parsing

The most basic way to use the expression parser is to tell it to start at a given position with
a certain state, and parse up to a specified end position.

[Function]parse-partial-sexp start limit &optional target-depth stop-before
state stop-comment

This function parses a sexp in the current buffer starting at start, not scanning past
limit. It stops at position limit or when certain criteria described below are met, and
sets point to the location where parsing stops. It returns a parser state describing
the status of the parse at the point where it stops.

If the third argument target-depth is non-nil, parsing stops if the depth in parentheses
becomes equal to target-depth. The depth starts at 0, or at whatever is given in state.

If the fourth argument stop-before is non-nil, parsing stops when it comes to any
character that starts a sexp. If stop-comment is non-nil, parsing stops when it
comes to the start of a comment. If stop-comment is the symbol syntax-table,
parsing stops after the start of a comment or a string, or the end of a comment or a
string, whichever comes first.

If state is nil, start is assumed to be at the top level of parenthesis structure, such
as the beginning of a function definition. Alternatively, you might wish to resume
parsing in the middle of the structure. To do this, you must provide a state argument
that describes the initial status of parsing. The value returned by a previous call to
parse-partial-sexp will do nicely.

35.6.5 Parameters to Control Parsing

[Variable]multibyte-syntax-as-symbol
If this variable is non-nil, scan-sexps treats all non-ASCII characters as symbol
constituents regardless of what the syntax table says about them. (However, text
properties can still override the syntax.)

[User Option]parse-sexp-ignore-comments
If the value is non-nil, then comments are treated as whitespace by the functions in
this section and by forward-sexp, scan-lists and scan-sexps.

The behavior of parse-partial-sexp is also affected by parse-sexp-lookup-

properties (see Section 35.4 [Syntax Properties], page 240).

You can use forward-comment to move forward or backward over one comment or several
comments.

Chapter 35: Syntax Tables 246

35.7 Some Standard Syntax Tables

Most of the major modes in Emacs have their own syntax tables. Here are several of them:

[Function]standard-syntax-table
This function returns the standard syntax table, which is the syntax table used in
Fundamental mode.

[Variable]text-mode-syntax-table
The value of this variable is the syntax table used in Text mode.

[Variable]c-mode-syntax-table
The value of this variable is the syntax table for C-mode buffers.

[Variable]emacs-lisp-mode-syntax-table
The value of this variable is the syntax table used in Emacs Lisp mode by editing
commands. (It has no effect on the Lisp read function.)

35.8 Syntax Table Internals

Lisp programs don’t usually work with the elements directly; the Lisp-level syntax ta-
ble functions usually work with syntax descriptors (see Section 35.2 [Syntax Descriptors],
page 234). Nonetheless, here we document the internal format. This format is used mostly
when manipulating syntax properties.

Each element of a syntax table is a cons cell of the form (syntax-code . matching-

char). The car, syntax-code, is an integer that encodes the syntax class, and any flags.
The cdr, matching-char, is non-nil if a character to match was specified.

This table gives the value of syntax-code which corresponds to each syntactic type.

Integer Class Integer Class Integer Class
0 whitespace 5 close parenthesis 10 character quote
1 punctuation 6 expression prefix 11 comment-start
2 word 7 string quote 12 comment-end
3 symbol 8 paired delimiter 13 inherit
4 open parenthesis 9 escape 14 generic comment
15 generic string

For example, the usual syntax value for ‘(’ is (4 . 41). (41 is the character code for ‘)’.)

The flags are encoded in higher order bits, starting 16 bits from the least significant bit.
This table gives the power of two which corresponds to each syntax flag.

Prefix Flag Prefix Flag Prefix Flag
‘1’ (lsh 1 16) ‘4’ (lsh 1 19) ‘b’ (lsh 1 21)

‘2’ (lsh 1 17) ‘p’ (lsh 1 20) ‘n’ (lsh 1 22)

‘3’ (lsh 1 18)

[Function]string-to-syntax desc
This function returns the internal form corresponding to the syntax descriptor desc,
a cons cell (syntax-code . matching-char).

Chapter 35: Syntax Tables 247

[Function]syntax-after pos
This function returns the syntax code of the character in the buffer after position
pos, taking account of syntax properties as well as the syntax table. If pos is outside
the buffer’s accessible portion (see Section 30.4 [Narrowing], page 109), this function
returns nil.

[Function]syntax-class syntax
This function returns the syntax class of the syntax code syntax. (It masks off the
high 16 bits that hold the flags encoded in the syntax descriptor.) If syntax is nil,
it returns nil; this is so evaluating the expression

(syntax-class (syntax-after pos))

where pos is outside the buffer’s accessible portion, will yield nil without throwing
errors or producing wrong syntax class codes.

35.9 Categories

Categories provide an alternate way of classifying characters syntactically. You can define
several categories as needed, then independently assign each character to one or more cat-
egories. Unlike syntax classes, categories are not mutually exclusive; it is normal for one
character to belong to several categories.

Each buffer has a category table which records which categories are defined and also
which characters belong to each category. Each category table defines its own categories,
but normally these are initialized by copying from the standard categories table, so that
the standard categories are available in all modes.

Each category has a name, which is an ASCII printing character in the range ‘ ’ to ‘~’.
You specify the name of a category when you define it with define-category.

The category table is actually a char-table (see Section 6.6 [Char-Tables], page 92, vol. 1).
The element of the category table at index c is a category set—a bool-vector—that indicates
which categories character c belongs to. In this category set, if the element at index cat is
t, that means category cat is a member of the set, and that character c belongs to category
cat.

For the next three functions, the optional argument table defaults to the current buffer’s
category table.

[Function]define-category char docstring &optional table
This function defines a new category, with name char and documentation docstring,
for the category table table.

Here’s an example of defining a new category for characters that have strong right-
to-left directionality (see Section 38.23 [Bidirectional Display], page 382) and using it
in a special category table:

(defvar special-category-table-for-bidi

(let ((category-table (make-category-table))

(uniprop-table (unicode-property-table-internal ’bidi-class)))

(define-category ?R "Characters of bidi-class R, AL, or RLO"

category-table)

(map-char-table

Chapter 35: Syntax Tables 248

#’(lambda (key val)

(if (memq val ’(R AL RLO))

(modify-category-entry key ?R category-table)))

uniprop-table)

category-table))

[Function]category-docstring category &optional table
This function returns the documentation string of category category in category table
table.

(category-docstring ?a)

⇒ "ASCII"

(category-docstring ?l)

⇒ "Latin"

[Function]get-unused-category &optional table
This function returns a category name (a character) which is not currently defined in
table. If all possible categories are in use in table, it returns nil.

[Function]category-table
This function returns the current buffer’s category table.

[Function]category-table-p object
This function returns t if object is a category table, otherwise nil.

[Function]standard-category-table
This function returns the standard category table.

[Function]copy-category-table &optional table
This function constructs a copy of table and returns it. If table is not supplied (or is
nil), it returns a copy of the standard category table. Otherwise, an error is signaled
if table is not a category table.

[Function]set-category-table table
This function makes table the category table for the current buffer. It returns table.

[Function]make-category-table
This creates and returns an empty category table. In an empty category table, no
categories have been allocated, and no characters belong to any categories.

[Function]make-category-set categories
This function returns a new category set—a bool-vector—whose initial contents are
the categories listed in the string categories. The elements of categories should be
category names; the new category set has t for each of those categories, and nil for
all other categories.

(make-category-set "al")

⇒ #&128"\0\0\0\0\0\0\0\0\0\0\0\0\2\20\0\0"

[Function]char-category-set char
This function returns the category set for character char in the current buffer’s cate-
gory table. This is the bool-vector which records which categories the character char

Chapter 35: Syntax Tables 249

belongs to. The function char-category-set does not allocate storage, because it
returns the same bool-vector that exists in the category table.

(char-category-set ?a)

⇒ #&128"\0\0\0\0\0\0\0\0\0\0\0\0\2\20\0\0"

[Function]category-set-mnemonics category-set
This function converts the category set category-set into a string containing the char-
acters that designate the categories that are members of the set.

(category-set-mnemonics (char-category-set ?a))

⇒ "al"

[Function]modify-category-entry char category &optional table reset
This function modifies the category set of char in category table table (which defaults
to the current buffer’s category table). char can be a character, or a cons cell of the
form (min . max); in the latter case, the function modifies the category sets of all
characters in the range between min and max, inclusive.

Normally, it modifies a category set by adding category to it. But if reset is non-nil,
then it deletes category instead.

[Command]describe-categories &optional buffer-or-name
This function describes the category specifications in the current category table. It
inserts the descriptions in a buffer, and then displays that buffer. If buffer-or-name
is non-nil, it describes the category table of that buffer instead.

Chapter 36: Abbrevs and Abbrev Expansion 250

36 Abbrevs and Abbrev Expansion

An abbreviation or abbrev is a string of characters that may be expanded to a longer string.
The user can insert the abbrev string and find it replaced automatically with the expansion
of the abbrev. This saves typing.

The set of abbrevs currently in effect is recorded in an abbrev table. Each buffer has a
local abbrev table, but normally all buffers in the same major mode share one abbrev table.
There is also a global abbrev table. Normally both are used.

An abbrev table is represented as an obarray. See Section 8.3 [Creating Symbols],
page 104, vol. 1, for information about obarrays. Each abbreviation is represented by a
symbol in the obarray. The symbol’s name is the abbreviation; its value is the expansion;
its function definition is the hook function for performing the expansion (see Section 36.2
[Defining Abbrevs], page 251); and its property list cell contains various additional proper-
ties, including the use count and the number of times the abbreviation has been expanded
(see Section 36.6 [Abbrev Properties], page 255).

Certain abbrevs, called system abbrevs, are defined by a major mode instead of the user.
A system abbrev is identified by its non-nil :system property (see Section 36.6 [Abbrev
Properties], page 255). When abbrevs are saved to an abbrev file, system abbrevs are
omitted. See Section 36.3 [Abbrev Files], page 252.

Because the symbols used for abbrevs are not interned in the usual obarray, they will
never appear as the result of reading a Lisp expression; in fact, normally they are never used
except by the code that handles abbrevs. Therefore, it is safe to use them in a nonstandard
way.

If the minor mode Abbrev mode is enabled, the buffer-local variable abbrev-mode is non-
nil, and abbrevs are automatically expanded in the buffer. For the user-level commands
for abbrevs, see Section “Abbrev Mode” in The GNU Emacs Manual.

36.1 Abbrev Tables

This section describes how to create and manipulate abbrev tables.

[Function]make-abbrev-table &optional props
This function creates and returns a new, empty abbrev table—an obarray containing
no symbols. It is a vector filled with zeros. props is a property list that is applied to
the new table (see Section 36.7 [Abbrev Table Properties], page 256).

[Function]abbrev-table-p object
This function returns a non-nil value if object is an abbrev table.

[Function]clear-abbrev-table abbrev-table
This function undefines all the abbrevs in abbrev-table, leaving it empty.

[Function]copy-abbrev-table abbrev-table
This function returns a copy of abbrev-table—a new abbrev table containing the same
abbrev definitions. It does not copy any property lists; only the names, values, and
functions.

Chapter 36: Abbrevs and Abbrev Expansion 251

[Function]define-abbrev-table tabname definitions &optional docstring &rest
props

This function defines tabname (a symbol) as an abbrev table name, i.e., as a variable
whose value is an abbrev table. It defines abbrevs in the table according to definitions,
a list of elements of the form (abbrevname expansion [hook] [props...]). These
elements are passed as arguments to define-abbrev.

The optional string docstring is the documentation string of the variable tabname.
The property list props is applied to the abbrev table (see Section 36.7 [Abbrev Table
Properties], page 256).

If this function is called more than once for the same tabname, subsequent calls add
the definitions in definitions to tabname, rather than overwriting the entire original
contents. (A subsequent call only overrides abbrevs explicitly redefined or undefined
in definitions.)

[Variable]abbrev-table-name-list
This is a list of symbols whose values are abbrev tables. define-abbrev-table adds
the new abbrev table name to this list.

[Function]insert-abbrev-table-description name &optional human
This function inserts before point a description of the abbrev table named name. The
argument name is a symbol whose value is an abbrev table.

If human is non-nil, the description is human-oriented. System abbrevs are listed
and identified as such. Otherwise the description is a Lisp expression—a call to
define-abbrev-table that would define name as it is currently defined, but without
the system abbrevs. (The mode or package using name is supposed to add these to
name separately.)

36.2 Defining Abbrevs

define-abbrev is the low-level basic function for defining an abbrev in an abbrev table.

When a major mode defines a system abbrev, it should call define-abbrev and specify
t for the :system property. Be aware that any saved non-“system” abbrevs are restored
at startup, i.e. before some major modes are loaded. Therefore, major modes should not
assume that their abbrev tables are empty when they are first loaded.

[Function]define-abbrev abbrev-table name expansion &optional hook &rest
props

This function defines an abbrev named name, in abbrev-table, to expand to expansion
and call hook, with properties props (see Section 36.6 [Abbrev Properties], page 255).
The return value is name. The :system property in props is treated specially here:
if it has the value force, then it will overwrite an existing definition even for a non-
“system” abbrev of the same name.

name should be a string. The argument expansion is normally the desired expansion
(a string), or nil to undefine the abbrev. If it is anything but a string or nil, then
the abbreviation “expands” solely by running hook.

The argument hook is a function or nil. If hook is non-nil, then it is called with no
arguments after the abbrev is replaced with expansion; point is located at the end of
expansion when hook is called.

Chapter 36: Abbrevs and Abbrev Expansion 252

If hook is a non-nil symbol whose no-self-insert property is non-nil, hook can
explicitly control whether to insert the self-inserting input character that triggered
the expansion. If hook returns non-nil in this case, that inhibits insertion of the
character. By contrast, if hook returns nil, expand-abbrev (or abbrev-insert)
also returns nil, as if expansion had not really occurred.

Normally, define-abbrev sets the variable abbrevs-changed to t, if it actually
changes the abbrev. This is so that some commands will offer to save the abbrevs. It
does not do this for a system abbrev, since those aren’t saved anyway.

[User Option]only-global-abbrevs
If this variable is non-nil, it means that the user plans to use global abbrevs only. This
tells the commands that define mode-specific abbrevs to define global ones instead.
This variable does not alter the behavior of the functions in this section; it is examined
by their callers.

36.3 Saving Abbrevs in Files

A file of saved abbrev definitions is actually a file of Lisp code. The abbrevs are saved
in the form of a Lisp program to define the same abbrev tables with the same contents.
Therefore, you can load the file with load (see Section 15.1 [How Programs Do Loading],
page 209, vol. 1). However, the function quietly-read-abbrev-file is provided as a more
convenient interface. Emacs automatically calls this function at startup.

User-level facilities such as save-some-buffers can save abbrevs in a file automatically,
under the control of variables described here.

[User Option]abbrev-file-name
This is the default file name for reading and saving abbrevs.

[Function]quietly-read-abbrev-file &optional filename
This function reads abbrev definitions from a file named filename, previously written
with write-abbrev-file. If filename is omitted or nil, the file specified in abbrev-

file-name is used.

As the name implies, this function does not display any messages.

[User Option]save-abbrevs
A non-nil value for save-abbrevs means that Emacs should offer to save abbrevs
(if any have changed) when files are saved. If the value is silently, Emacs saves
the abbrevs without asking the user. abbrev-file-name specifies the file to save the
abbrevs in.

[Variable]abbrevs-changed
This variable is set non-nil by defining or altering any abbrevs (except system ab-
brevs). This serves as a flag for various Emacs commands to offer to save your
abbrevs.

[Command]write-abbrev-file &optional filename
Save all abbrev definitions (except system abbrevs), for all abbrev tables listed in
abbrev-table-name-list, in the file filename, in the form of a Lisp program that
when loaded will define the same abbrevs. If filename is nil or omitted, abbrev-
file-name is used. This function returns nil.

Chapter 36: Abbrevs and Abbrev Expansion 253

36.4 Looking Up and Expanding Abbreviations

Abbrevs are usually expanded by certain interactive commands, including self-insert-

command. This section describes the subroutines used in writing such commands, as well as
the variables they use for communication.

[Function]abbrev-symbol abbrev &optional table
This function returns the symbol representing the abbrev named abbrev. It returns
nil if that abbrev is not defined. The optional second argument table is the abbrev
table in which to look it up. If table is nil, this function tries first the current buffer’s
local abbrev table, and second the global abbrev table.

[Function]abbrev-expansion abbrev &optional table
This function returns the string that abbrev would expand into (as defined by the
abbrev tables used for the current buffer). It returns nil if abbrev is not a valid
abbrev. The optional argument table specifies the abbrev table to use, as in abbrev-

symbol.

[Command]expand-abbrev
This command expands the abbrev before point, if any. If point does not follow an
abbrev, this command does nothing. The command returns the abbrev symbol if it
did expansion, nil otherwise.

If the abbrev symbol has a hook function that is a symbol whose no-self-insert

property is non-nil, and if the hook function returns nil as its value, then expand-

abbrev returns nil even though expansion did occur.

[Function]abbrev-insert abbrev &optional name start end
This function inserts the abbrev expansion of abbrev, replacing the text between
start and end. If start is omitted, it defaults to point. name, if non-nil, should be
the name by which this abbrev was found (a string); it is used to figure out whether to
adjust the capitalization of the expansion. The function returns abbrev if the abbrev
was successfully inserted.

[Command]abbrev-prefix-mark &optional arg
This command marks the current location of point as the beginning of an abbrev.
The next call to expand-abbrev will use the text from here to point (where it is then)
as the abbrev to expand, rather than using the previous word as usual.

First, this command expands any abbrev before point, unless arg is non-nil. (In-
teractively, arg is the prefix argument.) Then it inserts a hyphen before point, to
indicate the start of the next abbrev to be expanded. The actual expansion removes
the hyphen.

[User Option]abbrev-all-caps
When this is set non-nil, an abbrev entered entirely in upper case is expanded using
all upper case. Otherwise, an abbrev entered entirely in upper case is expanded by
capitalizing each word of the expansion.

[Variable]abbrev-start-location
The value of this variable is a buffer position (an integer or a marker) for expand-
abbrev to use as the start of the next abbrev to be expanded. The value can also be

Chapter 36: Abbrevs and Abbrev Expansion 254

nil, which means to use the word before point instead. abbrev-start-location is
set to nil each time expand-abbrev is called. This variable is also set by abbrev-

prefix-mark.

[Variable]abbrev-start-location-buffer
The value of this variable is the buffer for which abbrev-start-location has been
set. Trying to expand an abbrev in any other buffer clears abbrev-start-location.
This variable is set by abbrev-prefix-mark.

[Variable]last-abbrev
This is the abbrev-symbol of the most recent abbrev expanded. This information is
left by expand-abbrev for the sake of the unexpand-abbrev command (see Section
“Expanding Abbrevs” in The GNU Emacs Manual).

[Variable]last-abbrev-location
This is the location of the most recent abbrev expanded. This contains information
left by expand-abbrev for the sake of the unexpand-abbrev command.

[Variable]last-abbrev-text
This is the exact expansion text of the most recent abbrev expanded, after case
conversion (if any). Its value is nil if the abbrev has already been unexpanded. This
contains information left by expand-abbrev for the sake of the unexpand-abbrev

command.

[Variable]abbrev-expand-functions
This is a wrapper hook (see Section 23.1.1 [Running Hooks], page 396, vol. 1) run
around the expand-abbrev function. Each function on this hook is called with a
single argument: a function that performs the normal abbrev expansion. The hook
function can hence do anything it wants before and after performing the expansion.
It can also choose not to call its argument, thus overriding the default behavior; or
it may even call it several times. The function should return the abbrev symbol if
expansion took place.

The following sample code shows a simple use of abbrev-expand-functions. It assumes
that foo-mode is a mode for editing certain files in which lines that start with ‘#’ are
comments. You want to use Text mode abbrevs for those lines. The regular local abbrev
table, foo-mode-abbrev-table is appropriate for all other lines. See Section 36.5 [Standard
Abbrev Tables], page 255, for the definitions of local-abbrev-table and text-mode-

abbrev-table.
(defun foo-mode-abbrev-expand-function (expand)

(if (not (save-excursion (forward-line 0) (eq (char-after) ?#)))

;; Performs normal expansion.

(funcall expand)

;; We’re inside a comment: use the text-mode abbrevs.

(let ((local-abbrev-table text-mode-abbrev-table))

(funcall expand))))

(add-hook ’foo-mode-hook

#’(lambda ()

(add-hook ’abbrev-expand-functions

’foo-mode-abbrev-expand-function

nil t)))

Chapter 36: Abbrevs and Abbrev Expansion 255

36.5 Standard Abbrev Tables

Here we list the variables that hold the abbrev tables for the preloaded major modes of
Emacs.

[Variable]global-abbrev-table
This is the abbrev table for mode-independent abbrevs. The abbrevs defined in it
apply to all buffers. Each buffer may also have a local abbrev table, whose abbrev
definitions take precedence over those in the global table.

[Variable]local-abbrev-table
The value of this buffer-local variable is the (mode-specific) abbreviation table of the
current buffer. It can also be a list of such tables.

[Variable]abbrev-minor-mode-table-alist
The value of this variable is a list of elements of the form (mode . abbrev-table)

where mode is the name of a variable: if the variable is bound to a non-nil value,
then the abbrev-table is active, otherwise it is ignored. abbrev-table can also be a
list of abbrev tables.

[Variable]fundamental-mode-abbrev-table
This is the local abbrev table used in Fundamental mode; in other words, it is the
local abbrev table in all buffers in Fundamental mode.

[Variable]text-mode-abbrev-table
This is the local abbrev table used in Text mode.

[Variable]lisp-mode-abbrev-table
This is the local abbrev table used in Lisp mode. It is the parent of the local abbrev
table used in Emacs Lisp mode. See Section 36.7 [Abbrev Table Properties], page 256.

36.6 Abbrev Properties

Abbrevs have properties, some of which influence the way they work. You can provide them
as arguments to define-abbrev, and manipulate them with the following functions:

[Function]abbrev-put abbrev prop val
Set the property prop of abbrev to value val.

[Function]abbrev-get abbrev prop
Return the property prop of abbrev, or nil if the abbrev has no such property.

The following properties have special meanings:

:count This property counts the number of times the abbrev has been expanded. If
not explicitly set, it is initialized to 0 by define-abbrev.

:system If non-nil, this property marks the abbrev as a system abbrev. Such abbrevs
are not saved (see Section 36.3 [Abbrev Files], page 252).

:enable-function

If non-nil, this property should be a function of no arguments which returns
nil if the abbrev should not be used and t otherwise.

Chapter 36: Abbrevs and Abbrev Expansion 256

:case-fixed

If non-nil, this property indicates that the case of the abbrev’s name is signif-
icant and should only match a text with the same pattern of capitalization. It
also disables the code that modifies the capitalization of the expansion.

36.7 Abbrev Table Properties

Like abbrevs, abbrev tables have properties, some of which influence the way they work.
You can provide them as arguments to define-abbrev-table, and manipulate them with
the functions:

[Function]abbrev-table-put table prop val
Set the property prop of abbrev table table to value val.

[Function]abbrev-table-get table prop
Return the property prop of abbrev table table, or nil if the abbrev has no such
property.

The following properties have special meaning:

:enable-function

This is like the :enable-function abbrev property except that it applies to
all abbrevs in the table. It is used before even trying to find the abbrev before
point, so it can dynamically modify the abbrev table.

:case-fixed

This is like the :case-fixed abbrev property except that it applies to all ab-
brevs in the table.

:regexp If non-nil, this property is a regular expression that indicates how to extract
the name of the abbrev before point, before looking it up in the table. When
the regular expression matches before point, the abbrev name is expected to
be in submatch 1. If this property is nil, the default is to use backward-word
and forward-word to find the name. This property allows the use of abbrevs
whose name contains characters of non-word syntax.

:parents This property holds a list of tables from which to inherit other abbrevs.

:abbrev-table-modiff

This property holds a counter incremented each time a new abbrev is added to
the table.

Chapter 37: Processes 257

37 Processes

In the terminology of operating systems, a process is a space in which a program can execute.
Emacs runs in a process. Emacs Lisp programs can invoke other programs in processes of
their own. These are called subprocesses or child processes of the Emacs process, which is
their parent process.

A subprocess of Emacs may be synchronous or asynchronous, depending on how it is cre-
ated. When you create a synchronous subprocess, the Lisp program waits for the subprocess
to terminate before continuing execution. When you create an asynchronous subprocess, it
can run in parallel with the Lisp program. This kind of subprocess is represented within
Emacs by a Lisp object which is also called a “process”. Lisp programs can use this object
to communicate with the subprocess or to control it. For example, you can send signals,
obtain status information, receive output from the process, or send input to it.

[Function]processp object
This function returns t if object represents an Emacs subprocess, nil otherwise.

In addition to subprocesses of the current Emacs session, you can also access other
processes running on your machine. See Section 37.12 [System Processes], page 278.

37.1 Functions that Create Subprocesses

There are three primitives that create a new subprocess in which to run a program. One
of them, start-process, creates an asynchronous process and returns a process object
(see Section 37.4 [Asynchronous Processes], page 264). The other two, call-process and
call-process-region, create a synchronous process and do not return a process object (see
Section 37.3 [Synchronous Processes], page 260). There are various higher-level functions
that make use of these primitives to run particular types of process.

Synchronous and asynchronous processes are explained in the following sections. Since
the three functions are all called in a similar fashion, their common arguments are described
here.

In all cases, the function’s program argument specifies the program to be run. An error
is signaled if the file is not found or cannot be executed. If the file name is relative, the
variable exec-path contains a list of directories to search. Emacs initializes exec-path

when it starts up, based on the value of the environment variable PATH. The standard file
name constructs, ‘~’, ‘.’, and ‘..’, are interpreted as usual in exec-path, but environment
variable substitutions (‘$HOME’, etc.) are not recognized; use substitute-in-file-name to
perform them (see Section 25.8.4 [File Name Expansion], page 486, vol. 1). nil in this list
refers to default-directory.

Executing a program can also try adding suffixes to the specified name:

[Variable]exec-suffixes
This variable is a list of suffixes (strings) to try adding to the specified program file
name. The list should include "" if you want the name to be tried exactly as specified.
The default value is system-dependent.

Chapter 37: Processes 258

Please note: The argument program contains only the name of the program; it may not
contain any command-line arguments. You must use a separate argument, args, to provide
those, as described below.

Each of the subprocess-creating functions has a buffer-or-name argument that specifies
where the standard output from the program will go. It should be a buffer or a buffer name;
if it is a buffer name, that will create the buffer if it does not already exist. It can also be
nil, which says to discard the output unless a filter function handles it. (See Section 37.9.2
[Filter Functions], page 273, and Chapter 19 [Read and Print], page 274, vol. 1.) Normally,
you should avoid having multiple processes send output to the same buffer because their
output would be intermixed randomly. For synchronous processes, you can send the output
to a file instead of a buffer.

All three of the subprocess-creating functions have a &rest argument, args. The args
must all be strings, and they are supplied to program as separate command line arguments.
Wildcard characters and other shell constructs have no special meanings in these strings,
since the strings are passed directly to the specified program.

The subprocess inherits its environment from Emacs, but you can specify overrides for
it with process-environment. See Section 39.3 [System Environment], page 395. The
subprocess gets its current directory from the value of default-directory.

[Variable]exec-directory
The value of this variable is a string, the name of a directory that contains programs
that come with GNU Emacs and are intended for Emacs to invoke. The program
movemail is an example of such a program; Rmail uses it to fetch new mail from an
inbox.

[User Option]exec-path
The value of this variable is a list of directories to search for programs to run in
subprocesses. Each element is either the name of a directory (i.e., a string), or nil,
which stands for the default directory (which is the value of default-directory).

The value of exec-path is used by call-process and start-process when the
program argument is not an absolute file name.

Generally, you should not modify exec-path directly. Instead, ensure that your PATH
environment variable is set appropriately before starting Emacs. Trying to modify
exec-path independently of PATH can lead to confusing results.

37.2 Shell Arguments

Lisp programs sometimes need to run a shell and give it a command that contains file names
that were specified by the user. These programs ought to be able to support any valid file
name. But the shell gives special treatment to certain characters, and if these characters
occur in the file name, they will confuse the shell. To handle these characters, use the
function shell-quote-argument:

[Function]shell-quote-argument argument
This function returns a string that represents, in shell syntax, an argument whose
actual contents are argument. It should work reliably to concatenate the return value
into a shell command and then pass it to a shell for execution.

Chapter 37: Processes 259

Precisely what this function does depends on your operating system. The function
is designed to work with the syntax of your system’s standard shell; if you use an
unusual shell, you will need to redefine this function.

;; This example shows the behavior on GNU and Unix systems.
(shell-quote-argument "foo > bar")

⇒ "foo\\ \\>\\ bar"

;; This example shows the behavior on MS-DOS and MS-Windows.
(shell-quote-argument "foo > bar")

⇒ "\"foo > bar\""

Here’s an example of using shell-quote-argument to construct a shell command:

(concat "diff -c "

(shell-quote-argument oldfile)

" "

(shell-quote-argument newfile))

The following two functions are useful for combining a list of individual command-line
argument strings into a single string, and taking a string apart into a list of individual
command-line arguments. These functions are mainly intended for converting user input in
the minibuffer, a Lisp string, into a list of string arguments to be passed to call-process

or start-process, or for converting such lists of arguments into a single Lisp string to be
presented in the minibuffer or echo area.

[Function]split-string-and-unquote string &optional separators
This function splits string into substrings at matches for the regular expression sepa-
rators, like split-string does (see Section 4.3 [Creating Strings], page 49, vol. 1); in
addition, it removes quoting from the substrings. It then makes a list of the substrings
and returns it.

If separators is omitted or nil, it defaults to "\\s-+", which is a regular expres-
sion that matches one or more characters with whitespace syntax (see Section 35.2.1
[Syntax Class Table], page 235).

This function supports two types of quoting: enclosing a whole string in double quotes
"...", and quoting individual characters with a backslash escape ‘\’. The latter is
also used in Lisp strings, so this function can handle those as well.

[Function]combine-and-quote-strings list-of-strings &optional separator
This function concatenates list-of-strings into a single string, quoting each string as
necessary. It also sticks the separator string between each pair of strings; if separator
is omitted or nil, it defaults to " ". The return value is the resulting string.

The strings in list-of-strings that need quoting are those that include separator as
their substring. Quoting a string encloses it in double quotes "...". In the simplest
case, if you are consing a command from the individual command-line arguments,
every argument that includes embedded blanks will be quoted.

Chapter 37: Processes 260

37.3 Creating a Synchronous Process

After a synchronous process is created, Emacs waits for the process to terminate before
continuing. Starting Dired on GNU or Unix1 is an example of this: it runs ls in a syn-
chronous process, then modifies the output slightly. Because the process is synchronous,
the entire directory listing arrives in the buffer before Emacs tries to do anything with it.

While Emacs waits for the synchronous subprocess to terminate, the user can quit by
typing C-g. The first C-g tries to kill the subprocess with a SIGINT signal; but it waits
until the subprocess actually terminates before quitting. If during that time the user types
another C-g, that kills the subprocess instantly with SIGKILL and quits immediately (except
on MS-DOS, where killing other processes doesn’t work). See Section 21.11 [Quitting],
page 351, vol. 1.

The synchronous subprocess functions return an indication of how the process termi-
nated.

The output from a synchronous subprocess is generally decoded using a coding system,
much like text read from a file. The input sent to a subprocess by call-process-region is
encoded using a coding system, much like text written into a file. See Section 33.9 [Coding
Systems], page 193.

[Function]call-process program &optional infile destination display &rest args
This function calls program and waits for it to finish.

The standard input for the new process comes from file infile if infile is not nil,
and from the null device otherwise. The argument destination says where to put the
process output. Here are the possibilities:

a buffer Insert the output in that buffer, before point. This includes both the
standard output stream and the standard error stream of the process.

a string Insert the output in a buffer with that name, before point.

t Insert the output in the current buffer, before point.

nil Discard the output.

0 Discard the output, and return nil immediately without waiting for the
subprocess to finish.

In this case, the process is not truly synchronous, since it can run in
parallel with Emacs; but you can think of it as synchronous in that Emacs
is essentially finished with the subprocess as soon as this function returns.

MS-DOS doesn’t support asynchronous subprocesses, so this option
doesn’t work there.

(:file file-name)

Send the output to the file name specified, overwriting it if it already
exists.

1 On other systems, Emacs uses a Lisp emulation of ls; see Section 25.9 [Contents of Directories], page 491,
vol. 1.

Chapter 37: Processes 261

(real-destination error-destination)

Keep the standard output stream separate from the standard error
stream; deal with the ordinary output as specified by real-destination,
and dispose of the error output according to error-destination. If
error-destination is nil, that means to discard the error output, t means
mix it with the ordinary output, and a string specifies a file name to
redirect error output into.

You can’t directly specify a buffer to put the error output in; that is too
difficult to implement. But you can achieve this result by sending the
error output to a temporary file and then inserting the file into a buffer.

If display is non-nil, then call-process redisplays the buffer as output is inserted.
(However, if the coding system chosen for decoding output is undecided, meaning
deduce the encoding from the actual data, then redisplay sometimes cannot continue
once non-ASCII characters are encountered. There are fundamental reasons why it is
hard to fix this; see Section 37.9 [Output from Processes], page 271.)

Otherwise the function call-process does no redisplay, and the results become vis-
ible on the screen only when Emacs redisplays that buffer in the normal course of
events.

The remaining arguments, args, are strings that specify command line arguments for
the program.

The value returned by call-process (unless you told it not to wait) indicates the
reason for process termination. A number gives the exit status of the subprocess; 0
means success, and any other value means failure. If the process terminated with a
signal, call-process returns a string describing the signal.

In the examples below, the buffer ‘foo’ is current.

(call-process "pwd" nil t)
⇒ 0

---------- Buffer: foo ----------

/home/lewis/manual

---------- Buffer: foo ----------

(call-process "grep" nil "bar" nil "lewis" "/etc/passwd")
⇒ 0

---------- Buffer: bar ----------

lewis:x:1001:1001:Bil Lewis,,,,:/home/lewis:/bin/bash

---------- Buffer: bar ----------

Here is an example of the use of call-process, as used to be found in the definition
of the insert-directory function:

(call-process insert-directory-program nil t nil switches

(if full-directory-p

(concat (file-name-as-directory file) ".")

file))

Chapter 37: Processes 262

[Function]process-file program &optional infile buffer display &rest args
This function processes files synchronously in a separate process. It is similar to
call-process, but may invoke a file handler based on the value of the variable
default-directory, which specifies the current working directory of the subprocess.

The arguments are handled in almost the same way as for call-process, with the
following differences:

Some file handlers may not support all combinations and forms of the arguments
infile, buffer, and display. For example, some file handlers might behave as if display
were nil, regardless of the value actually passed. As another example, some file
handlers might not support separating standard output and error output by way of
the buffer argument.

If a file handler is invoked, it determines the program to run based on the first
argument program. For instance, suppose that a handler for remote files is invoked.
Then the path that is used for searching for the program might be different from
exec-path.

The second argument infile may invoke a file handler. The file handler could be
different from the handler chosen for the process-file function itself. (For example,
default-directory could be on one remote host, and infile on a different remote
host. Or default-directory could be non-special, whereas infile is on a remote
host.)

If buffer is a list of the form (real-destination error-destination), and error-
destination names a file, then the same remarks as for infile apply.

The remaining arguments (args) will be passed to the process verbatim. Emacs is
not involved in processing file names that are present in args. To avoid confusion, it
may be best to avoid absolute file names in args, but rather to specify all file names
as relative to default-directory. The function file-relative-name is useful for
constructing such relative file names.

[Variable]process-file-side-effects
This variable indicates whether a call of process-file changes remote files.

By default, this variable is always set to t, meaning that a call of process-file could
potentially change any file on a remote host. When set to nil, a file handler could
optimize its behavior with respect to remote file attribute caching.

You should only ever change this variable with a let-binding; never with setq.

[Function]call-process-region start end program &optional delete destination
display &rest args

This function sends the text from start to end as standard input to a process running
program. It deletes the text sent if delete is non-nil; this is useful when destination
is t, to insert the output in the current buffer in place of the input.

The arguments destination and display control what to do with the output from the
subprocess, and whether to update the display as it comes in. For details, see the
description of call-process, above. If destination is the integer 0, call-process-
region discards the output and returns nil immediately, without waiting for the
subprocess to finish (this only works if asynchronous subprocesses are supported; i.e.
not on MS-DOS).

Chapter 37: Processes 263

The remaining arguments, args, are strings that specify command line arguments for
the program.

The return value of call-process-region is just like that of call-process: nil if
you told it to return without waiting; otherwise, a number or string which indicates
how the subprocess terminated.

In the following example, we use call-process-region to run the cat utility, with
standard input being the first five characters in buffer ‘foo’ (the word ‘input’). cat
copies its standard input into its standard output. Since the argument destination is
t, this output is inserted in the current buffer.

---------- Buffer: foo ----------

input?
---------- Buffer: foo ----------

(call-process-region 1 6 "cat" nil t)
⇒ 0

---------- Buffer: foo ----------

inputinput?
---------- Buffer: foo ----------

For example, the shell-command-on-region command uses call-process-region
in a manner similar to this:

(call-process-region

start end

shell-file-name ; name of program
nil ; do not delete region
buffer ; send output to buffer

nil ; no redisplay during output
"-c" command) ; arguments for the shell

[Function]call-process-shell-command command &optional infile destination
display &rest args

This function executes the shell command command synchronously. The final ar-
guments args are additional arguments to add at the end of command. The other
arguments are handled as in call-process.

[Function]process-file-shell-command command &optional infile destination
display &rest args

This function is like call-process-shell-command, but uses process-file inter-
nally. Depending on default-directory, command can be executed also on remote
hosts.

[Function]shell-command-to-string command
This function executes command (a string) as a shell command, then returns the
command’s output as a string.

[Function]process-lines program &rest args
This function runs program, waits for it to finish, and returns its output as a list of
strings. Each string in the list holds a single line of text output by the program; the
end-of-line characters are stripped from each line. The arguments beyond program,
args, are strings that specify command-line arguments with which to run the program.

Chapter 37: Processes 264

If program exits with a non-zero exit status, this function signals an error.

This function works by calling call-process, so program output is decoded in the
same way as for call-process.

37.4 Creating an Asynchronous Process

After an asynchronous process is created, Emacs and the subprocess both continue running
immediately. The process thereafter runs in parallel with Emacs, and the two can com-
municate with each other using the functions described in the following sections. However,
communication is only partially asynchronous: Emacs sends data to the process only when
certain functions are called, and Emacs accepts data from the process only when Emacs is
waiting for input or for a time delay.

Here we describe how to create an asynchronous process.

[Function]start-process name buffer-or-name program &rest args
This function creates a new asynchronous subprocess and starts the program program
running in it. It returns a process object that stands for the new subprocess in Lisp.
The argument name specifies the name for the process object; if a process with this
name already exists, then name is modified (by appending ‘<1>’, etc.) to be unique.
The buffer buffer-or-name is the buffer to associate with the process.

If program is nil, Emacs opens a new pseudoterminal (pty) and associates its input
and output with buffer-or-name, without creating a subprocess. In that case, the
remaining arguments args are ignored.

The remaining arguments, args, are strings that specify command line arguments for
the subprocess.

In the example below, the first process is started and runs (rather, sleeps) for 100
seconds (the output buffer ‘foo’ is created immediately). Meanwhile, the second
process is started, and given the name ‘my-process<1>’ for the sake of uniqueness.
It inserts the directory listing at the end of the buffer ‘foo’, before the first process
finishes. Then it finishes, and a message to that effect is inserted in the buffer. Much
later, the first process finishes, and another message is inserted in the buffer for it.

(start-process "my-process" "foo" "sleep" "100")
⇒ #<process my-process>

(start-process "my-process" "foo" "ls" "-l" "/bin")
⇒ #<process my-process<1>>

---------- Buffer: foo ----------

total 8336

-rwxr-xr-x 1 root root 971384 Mar 30 10:14 bash

-rwxr-xr-x 1 root root 146920 Jul 5 2011 bsd-csh

...

-rwxr-xr-x 1 root root 696880 Feb 28 15:55 zsh4

Process my-process<1> finished

Process my-process finished

---------- Buffer: foo ----------

Chapter 37: Processes 265

[Function]start-file-process name buffer-or-name program &rest args
Like start-process, this function starts a new asynchronous subprocess running
program in it, and returns its process object.

The difference from start-process is that this function may invoked a file handler
based on the value of default-directory. This handler ought to run program,
perhaps on the local host, perhaps on a remote host that corresponds to default-

directory. In the latter case, the local part of default-directory becomes the
working directory of the process.

This function does not try to invoke file name handlers for program or for the program-
args.

Depending on the implementation of the file handler, it might not be possible to
apply process-filter or process-sentinel to the resulting process object. See
Section 37.9.2 [Filter Functions], page 273, and Section 37.10 [Sentinels], page 276.

Some file handlers may not support start-file-process (for example the function
ange-ftp-hook-function). In such cases, this function does nothing and returns
nil.

[Function]start-process-shell-command name buffer-or-name command
This function is like start-process, except that it uses a shell to execute the specified
command. The argument command is a shell command name. The variable shell-

file-name specifies which shell to use.

The point of running a program through the shell, rather than directly with start-

process, is so that you can employ shell features such as wildcards in the arguments.
It follows that if you include any arbitrary user-specified arguments in the command,
you should quote them with shell-quote-argument first, so that any special shell
characters do not have their special shell meanings. See Section 37.2 [Shell Argu-
ments], page 258. Of course, when executing commands based on user input you
should also consider the security implications.

[Function]start-file-process-shell-command name buffer-or-name command
This function is like start-process-shell-command, but uses start-file-process
internally. Because of this, command can also be executed on remote hosts, depending
on default-directory.

[Variable]process-connection-type
This variable controls the type of device used to communicate with asynchronous
subprocesses. If it is non-nil, then PTYs are used, when available. Otherwise, pipes
are used.

PTYs are usually preferable for processes visible to the user, as in Shell mode, because
they allow job control (C-c, C-z, etc.) to work between the process and its children,
whereas pipes do not. For subprocesses used for internal purposes by programs, it
is often better to use a pipe, because they are more efficient. In addition, the total
number of PTYs is limited on many systems and it is good not to waste them.

The value of process-connection-type takes effect when start-process is called.
So you can specify how to communicate with one subprocess by binding the variable
around the call to start-process.

Chapter 37: Processes 266

(let ((process-connection-type nil)) ; use a pipe
(start-process ...))

To determine whether a given subprocess actually got a pipe or a PTY, use the
function process-tty-name (see Section 37.6 [Process Information], page 266).

37.5 Deleting Processes

Deleting a process disconnects Emacs immediately from the subprocess. Processes are
deleted automatically after they terminate, but not necessarily right away. You can delete
a process explicitly at any time. If you explicitly delete a terminated process before it
is deleted automatically, no harm results. Deleting a running process sends a signal to
terminate it (and its child processes, if any), and calls the process sentinel if it has one. See
Section 37.10 [Sentinels], page 276.

When a process is deleted, the process object itself continues to exist as long as other
Lisp objects point to it. All the Lisp primitives that work on process objects accept deleted
processes, but those that do I/O or send signals will report an error. The process mark
continues to point to the same place as before, usually into a buffer where output from the
process was being inserted.

[User Option]delete-exited-processes
This variable controls automatic deletion of processes that have terminated (due to
calling exit or to a signal). If it is nil, then they continue to exist until the user
runs list-processes. Otherwise, they are deleted immediately after they exit.

[Function]delete-process process
This function deletes a process, killing it with a SIGKILL signal. The argument may
be a process, the name of a process, a buffer, or the name of a buffer. (A buffer
or buffer-name stands for the process that get-buffer-process returns.) Calling
delete-process on a running process terminates it, updates the process status, and
runs the sentinel (if any) immediately. If the process has already terminated, calling
delete-process has no effect on its status, or on the running of its sentinel (which
will happen sooner or later).

(delete-process "*shell*")
⇒ nil

37.6 Process Information

Several functions return information about processes.

[Command]list-processes &optional query-only buffer
This command displays a listing of all living processes. In addition, it finally deletes
any process whose status was ‘Exited’ or ‘Signaled’. It returns nil.

The processes are shown in a buffer named ‘*Process List*’ (unless you specify
otherwise using the optional argument buffer), whose major mode is Process Menu
mode.

If query-only is non-nil, it only lists processes whose query flag is non-nil. See
Section 37.11 [Query Before Exit], page 277.

Chapter 37: Processes 267

[Function]process-list
This function returns a list of all processes that have not been deleted.

(process-list)
⇒ (#<process display-time> #<process shell>)

[Function]get-process name
This function returns the process named name (a string), or nil if there is none.

(get-process "shell")
⇒ #<process shell>

[Function]process-command process
This function returns the command that was executed to start process. This is a list
of strings, the first string being the program executed and the rest of the strings being
the arguments that were given to the program.

(process-command (get-process "shell"))
⇒ ("bash" "-i")

[Function]process-contact process &optional key
This function returns information about how a network or serial process was set up.
When key is nil, it returns (hostname service) for a network process, and (port

speed) for a serial process. For an ordinary child process, this function always returns
t.

If key is t, the value is the complete status information for the connection, server, or
serial port; that is, the list of keywords and values specified in make-network-process

or make-serial-process, except that some of the values represent the current status
instead of what you specified.

For a network process, the values include (see make-network-process for a complete
list):

:buffer The associated value is the process buffer.

:filter The associated value is the process filter function.

:sentinel

The associated value is the process sentinel function.

:remote In a connection, the address in internal format of the remote peer.

:local The local address, in internal format.

:service In a server, if you specified t for service, this value is the actual port
number.

:local and :remote are included even if they were not specified explicitly in make-

network-process.

For a serial process, see make-serial-process and serial-process-configure for
a list of keys.

If key is a keyword, the function returns the value corresponding to that keyword.

[Function]process-id process
This function returns the PID of process. This is an integer that distinguishes the
process process from all other processes running on the same computer at the current
time. The PID of a process is chosen by the operating system kernel when the process
is started and remains constant as long as the process exists.

Chapter 37: Processes 268

[Function]process-name process
This function returns the name of process, as a string.

[Function]process-status process-name
This function returns the status of process-name as a symbol. The argument process-
name must be a process, a buffer, or a process name (a string).

The possible values for an actual subprocess are:

run for a process that is running.

stop for a process that is stopped but continuable.

exit for a process that has exited.

signal for a process that has received a fatal signal.

open for a network connection that is open.

closed for a network connection that is closed. Once a connection is closed, you
cannot reopen it, though you might be able to open a new connection to
the same place.

connect for a non-blocking connection that is waiting to complete.

failed for a non-blocking connection that has failed to complete.

listen for a network server that is listening.

nil if process-name is not the name of an existing process.
(process-status (get-buffer "*shell*"))

⇒ run

For a network connection, process-status returns one of the symbols open or
closed. The latter means that the other side closed the connection, or Emacs did
delete-process.

[Function]process-live-p process
This function returns non-nil if process is alive. A process is considered alive if its
status is run, open, listen, connect or stop.

[Function]process-type process
This function returns the symbol network for a network connection or server, serial
for a serial port connection, or real for a real subprocess.

[Function]process-exit-status process
This function returns the exit status of process or the signal number that killed it.
(Use the result of process-status to determine which of those it is.) If process has
not yet terminated, the value is 0.

[Function]process-tty-name process
This function returns the terminal name that process is using for its communica-
tion with Emacs—or nil if it is using pipes instead of a terminal (see process-

connection-type in Section 37.4 [Asynchronous Processes], page 264). If process
represents a program running on a remote host, the terminal name used by that
program on the remote host is provided as process property remote-tty.

Chapter 37: Processes 269

[Function]process-coding-system process
This function returns a cons cell (decode . encode), describing the coding systems
in use for decoding output from, and encoding input to, process (see Section 33.9
[Coding Systems], page 193).

[Function]set-process-coding-system process &optional decoding-system
encoding-system

This function specifies the coding systems to use for subsequent output from and input
to process. It will use decoding-system to decode subprocess output, and encoding-
system to encode subprocess input.

Every process also has a property list that you can use to store miscellaneous values
associated with the process.

[Function]process-get process propname
This function returns the value of the propname property of process.

[Function]process-put process propname value
This function sets the value of the propname property of process to value.

[Function]process-plist process
This function returns the process plist of process.

[Function]set-process-plist process plist
This function sets the process plist of process to plist.

37.7 Sending Input to Processes

Asynchronous subprocesses receive input when it is sent to them by Emacs, which is done
with the functions in this section. You must specify the process to send input to, and the
input data to send. The data appears on the “standard input” of the subprocess.

Some operating systems have limited space for buffered input in a PTY. On these systems,
Emacs sends an EOF periodically amidst the other characters, to force them through. For
most programs, these EOFs do no harm.

Subprocess input is normally encoded using a coding system before the subprocess re-
ceives it, much like text written into a file. You can use set-process-coding-system to
specify which coding system to use (see Section 37.6 [Process Information], page 266). Oth-
erwise, the coding system comes from coding-system-for-write, if that is non-nil; or
else from the defaulting mechanism (see Section 33.9.5 [Default Coding Systems], page 199).

Sometimes the system is unable to accept input for that process, because the input buffer
is full. When this happens, the send functions wait a short while, accepting output from
subprocesses, and then try again. This gives the subprocess a chance to read more of its
pending input and make space in the buffer. It also allows filters, sentinels and timers to
run—so take account of that in writing your code.

In these functions, the process argument can be a process or the name of a process, or
a buffer or buffer name (which stands for a process via get-buffer-process). nil means
the current buffer’s process.

Chapter 37: Processes 270

[Function]process-send-string process string
This function sends process the contents of string as standard input. It returns nil.
For example, to make a Shell buffer list files:

(process-send-string "shell<1>" "ls\n")
⇒ nil

[Function]process-send-region process start end
This function sends the text in the region defined by start and end as standard input
to process.

An error is signaled unless both start and end are integers or markers that indicate
positions in the current buffer. (It is unimportant which number is larger.)

[Function]process-send-eof &optional process
This function makes process see an end-of-file in its input. The EOF comes after any
text already sent to it. The function returns process.

(process-send-eof "shell")
⇒ "shell"

[Function]process-running-child-p &optional process
This function will tell you whether a process has given control of its terminal to its
own child process. The value is t if this is true, or if Emacs cannot tell; it is nil if
Emacs can be certain that this is not so.

37.8 Sending Signals to Processes

Sending a signal to a subprocess is a way of interrupting its activities. There are several
different signals, each with its own meaning. The set of signals and their names is defined
by the operating system. For example, the signal SIGINT means that the user has typed
C-c, or that some analogous thing has happened.

Each signal has a standard effect on the subprocess. Most signals kill the subprocess,
but some stop (or resume) execution instead. Most signals can optionally be handled by
programs; if the program handles the signal, then we can say nothing in general about its
effects.

You can send signals explicitly by calling the functions in this section. Emacs also sends
signals automatically at certain times: killing a buffer sends a SIGHUP signal to all its asso-
ciated processes; killing Emacs sends a SIGHUP signal to all remaining processes. (SIGHUP
is a signal that usually indicates that the user “hung up the phone”, i.e., disconnected.)

Each of the signal-sending functions takes two optional arguments: process and current-
group.

The argument process must be either a process, a process name, a buffer, a buffer name,
or nil. A buffer or buffer name stands for a process through get-buffer-process. nil

stands for the process associated with the current buffer. An error is signaled if process
does not identify a process.

The argument current-group is a flag that makes a difference when you are running a
job-control shell as an Emacs subprocess. If it is non-nil, then the signal is sent to the
current process-group of the terminal that Emacs uses to communicate with the subprocess.
If the process is a job-control shell, this means the shell’s current subjob. If it is nil, the

Chapter 37: Processes 271

signal is sent to the process group of the immediate subprocess of Emacs. If the subprocess
is a job-control shell, this is the shell itself.

The flag current-group has no effect when a pipe is used to communicate with the
subprocess, because the operating system does not support the distinction in the case of
pipes. For the same reason, job-control shells won’t work when a pipe is used. See process-
connection-type in Section 37.4 [Asynchronous Processes], page 264.

[Function]interrupt-process &optional process current-group
This function interrupts the process process by sending the signal SIGINT. Outside
of Emacs, typing the “interrupt character” (normally C-c on some systems, and DEL

on others) sends this signal. When the argument current-group is non-nil, you can
think of this function as “typing C-c” on the terminal by which Emacs talks to the
subprocess.

[Function]kill-process &optional process current-group
This function kills the process process by sending the signal SIGKILL. This signal
kills the subprocess immediately, and cannot be handled by the subprocess.

[Function]quit-process &optional process current-group
This function sends the signal SIGQUIT to the process process. This signal is the one
sent by the “quit character” (usually C-b or C-\) when you are not inside Emacs.

[Function]stop-process &optional process current-group
This function stops the process process by sending the signal SIGTSTP. Use continue-
process to resume its execution.

Outside of Emacs, on systems with job control, the “stop character” (usually C-

z) normally sends this signal. When current-group is non-nil, you can think of
this function as “typing C-z” on the terminal Emacs uses to communicate with the
subprocess.

[Function]continue-process &optional process current-group
This function resumes execution of the process process by sending it the signal
SIGCONT. This presumes that process was stopped previously.

[Command]signal-process process signal
This function sends a signal to process process. The argument signal specifies which
signal to send; it should be an integer, or a symbol whose name is a signal.

The process argument can be a system process ID (an integer); that allows you to
send signals to processes that are not children of Emacs. See Section 37.12 [System
Processes], page 278.

37.9 Receiving Output from Processes

There are two ways to receive the output that a subprocess writes to its standard output
stream. The output can be inserted in a buffer, which is called the associated buffer of
the process (see Section 37.9.1 [Process Buffers], page 272), or a function called the filter
function can be called to act on the output. If the process has no buffer and no filter
function, its output is discarded.

Chapter 37: Processes 272

When a subprocess terminates, Emacs reads any pending output, then stops reading
output from that subprocess. Therefore, if the subprocess has children that are still live
and still producing output, Emacs won’t receive that output.

Output from a subprocess can arrive only while Emacs is waiting: when reading
terminal input (see the function waiting-for-user-input-p), in sit-for and sleep-for

(see Section 21.10 [Waiting], page 350, vol. 1), and in accept-process-output (see
Section 37.9.4 [Accepting Output], page 275). This minimizes the problem of timing errors
that usually plague parallel programming. For example, you can safely create a process
and only then specify its buffer or filter function; no output can arrive before you finish, if
the code in between does not call any primitive that waits.

[Variable]process-adaptive-read-buffering
On some systems, when Emacs reads the output from a subprocess, the output data
is read in very small blocks, potentially resulting in very poor performance. This
behavior can be remedied to some extent by setting the variable process-adaptive-
read-buffering to a non-nil value (the default), as it will automatically delay read-
ing from such processes, thus allowing them to produce more output before Emacs
tries to read it.

It is impossible to separate the standard output and standard error streams of the
subprocess, because Emacs normally spawns the subprocess inside a pseudo-TTY, and a
pseudo-TTY has only one output channel. If you want to keep the output to those streams
separate, you should redirect one of them to a file—for example, by using an appropriate
shell command.

37.9.1 Process Buffers

A process can (and usually does) have an associated buffer, which is an ordinary Emacs
buffer that is used for two purposes: storing the output from the process, and deciding when
to kill the process. You can also use the buffer to identify a process to operate on, since in
normal practice only one process is associated with any given buffer. Many applications of
processes also use the buffer for editing input to be sent to the process, but this is not built
into Emacs Lisp.

Unless the process has a filter function (see Section 37.9.2 [Filter Functions], page 273),
its output is inserted in the associated buffer. The position to insert the output is determined
by the process-mark, which is then updated to point to the end of the text just inserted.
Usually, but not always, the process-mark is at the end of the buffer.

Killing the associated buffer of a process also kills the process. Emacs asks for confir-
mation first, if the process’s process-query-on-exit-flag is non-nil (see Section 37.11
[Query Before Exit], page 277). This confirmation is done by the function process-

kill-buffer-query-function, which is run from kill-buffer-query-functions (see
Section 27.10 [Killing Buffers], page 13).

[Function]process-buffer process
This function returns the associated buffer of the process process.

(process-buffer (get-process "shell"))
⇒ #<buffer *shell*>

Chapter 37: Processes 273

[Function]process-mark process
This function returns the process marker for process, which is the marker that says
where to insert output from the process.

If process does not have a buffer, process-mark returns a marker that points nowhere.

Insertion of process output in a buffer uses this marker to decide where to insert, and
updates it to point after the inserted text. That is why successive batches of output
are inserted consecutively.

Filter functions normally should use this marker in the same fashion as is done by
direct insertion of output in the buffer. For an example of a filter function that uses
process-mark, see [Process Filter Example], page 274.

When the user is expected to enter input in the process buffer for transmission to the
process, the process marker separates the new input from previous output.

[Function]set-process-buffer process buffer
This function sets the buffer associated with process to buffer. If buffer is nil, the
process becomes associated with no buffer.

[Function]get-buffer-process buffer-or-name
This function returns a nondeleted process associated with the buffer specified by
buffer-or-name. If there are several processes associated with it, this function chooses
one (currently, the one most recently created, but don’t count on that). Deletion of
a process (see delete-process) makes it ineligible for this function to return.

It is usually a bad idea to have more than one process associated with the same buffer.

(get-buffer-process "*shell*")
⇒ #<process shell>

Killing the process’s buffer deletes the process, which kills the subprocess with a
SIGHUP signal (see Section 37.8 [Signals to Processes], page 270).

37.9.2 Process Filter Functions

A process filter function is a function that receives the standard output from the associated
process. If a process has a filter, then all output from that process is passed to the filter.
The process buffer is used directly for output from the process only when there is no filter.

The filter function can only be called when Emacs is waiting for something, because
process output arrives only at such times. Emacs waits when reading terminal input (see
the function waiting-for-user-input-p), in sit-for and sleep-for (see Section 21.10
[Waiting], page 350, vol. 1), and in accept-process-output (see Section 37.9.4 [Accepting
Output], page 275).

A filter function must accept two arguments: the associated process and a string, which
is output just received from it. The function is then free to do whatever it chooses with the
output.

Quitting is normally inhibited within a filter function—otherwise, the effect of typing
C-g at command level or to quit a user command would be unpredictable. If you want to
permit quitting inside a filter function, bind inhibit-quit to nil. In most cases, the right
way to do this is with the macro with-local-quit. See Section 21.11 [Quitting], page 351,
vol. 1.

Chapter 37: Processes 274

If an error happens during execution of a filter function, it is caught automatically, so
that it doesn’t stop the execution of whatever program was running when the filter function
was started. However, if debug-on-error is non-nil, errors are not caught. This makes it
possible to use the Lisp debugger to debug the filter function. See Section 18.1 [Debugger],
page 243, vol. 1.

Many filter functions sometimes (or always) insert the output in the process’s buffer,
mimicking the actions of Emacs when there is no filter. Such filter functions need to make
sure that they save the current buffer, select the correct buffer (if different) before inserting
output, and then restore the original buffer. They should also check whether the buffer is
still alive, update the process marker, and in some cases update the value of point. Here is
how to do these things:

(defun ordinary-insertion-filter (proc string)

(when (buffer-live-p (process-buffer proc))

(with-current-buffer (process-buffer proc)

(let ((moving (= (point) (process-mark proc))))

(save-excursion

;; Insert the text, advancing the process marker.
(goto-char (process-mark proc))

(insert string)

(set-marker (process-mark proc) (point)))

(if moving (goto-char (process-mark proc)))))))

To make the filter force the process buffer to be visible whenever new text arrives, you
could insert a line like the following just before the with-current-buffer construct:

(display-buffer (process-buffer proc))

To force point to the end of the new output, no matter where it was previously, eliminate
the variable moving and call goto-char unconditionally.

Note that Emacs automatically saves and restores the match data while executing filter
functions. See Section 34.6 [Match Data], page 225.

The output to the filter may come in chunks of any size. A program that produces the
same output twice in a row may send it as one batch of 200 characters one time, and five
batches of 40 characters the next. If the filter looks for certain text strings in the subprocess
output, make sure to handle the case where one of these strings is split across two or more
batches of output; one way to do this is to insert the received text into a temporary buffer,
which can then be searched.

[Function]set-process-filter process filter
This function gives process the filter function filter. If filter is nil, it gives the process
no filter.

[Function]process-filter process
This function returns the filter function of process, or nil if it has none.

Here is an example of the use of a filter function:
(defun keep-output (process output)

(setq kept (cons output kept)))
⇒ keep-output

(setq kept nil)
⇒ nil

(set-process-filter (get-process "shell") ’keep-output)
⇒ keep-output

Chapter 37: Processes 275

(process-send-string "shell" "ls ~/other\n")
⇒ nil

kept
⇒ ("lewis@slug:$ "

"FINAL-W87-SHORT.MSS backup.otl kolstad.mss~

address.txt backup.psf kolstad.psf

backup.bib~ david.mss resume-Dec-86.mss~

backup.err david.psf resume-Dec.psf

backup.mss dland syllabus.mss

"

"#backups.mss# backup.mss~ kolstad.mss

")

37.9.3 Decoding Process Output

When Emacs writes process output directly into a multibyte buffer, it decodes the output
according to the process output coding system. If the coding system is raw-text or no-

conversion, Emacs converts the unibyte output to multibyte using string-to-multibyte,
and inserts the resulting multibyte text.

You can use set-process-coding-system to specify which coding system to use (see
Section 37.6 [Process Information], page 266). Otherwise, the coding system comes from
coding-system-for-read, if that is non-nil; or else from the defaulting mechanism (see
Section 33.9.5 [Default Coding Systems], page 199). If the text output by a process contains
null bytes, Emacs by default uses no-conversion for it; see Section 33.9.3 [Lisp and Coding
Systems], page 195, for how to control this behavior.

Warning: Coding systems such as undecided, which determine the coding system from
the data, do not work entirely reliably with asynchronous subprocess output. This is because
Emacs has to process asynchronous subprocess output in batches, as it arrives. Emacs
must try to detect the proper coding system from one batch at a time, and this does not
always work. Therefore, if at all possible, specify a coding system that determines both the
character code conversion and the end of line conversion—that is, one like latin-1-unix,
rather than undecided or latin-1.

When Emacs calls a process filter function, it provides the process output as a multi-
byte string or as a unibyte string according to the process’s filter coding system. Emacs
decodes the output according to the process output coding system, which usually produces
a multibyte string, except for coding systems such as binary and raw-text.

37.9.4 Accepting Output from Processes

Output from asynchronous subprocesses normally arrives only while Emacs is waiting for
some sort of external event, such as elapsed time or terminal input. Occasionally it is useful
in a Lisp program to explicitly permit output to arrive at a specific point, or even to wait
until output arrives from a process.

[Function]accept-process-output &optional process seconds millisec
just-this-one

This function allows Emacs to read pending output from processes. The output is
inserted in the associated buffers or given to their filter functions. If process is non-
nil then this function does not return until some output has been received from
process.

Chapter 37: Processes 276

The arguments seconds andmillisec let you specify timeout periods. The former speci-
fies a period measured in seconds and the latter specifies one measured in milliseconds.
The two time periods thus specified are added together, and accept-process-output

returns after that much time, whether or not there has been any subprocess output.

The argument millisec is obsolete (and should not be used), because seconds can be
a floating point number to specify waiting a fractional number of seconds. If seconds
is 0, the function accepts whatever output is pending but does not wait.

If process is a process, and the argument just-this-one is non-nil, only output from
that process is handled, suspending output from other processes until some output
has been received from that process or the timeout expires. If just-this-one is an
integer, also inhibit running timers. This feature is generally not recommended, but
may be necessary for specific applications, such as speech synthesis.

The function accept-process-output returns non-nil if it did get some output, or
nil if the timeout expired before output arrived.

37.10 Sentinels: Detecting Process Status Changes

A process sentinel is a function that is called whenever the associated process changes status
for any reason, including signals (whether sent by Emacs or caused by the process’s own
actions) that terminate, stop, or continue the process. The process sentinel is also called
if the process exits. The sentinel receives two arguments: the process for which the event
occurred, and a string describing the type of event.

The string describing the event looks like one of the following:

• "finished\n".

• "exited abnormally with code exitcode\n".

• "name-of-signal\n".

• "name-of-signal (core dumped)\n".

A sentinel runs only while Emacs is waiting (e.g., for terminal input, or for time to elapse,
or for process output). This avoids the timing errors that could result from running sentinels
at random places in the middle of other Lisp programs. A program can wait, so that sentinels
will run, by calling sit-for or sleep-for (see Section 21.10 [Waiting], page 350, vol. 1),
or accept-process-output (see Section 37.9.4 [Accepting Output], page 275). Emacs also
allows sentinels to run when the command loop is reading input. delete-process calls the
sentinel when it terminates a running process.

Emacs does not keep a queue of multiple reasons to call the sentinel of one process; it
records just the current status and the fact that there has been a change. Therefore two
changes in status, coming in quick succession, can call the sentinel just once. However,
process termination will always run the sentinel exactly once. This is because the process
status can’t change again after termination.

Emacs explicitly checks for output from the process before running the process sentinel.
Once the sentinel runs due to process termination, no further output can arrive from the
process.

A sentinel that writes the output into the buffer of the process should check whether the
buffer is still alive. If it tries to insert into a dead buffer, it will get an error. If the buffer
is dead, (buffer-name (process-buffer process)) returns nil.

Chapter 37: Processes 277

Quitting is normally inhibited within a sentinel—otherwise, the effect of typing C-g at
command level or to quit a user command would be unpredictable. If you want to permit
quitting inside a sentinel, bind inhibit-quit to nil. In most cases, the right way to do
this is with the macro with-local-quit. See Section 21.11 [Quitting], page 351, vol. 1.

If an error happens during execution of a sentinel, it is caught automatically, so that it
doesn’t stop the execution of whatever programs was running when the sentinel was started.
However, if debug-on-error is non-nil, errors are not caught. This makes it possible to
use the Lisp debugger to debug the sentinel. See Section 18.1 [Debugger], page 243, vol. 1.

While a sentinel is running, the process sentinel is temporarily set to nil so that the
sentinel won’t run recursively. For this reason it is not possible for a sentinel to specify a
new sentinel.

Note that Emacs automatically saves and restores the match data while executing sen-
tinels. See Section 34.6 [Match Data], page 225.

[Function]set-process-sentinel process sentinel
This function associates sentinel with process. If sentinel is nil, then the process will
have no sentinel. The default behavior when there is no sentinel is to insert a message
in the process’s buffer when the process status changes.

Changes in process sentinels take effect immediately—if the sentinel is slated to be
run but has not been called yet, and you specify a new sentinel, the eventual call to
the sentinel will use the new one.

(defun msg-me (process event)

(princ

(format "Process: %s had the event ‘%s’" process event)))

(set-process-sentinel (get-process "shell") ’msg-me)
⇒ msg-me

(kill-process (get-process "shell"))

a Process: #<process shell> had the event ‘killed’
⇒ #<process shell>

[Function]process-sentinel process
This function returns the sentinel of process, or nil if it has none.

[Function]waiting-for-user-input-p
While a sentinel or filter function is running, this function returns non-nil if Emacs
was waiting for keyboard input from the user at the time the sentinel or filter function
was called, or nil if it was not.

37.11 Querying Before Exit

When Emacs exits, it terminates all its subprocesses by sending them the SIGHUP signal.
Because subprocesses may be doing valuable work, Emacs normally asks the user to confirm
that it is ok to terminate them. Each process has a query flag, which, if non-nil, says that
Emacs should ask for confirmation before exiting and thus killing that process. The default
for the query flag is t, meaning do query.

[Function]process-query-on-exit-flag process
This returns the query flag of process.

Chapter 37: Processes 278

[Function]set-process-query-on-exit-flag process flag
This function sets the query flag of process to flag. It returns flag.

Here is an example of using set-process-query-on-exit-flag on a shell process to
avoid querying:

(set-process-query-on-exit-flag (get-process "shell") nil)
⇒ nil

37.12 Accessing Other Processes

In addition to accessing and manipulating processes that are subprocesses of the current
Emacs session, Emacs Lisp programs can also access other processes running on the same
machine. We call these system processes, to distinguish them from Emacs subprocesses.

Emacs provides several primitives for accessing system processes. Not all platforms
support these primitives; on those which don’t, these primitives return nil.

[Function]list-system-processes
This function returns a list of all the processes running on the system. Each process
is identified by its PID, a numerical process ID that is assigned by the OS and distin-
guishes the process from all the other processes running on the same machine at the
same time.

[Function]process-attributes pid
This function returns an alist of attributes for the process specified by its process
ID pid. Each association in the alist is of the form (key . value), where key des-
ignates the attribute and value is the value of that attribute. The various attribute
keys that this function can return are listed below. Not all platforms support all of
these attributes; if an attribute is not supported, its association will not appear in
the returned alist. Values that are numbers can be either integer or floating-point,
depending on the magnitude of the value.

euid The effective user ID of the user who invoked the process. The corre-
sponding value is a number. If the process was invoked by the same
user who runs the current Emacs session, the value is identical to what
user-uid returns (see Section 39.4 [User Identification], page 398).

user User name corresponding to the process’s effective user ID, a string.

egid The group ID of the effective user ID, a number.

group Group name corresponding to the effective user’s group ID, a string.

comm The name of the command that runs in the process. This is a string that
usually specifies the name of the executable file of the process, without the
leading directories. However, some special system processes can report
strings that do not correspond to an executable file of a program.

state The state code of the process. This is a short string that encodes the
scheduling state of the process. Here’s a list of the most frequently seen
codes:

"D" uninterruptible sleep (usually I/O)

Chapter 37: Processes 279

"R" running

"S" interruptible sleep (waiting for some event)

"T" stopped, e.g., by a job control signal

"Z" “zombie”: a process that terminated, but was not reaped by
its parent

For the full list of the possible states, see the manual page of the ps

command.

ppid The process ID of the parent process, a number.

pgrp The process group ID of the process, a number.

sess The session ID of the process. This is a number that is the process ID of
the process’s session leader.

ttname A string that is the name of the process’s controlling terminal. On Unix
and GNU systems, this is normally the file name of the corresponding
terminal device, such as ‘/dev/pts65’.

tpgid The numerical process group ID of the foreground process group that
uses the process’s terminal.

minflt The number of minor page faults caused by the process since its begin-
ning. (Minor page faults are those that don’t involve reading from disk.)

majflt The number of major page faults caused by the process since its begin-
ning. (Major page faults require a disk to be read, and are thus more
expensive than minor page faults.)

cminflt

cmajflt Like minflt and majflt, but include the number of page faults for all
the child processes of the given process.

utime Time spent by the process in the user context, for running the applica-
tion’s code. The corresponding value is in the (high low microsec) for-
mat, the same format used by functions current-time (see Section 39.5
[Time of Day], page 399) and file-attributes (see Section 25.6.4 [File
Attributes], page 475, vol. 1).

stime Time spent by the process in the system (kernel) context, for processing
system calls. The corresponding value is in the same format as for utime.

time The sum of utime and stime. The corresponding value is in the same
format as for utime.

cutime

cstime

ctime Like utime, stime, and time, but include the times of all the child pro-
cesses of the given process.

pri The numerical priority of the process.

nice The nice value of the process, a number. (Processes with smaller nice
values get scheduled more favorably.)

Chapter 37: Processes 280

thcount The number of threads in the process.

start The time when the process was started, in the same (high low microsec)

format used by current-time and by file-attributes.

etime The time elapsed since the process started, in the (high low microsec)

format.

vsize The virtual memory size of the process, measured in kilobytes.

rss The size of the process’s resident set, the number of kilobytes occupied
by the process in the machine’s physical memory.

pcpu The percentage of the CPU time used by the process since it started. The
corresponding value is a floating-point number between 0 and 100.

pmem The percentage of the total physical memory installed on the machine
used by the process’s resident set. The value is a floating-point number
between 0 and 100.

args The command-line with which the process was invoked. This is a string
in which individual command-line arguments are separated by blanks;
whitespace characters that are embedded in the arguments are quoted
as appropriate for the system’s shell: escaped by backslash characters on
GNU and Unix, and enclosed in double quote characters on Windows.
Thus, this command-line string can be directly used in primitives such as
shell-command.

37.13 Transaction Queues

You can use a transaction queue to communicate with a subprocess using transactions.
First use tq-create to create a transaction queue communicating with a specified process.
Then you can call tq-enqueue to send a transaction.

[Function]tq-create process
This function creates and returns a transaction queue communicating with process.
The argument process should be a subprocess capable of sending and receiving streams
of bytes. It may be a child process, or it may be a TCP connection to a server, possibly
on another machine.

[Function]tq-enqueue queue question regexp closure fn &optional delay-question
This function sends a transaction to queue queue. Specifying the queue has the effect
of specifying the subprocess to talk to.

The argument question is the outgoing message that starts the transaction. The
argument fn is the function to call when the corresponding answer comes back; it is
called with two arguments: closure, and the answer received.

The argument regexp is a regular expression that should match text at the end of
the entire answer, but nothing before; that’s how tq-enqueue determines where the
answer ends.

If the argument delay-question is non-nil, delay sending this question until the pro-
cess has finished replying to any previous questions. This produces more reliable
results with some processes.

Chapter 37: Processes 281

[Function]tq-close queue
Shut down transaction queue queue, waiting for all pending transactions to complete,
and then terminate the connection or child process.

Transaction queues are implemented by means of a filter function. See Section 37.9.2
[Filter Functions], page 273.

37.14 Network Connections

Emacs Lisp programs can open stream (TCP) and datagram (UDP) network connections
(see Section 37.16 [Datagrams], page 284) to other processes on the same machine or other
machines. A network connection is handled by Lisp much like a subprocess, and is repre-
sented by a process object. However, the process you are communicating with is not a child
of the Emacs process, has no process ID, and you can’t kill it or send it signals. All you
can do is send and receive data. delete-process closes the connection, but does not kill
the program at the other end; that program must decide what to do about closure of the
connection.

Lisp programs can listen for connections by creating network servers. A network server
is also represented by a kind of process object, but unlike a network connection, the network
server never transfers data itself. When it receives a connection request, it creates a new
network connection to represent the connection just made. (The network connection inherits
certain information, including the process plist, from the server.) The network server then
goes back to listening for more connection requests.

Network connections and servers are created by calling make-network-process with
an argument list consisting of keyword/argument pairs, for example :server t to create
a server process, or :type ’datagram to create a datagram connection. See Section 37.17
[Low-Level Network], page 284, for details. You can also use the open-network-stream

function described below.

To distinguish the different types of processes, the process-type function returns the
symbol network for a network connection or server, serial for a serial port connection, or
real for a real subprocess.

The process-status function returns open, closed, connect, or failed for network
connections. For a network server, the status is always listen. None of those values is
possible for a real subprocess. See Section 37.6 [Process Information], page 266.

You can stop and resume operation of a network process by calling stop-process and
continue-process. For a server process, being stopped means not accepting new connec-
tions. (Up to 5 connection requests will be queued for when you resume the server; you can
increase this limit, unless it is imposed by the operating system—see the :server keyword
of make-network-process, Section 37.17.1 [Network Processes], page 284.) For a network
stream connection, being stopped means not processing input (any arriving input waits
until you resume the connection). For a datagram connection, some number of packets may
be queued but input may be lost. You can use the function process-command to determine
whether a network connection or server is stopped; a non-nil value means yes.

Emacs can create encrypted network connections, using either built-in or external sup-
port. The built-in support uses the GnuTLS (“Transport Layer Security”) library; see
the GnuTLS project page. If your Emacs was compiled with GnuTLS support, the func-
tion gnutls-available-p is defined and returns non-nil. For more details, see Section

http://www.gnu.org/software/gnutls/

Chapter 37: Processes 282

“Overview” in The Emacs-GnuTLS manual. The external support uses the ‘starttls.el’
library, which requires a helper utility such as gnutls-cli to be installed on the system.
The open-network-stream function can transparently handle the details of creating en-
crypted connections for you, using whatever support is available.

[Function]open-network-stream name buffer host service &rest parameters
This function opens a TCP connection, with optional encryption, and returns a pro-
cess object that represents the connection.

The name argument specifies the name for the process object. It is modified as
necessary to make it unique.

The buffer argument is the buffer to associate with the connection. Output from
the connection is inserted in the buffer, unless you specify a filter function to handle
the output. If buffer is nil, it means that the connection is not associated with any
buffer.

The arguments host and service specify where to connect to; host is the host name
(a string), and service is the name of a defined network service (a string) or a port
number (an integer).

The remaining arguments parameters are keyword/argument pairs that are mainly
relevant to encrypted connections:

:nowait boolean

If non-nil, try to make an asynchronous connection.

:type type

The type of connection. Options are:

plain An ordinary, unencrypted connection.

tls

ssl A TLS (“Transport Layer Security”) connection.

nil

network Start with a plain connection, and if parameters ‘:success’
and ‘:capability-command’ are supplied, try to upgrade to
an encrypted connection via STARTTLS. If that fails, retain
the unencrypted connection.

starttls As for nil, but if STARTTLS fails drop the connection.

shell A shell connection.

:always-query-capabilities boolean

If non-nil, always ask for the server’s capabilities, even when doing a
‘plain’ connection.

:capability-command capability-command

Command string to query the host capabilities.

:end-of-command regexp

:end-of-capability regexp

Regular expression matching the end of a command, or the end of the
command capability-command. The latter defaults to the former.

Chapter 37: Processes 283

:starttls-function function

Function of one argument (the response to capability-command), which
returns either nil, or the command to activate STARTTLS if supported.

:success regexp

Regular expression matching a successful STARTTLS negotiation.

:use-starttls-if-possible boolean

If non-nil, do opportunistic STARTTLS upgrades even if Emacs doesn’t
have built-in TLS support.

:client-certificate list-or-t

Either a list of the form (key-file cert-file), naming the certificate
key file and certificate file itself, or t, meaning to query auth-source for
this information (see Section “Overview” in The Auth-Source Manual).
Only used for TLS or STARTTLS.

:return-list cons-or-nil

The return value of this function. If omitted or nil, return a process
object. Otherwise, a cons of the form (process-object . plist), where
plist has keywords:

:greeting string-or-nil

If non-nil, the greeting string returned by the host.

:capabilities string-or-nil

If non-nil, the host’s capability string.

:type symbol

The connection type: ‘plain’ or ‘tls’.

37.15 Network Servers

You create a server by calling make-network-process (see Section 37.17.1 [Network Pro-
cesses], page 284) with :server t. The server will listen for connection requests from clients.
When it accepts a client connection request, that creates a new network connection, itself
a process object, with the following parameters:

• The connection’s process name is constructed by concatenating the server process’s
name with a client identification string. The client identification string for an IPv4
connection looks like ‘<a.b.c.d:p>’, which represents an address and port number.
Otherwise, it is a unique number in brackets, as in ‘<nnn>’. The number is unique for
each connection in the Emacs session.

• If the server’s filter is non-nil, the connection process does not get a separate process
buffer; otherwise, Emacs creates a new buffer for the purpose. The buffer name is the
server’s buffer name or process name, concatenated with the client identification string.

The server’s process buffer value is never used directly, but the log function can retrieve
it and use it to log connections by inserting text there.

• The communication type and the process filter and sentinel are inherited from those of
the server. The server never directly uses its filter and sentinel; their sole purpose is to
initialize connections made to the server.

Chapter 37: Processes 284

• The connection’s process contact information is set according to the client’s addressing
information (typically an IP address and a port number). This information is associated
with the process-contact keywords :host, :service, :remote.

• The connection’s local address is set up according to the port number used for the
connection.

• The client process’s plist is initialized from the server’s plist.

37.16 Datagrams

A datagram connection communicates with individual packets rather than streams of data.
Each call to process-send sends one datagram packet (see Section 37.7 [Input to Processes],
page 269), and each datagram received results in one call to the filter function.

The datagram connection doesn’t have to talk with the same remote peer all the time.
It has a remote peer address which specifies where to send datagrams to. Each time an
incoming datagram is passed to the filter function, the peer address is set to the address that
datagram came from; that way, if the filter function sends a datagram, it will go back to that
place. You can specify the remote peer address when you create the datagram connection
using the :remote keyword. You can change it later on by calling set-process-datagram-

address.

[Function]process-datagram-address process
If process is a datagram connection or server, this function returns its remote peer
address.

[Function]set-process-datagram-address process address
If process is a datagram connection or server, this function sets its remote peer address
to address.

37.17 Low-Level Network Access

You can also create network connections by operating at a lower level than that of open-
network-stream, using make-network-process.

37.17.1 make-network-process

The basic function for creating network connections and network servers is make-network-
process. It can do either of those jobs, depending on the arguments you give it.

[Function]make-network-process &rest args
This function creates a network connection or server and returns the process object
that represents it. The arguments args are a list of keyword/argument pairs. Omitting
a keyword is always equivalent to specifying it with value nil, except for :coding,
:filter-multibyte, and :reuseaddr. Here are the meaningful keywords (those
corresponding to network options are listed in the following section):

:name name
Use the string name as the process name. It is modified if necessary to
make it unique.

Chapter 37: Processes 285

:type type Specify the communication type. A value of nil specifies a stream connec-
tion (the default); datagram specifies a datagram connection; seqpacket
specifies a “sequenced packet stream” connection. Both connections and
servers can be of these types.

:server server-flag
If server-flag is non-nil, create a server. Otherwise, create a connection.
For a stream type server, server-flag may be an integer, which then spec-
ifies the length of the queue of pending connections to the server. The
default queue length is 5.

:host host Specify the host to connect to. host should be a host name or Internet
address, as a string, or the symbol local to specify the local host. If you
specify host for a server, it must specify a valid address for the local host,
and only clients connecting to that address will be accepted.

:service service
service specifies a port number to connect to; or, for a server, the port
number to listen on. It should be a service name that translates to a port
number, or an integer specifying the port number directly. For a server,
it can also be t, which means to let the system select an unused port
number.

:family family
family specifies the address (and protocol) family for communication. nil
means determine the proper address family automatically for the given
host and service. local specifies a Unix socket, in which case host is
ignored. ipv4 and ipv6 specify to use IPv4 and IPv6, respectively.

:local local-address
For a server process, local-address is the address to listen on. It overrides
family, host and service, so you might as well not specify them.

:remote remote-address
For a connection, remote-address is the address to connect to. It overrides
family, host and service, so you might as well not specify them.

For a datagram server, remote-address specifies the initial setting of the
remote datagram address.

The format of local-address or remote-address depends on the address
family:

- An IPv4 address is represented as a five-element vector of four 8-bit
integers and one 16-bit integer [a b c d p] corresponding to numeric
IPv4 address a.b.c.d and port number p.

- An IPv6 address is represented as a nine-element vector of 16-bit
integers [a b c d e f g h p] corresponding to numeric IPv6 address
a:b:c:d:e:f :g :h and port number p.

- A local address is represented as a string, which specifies the address
in the local address space.

Chapter 37: Processes 286

- An “unsupported family” address is represented by a cons (f . av),
where f is the family number and av is a vector specifying the socket
address using one element per address data byte. Do not rely on
this format in portable code, as it may depend on implementation
defined constants, data sizes, and data structure alignment.

:nowait bool
If bool is non-nil for a stream connection, return without waiting for
the connection to complete. When the connection succeeds or fails,
Emacs will call the sentinel function, with a second argument matching
"open" (if successful) or "failed". The default is to block, so that make-
network-process does not return until the connection has succeeded or
failed.

:stop stopped
If stopped is non-nil, start the network connection or server in the
“stopped” state.

:buffer buffer
Use buffer as the process buffer.

:coding coding
Use coding as the coding system for this process. To specify different
coding systems for decoding data from the connection and for encoding
data sent to it, specify (decoding . encoding) for coding.

If you don’t specify this keyword at all, the default is to determine the
coding systems from the data.

:noquery query-flag
Initialize the process query flag to query-flag. See Section 37.11 [Query
Before Exit], page 277.

:filter filter
Initialize the process filter to filter.

:filter-multibyte multibyte
If multibyte is non-nil, strings given to the process filter are multibyte,
otherwise they are unibyte. The default is the default value of enable-
multibyte-characters.

:sentinel sentinel
Initialize the process sentinel to sentinel.

:log log Initialize the log function of a server process to log. The log function is
called each time the server accepts a network connection from a client.
The arguments passed to the log function are server, connection, and
message; where server is the server process, connection is the new process
for the connection, and message is a string describing what has happened.

:plist plist Initialize the process plist to plist.

The original argument list, modified with the actual connection information, is avail-
able via the process-contact function.

Chapter 37: Processes 287

37.17.2 Network Options

The following network options can be specified when you create a network process. Ex-
cept for :reuseaddr, you can also set or modify these options later, using set-network-

process-option.

For a server process, the options specified with make-network-process are not inherited
by the client connections, so you will need to set the necessary options for each child
connection as it is created.

:bindtodevice device-name
If device-name is a non-empty string identifying a network interface name (see
network-interface-list), only handle packets received on that interface. If
device-name is nil (the default), handle packets received on any interface.

Using this option may require special privileges on some systems.

:broadcast broadcast-flag
If broadcast-flag is non-nil for a datagram process, the process will receive
datagram packet sent to a broadcast address, and be able to send packets to a
broadcast address. This is ignored for a stream connection.

:dontroute dontroute-flag
If dontroute-flag is non-nil, the process can only send to hosts on the same
network as the local host.

:keepalive keepalive-flag
If keepalive-flag is non-nil for a stream connection, enable exchange of low-level
keep-alive messages.

:linger linger-arg
If linger-arg is non-nil, wait for successful transmission of all queued packets
on the connection before it is deleted (see delete-process). If linger-arg is an
integer, it specifies the maximum time in seconds to wait for queued packets
to be sent before closing the connection. The default is nil, which means to
discard unsent queued packets when the process is deleted.

:oobinline oobinline-flag
If oobinline-flag is non-nil for a stream connection, receive out-of-band data
in the normal data stream. Otherwise, ignore out-of-band data.

:priority priority
Set the priority for packets sent on this connection to the integer priority. The
interpretation of this number is protocol specific; such as setting the TOS (type
of service) field on IP packets sent on this connection. It may also have system
dependent effects, such as selecting a specific output queue on the network
interface.

:reuseaddr reuseaddr-flag
If reuseaddr-flag is non-nil (the default) for a stream server process, allow this
server to reuse a specific port number (see :service), unless another process
on this host is already listening on that port. If reuseaddr-flag is nil, there
may be a period of time after the last use of that port (by any process on the
host) where it is not possible to make a new server on that port.

Chapter 37: Processes 288

[Function]set-network-process-option process option value &optional no-error
This function sets or modifies a network option for network process process. The
accepted options and values are as for make-network-process. If no-error is non-
nil, this function returns nil instead of signaling an error if option is not a supported
option. If the function successfully completes, it returns t.

The current setting of an option is available via the process-contact function.

37.17.3 Testing Availability of Network Features

To test for the availability of a given network feature, use featurep like this:

(featurep ’make-network-process ’(keyword value))

The result of this form is t if it works to specify keyword with value value in make-network-

process. Here are some of the keyword—value pairs you can test in this way.

(:nowait t)

Non-nil if non-blocking connect is supported.

(:type datagram)

Non-nil if datagrams are supported.

(:family local)

Non-nil if local (a.k.a. “UNIX domain”) sockets are supported.

(:family ipv6)

Non-nil if IPv6 is supported.

(:service t)

Non-nil if the system can select the port for a server.

To test for the availability of a given network option, use featurep like this:

(featurep ’make-network-process ’keyword)

The accepted keyword values are :bindtodevice, etc. For the complete list, see
Section 37.17.2 [Network Options], page 287. This form returns non-nil if that particular
network option is supported by make-network-process (or set-network-process-

option).

37.18 Misc Network Facilities

These additional functions are useful for creating and operating on network connections.
Note that they are supported only on some systems.

[Function]network-interface-list
This function returns a list describing the network interfaces of the machine you
are using. The value is an alist whose elements have the form (name . address).
address has the same form as the local-address and remote-address arguments to
make-network-process.

[Function]network-interface-info ifname
This function returns information about the network interface named ifname. The
value is a list of the form (addr bcast netmask hwaddr flags).

addr The Internet protocol address.

Chapter 37: Processes 289

bcast The broadcast address.

netmask The network mask.

hwaddr The layer 2 address (Ethernet MAC address, for instance).

flags The current flags of the interface.

[Function]format-network-address address &optional omit-port
This function converts the Lisp representation of a network address to a string.

A five-element vector [a b c d p] represents an IPv4 address a.b.c.d and port number
p. format-network-address converts that to the string "a.b.c.d:p".

A nine-element vector [a b c d e f g h p] represents an IPv6 address along
with a port number. format-network-address converts that to the string
"[a:b:c:d:e:f:g:h]:p".

If the vector does not include the port number, p, or if omit-port is non-nil, the
result does not include the :p suffix.

37.19 Communicating with Serial Ports

Emacs can communicate with serial ports. For interactive use, M-x serial-term opens a
terminal window. In a Lisp program, make-serial-process creates a process object.

The serial port can be configured at run-time, without having to close and re-open it.
The function serial-process-configure lets you change the speed, bytesize, and other
parameters. In a terminal window created by serial-term, you can click on the mode line
for configuration.

A serial connection is represented by a process object, which can be used in a similar
way to a subprocess or network process. You can send and receive data, and configure the
serial port. A serial process object has no process ID, however, and you can’t send signals
to it, and the status codes are different from other types of processes. delete-process on
the process object or kill-buffer on the process buffer close the connection, but this does
not affect the device connected to the serial port.

The function process-type returns the symbol serial for a process object representing
a serial port connection.

Serial ports are available on GNU/Linux, Unix, and MS Windows systems.

[Command]serial-term port speed
Start a terminal-emulator for a serial port in a new buffer. port is the name of the
serial port to connect to. For example, this could be ‘/dev/ttyS0’ on Unix. On
MS Windows, this could be ‘COM1’, or ‘\\.\COM10’ (double the backslashes in Lisp
strings).

speed is the speed of the serial port in bits per second. 9600 is a common value. The
buffer is in Term mode; see Section “Term Mode” in The GNU Emacs Manual, for
the commands to use in that buffer. You can change the speed and the configuration
in the mode line menu.

[Function]make-serial-process &rest args
This function creates a process and a buffer. Arguments are specified as
keyword/argument pairs. Here’s the list of the meaningful keywords, with the first
two (port and speed) being mandatory:

Chapter 37: Processes 290

:port port

This is the name of the serial port. On Unix and GNU systems, this is
a file name such as ‘/dev/ttyS0’. On Windows, this could be ‘COM1’, or
‘\\.\COM10’ for ports higher than ‘COM9’ (double the backslashes in Lisp
strings).

:speed speed

The speed of the serial port in bits per second. This function calls
serial-process-configure to handle the speed; see the following doc-
umentation of that function for more details.

:name name

The name of the process. If name is not given, port will serve as the
process name as well.

:buffer buffer

The buffer to associate with the process. The value can be either a buffer
or a string that names a buffer. Process output goes at the end of that
buffer, unless you specify an output stream or filter function to handle
the output. If buffer is not given, the process buffer’s name is taken from
the value of the :name keyword.

:coding coding

If coding is a symbol, it specifies the coding system used for both reading
and writing for this process. If coding is a cons (decoding . encoding),
decoding is used for reading, and encoding is used for writing. If not
specified, the default is to determine the coding systems from the data
itself.

:noquery query-flag

Initialize the process query flag to query-flag. See Section 37.11 [Query
Before Exit], page 277. The flags defaults to nil if unspecified.

:stop bool

Start process in the “stopped” state if bool is non-nil. In the stopped
state, a serial process does not accept incoming data, but you can send
outgoing data. The stopped state is cleared by continue-process and
set by stop-process.

:filter filter

Install filter as the process filter.

:sentinel sentinel

Install sentinel as the process sentinel.

:plist plist

Install plist as the initial plist of the process.

Chapter 37: Processes 291

:bytesize

:parity

:stopbits

:flowcontrol

These are handled by serial-process-configure, which is called by
make-serial-process.

The original argument list, possibly modified by later configuration, is available via
the function process-contact.

Here is an example:

(make-serial-process :port "/dev/ttyS0" :speed 9600)

[Function]serial-process-configure &rest args
This functions configures a serial port connection. Arguments are specified as key-
word/argument pairs. Attributes that are not given are re-initialized from the pro-
cess’s current configuration (available via the function process-contact), or set to
reasonable default values. The following arguments are defined:

:process process

:name name

:buffer buffer

:port port

Any of these arguments can be given to identify the process that is to
be configured. If none of these arguments is given, the current buffer’s
process is used.

:speed speed

The speed of the serial port in bits per second, a.k.a. baud rate. The
value can be any number, but most serial ports work only at a few defined
values between 1200 and 115200, with 9600 being the most common value.
If speed is nil, the function ignores all other arguments and does not
configure the port. This may be useful for special serial ports such as
Bluetooth-to-serial converters, which can only be configured through ‘AT’
commands sent through the connection. The value of nil for speed is
valid only for connections that were already opened by a previous call to
make-serial-process or serial-term.

:bytesize bytesize

The number of bits per byte, which can be 7 or 8. If bytesize is not given
or nil, it defaults to 8.

:parity parity

The value can be nil (don’t use parity), the symbol odd (use odd parity),
or the symbol even (use even parity). If parity is not given, it defaults
to no parity.

:stopbits stopbits

The number of stopbits used to terminate a transmission of each byte.
stopbits can be 1 or 2. If stopbits is not given or nil, it defaults to 1.

Chapter 37: Processes 292

:flowcontrol flowcontrol

The type of flow control to use for this connection, which is either nil

(don’t use flow control), the symbol hw (use RTS/CTS hardware flow
control), or the symbol sw (use XON/XOFF software flow control). If
flowcontrol is not given, it defaults to no flow control.

Internally, make-serial-process calls serial-process-configure for the initial
configuration of the serial port.

37.20 Packing and Unpacking Byte Arrays

This section describes how to pack and unpack arrays of bytes, usually for binary network
protocols. These functions convert byte arrays to alists, and vice versa. The byte array
can be represented as a unibyte string or as a vector of integers, while the alist associates
symbols either with fixed-size objects or with recursive sub-alists. To use the functions
referred to in this section, load the bindat library.

Conversion from byte arrays to nested alists is also known as deserializing or unpacking,
while going in the opposite direction is also known as serializing or packing.

37.20.1 Describing Data Layout

To control unpacking and packing, you write a data layout specification, a special nested list
describing named and typed fields. This specification controls the length of each field to be
processed, and how to pack or unpack it. We normally keep bindat specs in variables whose
names end in ‘-bindat-spec’; that kind of name is automatically recognized as “risky”.

A field’s type describes the size (in bytes) of the object that the field represents and, in
the case of multibyte fields, how the bytes are ordered within the field. The two possible
orderings are “big endian” (also known as “network byte ordering”) and “little endian”.
For instance, the number #x23cd (decimal 9165) in big endian would be the two bytes #x23
#xcd; and in little endian, #xcd #x23. Here are the possible type values:

u8

byte Unsigned byte, with length 1.

u16

word

short Unsigned integer in network byte order, with length 2.

u24 Unsigned integer in network byte order, with length 3.

u32

dword

long Unsigned integer in network byte order, with length 4. Note: These values may
be limited by Emacs’s integer implementation limits.

u16r

u24r

u32r Unsigned integer in little endian order, with length 2, 3 and 4, respectively.

str len String of length len.

strz len Zero-terminated string, in a fixed-size field with length len.

Chapter 37: Processes 293

vec len [type]

Vector of len elements of type type, defaulting to bytes. The type is any of the
simple types above, or another vector specified as a list of the form (vec len

[type]).

ip Four-byte vector representing an Internet address. For example: [127 0 0 1]

for localhost.

bits len List of set bits in len bytes. The bytes are taken in big endian order and the bits
are numbered starting with 8 * len − 1 and ending with zero. For example:
bits 2 unpacks #x28 #x1c to (2 3 4 11 13) and #x1c #x28 to (3 5 10 11 12).

(eval form)

form is a Lisp expression evaluated at the moment the field is unpacked or
packed. The result of the evaluation should be one of the above-listed type
specifications.

For a fixed-size field, the length len is given as an integer specifying the number of bytes
in the field.

When the length of a field is not fixed, it typically depends on the value of a preceding
field. In this case, the length len can be given either as a list (name ...) identifying a
field name in the format specified for bindat-get-field below, or by an expression (eval

form) where form should evaluate to an integer, specifying the field length.

A field specification generally has the form ([name] handler), where name is optional.
Don’t use names that are symbols meaningful as type specifications (above) or handler spec-
ifications (below), since that would be ambiguous. name can be a symbol or an expression
(eval form), in which case form should evaluate to a symbol.

handler describes how to unpack or pack the field and can be one of the following:

type Unpack/pack this field according to the type specification type.

eval form Evaluate form, a Lisp expression, for side-effect only. If the field name is spec-
ified, the value is bound to that field name.

fill len Skip len bytes. In packing, this leaves them unchanged, which normally means
they remain zero. In unpacking, this means they are ignored.

align len Skip to the next multiple of len bytes.

struct spec-name

Process spec-name as a sub-specification. This describes a structure nested
within another structure.

union form (tag spec)...

Evaluate form, a Lisp expression, find the first tag that matches it, and process
its associated data layout specification spec. Matching can occur in one of three
ways:

• If a tag has the form (eval expr), evaluate expr with the variable tag

dynamically bound to the value of form. A non-nil result indicates a
match.

• tag matches if it is equal to the value of form.

Chapter 37: Processes 294

• tag matches unconditionally if it is t.

repeat count field-specs...

Process the field-specs recursively, in order, then repeat starting from the first
one, processing all the specifications count times overall. The count is given
using the same formats as a field length—if an eval form is used, it is evaluated
just once. For correct operation, each specification in field-specs must include
a name.

For the (eval form) forms used in a bindat specification, the form can access and update
these dynamically bound variables during evaluation:

last Value of the last field processed.

bindat-raw

The data as a byte array.

bindat-idx

Current index (within bindat-raw) for unpacking or packing.

struct The alist containing the structured data that have been unpacked so far, or
the entire structure being packed. You can use bindat-get-field to access
specific fields of this structure.

count

index Inside a repeat block, these contain the maximum number of repetitions (as
specified by the count parameter), and the current repetition number (counting
from 0). Setting count to zero will terminate the inner-most repeat block after
the current repetition has completed.

37.20.2 Functions to Unpack and Pack Bytes

In the following documentation, spec refers to a data layout specification, bindat-raw to a
byte array, and struct to an alist representing unpacked field data.

[Function]bindat-unpack spec bindat-raw &optional bindat-idx
This function unpacks data from the unibyte string or byte array bindat-raw accord-
ing to spec. Normally, this starts unpacking at the beginning of the byte array, but
if bindat-idx is non-nil, it specifies a zero-based starting position to use instead.

The value is an alist or nested alist in which each element describes one unpacked
field.

[Function]bindat-get-field struct &rest name
This function selects a field’s data from the nested alist struct. Usually struct was
returned by bindat-unpack. If name corresponds to just one argument, that means
to extract a top-level field value. Multiple name arguments specify repeated lookup
of sub-structures. An integer name acts as an array index.

For example, if name is (a b 2 c), that means to find field c in the third element of
subfield b of field a. (This corresponds to struct.a.b[2].c in C.)

Although packing and unpacking operations change the organization of data (in mem-
ory), they preserve the data’s total length, which is the sum of all the fields’ lengths, in

Chapter 37: Processes 295

bytes. This value is not generally inherent in either the specification or alist alone; instead,
both pieces of information contribute to its calculation. Likewise, the length of a string
or array being unpacked may be longer than the data’s total length as described by the
specification.

[Function]bindat-length spec struct
This function returns the total length of the data in struct, according to spec.

[Function]bindat-pack spec struct &optional bindat-raw bindat-idx
This function returns a byte array packed according to spec from the data in the
alist struct. It normally creates and fills a new byte array starting at the beginning.
However, if bindat-raw is non-nil, it specifies a pre-allocated unibyte string or vector
to pack into. If bindat-idx is non-nil, it specifies the starting offset for packing into
bindat-raw.

When pre-allocating, you should make sure (length bindat-raw) meets or exceeds
the total length to avoid an out-of-range error.

[Function]bindat-ip-to-string ip
Convert the Internet address vector ip to a string in the usual dotted notation.

(bindat-ip-to-string [127 0 0 1])

⇒ "127.0.0.1"

37.20.3 Examples of Byte Unpacking and Packing

Here is a complete example of byte unpacking and packing:

(require ’bindat)

(defvar fcookie-index-spec

’((:version u32)

(:count u32)

(:longest u32)

(:shortest u32)

(:flags u32)

(:delim u8)

(:ignored fill 3)

(:offset repeat (:count) (:foo u32)))

"Description of a fortune cookie index file’s contents.")

(defun fcookie (cookies &optional index)

"Display a random fortune cookie from file COOKIES.

Optional second arg INDEX specifies the associated index

filename, by default \"COOKIES.dat\". Display cookie text

in buffer \"*Fortune Cookie: BASENAME*\", where BASENAME

is COOKIES without the directory part."

(interactive "fCookies file: ")

(let* ((info (with-temp-buffer

(insert-file-contents-literally

(or index (concat cookies ".dat")))

Chapter 37: Processes 296

(bindat-unpack fcookie-index-spec

(buffer-string))))

(sel (random (bindat-get-field info :count)))

(beg (cdar (bindat-get-field info :offset sel)))

(end (or (cdar (bindat-get-field info

:offset (1+ sel)))

(nth 7 (file-attributes cookies)))))

(switch-to-buffer

(get-buffer-create

(format "*Fortune Cookie: %s*"

(file-name-nondirectory cookies))))

(erase-buffer)

(insert-file-contents-literally

cookies nil beg (- end 3))))

(defun fcookie-create-index (cookies &optional index delim)

"Scan file COOKIES, and write out its index file.

Optional arg INDEX specifies the index filename, which by

default is \"COOKIES.dat\". Optional arg DELIM specifies the

unibyte character that, when found on a line of its own in

COOKIES, indicates the border between entries."

(interactive "fCookies file: ")

(setq delim (or delim ?%))

(let ((delim-line (format "\n%c\n" delim))

(count 0)

(max 0)

min p q len offsets)

(unless (= 3 (string-bytes delim-line))

(error "Delimiter cannot be represented in one byte"))

(with-temp-buffer

(insert-file-contents-literally cookies)

(while (and (setq p (point))

(search-forward delim-line (point-max) t)

(setq len (- (point) 3 p)))

(setq count (1+ count)

max (max max len)

min (min (or min max) len)

offsets (cons (1- p) offsets))))

(with-temp-buffer

(set-buffer-multibyte nil)

(insert

(bindat-pack

fcookie-index-spec

‘((:version . 2)

(:count . ,count)

(:longest . ,max)

(:shortest . ,min)

Chapter 37: Processes 297

(:flags . 0)

(:delim . ,delim)

(:offset . ,(mapcar (lambda (o)

(list (cons :foo o)))

(nreverse offsets))))))

(let ((coding-system-for-write ’raw-text-unix))

(write-file (or index (concat cookies ".dat")))))))

The following is an example of defining and unpacking a complex structure. Consider
the following C structures:

struct header {

unsigned long dest_ip;

unsigned long src_ip;

unsigned short dest_port;

unsigned short src_port;

};

struct data {

unsigned char type;

unsigned char opcode;

unsigned short length; /* in network byte order */

unsigned char id[8]; /* null-terminated string */

unsigned char data[/* (length + 3) & ~3 */];

};

struct packet {

struct header header;

unsigned long counters[2]; /* in little endian order */

unsigned char items;

unsigned char filler[3];

struct data item[/* items */];

};

The corresponding data layout specification is:

(setq header-spec

’((dest-ip ip)

(src-ip ip)

(dest-port u16)

(src-port u16)))

(setq data-spec

’((type u8)

(opcode u8)

(length u16) ; network byte order

(id strz 8)

(data vec (length))

(align 4)))

Chapter 37: Processes 298

(setq packet-spec

’((header struct header-spec)

(counters vec 2 u32r) ; little endian order

(items u8)

(fill 3)

(item repeat (items)

(struct data-spec))))

A binary data representation is:

(setq binary-data

[192 168 1 100 192 168 1 101 01 28 21 32

160 134 1 0 5 1 0 0 2 0 0 0

2 3 0 5 ?A ?B ?C ?D ?E ?F 0 0 1 2 3 4 5 0 0 0

1 4 0 7 ?B ?C ?D ?E ?F ?G 0 0 6 7 8 9 10 11 12 0])

The corresponding decoded structure is:

(setq decoded (bindat-unpack packet-spec binary-data))

⇒
((header

(dest-ip . [192 168 1 100])

(src-ip . [192 168 1 101])

(dest-port . 284)

(src-port . 5408))

(counters . [100000 261])

(items . 2)

(item ((data . [1 2 3 4 5])

(id . "ABCDEF")

(length . 5)

(opcode . 3)

(type . 2))

((data . [6 7 8 9 10 11 12])

(id . "BCDEFG")

(length . 7)

(opcode . 4)

(type . 1))))

An example of fetching data from this structure:

(bindat-get-field decoded ’item 1 ’id)

⇒ "BCDEFG"

Chapter 38: Emacs Display 299

38 Emacs Display

This chapter describes a number of features related to the display that Emacs presents to
the user.

38.1 Refreshing the Screen

The function redraw-frame clears and redisplays the entire contents of a given frame (see
Chapter 29 [Frames], page 66). This is useful if the screen is corrupted.

[Function]redraw-frame frame
This function clears and redisplays frame frame.

Even more powerful is redraw-display:

[Command]redraw-display
This function clears and redisplays all visible frames.

In Emacs, processing user input takes priority over redisplay. If you call these functions
when input is available, they don’t redisplay immediately, but the requested redisplay does
happen eventually—after all the input has been processed.

On text terminals, suspending and resuming Emacs normally also refreshes the screen.
Some terminal emulators record separate contents for display-oriented programs such as
Emacs and for ordinary sequential display. If you are using such a terminal, you might
want to inhibit the redisplay on resumption.

[User Option]no-redraw-on-reenter
This variable controls whether Emacs redraws the entire screen after it has been
suspended and resumed. Non-nil means there is no need to redraw, nil means
redrawing is needed. The default is nil.

38.2 Forcing Redisplay

Emacs normally tries to redisplay the screen whenever it waits for input. With the following
function, you can request an immediate attempt to redisplay, in the middle of Lisp code,
without actually waiting for input.

[Function]redisplay &optional force
This function tries immediately to redisplay. The optional argument force, if non-
nil, forces the redisplay to be performed, instead of being preempted, even if input is
pending and the variable redisplay-dont-pause is nil (see below). If redisplay-
dont-pause is non-nil (the default), this function redisplays in any case, i.e. force
does nothing.

The function returns t if it actually tried to redisplay, and nil otherwise. A value of t
does not mean that redisplay proceeded to completion; it could have been preempted
by newly arriving input.

[Variable]redisplay-dont-pause
If this variable is nil, arriving input events preempt redisplay; Emacs avoids starting
a redisplay, and stops any redisplay that is in progress, until the input has been

Chapter 38: Emacs Display 300

processed. In particular, (redisplay) returns nil without actually redisplaying, if
there is pending input.

The default value is t, which means that pending input does not preempt redisplay.

[Variable]redisplay-preemption-period
If redisplay-dont-pause is nil, this variable specifies how many seconds Emacs
waits between checks for new input during redisplay; if input arrives during this
interval, redisplay stops and the input is processed. The default value is 0.1; if the
value is nil, Emacs does not check for input during redisplay.

This variable has no effect when redisplay-dont-pause is non-nil (the default).

Although redisplay tries immediately to redisplay, it does not change how Emacs de-
cides which parts of its frame(s) to redisplay. By contrast, the following function adds cer-
tain windows to the pending redisplay work (as if their contents had completely changed),
but does not immediately try to perform redisplay.

[Function]force-window-update &optional object
This function forces some or all windows to be updated the next time Emacs does a
redisplay. If object is a window, that window is to be updated. If object is a buffer
or buffer name, all windows displaying that buffer are to be updated. If object is nil
(or omitted), all windows are to be updated.

This function does not do a redisplay immediately; Emacs does that as it waits for
input, or when the function redisplay is called.

38.3 Truncation

When a line of text extends beyond the right edge of a window, Emacs can continue the line
(make it “wrap” to the next screen line), or truncate the line (limit it to one screen line).
The additional screen lines used to display a long text line are called continuation lines.
Continuation is not the same as filling; continuation happens on the screen only, not in the
buffer contents, and it breaks a line precisely at the right margin, not at a word boundary.
See Section 32.11 [Filling], page 140.

On a graphical display, tiny arrow images in the window fringes indicate truncated
and continued lines (see Section 38.13 [Fringes], page 344). On a text terminal, a ‘$’ in
the rightmost column of the window indicates truncation; a ‘\’ on the rightmost column
indicates a line that “wraps”. (The display table can specify alternate characters to use for
this; see Section 38.20.2 [Display Tables], page 377).

[User Option]truncate-lines
If this buffer-local variable is non-nil, lines that extend beyond the right edge of
the window are truncated; otherwise, they are continued. As a special exception,
the variable truncate-partial-width-windows takes precedence in partial-width
windows (i.e. windows that do not occupy the entire frame width).

[User Option]truncate-partial-width-windows
This variable controls line truncation in partial-width windows. A partial-width win-
dow is one that does not occupy the entire frame width (see Section 28.5 [Splitting

Chapter 38: Emacs Display 301

Windows], page 26). If the value is nil, line truncation is determined by the vari-
able truncate-lines (see above). If the value is an integer n, lines are truncated
if the partial-width window has fewer than n columns, regardless of the value of
truncate-lines; if the partial-width window has n or more columns, line truncation
is determined by truncate-lines. For any other non-nil value, lines are truncated
in every partial-width window, regardless of the value of truncate-lines.

When horizontal scrolling (see Section 28.21 [Horizontal Scrolling], page 56) is in use in
a window, that forces truncation.

[Variable]wrap-prefix
If this buffer-local variable is non-nil, it defines a wrap prefix which Emacs displays
at the start of every continuation line. (If lines are truncated, wrap-prefix is never
used.) Its value may be a string or an image (see Section 38.15.4 [Other Display
Specs], page 353), or a stretch of whitespace such as specified by the :width or
:align-to display properties (see Section 38.15.2 [Specified Space], page 351). The
value is interpreted in the same way as a display text property. See Section 38.15
[Display Property], page 350.

A wrap prefix may also be specified for regions of text, using the wrap-prefix text
or overlay property. This takes precedence over the wrap-prefix variable. See
Section 32.19.4 [Special Properties], page 162.

[Variable]line-prefix
If this buffer-local variable is non-nil, it defines a line prefix which Emacs displays
at the start of every non-continuation line. Its value may be a string or an image
(see Section 38.15.4 [Other Display Specs], page 353), or a stretch of whitespace
such as specified by the :width or :align-to display properties (see Section 38.15.2
[Specified Space], page 351). The value is interpreted in the same way as a display

text property. See Section 38.15 [Display Property], page 350.

A line prefix may also be specified for regions of text using the line-prefix text
or overlay property. This takes precedence over the line-prefix variable. See
Section 32.19.4 [Special Properties], page 162.

If your buffer contains very long lines, and you use continuation to display them, com-
puting the continuation lines can make redisplay slow. The column computation and in-
dentation functions also become slow. Then you might find it advisable to set cache-long-
line-scans to t.

[Variable]cache-long-line-scans
If this variable is non-nil, various indentation and motion functions, and Emacs
redisplay, cache the results of scanning the buffer, and consult the cache to avoid
rescanning regions of the buffer unless they are modified.

Turning on the cache slows down processing of short lines somewhat.

This variable is automatically buffer-local in every buffer.

Chapter 38: Emacs Display 302

38.4 The Echo Area

The echo area is used for displaying error messages (see Section 10.5.3 [Errors], page 128,
vol. 1), for messages made with the message primitive, and for echoing keystrokes. It is not
the same as the minibuffer, despite the fact that the minibuffer appears (when active) in
the same place on the screen as the echo area. See Section “The Minibuffer” in The GNU
Emacs Manual.

Apart from the functions documented in this section, you can print Lisp objects to the
echo area by specifying t as the output stream. See Section 19.4 [Output Streams], page 277,
vol. 1.

38.4.1 Displaying Messages in the Echo Area

This section describes the standard functions for displaying messages in the echo area.

[Function]message format-string &rest arguments
This function displays a message in the echo area. format-string is a format string,
and arguments are the objects for its format specifications, like in the format function
(see Section 4.7 [Formatting Strings], page 57, vol. 1). The resulting formatted string
is displayed in the echo area; if it contains face text properties, it is displayed with
the specified faces (see Section 38.12 [Faces], page 325). The string is also added
to the ‘*Messages*’ buffer, but without text properties (see Section 38.4.3 [Logging
Messages], page 305).

In batch mode, the message is printed to the standard error stream, followed by a
newline.

If format-string is nil or the empty string, message clears the echo area; if the
echo area has been expanded automatically, this brings it back to its normal size.
If the minibuffer is active, this brings the minibuffer contents back onto the screen
immediately.

(message "Minibuffer depth is %d."

(minibuffer-depth))

a Minibuffer depth is 0.

⇒ "Minibuffer depth is 0."

---------- Echo Area ----------

Minibuffer depth is 0.

---------- Echo Area ----------

To automatically display a message in the echo area or in a pop-buffer, depending on
its size, use display-message-or-buffer (see below).

[Macro]with-temp-message message &rest body
This construct displays a message in the echo area temporarily, during the execution
of body. It displays message, executes body, then returns the value of the last body
form while restoring the previous echo area contents.

[Function]message-or-box format-string &rest arguments
This function displays a message like message, but may display it in a dialog box
instead of the echo area. If this function is called in a command that was invoked using

Chapter 38: Emacs Display 303

the mouse—more precisely, if last-nonmenu-event (see Section 21.5 [Command Loop
Info], page 324, vol. 1) is either nil or a list—then it uses a dialog box or pop-up
menu to display the message. Otherwise, it uses the echo area. (This is the same
criterion that y-or-n-p uses to make a similar decision; see Section 20.7 [Yes-or-No
Queries], page 307, vol. 1.)

You can force use of the mouse or of the echo area by binding last-nonmenu-event

to a suitable value around the call.

[Function]message-box format-string &rest arguments
This function displays a message like message, but uses a dialog box (or a pop-up
menu) whenever that is possible. If it is impossible to use a dialog box or pop-up
menu, because the terminal does not support them, then message-box uses the echo
area, like message.

[Function]display-message-or-buffer message &optional buffer-name
not-this-window frame

This function displays the message message, which may be either a string or a buffer.
If it is shorter than the maximum height of the echo area, as defined by max-mini-

window-height, it is displayed in the echo area, using message. Otherwise, display-
buffer is used to show it in a pop-up buffer.

Returns either the string shown in the echo area, or when a pop-up buffer is used,
the window used to display it.

If message is a string, then the optional argument buffer-name is the name of the
buffer used to display it when a pop-up buffer is used, defaulting to ‘*Message*’. In
the case where message is a string and displayed in the echo area, it is not specified
whether the contents are inserted into the buffer anyway.

The optional arguments not-this-window and frame are as for display-buffer, and
only used if a buffer is displayed.

[Function]current-message
This function returns the message currently being displayed in the echo area, or nil
if there is none.

38.4.2 Reporting Operation Progress

When an operation can take a while to finish, you should inform the user about the progress
it makes. This way the user can estimate remaining time and clearly see that Emacs is busy
working, not hung. A convenient way to do this is to use a progress reporter.

Here is a working example that does nothing useful:

(let ((progress-reporter

(make-progress-reporter "Collecting mana for Emacs..."

0 500)))

(dotimes (k 500)

(sit-for 0.01)

(progress-reporter-update progress-reporter k))

(progress-reporter-done progress-reporter))

Chapter 38: Emacs Display 304

[Function]make-progress-reporter message &optional min-value max-value
current-value min-change min-time

This function creates and returns a progress reporter object, which you will use as
an argument for the other functions listed below. The idea is to precompute as much
data as possible to make progress reporting very fast.

When this progress reporter is subsequently used, it will display message in the echo
area, followed by progress percentage. message is treated as a simple string. If you
need it to depend on a filename, for instance, use format before calling this function.

The arguments min-value and max-value should be numbers standing for the starting
and final states of the operation. For instance, an operation that “scans” a buffer
should set these to the results of point-min and point-max correspondingly. max-
value should be greater than min-value.

Alternatively, you can set min-value and max-value to nil. In that case, the progress
reporter does not report process percentages; it instead displays a “spinner” that
rotates a notch each time you update the progress reporter.

If min-value and max-value are numbers, you can give the argument current-value a
numerical value specifying the initial progress; if omitted, this defaults to min-value.

The remaining arguments control the rate of echo area updates. The progress reporter
will wait for at leastmin-change more percents of the operation to be completed before
printing next message; the default is one percent. min-time specifies the minimum
time in seconds to pass between successive prints; the default is 0.2 seconds. (On
some operating systems, the progress reporter may handle fractions of seconds with
varying precision).

This function calls progress-reporter-update, so the first message is printed im-
mediately.

[Function]progress-reporter-update reporter &optional value
This function does the main work of reporting progress of your operation. It displays
the message of reporter, followed by progress percentage determined by value. If per-
centage is zero, or close enough according to themin-change andmin-time arguments,
then it is omitted from the output.

reporter must be the result of a call to make-progress-reporter. value specifies
the current state of your operation and must be between min-value and max-value
(inclusive) as passed to make-progress-reporter. For instance, if you scan a buffer,
then value should be the result of a call to point.

This function respects min-change and min-time as passed to make-progress-

reporter and so does not output new messages on every invocation. It is thus very
fast and normally you should not try to reduce the number of calls to it: resulting
overhead will most likely negate your effort.

[Function]progress-reporter-force-update reporter &optional value
new-message

This function is similar to progress-reporter-update except that it prints a message
in the echo area unconditionally.

The first two arguments have the same meaning as for progress-reporter-update.
Optional new-message allows you to change the message of the reporter. Since this

Chapter 38: Emacs Display 305

functions always updates the echo area, such a change will be immediately presented
to the user.

[Function]progress-reporter-done reporter
This function should be called when the operation is finished. It prints the message
of reporter followed by word “done” in the echo area.

You should always call this function and not hope for progress-reporter-update
to print “100%”. Firstly, it may never print it, there are many good reasons for this
not to happen. Secondly, “done” is more explicit.

[Macro]dotimes-with-progress-reporter (var count [result]) message body. . .
This is a convenience macro that works the same way as dotimes does, but also
reports loop progress using the functions described above. It allows you to save some
typing.

You can rewrite the example in the beginning of this node using this macro this way:

(dotimes-with-progress-reporter

(k 500)

"Collecting some mana for Emacs..."

(sit-for 0.01))

38.4.3 Logging Messages in ‘*Messages*’

Almost all the messages displayed in the echo area are also recorded in the ‘*Messages*’
buffer so that the user can refer back to them. This includes all the messages that are
output with message.

[User Option]message-log-max
This variable specifies how many lines to keep in the ‘*Messages*’ buffer. The value
t means there is no limit on how many lines to keep. The value nil disables message
logging entirely. Here’s how to display a message and prevent it from being logged:

(let (message-log-max)

(message ...))

To make ‘*Messages*’ more convenient for the user, the logging facility combines suc-
cessive identical messages. It also combines successive related messages for the sake of two
cases: question followed by answer, and a series of progress messages.

A “question followed by an answer” means two messages like the ones produced by
y-or-n-p: the first is ‘question’, and the second is ‘question...answer’. The first mes-
sage conveys no additional information beyond what’s in the second, so logging the second
message discards the first from the log.

A “series of progress messages” means successive messages like those produced by make-

progress-reporter. They have the form ‘base...how-far’, where base is the same each
time, while how-far varies. Logging each message in the series discards the previous one,
provided they are consecutive.

The functions make-progress-reporter and y-or-n-p don’t have to do anything spe-
cial to activate the message log combination feature. It operates whenever two consecutive
messages are logged that share a common prefix ending in ‘...’.

Chapter 38: Emacs Display 306

38.4.4 Echo Area Customization

These variables control details of how the echo area works.

[Variable]cursor-in-echo-area
This variable controls where the cursor appears when a message is displayed in the
echo area. If it is non-nil, then the cursor appears at the end of the message.
Otherwise, the cursor appears at point—not in the echo area at all.

The value is normally nil; Lisp programs bind it to t for brief periods of time.

[Variable]echo-area-clear-hook
This normal hook is run whenever the echo area is cleared—either by (message nil)

or for any other reason.

[User Option]echo-keystrokes
This variable determines how much time should elapse before command characters
echo. Its value must be an integer or floating point number, which specifies the
number of seconds to wait before echoing. If the user types a prefix key (such as C-x)
and then delays this many seconds before continuing, the prefix key is echoed in the
echo area. (Once echoing begins in a key sequence, all subsequent characters in the
same key sequence are echoed immediately.)

If the value is zero, then command input is not echoed.

[Variable]message-truncate-lines
Normally, displaying a long message resizes the echo area to display the entire message.
But if the variable message-truncate-lines is non-nil, the echo area does not resize,
and the message is truncated to fit it.

The variable max-mini-window-height, which specifies the maximum height for resizing
minibuffer windows, also applies to the echo area (which is really a special use of the
minibuffer window; see Section 20.14 [Minibuffer Misc], page 313, vol. 1).

38.5 Reporting Warnings

Warnings are a facility for a program to inform the user of a possible problem, but continue
running.

38.5.1 Warning Basics

Every warning has a textual message, which explains the problem for the user, and a severity
level which is a symbol. Here are the possible severity levels, in order of decreasing severity,
and their meanings:

:emergency

A problem that will seriously impair Emacs operation soon if you do not attend
to it promptly.

:error A report of data or circumstances that are inherently wrong.

:warning A report of data or circumstances that are not inherently wrong, but raise
suspicion of a possible problem.

Chapter 38: Emacs Display 307

:debug A report of information that may be useful if you are debugging.

When your program encounters invalid input data, it can either signal a Lisp error by
calling error or signal or report a warning with severity :error. Signaling a Lisp error is
the easiest thing to do, but it means the program cannot continue processing. If you want
to take the trouble to implement a way to continue processing despite the bad data, then
reporting a warning of severity :error is the right way to inform the user of the problem.
For instance, the Emacs Lisp byte compiler can report an error that way and continue
compiling other functions. (If the program signals a Lisp error and then handles it with
condition-case, the user won’t see the error message; it could show the message to the
user by reporting it as a warning.)

Each warning has a warning type to classify it. The type is a list of symbols. The
first symbol should be the custom group that you use for the program’s user options.
For example, byte compiler warnings use the warning type (bytecomp). You can also
subcategorize the warnings, if you wish, by using more symbols in the list.

[Function]display-warning type message &optional level buffer-name
This function reports a warning, using message as the message and type as the warn-
ing type. level should be the severity level, with :warning being the default.

buffer-name, if non-nil, specifies the name of the buffer for logging the warning. By
default, it is ‘*Warnings*’.

[Function]lwarn type level message &rest args
This function reports a warning using the value of (format message args...) as the
message. In other respects it is equivalent to display-warning.

[Function]warn message &rest args
This function reports a warning using the value of (format message args...) as
the message, (emacs) as the type, and :warning as the severity level. It exists for
compatibility only; we recommend not using it, because you should specify a specific
warning type.

38.5.2 Warning Variables

Programs can customize how their warnings appear by binding the variables described in
this section.

[Variable]warning-levels
This list defines the meaning and severity order of the warning severity levels. Each
element defines one severity level, and they are arranged in order of decreasing severity.

Each element has the form (level string function), where level is the severity
level it defines. string specifies the textual description of this level. string should use
‘%s’ to specify where to put the warning type information, or it can omit the ‘%s’ so
as not to include that information.

The optional function, if non-nil, is a function to call with no arguments, to get the
user’s attention.

Normally you should not change the value of this variable.

Chapter 38: Emacs Display 308

[Variable]warning-prefix-function
If non-nil, the value is a function to generate prefix text for warnings. Programs can
bind the variable to a suitable function. display-warning calls this function with
the warnings buffer current, and the function can insert text in it. That text becomes
the beginning of the warning message.

The function is called with two arguments, the severity level and its entry in warning-

levels. It should return a list to use as the entry (this value need not be an actual
member of warning-levels). By constructing this value, the function can change
the severity of the warning, or specify different handling for a given severity level.

If the variable’s value is nil then there is no function to call.

[Variable]warning-series
Programs can bind this variable to t to say that the next warning should begin a
series. When several warnings form a series, that means to leave point on the first
warning of the series, rather than keep moving it for each warning so that it appears on
the last one. The series ends when the local binding is unbound and warning-series

becomes nil again.

The value can also be a symbol with a function definition. That is equivalent to t,
except that the next warning will also call the function with no arguments with the
warnings buffer current. The function can insert text which will serve as a header for
the series of warnings.

Once a series has begun, the value is a marker which points to the buffer position in
the warnings buffer of the start of the series.

The variable’s normal value is nil, which means to handle each warning separately.

[Variable]warning-fill-prefix
When this variable is non-nil, it specifies a fill prefix to use for filling each warning’s
text.

[Variable]warning-type-format
This variable specifies the format for displaying the warning type in the warning
message. The result of formatting the type this way gets included in the message
under the control of the string in the entry in warning-levels. The default value is
" (%s)". If you bind it to "" then the warning type won’t appear at all.

38.5.3 Warning Options

These variables are used by users to control what happens when a Lisp program reports a
warning.

[User Option]warning-minimum-level
This user option specifies the minimum severity level that should be shown immedi-
ately to the user. The default is :warning, which means to immediately display all
warnings except :debug warnings.

[User Option]warning-minimum-log-level
This user option specifies the minimum severity level that should be logged in the
warnings buffer. The default is :warning, which means to log all warnings except
:debug warnings.

Chapter 38: Emacs Display 309

[User Option]warning-suppress-types
This list specifies which warning types should not be displayed immediately for the
user. Each element of the list should be a list of symbols. If its elements match the
first elements in a warning type, then that warning is not displayed immediately.

[User Option]warning-suppress-log-types
This list specifies which warning types should not be logged in the warnings buffer.
Each element of the list should be a list of symbols. If it matches the first few elements
in a warning type, then that warning is not logged.

38.5.4 Delayed Warnings

Sometimes, you may wish to avoid showing a warning while a command is running, and only
show it only after the end of the command. You can use the variable delayed-warnings-

list for this.

[Variable]delayed-warnings-list
The value of this variable is a list of warnings to be displayed after the current
command has finished. Each element must be a list

(type message [level [buffer-name]])

with the same form, and the same meanings, as the argument list of display-warning
(see Section 38.5.1 [Warning Basics], page 306). Immediately after running post-

command-hook (see Section 21.1 [Command Overview], page 315, vol. 1), the Emacs
command loop displays all the warnings specified by this variable, then resets it to
nil.

Programs which need to further customize the delayed warnings mechanism can change
the variable delayed-warnings-hook:

[Variable]delayed-warnings-hook
This is a normal hook which is run by the Emacs command loop, after post-command-
hook, in order to to process and display delayed warnings.

Its default value is a list of two functions:

(collapse-delayed-warnings display-delayed-warnings)

The function collapse-delayed-warnings removes repeated entries from delayed-

warnings-list. The function display-delayed-warnings calls display-warning

on each of the entries in delayed-warnings-list, in turn, and then sets delayed-
warnings-list to nil.

38.6 Invisible Text

You can make characters invisible, so that they do not appear on the screen, with the
invisible property. This can be either a text property (see Section 32.19 [Text Properties],
page 156) or an overlay property (see Section 38.9 [Overlays], page 315). Cursor motion
also partly ignores these characters; if the command loop finds that point is inside a range
of invisible text after a command, it relocates point to the other side of the text.

In the simplest case, any non-nil invisible property makes a character invisible. This
is the default case—if you don’t alter the default value of buffer-invisibility-spec,

Chapter 38: Emacs Display 310

this is how the invisible property works. You should normally use t as the value of the
invisible property if you don’t plan to set buffer-invisibility-spec yourself.

More generally, you can use the variable buffer-invisibility-spec to control which
values of the invisible property make text invisible. This permits you to classify the
text into different subsets in advance, by giving them different invisible values, and
subsequently make various subsets visible or invisible by changing the value of buffer-
invisibility-spec.

Controlling visibility with buffer-invisibility-spec is especially useful in a program
to display the list of entries in a database. It permits the implementation of convenient
filtering commands to view just a part of the entries in the database. Setting this variable
is very fast, much faster than scanning all the text in the buffer looking for properties to
change.

[Variable]buffer-invisibility-spec
This variable specifies which kinds of invisible properties actually make a character
invisible. Setting this variable makes it buffer-local.

t A character is invisible if its invisible property is non-nil. This is the
default.

a list Each element of the list specifies a criterion for invisibility; if a charac-
ter’s invisible property fits any one of these criteria, the character is
invisible. The list can have two kinds of elements:

atom A character is invisible if its invisible property value is
atom or if it is a list with atom as a member; comparison is
done with eq.

(atom . t)

A character is invisible if its invisible property value is
atom or if it is a list with atom as a member; comparison
is done with eq. Moreover, a sequence of such characters
displays as an ellipsis.

Two functions are specifically provided for adding elements to buffer-invisibility-

spec and removing elements from it.

[Function]add-to-invisibility-spec element
This function adds the element element to buffer-invisibility-spec. If buffer-
invisibility-spec was t, it changes to a list, (t), so that text whose invisible

property is t remains invisible.

[Function]remove-from-invisibility-spec element
This removes the element element from buffer-invisibility-spec. This does noth-
ing if element is not in the list.

A convention for use of buffer-invisibility-spec is that a major mode should use
the mode’s own name as an element of buffer-invisibility-spec and as the value of the
invisible property:

Chapter 38: Emacs Display 311

;; If you want to display an ellipsis:
(add-to-invisibility-spec ’(my-symbol . t))

;; If you don’t want ellipsis:
(add-to-invisibility-spec ’my-symbol)

(overlay-put (make-overlay beginning end)

’invisible ’my-symbol)

;; When done with the invisibility:
(remove-from-invisibility-spec ’(my-symbol . t))

;; Or respectively:
(remove-from-invisibility-spec ’my-symbol)

You can check for invisibility using the following function:

[Function]invisible-p pos-or-prop
If pos-or-prop is a marker or number, this function returns a non-nil value if the text
at that position is invisible.

If pos-or-prop is any other kind of Lisp object, that is taken to mean a possible value
of the invisible text or overlay property. In that case, this function returns a non-
nil value if that value would cause text to become invisible, based on the current
value of buffer-invisibility-spec.

Ordinarily, functions that operate on text or move point do not care whether the text is
invisible. The user-level line motion commands ignore invisible newlines if line-move-
ignore-invisible is non-nil (the default), but only because they are explicitly pro-
grammed to do so.

However, if a command ends with point inside or at the boundary of invisible text,
the main editing loop relocates point to one of the two ends of the invisible text. Emacs
chooses the direction of relocation so that it is the same as the overall movement direction
of the command; if in doubt, it prefers a position where an inserted char would not inherit
the invisible property. Additionally, if the text is not replaced by an ellipsis and the
command only moved within the invisible text, then point is moved one extra character so
as to try and reflect the command’s movement by a visible movement of the cursor.

Thus, if the command moved point back to an invisible range (with the usual stickiness),
Emacs moves point back to the beginning of that range. If the command moved point
forward into an invisible range, Emacs moves point forward to the first visible character
that follows the invisible text and then forward one more character.

Incremental search can make invisible overlays visible temporarily and/or permanently
when a match includes invisible text. To enable this, the overlay should have a non-nil
isearch-open-invisible property. The property value should be a function to be called
with the overlay as an argument. This function should make the overlay visible permanently;
it is used when the match overlaps the overlay on exit from the search.

During the search, such overlays are made temporarily visible by temporarily modifying
their invisible and intangible properties. If you want this to be done differently for a certain
overlay, give it an isearch-open-invisible-temporary property which is a function. The
function is called with two arguments: the first is the overlay, and the second is nil to make
the overlay visible, or t to make it invisible again.

Chapter 38: Emacs Display 312

38.7 Selective Display

Selective display refers to a pair of related features for hiding certain lines on the screen.

The first variant, explicit selective display, is designed for use in a Lisp program: it
controls which lines are hidden by altering the text. This kind of hiding in some ways
resembles the effect of the invisible property (see Section 38.6 [Invisible Text], page 309),
but the two features are different and do not work the same way.

In the second variant, the choice of lines to hide is made automatically based on inden-
tation. This variant is designed to be a user-level feature.

The way you control explicit selective display is by replacing a newline (control-j) with
a carriage return (control-m). The text that was formerly a line following that newline is
now hidden. Strictly speaking, it is temporarily no longer a line at all, since only newlines
can separate lines; it is now part of the previous line.

Selective display does not directly affect editing commands. For example, C-f (forward-
char) moves point unhesitatingly into hidden text. However, the replacement of newline
characters with carriage return characters affects some editing commands. For example,
next-line skips hidden lines, since it searches only for newlines. Modes that use selective
display can also define commands that take account of the newlines, or that control which
parts of the text are hidden.

When you write a selectively displayed buffer into a file, all the control-m’s are output
as newlines. This means that when you next read in the file, it looks OK, with nothing
hidden. The selective display effect is seen only within Emacs.

[Variable]selective-display
This buffer-local variable enables selective display. This means that lines, or portions
of lines, may be made hidden.

• If the value of selective-display is t, then the character control-m marks the
start of hidden text; the control-m, and the rest of the line following it, are not
displayed. This is explicit selective display.

• If the value of selective-display is a positive integer, then lines that start with
more than that many columns of indentation are not displayed.

When some portion of a buffer is hidden, the vertical movement commands operate
as if that portion did not exist, allowing a single next-line command to skip any
number of hidden lines. However, character movement commands (such as forward-
char) do not skip the hidden portion, and it is possible (if tricky) to insert or delete
text in an hidden portion.

In the examples below, we show the display appearance of the buffer foo, which
changes with the value of selective-display. The contents of the buffer do not
change.

Chapter 38: Emacs Display 313

(setq selective-display nil)

⇒ nil

---------- Buffer: foo ----------

1 on this column

2on this column

3n this column

3n this column

2on this column

1 on this column

---------- Buffer: foo ----------

(setq selective-display 2)

⇒ 2

---------- Buffer: foo ----------

1 on this column

2on this column

2on this column

1 on this column

---------- Buffer: foo ----------

[User Option]selective-display-ellipses
If this buffer-local variable is non-nil, then Emacs displays ‘...’ at the end of a line
that is followed by hidden text. This example is a continuation of the previous one.

(setq selective-display-ellipses t)

⇒ t

---------- Buffer: foo ----------

1 on this column

2on this column ...

2on this column

1 on this column

---------- Buffer: foo ----------

You can use a display table to substitute other text for the ellipsis (‘...’). See
Section 38.20.2 [Display Tables], page 377.

38.8 Temporary Displays

Temporary displays are used by Lisp programs to put output into a buffer and then present
it to the user for perusal rather than for editing. Many help commands use this feature.

[Macro]with-output-to-temp-buffer buffer-name forms. . .
This function executes forms while arranging to insert any output they print into the
buffer named buffer-name, which is first created if necessary, and put into Help mode.
Finally, the buffer is displayed in some window, but not selected.

If the forms do not change the major mode in the output buffer, so that it is still Help
mode at the end of their execution, then with-output-to-temp-buffer makes this

Chapter 38: Emacs Display 314

buffer read-only at the end, and also scans it for function and variable names to make
them into clickable cross-references. See [Tips for Documentation Strings], page 451,
in particular the item on hyperlinks in documentation strings, for more details.

The string buffer-name specifies the temporary buffer, which need not already exist.
The argument must be a string, not a buffer. The buffer is erased initially (with no
questions asked), and it is marked as unmodified after with-output-to-temp-buffer
exits.

with-output-to-temp-buffer binds standard-output to the temporary buffer,
then it evaluates the forms in forms. Output using the Lisp output functions within
forms goes by default to that buffer (but screen display and messages in the echo
area, although they are “output” in the general sense of the word, are not affected).
See Section 19.5 [Output Functions], page 279, vol. 1.

Several hooks are available for customizing the behavior of this construct; they are
listed below.

The value of the last form in forms is returned.

---------- Buffer: foo ----------

This is the contents of foo.

---------- Buffer: foo ----------

(with-output-to-temp-buffer "foo"

(print 20)

(print standard-output))

⇒ #<buffer foo>

---------- Buffer: foo ----------

20

#<buffer foo>

---------- Buffer: foo ----------

[User Option]temp-buffer-show-function
If this variable is non-nil, with-output-to-temp-buffer calls it as a function to
do the job of displaying a help buffer. The function gets one argument, which is the
buffer it should display.

It is a good idea for this function to run temp-buffer-show-hook just as with-

output-to-temp-buffer normally would, inside of save-selected-window and with
the chosen window and buffer selected.

[Variable]temp-buffer-setup-hook
This normal hook is run by with-output-to-temp-buffer before evaluating body.
When the hook runs, the temporary buffer is current. This hook is normally set up
with a function to put the buffer in Help mode.

Chapter 38: Emacs Display 315

[Variable]temp-buffer-show-hook
This normal hook is run by with-output-to-temp-buffer after displaying the tem-
porary buffer. When the hook runs, the temporary buffer is current, and the window
it was displayed in is selected.

[Function]momentary-string-display string position &optional char message
This function momentarily displays string in the current buffer at position. It has no
effect on the undo list or on the buffer’s modification status.

The momentary display remains until the next input event. If the next input event
is char, momentary-string-display ignores it and returns. Otherwise, that event
remains buffered for subsequent use as input. Thus, typing char will simply remove
the string from the display, while typing (say) C-f will remove the string from the
display and later (presumably) move point forward. The argument char is a space by
default.

The return value of momentary-string-display is not meaningful.

If the string string does not contain control characters, you can do the same job in
a more general way by creating (and then subsequently deleting) an overlay with a
before-string property. See Section 38.9.2 [Overlay Properties], page 318.

If message is non-nil, it is displayed in the echo area while string is displayed in the
buffer. If it is nil, a default message says to type char to continue.

In this example, point is initially located at the beginning of the second line:

---------- Buffer: foo ----------

This is the contents of foo.

?Second line.

---------- Buffer: foo ----------

(momentary-string-display

"**** Important Message! ****"

(point) ?\r

"Type RET when done reading")

⇒ t

---------- Buffer: foo ----------

This is the contents of foo.

**** Important Message! ****Second line.

---------- Buffer: foo ----------

---------- Echo Area ----------

Type RET when done reading

---------- Echo Area ----------

38.9 Overlays

You can use overlays to alter the appearance of a buffer’s text on the screen, for the sake of
presentation features. An overlay is an object that belongs to a particular buffer, and has
a specified beginning and end. It also has properties that you can examine and set; these
affect the display of the text within the overlay.

Chapter 38: Emacs Display 316

The visual effect of an overlay is the same as of the corresponding text property (see
Section 32.19 [Text Properties], page 156). However, due to a different implementation,
overlays generally don’t scale well (many operations take a time that is proportional to
the number of overlays in the buffer). If you need to affect the visual appearance of many
portions in the buffer, we recommend using text properties.

An overlay uses markers to record its beginning and end; thus, editing the text of the
buffer adjusts the beginning and end of each overlay so that it stays with the text. When
you create the overlay, you can specify whether text inserted at the beginning should be
inside the overlay or outside, and likewise for the end of the overlay.

38.9.1 Managing Overlays

This section describes the functions to create, delete and move overlays, and to examine
their contents. Overlay changes are not recorded in the buffer’s undo list, since the overlays
are not part of the buffer’s contents.

[Function]overlayp object
This function returns t if object is an overlay.

[Function]make-overlay start end &optional buffer front-advance rear-advance
This function creates and returns an overlay that belongs to buffer and ranges from
start to end. Both start and end must specify buffer positions; they may be integers
or markers. If buffer is omitted, the overlay is created in the current buffer.

The arguments front-advance and rear-advance specify the marker insertion type for
the start of the overlay and for the end of the overlay, respectively. See Section 31.5
[Marker Insertion Types], page 116. If they are both nil, the default, then the overlay
extends to include any text inserted at the beginning, but not text inserted at the end.
If front-advance is non-nil, text inserted at the beginning of the overlay is excluded
from the overlay. If rear-advance is non-nil, text inserted at the end of the overlay
is included in the overlay.

[Function]overlay-start overlay
This function returns the position at which overlay starts, as an integer.

[Function]overlay-end overlay
This function returns the position at which overlay ends, as an integer.

[Function]overlay-buffer overlay
This function returns the buffer that overlay belongs to. It returns nil if overlay has
been deleted.

[Function]delete-overlay overlay
This function deletes overlay. The overlay continues to exist as a Lisp object, and its
property list is unchanged, but it ceases to be attached to the buffer it belonged to,
and ceases to have any effect on display.

A deleted overlay is not permanently disconnected. You can give it a position in a
buffer again by calling move-overlay.

Chapter 38: Emacs Display 317

[Function]move-overlay overlay start end &optional buffer
This function moves overlay to buffer, and places its bounds at start and end. Both
arguments start and end must specify buffer positions; they may be integers or mark-
ers.

If buffer is omitted, overlay stays in the same buffer it was already associated with;
if overlay was deleted, it goes into the current buffer.

The return value is overlay.

This is the only valid way to change the endpoints of an overlay. Do not try modifying
the markers in the overlay by hand, as that fails to update other vital data structures
and can cause some overlays to be “lost”.

[Function]remove-overlays &optional start end name value
This function removes all the overlays between start and end whose property name
has the value value. It can move the endpoints of the overlays in the region, or split
them.

If name is omitted or nil, it means to delete all overlays in the specified region. If
start and/or end are omitted or nil, that means the beginning and end of the buffer
respectively. Therefore, (remove-overlays) removes all the overlays in the current
buffer.

[Function]copy-overlay overlay
This function returns a copy of overlay. The copy has the same endpoints and prop-
erties as overlay. However, the marker insertion type for the start of the overlay and
for the end of the overlay are set to their default values (see Section 31.5 [Marker
Insertion Types], page 116).

Here are some examples:

;; Create an overlay.
(setq foo (make-overlay 1 10))

⇒ #<overlay from 1 to 10 in display.texi>

(overlay-start foo)

⇒ 1

(overlay-end foo)

⇒ 10

(overlay-buffer foo)

⇒ #<buffer display.texi>

;; Give it a property we can check later.
(overlay-put foo ’happy t)

⇒ t

;; Verify the property is present.
(overlay-get foo ’happy)

⇒ t

;; Move the overlay.
(move-overlay foo 5 20)

⇒ #<overlay from 5 to 20 in display.texi>

(overlay-start foo)

⇒ 5

Chapter 38: Emacs Display 318

(overlay-end foo)

⇒ 20

;; Delete the overlay.
(delete-overlay foo)

⇒ nil

;; Verify it is deleted.
foo

⇒ #<overlay in no buffer>

;; A deleted overlay has no position.
(overlay-start foo)

⇒ nil

(overlay-end foo)

⇒ nil

(overlay-buffer foo)

⇒ nil

;; Undelete the overlay.
(move-overlay foo 1 20)

⇒ #<overlay from 1 to 20 in display.texi>

;; Verify the results.
(overlay-start foo)

⇒ 1

(overlay-end foo)

⇒ 20

(overlay-buffer foo)

⇒ #<buffer display.texi>

;; Moving and deleting the overlay does not change its properties.
(overlay-get foo ’happy)

⇒ t

Emacs stores the overlays of each buffer in two lists, divided around an arbitrary “center
position”. One list extends backwards through the buffer from that center position, and
the other extends forwards from that center position. The center position can be anywhere
in the buffer.

[Function]overlay-recenter pos
This function recenters the overlays of the current buffer around position pos. That
makes overlay lookup faster for positions near pos, but slower for positions far away
from pos.

A loop that scans the buffer forwards, creating overlays, can run faster if you do
(overlay-recenter (point-max)) first.

38.9.2 Overlay Properties

Overlay properties are like text properties in that the properties that alter how a character
is displayed can come from either source. But in most respects they are different. See
Section 32.19 [Text Properties], page 156, for comparison.

Text properties are considered a part of the text; overlays and their properties are
specifically considered not to be part of the text. Thus, copying text between various buffers

Chapter 38: Emacs Display 319

and strings preserves text properties, but does not try to preserve overlays. Changing a
buffer’s text properties marks the buffer as modified, while moving an overlay or changing
its properties does not. Unlike text property changes, overlay property changes are not
recorded in the buffer’s undo list.

Since more than one overlay can specify a property value for the same character, Emacs
lets you specify a priority value of each overlay. You should not make assumptions about
which overlay will prevail when there is a conflict and they have the same priority.

These functions read and set the properties of an overlay:

[Function]overlay-get overlay prop
This function returns the value of property prop recorded in overlay, if any. If overlay
does not record any value for that property, but it does have a category property
which is a symbol, that symbol’s prop property is used. Otherwise, the value is nil.

[Function]overlay-put overlay prop value
This function sets the value of property prop recorded in overlay to value. It returns
value.

[Function]overlay-properties overlay
This returns a copy of the property list of overlay.

See also the function get-char-property which checks both overlay properties and text
properties for a given character. See Section 32.19.1 [Examining Properties], page 157.

Many overlay properties have special meanings; here is a table of them:

priority This property’s value (which should be a non-negative integer number) deter-
mines the priority of the overlay. No priority, or nil, means zero.

The priority matters when two or more overlays cover the same character and
both specify the same property; the one whose priority value is larger overrides
the other. For the face property, the higher priority overlay’s value does not
completely override the other value; instead, its face attributes override the face
attributes of the lower priority face property.

Currently, all overlays take priority over text properties. Please avoid using
negative priority values, as we have not yet decided just what they should
mean.

window If the window property is non-nil, then the overlay applies only on that window.

category If an overlay has a category property, we call it the category of the overlay.
It should be a symbol. The properties of the symbol serve as defaults for the
properties of the overlay.

face This property controls the way text is displayed—for example, which font and
which colors. See Section 38.12 [Faces], page 325, for more information.

In the simplest case, the value is a face name. It can also be a list; then each
element can be any of these possibilities:

• A face name (a symbol or string).

Chapter 38: Emacs Display 320

• A property list of face attributes. This has the form (keyword value . . .),
where each keyword is a face attribute name and value is a meaningful
value for that attribute. With this feature, you do not need to create a
face each time you want to specify a particular attribute for certain text.
See Section 38.12.2 [Face Attributes], page 327.

• A cons cell, of the form (foreground-color . color-name) or
(background-color . color-name). These elements specify just the
foreground color or just the background color.

(foreground-color . color-name) has the same effect as (:foreground
color-name); likewise for the background.

mouse-face

This property is used instead of face when the mouse is within the range of
the overlay. However, Emacs ignores all face attributes from this property that
alter the text size (e.g. :height, :weight, and :slant). Those attributes are
always the same as in the unhighlighted text.

display This property activates various features that change the way text is displayed.
For example, it can make text appear taller or shorter, higher or lower, wider
or narrower, or replaced with an image. See Section 38.15 [Display Property],
page 350.

help-echo

If an overlay has a help-echo property, then when you move the mouse onto
the text in the overlay, Emacs displays a help string in the echo area, or in the
tooltip window. For details see [Text help-echo], page 163.

modification-hooks

This property’s value is a list of functions to be called if any character within
the overlay is changed or if text is inserted strictly within the overlay.

The hook functions are called both before and after each change. If the functions
save the information they receive, and compare notes between calls, they can
determine exactly what change has been made in the buffer text.

When called before a change, each function receives four arguments: the overlay,
nil, and the beginning and end of the text range to be modified.

When called after a change, each function receives five arguments: the overlay,
t, the beginning and end of the text range just modified, and the length of
the pre-change text replaced by that range. (For an insertion, the pre-change
length is zero; for a deletion, that length is the number of characters deleted,
and the post-change beginning and end are equal.)

If these functions modify the buffer, they should bind inhibit-modification-

hooks to t around doing so, to avoid confusing the internal mechanism that
calls these hooks.

Text properties also support the modification-hooks property, but the details
are somewhat different (see Section 32.19.4 [Special Properties], page 162).

Chapter 38: Emacs Display 321

insert-in-front-hooks

This property’s value is a list of functions to be called before and after inserting
text right at the beginning of the overlay. The calling conventions are the same
as for the modification-hooks functions.

insert-behind-hooks

This property’s value is a list of functions to be called before and after inserting
text right at the end of the overlay. The calling conventions are the same as for
the modification-hooks functions.

invisible

The invisible property can make the text in the overlay invisible, which
means that it does not appear on the screen. See Section 38.6 [Invisible Text],
page 309, for details.

intangible

The intangible property on an overlay works just like the intangible text
property. See Section 32.19.4 [Special Properties], page 162, for details.

isearch-open-invisible

This property tells incremental search how to make an invisible overlay visible,
permanently, if the final match overlaps it. See Section 38.6 [Invisible Text],
page 309.

isearch-open-invisible-temporary

This property tells incremental search how to make an invisible overlay visible,
temporarily, during the search. See Section 38.6 [Invisible Text], page 309.

before-string

This property’s value is a string to add to the display at the beginning of the
overlay. The string does not appear in the buffer in any sense—only on the
screen.

after-string

This property’s value is a string to add to the display at the end of the overlay.
The string does not appear in the buffer in any sense—only on the screen.

line-prefix

This property specifies a display spec to prepend to each non-continuation line
at display-time. See Section 38.3 [Truncation], page 300.

wrap-prefix

This property specifies a display spec to prepend to each continuation line at
display-time. See Section 38.3 [Truncation], page 300.

evaporate

If this property is non-nil, the overlay is deleted automatically if it becomes
empty (i.e., if its length becomes zero). If you give an empty overlay a non-nil
evaporate property, that deletes it immediately.

local-map

If this property is non-nil, it specifies a keymap for a portion of the text. The
property’s value replaces the buffer’s local map, when the character after point
is within the overlay. See Section 22.7 [Active Keymaps], page 367, vol. 1.

Chapter 38: Emacs Display 322

keymap The keymap property is similar to local-map but overrides the buffer’s local
map (and the map specified by the local-map property) rather than replacing
it.

The local-map and keymap properties do not affect a string displayed by the before-

string, after-string, or display properties. This is only relevant for mouse clicks and
other mouse events that fall on the string, since point is never on the string. To bind
special mouse events for the string, assign it a local-map or keymap text property. See
Section 32.19.4 [Special Properties], page 162.

38.9.3 Searching for Overlays

[Function]overlays-at pos
This function returns a list of all the overlays that cover the character at position pos
in the current buffer. The list is in no particular order. An overlay contains position
pos if it begins at or before pos, and ends after pos.

To illustrate usage, here is a Lisp function that returns a list of the overlays that
specify property prop for the character at point:

(defun find-overlays-specifying (prop)

(let ((overlays (overlays-at (point)))

found)

(while overlays

(let ((overlay (car overlays)))

(if (overlay-get overlay prop)

(setq found (cons overlay found))))

(setq overlays (cdr overlays)))

found))

[Function]overlays-in beg end
This function returns a list of the overlays that overlap the region beg through end.
“Overlap” means that at least one character is contained within the overlay and also
contained within the specified region; however, empty overlays are included in the
result if they are located at beg, strictly between beg and end, or at end when end
denotes the position at the end of the buffer.

[Function]next-overlay-change pos
This function returns the buffer position of the next beginning or end of an overlay,
after pos. If there is none, it returns (point-max).

[Function]previous-overlay-change pos
This function returns the buffer position of the previous beginning or end of an overlay,
before pos. If there is none, it returns (point-min).

As an example, here’s a simplified (and inefficient) version of the primitive function
next-single-char-property-change (see Section 32.19.3 [Property Search], page 160). It
searches forward from position pos for the next position where the value of a given property
prop, as obtained from either overlays or text properties, changes.

(defun next-single-char-property-change (position prop)

(save-excursion

(goto-char position)

(let ((propval (get-char-property (point) prop)))

Chapter 38: Emacs Display 323

(while (and (not (eobp))

(eq (get-char-property (point) prop) propval))

(goto-char (min (next-overlay-change (point))

(next-single-property-change (point) prop)))))

(point)))

38.10 Width

Since not all characters have the same width, these functions let you check the width of
a character. See Section 32.17.1 [Primitive Indent], page 151, and Section 30.2.5 [Screen
Lines], page 103, for related functions.

[Function]char-width char
This function returns the width in columns of the character char, if it were displayed
in the current buffer (i.e. taking into account the buffer’s display table, if any; see
Section 38.20.2 [Display Tables], page 377). The width of a tab character is usually
tab-width (see Section 38.20.1 [Usual Display], page 376).

[Function]string-width string
This function returns the width in columns of the string string, if it were displayed
in the current buffer and the selected window.

[Function]truncate-string-to-width string width &optional start-column
padding ellipsis

This function returns the part of string that fits within width columns, as a new
string.

If string does not reach width, then the result ends where string ends. If one multi-
column character in string extends across the column width, that character is not
included in the result. Thus, the result can fall short of width but cannot go beyond
it.

The optional argument start-column specifies the starting column. If this is non-
nil, then the first start-column columns of the string are omitted from the value. If
one multi-column character in string extends across the column start-column, that
character is not included.

The optional argument padding, if non-nil, is a padding character added at the
beginning and end of the result string, to extend it to exactly width columns. The
padding character is used at the end of the result if it falls short of width. It is also
used at the beginning of the result if one multi-column character in string extends
across the column start-column.

If ellipsis is non-nil, it should be a string which will replace the end of str (including
any padding) if it extends beyond end-column, unless the display width of str is equal
to or less than the display width of ellipsis. If ellipsis is non-nil and not a string, it
stands for "...".

(truncate-string-to-width "\tab\t" 12 4)

⇒ "ab"

(truncate-string-to-width "\tab\t" 12 4 ?\s)

⇒ " ab "

Chapter 38: Emacs Display 324

38.11 Line Height

The total height of each display line consists of the height of the contents of the line, plus
optional additional vertical line spacing above or below the display line.

The height of the line contents is the maximum height of any character or image on that
display line, including the final newline if there is one. (A display line that is continued
doesn’t include a final newline.) That is the default line height, if you do nothing to specify
a greater height. (In the most common case, this equals the height of the default frame
font.)

There are several ways to explicitly specify a larger line height, either by specifying an
absolute height for the display line, or by specifying vertical space. However, no matter
what you specify, the actual line height can never be less than the default.

A newline can have a line-height text or overlay property that controls the total height
of the display line ending in that newline.

If the property value is t, the newline character has no effect on the displayed height
of the line—the visible contents alone determine the height. This is useful for tiling small
images (or image slices) without adding blank areas between the images.

If the property value is a list of the form (height total), that adds extra space below
the display line. First Emacs uses height as a height spec to control extra space above the
line; then it adds enough space below the line to bring the total line height up to total. In
this case, the other ways to specify the line spacing are ignored.

Any other kind of property value is a height spec, which translates into a number—the
specified line height. There are several ways to write a height spec; here’s how each of them
translates into a number:

integer If the height spec is a positive integer, the height value is that integer.

float If the height spec is a float, float, the numeric height value is float times the
frame’s default line height.

(face . ratio)

If the height spec is a cons of the format shown, the numeric height is ratio
times the height of face face. ratio can be any type of number, or nil which
means a ratio of 1. If face is t, it refers to the current face.

(nil . ratio)

If the height spec is a cons of the format shown, the numeric height is ratio
times the height of the contents of the line.

Thus, any valid height spec determines the height in pixels, one way or another. If the
line contents’ height is less than that, Emacs adds extra vertical space above the line to
achieve the specified total height.

If you don’t specify the line-height property, the line’s height consists of the contents’
height plus the line spacing. There are several ways to specify the line spacing for different
parts of Emacs text.

On graphical terminals, you can specify the line spacing for all lines in a frame, using
the line-spacing frame parameter (see Section 29.3.3.4 [Layout Parameters], page 74).

Chapter 38: Emacs Display 325

However, if the default value of line-spacing is non-nil, it overrides the frame’s line-

spacing parameter. An integer value specifies the number of pixels put below lines. A
floating point number specifies the spacing relative to the frame’s default line height.

You can specify the line spacing for all lines in a buffer via the buffer-local line-spacing
variable. An integer value specifies the number of pixels put below lines. A floating point
number specifies the spacing relative to the default frame line height. This overrides line
spacings specified for the frame.

Finally, a newline can have a line-spacing text or overlay property that overrides the
default frame line spacing and the buffer local line-spacing variable, for the display line
ending in that newline.

One way or another, these mechanisms specify a Lisp value for the spacing of each line.
The value is a height spec, and it translates into a Lisp value as described above. However,
in this case the numeric height value specifies the line spacing, rather than the line height.

On text terminals, the line spacing cannot be altered.

38.12 Faces

A face is a collection of graphical attributes for displaying text: font, foreground color,
background color, optional underlining, and so on. Faces control how Emacs displays text
in buffers, as well as other parts of the frame such as the mode line. See Section “Standard
Faces” in The GNU Emacs Manual, for the list of faces Emacs normally comes with.

For most purposes, you refer to a face in Lisp programs using its face name, which is
usually a Lisp symbol. For backward compatibility, a face name can also be a string, which
is equivalent to a Lisp symbol of the same name.

[Function]facep object
This function returns a non-nil value if object is a Lisp symbol or string that names
a face. Otherwise, it returns nil.

By default, each face name corresponds to the same set of attributes in all frames. But
you can also assign a face name a special set of attributes in one frame (see Section 38.12.3
[Attribute Functions], page 330).

38.12.1 Defining Faces

The defface macro defines a face and specifies its default appearance. The user can subse-
quently customize the face using the Customize interface (see Chapter 14 [Customization],
page 190, vol. 1).

[Macro]defface face spec doc [keyword value]. . .
This macro declares face as a customizable face whose default attributes are given
by spec. You should not quote the symbol face, and it should not end in ‘-face’
(that would be redundant). The argument doc is a documentation string for the
face. The additional keyword arguments have the same meanings as in defgroup and
defcustom (see Section 14.1 [Common Keywords], page 190, vol. 1).

When defface executes, it defines the face according to spec, then uses any cus-
tomizations that were read from the init file (see Section 39.1.2 [Init File], page 389)
to override that specification.

Chapter 38: Emacs Display 326

When you evaluate a defface form with C-M-x in Emacs Lisp mode (eval-defun),
a special feature of eval-defun overrides any customizations of the face. This way,
the face reflects exactly what the defface says.

The spec argument is a face specification, which states how the face should appear
on different kinds of terminals. It should be an alist whose elements each have the
form (display atts). display specifies a class of terminals (see below), while atts is
a property list of face attributes and their values, specifying the appearance of the
face on matching terminals (see the next section for details about face attributes).

The display part of an element of spec determines which frames the element matches.
If more than one element of spec matches a given frame, the first element that matches
is the one used for that frame. There are three possibilities for display :

default This element of spec doesn’t match any frames; instead, it specifies de-
faults that apply to all frames. This kind of element, if used, must be the
first element of spec. Each of the following elements can override any or
all of these defaults.

t This element of spec matches all frames. Therefore, any subsequent el-
ements of spec are never used. Normally t is used in the last (or only)
element of spec.

a list If display is a list, each element should have the form (characteristic

value...). Here characteristic specifies a way of classifying frames, and
the values are possible classifications which display should apply to. Here
are the possible values of characteristic:

type The kind of window system the frame uses—either graphic
(any graphics-capable display), x, pc (for the MS-DOS con-
sole), w32 (for MS Windows 9X/NT/2K/XP), or tty (a non-
graphics-capable display). See Section 38.22 [Window Sys-
tems], page 382.

class What kinds of colors the frame supports—either color,
grayscale, or mono.

background

The kind of background—either light or dark.

min-colors

An integer that represents the minimum number of colors the
frame should support. This matches a frame if its display-
color-cells value is at least the specified integer.

supports Whether or not the frame can display the face attributes
given in value . . . (see Section 38.12.2 [Face Attributes],
page 327). See [Display Face Attribute Testing], page 96, for
more information on exactly how this testing is done.

If an element of display specifies more than one value for a given charac-
teristic, any of those values is acceptable. If display has more than one
element, each element should specify a different characteristic; then each

Chapter 38: Emacs Display 327

characteristic of the frame must match one of the values specified for it
in display.

Here’s how the standard face highlight is defined:

(defface highlight

’((((class color) (min-colors 88) (background light))

:background "darkseagreen2")

(((class color) (min-colors 88) (background dark))

:background "darkolivegreen")

(((class color) (min-colors 16) (background light))

:background "darkseagreen2")

(((class color) (min-colors 16) (background dark))

:background "darkolivegreen")

(((class color) (min-colors 8))

:background "green" :foreground "black")

(t :inverse-video t))

"Basic face for highlighting."

:group ’basic-faces)

Internally, Emacs stores the face’s default specification in its face-defface-spec symbol
property (see Section 8.4 [Property Lists], page 106, vol. 1). The saved-face property stores
the face specification saved by the user, using the customization buffer; the customized-

face property stores the face specification customized for the current session, but not saved;
and the theme-face property stores an alist associating the active customization settings
and Custom themes with their specifications for that face. The face’s documentation string
is stored in the face-documentation property. But normally you should not try to set any
of these properties directly. See Section 14.5 [Applying Customizations], page 206, vol. 1,
for the custom-set-faces function, which is used to apply customized face settings.

People are sometimes tempted to create variables whose values specify a face to use. In
the vast majority of cases, this is not necessary; it is preferable to simply use faces directly.

[User Option]frame-background-mode
This option, if non-nil, specifies the background type to use for interpreting face def-
initions. If it is dark, then Emacs treats all frames as if they had a dark background,
regardless of their actual background colors. If it is light, then Emacs treats all
frames as if they had a light background.

38.12.2 Face Attributes

The effect of using a face is determined by a fixed set of face attributes. This table lists all
the face attributes, their possible values, and their effects. You can specify more than one
face for a given piece of text; Emacs merges the attributes of all the faces to determine how
to display the text. See Section 38.12.4 [Displaying Faces], page 333.

In addition to the values given below, each face attribute can also have the value
unspecified. This special value means the face doesn’t specify that attribute. In face
merging, when the first face fails to specify a particular attribute, the next face gets a
chance. However, the default face must specify all attributes.

Some of these attributes are meaningful only on certain kinds of displays. If your display
cannot handle a certain attribute, the attribute is ignored.

Chapter 38: Emacs Display 328

:family Font family or fontset (a string). See Section “Fonts” in The GNU Emacs
Manual. If you specify a font family name, the wild-card characters ‘*’ and
‘?’ are allowed. The function font-family-list, described below, returns a
list of available family names. See Section 38.12.11 [Fontsets], page 339, for
information about fontsets.

:foundry The name of the font foundry for the font family specified by the :family

attribute (a string). The wild-card characters ‘*’ and ‘?’ are allowed. See
Section “Fonts” in The GNU Emacs Manual.

:width Relative character width. This should be one of the symbols ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-expanded,
expanded, extra-expanded, or ultra-expanded.

:height The height of the font. In the simplest case, this is an integer in units of 1/10
point.

The value can also be a floating point number or a function, which specifies the
height relative to an underlying face (i.e., a face that has a lower priority in the
list described in Section 38.12.4 [Displaying Faces], page 333). If the value is a
floating point number, that specifies the amount by which to scale the height of
the underlying face. If the value is a function, that function is called with one
argument, the height of the underlying face, and returns the height of the new
face. If the function is passed an integer argument, it must return an integer.

The height of the default face must be specified using an integer; floating point
and function values are not allowed.

:weight Font weight—one of the symbols (from densest to faintest) ultra-bold, extra-
bold, bold, semi-bold, normal, semi-light, light, extra-light, or ultra-
light. On text terminals which support variable-brightness text, any weight
greater than normal is displayed as extra bright, and any weight less than
normal is displayed as half-bright.

:slant Font slant—one of the symbols italic, oblique, normal, reverse-italic,
or reverse-oblique. On text terminals that support variable-brightness text,
slanted text is displayed as half-bright.

:foreground

Foreground color, a string. The value can be a system-defined color name, or
a hexadecimal color specification. See Section 29.20 [Color Names], page 92.
On black-and-white displays, certain shades of gray are implemented by stipple
patterns.

:background

Background color, a string. The value can be a system-defined color name, or
a hexadecimal color specification. See Section 29.20 [Color Names], page 92.

:underline

Whether or not characters should be underlined, and in what color. If the value
is t, underlining uses the foreground color of the face. If the value is a string,
underlining uses that color. The value nil means do not underline.

Chapter 38: Emacs Display 329

:overline

Whether or not characters should be overlined, and in what color. The value
is used like that of :underline.

:strike-through

Whether or not characters should be strike-through, and in what color. The
value is used like that of :underline.

:box Whether or not a box should be drawn around characters, its color, the width
of the box lines, and 3D appearance. Here are the possible values of the :box

attribute, and what they mean:

nil Don’t draw a box.

t Draw a box with lines of width 1, in the foreground color.

color Draw a box with lines of width 1, in color color.

(:line-width width :color color :style style)

This way you can explicitly specify all aspects of the box. The
value width specifies the width of the lines to draw; it defaults to 1.
A negative width -n means to draw a line of width n that occupies
the space of the underlying text, thus avoiding any increase in the
character height or width.

The value color specifies the color to draw with. The default is the
foreground color of the face for simple boxes, and the background
color of the face for 3D boxes.

The value style specifies whether to draw a 3D box. If it is
released-button, the box looks like a 3D button that is not
being pressed. If it is pressed-button, the box looks like a 3D
button that is being pressed. If it is nil or omitted, a plain 2D
box is used.

:inverse-video

Whether or not characters should be displayed in inverse video. The value
should be t (yes) or nil (no).

:stipple The background stipple, a bitmap.

The value can be a string; that should be the name of a file containing external-
format X bitmap data. The file is found in the directories listed in the variable
x-bitmap-file-path.

Alternatively, the value can specify the bitmap directly, with a list of the form
(width height data). Here, width and height specify the size in pixels, and
data is a string containing the raw bits of the bitmap, row by row. Each row
occupies (width+7)/8 consecutive bytes in the string (which should be a unibyte
string for best results). This means that each row always occupies at least one
whole byte.

If the value is nil, that means use no stipple pattern.

Normally you do not need to set the stipple attribute, because it is used auto-
matically to handle certain shades of gray.

Chapter 38: Emacs Display 330

:font The font used to display the face. Its value should be a font object. See
Section 38.12.9 [Font Selection], page 337, for information about font objects.

When specifying this attribute using set-face-attribute (see Section 38.12.3
[Attribute Functions], page 330), you may also supply a font spec, a font entity,
or a string. Emacs converts such values to an appropriate font object, and
stores that font object as the actual attribute value. If you specify a string, the
contents of the string should be a font name (see Section “Fonts” in The GNU
Emacs Manual); if the font name is an XLFD containing wildcards, Emacs
chooses the first font matching those wildcards. Specifying this attribute also
changes the values of the :family, :foundry, :width, :height, :weight, and
:slant attributes.

:inherit The name of a face from which to inherit attributes, or a list of face names.
Attributes from inherited faces are merged into the face like an underlying
face would be, with higher priority than underlying faces (see Section 38.12.4
[Displaying Faces], page 333). If a list of faces is used, attributes from faces
earlier in the list override those from later faces.

For compatibility with Emacs 20, you can also specify values for two “fake” face at-
tributes: :bold and :italic. Their values must be either t or nil; a value of unspecified
is not allowed. Setting :bold to t is equivalent to setting the :weight attribute to bold,
and setting it to nil is equivalent to setting :weight to normal. Setting :italic to t is
equivalent to setting the :slant attribute to italic, and setting it to nil is equivalent to
setting :slant to normal.

[Function]font-family-list &optional frame
This function returns a list of available font family names. The optional argument
frame specifies the frame on which the text is to be displayed; if it is nil, the selected
frame is used.

[User Option]underline-minimum-offset
This variable specifies the minimum distance between the baseline and the underline,
in pixels, when displaying underlined text.

[User Option]x-bitmap-file-path
This variable specifies a list of directories for searching for bitmap files, for the
:stipple attribute.

[Function]bitmap-spec-p object
This returns t if object is a valid bitmap specification, suitable for use with :stipple

(see above). It returns nil otherwise.

38.12.3 Face Attribute Functions

This section describes the functions for accessing and modifying the attributes of an existing
face.

[Function]set-face-attribute face frame &rest arguments
This function sets one or more attributes of face for frame. The attributes you specify
this way override whatever the defface says.

Chapter 38: Emacs Display 331

The extra arguments arguments specify the attributes to set, and the values for them.
They should consist of alternating attribute names (such as :family or :underline)
and values. Thus,

(set-face-attribute ’foo nil

:width ’extended

:weight ’bold)

sets the attribute :width to extended and the attribute :weight to bold.

If frame is t, this function sets the default attributes for new frames. Default attribute
values specified this way override the defface for newly created frames.

If frame is nil, this function sets the attributes for all existing frames, and the default
for new frames.

[Function]face-attribute face attribute &optional frame inherit
This returns the value of the attribute attribute of face on frame. If frame is nil,
that means the selected frame (see Section 29.9 [Input Focus], page 83).

If frame is t, this returns whatever new-frames default value you previously specified
with set-face-attribute for the attribute attribute of face. If you have not specified
one, it returns nil.

If inherit is nil, only attributes directly defined by face are considered, so the return
value may be unspecified, or a relative value. If inherit is non-nil, face’s definition
of attribute is merged with the faces specified by its :inherit attribute; however the
return value may still be unspecified or relative. If inherit is a face or a list of faces,
then the result is further merged with that face (or faces), until it becomes specified
and absolute.

To ensure that the return value is always specified and absolute, use a value of default
for inherit; this will resolve any unspecified or relative values by merging with the
default face (which is always completely specified).

For example,

(face-attribute ’bold :weight)

⇒ bold

[Function]face-attribute-relative-p attribute value
This function returns non-nil if value, when used as the value of the face attribute
attribute, is relative. This means it would modify, rather than completely override,
any value that comes from a subsequent face in the face list or that is inherited from
another face.

unspecified is a relative value for all attributes. For :height, floating point and
function values are also relative.

For example:

(face-attribute-relative-p :height 2.0)

⇒ t

[Function]face-all-attributes face &optional frame
This function returns an alist of attributes of face. The elements of the result are
name-value pairs of the form (attr-name . attr-value). Optional argument frame

Chapter 38: Emacs Display 332

specifies the frame whose definition of face to return; if omitted or nil, the returned
value describes the default attributes of face for newly created frames.

[Function]merge-face-attribute attribute value1 value2
If value1 is a relative value for the face attribute attribute, returns it merged with
the underlying value value2; otherwise, if value1 is an absolute value for the face
attribute attribute, returns value1 unchanged.

The following commands and functions mostly provide compatibility with old versions
of Emacs. They work by calling set-face-attribute. Values of t and nil for their frame
argument are handled just like set-face-attribute and face-attribute. The commands
read their arguments using the minibuffer, if called interactively.

[Command]set-face-foreground face color &optional frame
[Command]set-face-background face color &optional frame

These set the :foreground attribute (or :background attribute, respectively) of face
to color.

[Command]set-face-stipple face pattern &optional frame
This sets the :stipple attribute of face to pattern.

[Command]set-face-font face font &optional frame
This sets the :font attribute of face to font.

[Function]set-face-bold-p face bold-p &optional frame
This sets the :weight attribute of face to normal if bold-p is nil, and to bold
otherwise.

[Function]set-face-italic-p face italic-p &optional frame
This sets the :slant attribute of face to normal if italic-p is nil, and to italic oth-
erwise.

[Function]set-face-underline-p face underline &optional frame
This sets the :underline attribute of face to underline.

[Function]set-face-inverse-video-p face inverse-video-p &optional frame
This sets the :inverse-video attribute of face to inverse-video-p.

[Command]invert-face face &optional frame
This swaps the foreground and background colors of face face.

The following functions examine the attributes of a face. If you don’t specify frame,
they refer to the selected frame; t refers to the default data for new frames. They return
the symbol unspecified if the face doesn’t define any value for that attribute.

[Function]face-foreground face &optional frame inherit
[Function]face-background face &optional frame inherit

These functions return the foreground color (or background color, respectively) of
face face, as a string.

If inherit is nil, only a color directly defined by the face is returned. If inherit is
non-nil, any faces specified by its :inherit attribute are considered as well, and if

Chapter 38: Emacs Display 333

inherit is a face or a list of faces, then they are also considered, until a specified color
is found. To ensure that the return value is always specified, use a value of default
for inherit.

[Function]face-stipple face &optional frame inherit
This function returns the name of the background stipple pattern of face face, or nil
if it doesn’t have one.

If inherit is nil, only a stipple directly defined by the face is returned. If inherit
is non-nil, any faces specified by its :inherit attribute are considered as well, and
if inherit is a face or a list of faces, then they are also considered, until a specified
stipple is found. To ensure that the return value is always specified, use a value of
default for inherit.

[Function]face-font face &optional frame
This function returns the name of the font of face face.

[Function]face-bold-p face &optional frame
This function returns a non-nil value if the :weight attribute of face is bolder than
normal (i.e., one of semi-bold, bold, extra-bold, or ultra-bold). Otherwise, it
returns nil.

[Function]face-italic-p face &optional frame
This function returns a non-nil value if the :slant attribute of face is italic or
oblique, and nil otherwise.

[Function]face-underline-p face &optional frame
This function returns the :underline attribute of face face.

[Function]face-inverse-video-p face &optional frame
This function returns the :inverse-video attribute of face face.

38.12.4 Displaying Faces

Here is how Emacs determines the face to use for displaying any given piece of text:

• If the text consists of a special glyph, the glyph can specify a particular face. See
Section 38.20.4 [Glyphs], page 379.

• If the text lies within an active region, Emacs highlights it using the region face. See
Section “Standard Faces” in The GNU Emacs Manual.

• If the text lies within an overlay with a non-nil face property, Emacs applies the face
or face attributes specified by that property. If the overlay has a mouse-face property
and the mouse is “near enough” to the overlay, Emacs applies the face or face attributes
specified by the mouse-face property instead. See Section 38.9.2 [Overlay Properties],
page 318.

When multiple overlays cover one character, an overlay with higher priority overrides
those with lower priority. See Section 38.9 [Overlays], page 315.

• If the text contains a face or mouse-face property, Emacs applies the specified faces
and face attributes. See Section 32.19.4 [Special Properties], page 162. (This is how
Font Lock mode faces are applied. See Section 23.6 [Font Lock Mode], page 429, vol. 1.)

Chapter 38: Emacs Display 334

• If the text lies within the mode line of the selected window, Emacs applies the mode-

line face. For the mode line of a non-selected window, Emacs applies the mode-line-
inactive face. For a header line, Emacs applies the header-line face.

• If any given attribute has not been specified during the preceding steps, Emacs applies
the attribute of the default face.

If these various sources together specify more than one face for a particular character,
Emacs merges the attributes of the various faces specified. For each attribute, Emacs tries
using the above order (i.e. first the face of any special glyph; then the face for region
highlighting, if appropriate; and so on).

38.12.5 Face Remapping

The variable face-remapping-alist is used for buffer-local or global changes in the ap-
pearance of a face. For instance, it is used to implement the text-scale-adjust command
(see Section “Text Scale” in The GNU Emacs Manual).

[Variable]face-remapping-alist
The value of this variable is an alist whose elements have the form (face .

remapping). This causes Emacs to display any text having the face face with
remapping, rather than the ordinary definition of face. remapping may be any face
specification suitable for a face text property: either a face name, or a property list
of attribute/value pairs, or a list in which each element is either a face name or a
property list (see Section 32.19.4 [Special Properties], page 162).

If face-remapping-alist is buffer-local, its local value takes effect only within that
buffer.

Two points bear emphasizing:

1. remapping serves as the complete specification for the remapped face—it replaces
the normal definition of face, instead of modifying it.

2. If remapping references the same face name face, either directly or via the
:inherit attribute of some other face in remapping, that reference uses the
normal definition of face. In other words, the remapping cannot be recursive.

For instance, if the mode-line face is remapped using this entry in
face-remapping-alist:

(mode-line italic mode-line)

then the new definition of the mode-line face inherits from the italic face, and
the normal (non-remapped) definition of mode-line face.

The following functions implement a higher-level interface to face-remapping-alist.
Most Lisp code should use these functions instead of setting face-remapping-alist di-
rectly, to avoid trampling on remappings applied elsewhere. These functions are intended
for buffer-local remappings, so they all make face-remapping-alist buffer-local as a side-
effect. They manage face-remapping-alist entries of the form

(face relative-spec-1 relative-spec-2 ... base-spec)

where, as explained above, each of the relative-spec-N and base-spec is either a face name,
or a property list of attribute/value pairs. Each of the relative remapping entries, relative-
spec-N, is managed by the face-remap-add-relative and face-remap-remove-relative

Chapter 38: Emacs Display 335

functions; these are intended for simple modifications like changing the text size. The base
remapping entry, base-spec, has the lowest priority and is managed by the face-remap-

set-base and face-remap-reset-base functions; it is intended for major modes to remap
faces in the buffers they control.

[Function]face-remap-add-relative face &rest specs
This functions adds the face specifications in specs as relative remappings for face
face in the current buffer. The remaining arguments, specs, should form either a list
of face names, or a property list of attribute/value pairs.

The return value is a Lisp object that serves as a “cookie”; you can pass this object as
an argument to face-remap-remove-relative if you need to remove the remapping
later.

;; Remap the ‘escape-glyph’ face into a combination

;; of the ‘highlight’ and ‘italic’ faces:

(face-remap-add-relative ’escape-glyph ’highlight ’italic)

;; Increase the size of the ‘default’ face by 50%:

(face-remap-add-relative ’default :height 1.5)

[Function]face-remap-remove-relative cookie
This function removes a relative remapping previously added by face-remap-add-

relative. cookie should be the Lisp object returned by face-remap-add-relative

when the remapping was added.

[Function]face-remap-set-base face &rest specs
This function sets the base remapping of face in the current buffer to specs. If specs is
empty, the default base remapping is restored, similar to calling face-remap-reset-

base (see below); note that this is different from specs containing a single value nil,
which has the opposite result (the global definition of face is ignored).

This overwrites the default base-spec, which inherits the global face definition, so it
is up to the caller to add such inheritance if so desired.

[Function]face-remap-reset-base face
This function sets the base remapping of face to its default value, which inherits from
face’s global definition.

38.12.6 Functions for Working with Faces

Here are additional functions for creating and working with faces.

[Function]face-list
This function returns a list of all defined face names.

[Function]face-id face
This function returns the face number of face face. This is a number that uniquely
identifies a face at low levels within Emacs. It is seldom necessary to refer to a face
by its face number.

[Function]face-documentation face
This function returns the documentation string of face face, or nil if none was spec-
ified for it.

Chapter 38: Emacs Display 336

[Function]face-equal face1 face2 &optional frame
This returns t if the faces face1 and face2 have the same attributes for display.

[Function]face-differs-from-default-p face &optional frame
This returns non-nil if the face face displays differently from the default face.

A face alias provides an equivalent name for a face. You can define a face alias by
giving the alias symbol the face-alias property, with a value of the target face name. The
following example makes modeline an alias for the mode-line face.

(put ’modeline ’face-alias ’mode-line)

[Macro]define-obsolete-face-alias obsolete-face current-face when
This macro defines obsolete-face as an alias for current-face, and also marks it
as obsolete, indicating that it may be removed in future. when should be a string
indicating when obsolete-face was made obsolete (usually a version number string).

38.12.7 Automatic Face Assignment

This hook is used for automatically assigning faces to text in the buffer. It is part of the
implementation of Jit-Lock mode, used by Font-Lock.

[Variable]fontification-functions
This variable holds a list of functions that are called by Emacs redisplay as needed,
just before doing redisplay. They are called even when Font Lock Mode isn’t enabled.
When Font Lock Mode is enabled, this variable usually holds just one function, jit-
lock-function.

The functions are called in the order listed, with one argument, a buffer position
pos. Collectively they should attempt to assign faces to the text in the current buffer
starting at pos.

The functions should record the faces they assign by setting the face property. They
should also add a non-nil fontified property to all the text they have assigned faces
to. That property tells redisplay that faces have been assigned to that text already.

It is probably a good idea for the functions to do nothing if the character after
pos already has a non-nil fontified property, but this is not required. If one
function overrides the assignments made by a previous one, the properties after the
last function finishes are the ones that really matter.

For efficiency, we recommend writing these functions so that they usually assign faces
to around 400 to 600 characters at each call.

38.12.8 Basic Faces

If your Emacs Lisp program needs to assign some faces to text, it is often a good idea
to use certain existing faces or inherit from them, rather than defining entirely new faces.
This way, if other users have customized the basic faces to give Emacs a certain look, your
program will “fit in” without additional customization.

Some of the basic faces defined in Emacs are listed below. In addition to these, you
might want to make use of the Font Lock faces for syntactic highlighting, if highlighting is
not already handled by Font Lock mode, or if some Font Lock faces are not in use. See
Section 23.6.7 [Faces for Font Lock], page 436, vol. 1.

Chapter 38: Emacs Display 337

default The default face, whose attributes are all specified. All other faces implicitly
inherit from it: any unspecified attribute defaults to the attribute on this face
(see Section 38.12.2 [Face Attributes], page 327).

bold

italic

bold-italic

underline

fixed-pitch

variable-pitch

These have the attributes indicated by their names (e.g. bold has a bold
:weight attribute), with all other attributes unspecified (and so given by
default).

shadow For “dimmed out” text. For example, it is used for the ignored part of a filename
in the minibuffer (see Section “Minibuffers for File Names” in The GNU Emacs
Manual).

link

link-visited

For clickable text buttons that send the user to a different buffer or “location”.

highlight

For stretches of text that should temporarily stand out. For example, it is
commonly assigned to the mouse-face property for cursor highlighting (see
Section 32.19.4 [Special Properties], page 162).

match For text matching a search command.

error

warning

success For text concerning errors, warnings, or successes. For example, these are used
for messages in ‘*Compilation*’ buffers.

38.12.9 Font Selection

Before Emacs can draw a character on a graphical display, it must select a font for that
character1. See Section “Fonts” in The GNU Emacs Manual. Normally, Emacs automat-
ically chooses a font based on the faces assigned to that character—specifically, the face
attributes :family, :weight, :slant, and :width (see Section 38.12.2 [Face Attributes],
page 327). The choice of font also depends on the character to be displayed; some fonts can
only display a limited set of characters. If no available font exactly fits the requirements,
Emacs looks for the closest matching font. The variables in this section control how Emacs
makes this selection.

[User Option]face-font-family-alternatives
If a given family is specified but does not exist, this variable specifies alternative font
families to try. Each element should have this form:

1 In this context, the term font has nothing to do with Font Lock (see Section 23.6 [Font Lock Mode],
page 429, vol. 1).

Chapter 38: Emacs Display 338

(family alternate-families...)

If family is specified but not available, Emacs will try the other families given in
alternate-families, one by one, until it finds a family that does exist.

[User Option]face-font-selection-order
If there is no font that exactly matches all desired face attributes (:width, :height,
:weight, and :slant), this variable specifies the order in which these attributes
should be considered when selecting the closest matching font. The value should be a
list containing those four attribute symbols, in order of decreasing importance. The
default is (:width :height :weight :slant).

Font selection first finds the best available matches for the first attribute in the list;
then, among the fonts which are best in that way, it searches for the best matches in
the second attribute, and so on.

The attributes :weight and :width have symbolic values in a range centered around
normal. Matches that are more extreme (farther from normal) are somewhat pre-
ferred to matches that are less extreme (closer to normal); this is designed to ensure
that non-normal faces contrast with normal ones, whenever possible.

One example of a case where this variable makes a difference is when the default font
has no italic equivalent. With the default ordering, the italic face will use a non-
italic font that is similar to the default one. But if you put :slant before :height,
the italic face will use an italic font, even if its height is not quite right.

[User Option]face-font-registry-alternatives
This variable lets you specify alternative font registries to try, if a given registry is
specified and doesn’t exist. Each element should have this form:

(registry alternate-registries...)

If registry is specified but not available, Emacs will try the other registries given in
alternate-registries, one by one, until it finds a registry that does exist.

Emacs can make use of scalable fonts, but by default it does not use them.

[User Option]scalable-fonts-allowed
This variable controls which scalable fonts to use. A value of nil, the default, means
do not use scalable fonts. t means to use any scalable font that seems appropriate
for the text.

Otherwise, the value must be a list of regular expressions. Then a scalable font is
enabled for use if its name matches any regular expression in the list. For example,

(setq scalable-fonts-allowed ’("muleindian-2$"))

allows the use of scalable fonts with registry muleindian-2.

[Variable]face-font-rescale-alist
This variable specifies scaling for certain faces. Its value should be a list of elements
of the form

(fontname-regexp . scale-factor)

If fontname-regexp matches the font name that is about to be used, this says to choose
a larger similar font according to the factor scale-factor. You would use this feature
to normalize the font size if certain fonts are bigger or smaller than their nominal
heights and widths would suggest.

Chapter 38: Emacs Display 339

38.12.10 Looking Up Fonts

[Function]x-list-fonts name &optional reference-face frame maximum width
This function returns a list of available font names that match name. name should
be a string containing a font name in either the Fontconfig, GTK, or XLFD format
(see Section “Fonts” in The GNU Emacs Manual). Within an XLFD string, wildcard
characters may be used: the ‘*’ character matches any substring, and the ‘?’ character
matches any single character. Case is ignored when matching font names.

If the optional arguments reference-face and frame are specified, the returned list
includes only fonts that are the same size as reference-face (a face name) currently is
on the frame frame.

The optional argument maximum sets a limit on how many fonts to return. If it is
non-nil, then the return value is truncated after the first maximum matching fonts.
Specifying a small value for maximum can make this function much faster, in cases
where many fonts match the pattern.

The optional argument width specifies a desired font width. If it is non-nil, the
function only returns those fonts whose characters are (on average) width times as
wide as reference-face.

[Function]x-family-fonts &optional family frame
This function returns a list describing the available fonts for family family on frame.
If family is omitted or nil, this list applies to all families, and therefore, it contains
all available fonts. Otherwise, family must be a string; it may contain the wildcards
‘?’ and ‘*’.

The list describes the display that frame is on; if frame is omitted or nil, it applies
to the selected frame’s display (see Section 29.9 [Input Focus], page 83).

Each element in the list is a vector of the following form:

[family width point-size weight slant

fixed-p full registry-and-encoding]

The first five elements correspond to face attributes; if you specify these attributes
for a face, it will use this font.

The last three elements give additional information about the font. fixed-p is non-nil
if the font is fixed-pitch. full is the full name of the font, and registry-and-encoding
is a string giving the registry and encoding of the font.

[Variable]font-list-limit
This variable specifies maximum number of fonts to consider in font matching. The
function x-family-fonts will not return more than that many fonts, and font se-
lection will consider only that many fonts when searching a matching font for face
attributes. The default is currently 100.

38.12.11 Fontsets

A fontset is a list of fonts, each assigned to a range of character codes. An individual
font cannot display the whole range of characters that Emacs supports, but a fontset can.
Fontsets have names, just as fonts do, and you can use a fontset name in place of a font
name when you specify the “font” for a frame or a face. Here is information about defining
a fontset under Lisp program control.

Chapter 38: Emacs Display 340

[Function]create-fontset-from-fontset-spec fontset-spec &optional
style-variant-p noerror

This function defines a new fontset according to the specification string fontset-spec.
The string should have this format:

fontpattern, [charset:font]. . .

Whitespace characters before and after the commas are ignored.

The first part of the string, fontpattern, should have the form of a standard X font
name, except that the last two fields should be ‘fontset-alias’.

The new fontset has two names, one long and one short. The long name is fontpattern
in its entirety. The short name is ‘fontset-alias’. You can refer to the fontset by
either name. If a fontset with the same name already exists, an error is signaled,
unless noerror is non-nil, in which case this function does nothing.

If optional argument style-variant-p is non-nil, that says to create bold, italic and
bold-italic variants of the fontset as well. These variant fontsets do not have a short
name, only a long one, which is made by altering fontpattern to indicate the bold or
italic status.

The specification string also says which fonts to use in the fontset. See below for the
details.

The construct ‘charset:font’ specifies which font to use (in this fontset) for one partic-
ular character set. Here, charset is the name of a character set, and font is the font to use
for that character set. You can use this construct any number of times in the specification
string.

For the remaining character sets, those that you don’t specify explicitly, Emacs chooses
a font based on fontpattern: it replaces ‘fontset-alias’ with a value that names one
character set. For the ASCII character set, ‘fontset-alias’ is replaced with ‘ISO8859-1’.

In addition, when several consecutive fields are wildcards, Emacs collapses them into a
single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger
fonts are not usable for editing, and scaling a smaller font is not useful because it is better
to use the smaller font in its own size, which Emacs does.

Thus if fontpattern is this,

-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24

the font specification for ASCII characters would be this:

-*-fixed-medium-r-normal-*-24-*-ISO8859-1

and the font specification for Chinese GB2312 characters would be this:

-*-fixed-medium-r-normal-*-24-*-gb2312*-*

You may not have any Chinese font matching the above font specification. Most X
distributions include only Chinese fonts that have ‘song ti’ or ‘fangsong ti’ in the family
field. In such a case, ‘Fontset-n’ can be specified as below:

Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\

chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*

Then, the font specifications for all but Chinese GB2312 characters have ‘fixed’ in the
family field, and the font specification for Chinese GB2312 characters has a wild card ‘*’
in the family field.

Chapter 38: Emacs Display 341

[Function]set-fontset-font name character font-spec &optional frame add
This function modifies the existing fontset name to use the font matching with font-
spec for the character character.

If name is nil, this function modifies the fontset of the selected frame or that of
frame if frame is not nil.

If name is t, this function modifies the default fontset, whose short name is
‘fontset-default’.

character may be a cons; (from . to), where from and to are character codepoints.
In that case, use font-spec for all characters in the range from and to (inclusive).

character may be a charset. In that case, use font-spec for all character in the charsets.

character may be a script name. In that case, use font-spec for all character in the
charsets.

font-spec may be a cons; (family . registry), where family is a family name of a
font (possibly including a foundry name at the head), registry is a registry name of
a font (possibly including an encoding name at the tail).

font-spec may be a font name string.

The optional argument add, if non-nil, specifies how to add font-spec to the font
specifications previously set. If it is prepend, font-spec is prepended. If it is append,
font-spec is appended. By default, font-spec overrides the previous settings.

For instance, this changes the default fontset to use a font of which family name is
‘Kochi Gothic’ for all characters belonging to the charset japanese-jisx0208.

(set-fontset-font t ’japanese-jisx0208

(font-spec :family "Kochi Gothic"))

[Function]char-displayable-p char
This function returns t if Emacs ought to be able to display char. More precisely, if
the selected frame’s fontset has a font to display the character set that char belongs
to.

Fontsets can specify a font on a per-character basis; when the fontset does that, this
function’s value may not be accurate.

38.12.12 Low-Level Font Representation

Normally, it is not necessary to manipulate fonts directly. In case you need to do so, this
section explains how.

In Emacs Lisp, fonts are represented using three different Lisp object types: font objects,
font specs, and font entities.

[Function]fontp object &optional type
Return t if object is a font object, font spec, or font entity. Otherwise, return nil.

The optional argument type, if non-nil, determines the exact type of Lisp object to
check for. In that case, type should be one of font-object, font-spec, or font-

entity.

A font object is a Lisp object that represents a font that Emacs has opened. Font objects
cannot be modified in Lisp, but they can be inspected.

Chapter 38: Emacs Display 342

[Function]font-at position &optional window string
Return the font object that is being used to display the character at position position
in the window window. If window is nil, it defaults to the selected window. If string
is nil, position specifies a position in the current buffer; otherwise, string should be
a string, and position specifies a position in that string.

A font spec is a Lisp object that contains a set of specifications that can be used to find
a font. More than one font may match the specifications in a font spec.

[Function]font-spec &rest arguments
Return a new font spec using the specifications in arguments, which should come in
property-value pairs. The possible specifications are as follows:

:name The font name (a string), in either XLFD, Fontconfig, or GTK format.
See Section “Fonts” in The GNU Emacs Manual.

:family

:foundry

:weight

:slant

:width These have the same meanings as the face attributes of the same name.
See Section 38.12.2 [Face Attributes], page 327.

:size The font size—either a non-negative integer that specifies the pixel size,
or a floating point number that specifies the point size.

:adstyle Additional typographic style information for the font, such as ‘sans’. The
value should be a string or a symbol.

:registry

The charset registry and encoding of the font, such as ‘iso8859-1’. The
value should be a string or a symbol.

:script The script that the font must support (a symbol).

:otf The font must be an OpenType font that supports these OpenType fea-
tures, provided Emacs is compiled with support for ‘libotf’ (a library
for performing complex text layout in certain scripts). The value must
be a list of the form

(script-tag langsys-tag gsub gpos)

where script-tag is the OpenType script tag symbol; langsys-tag is the
OpenType language system tag symbol, or nil to use the default language
system; gsub is a list of OpenType GSUB feature tag symbols, or nil

if none is required; and gpos is a list of OpenType GPOS feature tag
symbols, or nil if none is required. If gsub or gpos is a list, a nil element
in that list means that the font must not match any of the remaining tag
symbols. The gpos element may be omitted.

[Function]font-put font-spec property value
Set the font property property in the font-spec font-spec to value.

Chapter 38: Emacs Display 343

A font entity is a reference to a font that need not be open. Its properties are intermediate
between a font object and a font spec: like a font object, and unlike a font spec, it refers to
a single, specific font. Unlike a font object, creating a font entity does not load the contents
of that font into computer memory.

[Function]find-font font-spec &optional frame
This function returns a font entity that best matches the font spec font-spec on frame
frame. If frame is nil, it defaults to the selected frame.

[Function]list-fonts font-spec &optional frame num prefer
This function returns a list of all font entities that match the font spec font-spec.

The optional argument frame, if non-nil, specifies the frame on which the fonts are
to be displayed. The optional argument num, if non-nil, should be an integer that
specifies the maximum length of the returned list. The optional argument prefer,
if non-nil, should be another font spec, which is used to control the order of the
returned list; the returned font entities are sorted in order of decreasing “closeness”
to that font spec.

If you call set-face-attribute and pass a font spec, font entity, or font name string
as the value of the :font attribute, Emacs opens the best “matching” font that is available
for display. It then stores the corresponding font object as the actual value of the :font

attribute for that face.

The following functions can be used to obtain information about a font. For these
functions, the font argument can be a font object, a font entity, or a font spec.

[Function]font-get font property
This function returns the value of the font property property for font.

If font is a font spec and the font spec does not specify property, the return value is
nil. If font is a font object or font entity, the value for the :script property may be
a list of scripts supported by the font.

[Function]font-face-attributes font &optional frame
This function returns a list of face attributes corresponding to font. The optional
argument frame specifies the frame on which the font is to be displayed. If it is nil,
the selected frame is used. The return value has the form

(:family family :height height :weight weight

:slant slant :width width)

where the values of family, height, weight, slant, and width are face attribute values.
Some of these key-attribute pairs may be omitted from the list if they are not specified
by font.

[Function]font-xlfd-name font &optional fold-wildcards
This function returns the XLFD (X Logical Font Descriptor), a string, matching font.
See Section “Fonts” in The GNU Emacs Manual, for information about XLFDs. If
the name is too long for an XLFD (which can contain at most 255 characters), the
function returns nil.

If the optional argument fold-wildcards is non-nil, consecutive wildcards in the XLFD
are folded into one.

Chapter 38: Emacs Display 344

38.13 Fringes

On graphical displays, Emacs draws fringes next to each window: thin vertical strips down
the sides which can display bitmaps indicating truncation, continuation, horizontal scrolling,
and so on.

38.13.1 Fringe Size and Position

The following buffer-local variables control the position and width of fringes in windows
showing that buffer.

[Variable]fringes-outside-margins
The fringes normally appear between the display margins and the window text. If
the value is non-nil, they appear outside the display margins. See Section 38.15.5
[Display Margins], page 354.

[Variable]left-fringe-width
This variable, if non-nil, specifies the width of the left fringe in pixels. A value of
nil means to use the left fringe width from the window’s frame.

[Variable]right-fringe-width
This variable, if non-nil, specifies the width of the right fringe in pixels. A value of
nil means to use the right fringe width from the window’s frame.

Any buffer which does not specify values for these variables uses the values specified
by the left-fringe and right-fringe frame parameters (see Section 29.3.3.4 [Layout
Parameters], page 74).

The above variables actually take effect via the function set-window-buffer (see
Section 28.9 [Buffers and Windows], page 36), which calls set-window-fringes as a
subroutine. If you change one of these variables, the fringe display is not updated in
existing windows showing the buffer, unless you call set-window-buffer again in each
affected window. You can also use set-window-fringes to control the fringe display in
individual windows.

[Function]set-window-fringes window left &optional right outside-margins
This function sets the fringe widths of window window. If window is nil, the selected
window is used.

The argument left specifies the width in pixels of the left fringe, and likewise right
for the right fringe. A value of nil for either one stands for the default width. If
outside-margins is non-nil, that specifies that fringes should appear outside of the
display margins.

[Function]window-fringes &optional window
This function returns information about the fringes of a window window. If window
is omitted or nil, the selected window is used. The value has the form (left-width

right-width outside-margins).

38.13.2 Fringe Indicators

Fringe indicators are tiny icons displayed in the window fringe to indicate truncated or
continued lines, buffer boundaries, etc.

Chapter 38: Emacs Display 345

[User Option]indicate-empty-lines
When this is non-nil, Emacs displays a special glyph in the fringe of each empty line
at the end of the buffer, on graphical displays. See Section 38.13 [Fringes], page 344.
This variable is automatically buffer-local in every buffer.

[User Option]indicate-buffer-boundaries
This buffer-local variable controls how the buffer boundaries and window scrolling are
indicated in the window fringes.

Emacs can indicate the buffer boundaries—that is, the first and last line in the
buffer—with angle icons when they appear on the screen. In addition, Emacs can
display an up-arrow in the fringe to show that there is text above the screen, and a
down-arrow to show there is text below the screen.

There are three kinds of basic values:

nil Don’t display any of these fringe icons.

left Display the angle icons and arrows in the left fringe.

right Display the angle icons and arrows in the right fringe.

any non-alist
Display the angle icons in the left fringe and don’t display the arrows.

Otherwise the value should be an alist that specifies which fringe indicators to display
and where. Each element of the alist should have the form (indicator . position).
Here, indicator is one of top, bottom, up, down, and t (which covers all the icons not
yet specified), while position is one of left, right and nil.

For example, ((top . left) (t . right)) places the top angle bitmap in left fringe,
and the bottom angle bitmap as well as both arrow bitmaps in right fringe. To
show the angle bitmaps in the left fringe, and no arrow bitmaps, use ((top . left)

(bottom . left)).

[Variable]fringe-indicator-alist
This buffer-local variable specifies the mapping from logical fringe indicators to the
actual bitmaps displayed in the window fringes. The value is an alist of elements (in-
dicator . bitmaps), where indicator specifies a logical indicator type and bitmaps
specifies the fringe bitmaps to use for that indicator.

Each indicator should be one of the following symbols:

truncation, continuation.
Used for truncation and continuation lines.

up, down, top, bottom, top-bottom
Used when indicate-buffer-boundaries is non-nil: up and down in-
dicate a buffer boundary lying above or below the window edge; top

and bottom indicate the topmost and bottommost buffer text line; and
top-bottom indicates where there is just one line of text in the buffer.

empty-line

Used to indicate empty lines when indicate-empty-lines is non-nil.

Chapter 38: Emacs Display 346

overlay-arrow

Used for overlay arrows (see Section 38.13.6 [Overlay Arrow], page 348).

Each bitmaps value may be a list of symbols (left right [left1 right1]). The
left and right symbols specify the bitmaps shown in the left and/or right fringe, for
the specific indicator. left1 and right1 are specific to the bottom and top-bottom

indicators, and are used to indicate that the last text line has no final newline. Al-
ternatively, bitmaps may be a single symbol which is used in both left and right
fringes.

See Section 38.13.4 [Fringe Bitmaps], page 346, for a list of standard bitmap symbols
and how to define your own. In addition, nil represents the empty bitmap (i.e. an
indicator that is not shown).

When fringe-indicator-alist has a buffer-local value, and there is no bitmap
defined for a logical indicator, or the bitmap is t, the corresponding value from the
default value of fringe-indicator-alist is used.

38.13.3 Fringe Cursors

When a line is exactly as wide as the window, Emacs displays the cursor in the right fringe
instead of using two lines. Different bitmaps are used to represent the cursor in the fringe
depending on the current buffer’s cursor type.

[User Option]overflow-newline-into-fringe
If this is non-nil, lines exactly as wide as the window (not counting the final newline
character) are not continued. Instead, when point is at the end of the line, the cursor
appears in the right fringe.

[Variable]fringe-cursor-alist
This variable specifies the mapping from logical cursor type to the actual fringe bit-
maps displayed in the right fringe. The value is an alist where each element has
the form (cursor-type . bitmap), which means to use the fringe bitmap bitmap to
display cursors of type cursor-type.

Each cursor-type should be one of box, hollow, bar, hbar, or hollow-small. The
first four have the same meanings as in the cursor-type frame parameter (see
Section 29.3.3.7 [Cursor Parameters], page 76). The hollow-small type is used in-
stead of hollow when the normal hollow-rectangle bitmap is too tall to fit on a
specific display line.

Each bitmap should be a symbol specifying the fringe bitmap to be displayed for that
logical cursor type. See the next subsection for details.

When fringe-cursor-alist has a buffer-local value, and there is no bitmap de-
fined for a cursor type, the corresponding value from the default value of fringes-
indicator-alist is used.

38.13.4 Fringe Bitmaps

The fringe bitmaps are the actual bitmaps which represent the logical fringe indicators
for truncated or continued lines, buffer boundaries, overlay arrows, etc. Each bitmap is
represented by a symbol. These symbols are referred to by the variables fringe-indicator-
alist and fringe-cursor-alist, described in the previous subsections.

Chapter 38: Emacs Display 347

Lisp programs can also directly display a bitmap in the left or right fringe, by using a
display property for one of the characters appearing in the line (see Section 38.15.4 [Other
Display Specs], page 353). Such a display specification has the form

(fringe bitmap [face])

fringe is either the symbol left-fringe or right-fringe. bitmap is a symbol identifying
the bitmap to display. The optional face names a face whose foreground color is used to
display the bitmap; this face is automatically merged with the fringe face.

Here is a list of the standard fringe bitmaps defined in Emacs, and how they are currently
used in Emacs (via fringe-indicator-alist and fringe-cursor-alist):

left-arrow, right-arrow
Used to indicate truncated lines.

left-curly-arrow, right-curly-arrow
Used to indicate continued lines.

right-triangle, left-triangle
The former is used by overlay arrows. The latter is unused.

up-arrow, down-arrow, top-left-angle top-right-angle

bottom-left-angle, bottom-right-angle
top-right-angle, top-left-angle
left-bracket, right-bracket, top-right-angle, top-left-angle

Used to indicate buffer boundaries.

filled-rectangle, hollow-rectangle
filled-square, hollow-square
vertical-bar, horizontal-bar

Used for different types of fringe cursors.

empty-line, question-mark
Unused.

The next subsection describes how to define your own fringe bitmaps.

[Function]fringe-bitmaps-at-pos &optional pos window
This function returns the fringe bitmaps of the display line containing position pos in
window window. The return value has the form (left right ov), where left is the
symbol for the fringe bitmap in the left fringe (or nil if no bitmap), right is similar
for the right fringe, and ov is non-nil if there is an overlay arrow in the left fringe.

The value is nil if pos is not visible in window. If window is nil, that stands for the
selected window. If pos is nil, that stands for the value of point in window.

38.13.5 Customizing Fringe Bitmaps

[Function]define-fringe-bitmap bitmap bits &optional height width align
This function defines the symbol bitmap as a new fringe bitmap, or replaces an
existing bitmap with that name.

The argument bits specifies the image to use. It should be either a string or a vector
of integers, where each element (an integer) corresponds to one row of the bitmap.

Chapter 38: Emacs Display 348

Each bit of an integer corresponds to one pixel of the bitmap, where the low bit
corresponds to the rightmost pixel of the bitmap.

The height is normally the length of bits. However, you can specify a different height
with non-nil height. The width is normally 8, but you can specify a different width
with non-nil width. The width must be an integer between 1 and 16.

The argument align specifies the positioning of the bitmap relative to the range of
rows where it is used; the default is to center the bitmap. The allowed values are top,
center, or bottom.

The align argument may also be a list (align periodic) where align is interpreted
as described above. If periodic is non-nil, it specifies that the rows in bits should
be repeated enough times to reach the specified height.

[Function]destroy-fringe-bitmap bitmap
This function destroy the fringe bitmap identified by bitmap. If bitmap identifies a
standard fringe bitmap, it actually restores the standard definition of that bitmap,
instead of eliminating it entirely.

[Function]set-fringe-bitmap-face bitmap &optional face
This sets the face for the fringe bitmap bitmap to face. If face is nil, it selects the
fringe face. The bitmap’s face controls the color to draw it in.

face is merged with the fringe face, so normally face should specify only the fore-
ground color.

38.13.6 The Overlay Arrow

The overlay arrow is useful for directing the user’s attention to a particular line in a buffer.
For example, in the modes used for interface to debuggers, the overlay arrow indicates
the line of code about to be executed. This feature has nothing to do with overlays (see
Section 38.9 [Overlays], page 315).

[Variable]overlay-arrow-string
This variable holds the string to display to call attention to a particular line, or nil
if the arrow feature is not in use. On a graphical display the contents of the string
are ignored; instead a glyph is displayed in the fringe area to the left of the display
area.

[Variable]overlay-arrow-position
This variable holds a marker that indicates where to display the overlay arrow. It
should point at the beginning of a line. On a non-graphical display the arrow text
appears at the beginning of that line, overlaying any text that would otherwise appear.
Since the arrow is usually short, and the line usually begins with indentation, normally
nothing significant is overwritten.

The overlay-arrow string is displayed in any given buffer if the value of overlay-
arrow-position in that buffer points into that buffer. Thus, it is possible to display
multiple overlay arrow strings by creating buffer-local bindings of overlay-arrow-
position. However, it is usually cleaner to use overlay-arrow-variable-list to
achieve this result.

Chapter 38: Emacs Display 349

You can do a similar job by creating an overlay with a before-string property. See
Section 38.9.2 [Overlay Properties], page 318.

You can define multiple overlay arrows via the variable overlay-arrow-variable-list.

[Variable]overlay-arrow-variable-list
This variable’s value is a list of variables, each of which specifies the position of
an overlay arrow. The variable overlay-arrow-position has its normal meaning
because it is on this list.

Each variable on this list can have properties overlay-arrow-string and overlay-

arrow-bitmap that specify an overlay arrow string (for text terminals) or fringe bitmap
(for graphical terminals) to display at the corresponding overlay arrow position. If either
property is not set, the default overlay-arrow-string or overlay-arrow fringe indicator
is used.

38.14 Scroll Bars

Normally the frame parameter vertical-scroll-bars controls whether the windows in
the frame have vertical scroll bars, and whether they are on the left or right. The frame
parameter scroll-bar-width specifies how wide they are (nil meaning the default). See
Section 29.3.3.4 [Layout Parameters], page 74.

[Function]frame-current-scroll-bars &optional frame
This function reports the scroll bar type settings for frame frame. The value is a
cons cell (vertical-type . horizontal-type), where vertical-type is either left,
right, or nil (which means no scroll bar.) horizontal-type is meant to specify the
horizontal scroll bar type, but since they are not implemented, it is always nil.

You can enable or disable scroll bars for a particular buffer, by setting the variable
vertical-scroll-bar. This variable automatically becomes buffer-local when set. The
possible values are left, right, t, which means to use the frame’s default, and nil for no
scroll bar.

You can also control this for individual windows. Call the function set-window-scroll-

bars to specify what to do for a specific window:

[Function]set-window-scroll-bars window width &optional vertical-type
horizontal-type

This function sets the width and type of scroll bars for window window.

width specifies the scroll bar width in pixels (nil means use the width specified for
the frame). vertical-type specifies whether to have a vertical scroll bar and, if so,
where. The possible values are left, right and nil, just like the values of the
vertical-scroll-bars frame parameter.

The argument horizontal-type is meant to specify whether and where to have hori-
zontal scroll bars, but since they are not implemented, it has no effect. If window is
nil, the selected window is used.

[Function]window-scroll-bars &optional window
Report the width and type of scroll bars specified for window. If window is omitted
or nil, the selected window is used. The value is a list of the form (width cols

Chapter 38: Emacs Display 350

vertical-type horizontal-type). The value width is the value that was specified
for the width (which may be nil); cols is the number of columns that the scroll bar
actually occupies.

horizontal-type is not actually meaningful.

If you don’t specify these values for a window with set-window-scroll-bars, the buffer-
local variables scroll-bar-mode and scroll-bar-width in the buffer being displayed con-
trol the window’s vertical scroll bars. The function set-window-buffer examines these
variables. If you change them in a buffer that is already visible in a window, you can make
the window take note of the new values by calling set-window-buffer specifying the same
buffer that is already displayed.

[User Option]scroll-bar-mode
This variable, always local in all buffers, controls whether and where to put scroll
bars in windows displaying the buffer. The possible values are nil for no scroll bar,
left to put a scroll bar on the left, and right to put a scroll bar on the right.

[Function]window-current-scroll-bars &optional window
This function reports the scroll bar type for window window. If window is omitted
or nil, the selected window is used. The value is a cons cell (vertical-type .

horizontal-type). Unlike window-scroll-bars, this reports the scroll bar type
actually used, once frame defaults and scroll-bar-mode are taken into account.

[Variable]scroll-bar-width
This variable, always local in all buffers, specifies the width of the buffer’s scroll bars,
measured in pixels. A value of nil means to use the value specified by the frame.

38.15 The display Property

The display text property (or overlay property) is used to insert images into text, and to
control other aspects of how text displays. The value of the display property should be
a display specification, or a list or vector containing several display specifications. Display
specifications in the same display property value generally apply in parallel to the text
they cover.

If several sources (overlays and/or a text property) specify values for the display prop-
erty, only one of the values takes effect, following the rules of get-char-property. See
Section 32.19.1 [Examining Properties], page 157.

The rest of this section describes several kinds of display specifications and what they
mean.

38.15.1 Display Specs That Replace The Text

Some kinds of display specifications specify something to display instead of the text that
has the property. These are called replacing display specifications. Emacs does not allow
the user to interactively move point into the middle of buffer text that is replaced in this
way.

If a list of display specifications includes more than one replacing display specification,
the first overrides the rest. Replacing display specifications make most other display speci-
fications irrelevant, since those don’t apply to the replacement.

Chapter 38: Emacs Display 351

For replacing display specifications, “the text that has the property” means all the
consecutive characters that have the same Lisp object as their display property; these
characters are replaced as a single unit. If two characters have different Lisp objects as
their display properties (i.e. objects which are not eq), they are handled separately.

Here is an example which illustrates this point. A string serves as a replacing display
specification, which replaces the text that has the property with the specified string (see
Section 38.15.4 [Other Display Specs], page 353). Consider the following function:

(defun foo ()

(dotimes (i 5)

(let ((string (concat "A"))

(start (+ i i (point-min))))

(put-text-property start (1+ start) ’display string)

(put-text-property start (+ 2 start) ’display string))))

This function gives each of the first ten characters in the buffer a display property which is
a string "A", but they don’t all get the same string object. The first two characters get the
same string object, so they are replaced with one ‘A’; the fact that the display property was
assigned in two separate calls to put-text-property is irrelevant. Similarly, the next two
characters get a second string (concat creates a new string object), so they are replaced
with one ‘A’; and so on. Thus, the ten characters appear as five A’s.

38.15.2 Specified Spaces

To display a space of specified width and/or height, use a display specification of the form
(space . props), where props is a property list (a list of alternating properties and values).
You can put this property on one or more consecutive characters; a space of the specified
height and width is displayed in place of all of those characters. These are the properties
you can use in props to specify the weight of the space:

:width width

If width is an integer or floating point number, it specifies that the space width
should be width times the normal character width. width can also be a pixel
width specification (see Section 38.15.3 [Pixel Specification], page 352).

:relative-width factor

Specifies that the width of the stretch should be computed from the first charac-
ter in the group of consecutive characters that have the same display property.
The space width is the width of that character, multiplied by factor.

:align-to hpos

Specifies that the space should be wide enough to reach hpos. If hpos is a
number, it is measured in units of the normal character width. hpos can also be
a pixel width specification (see Section 38.15.3 [Pixel Specification], page 352).

You should use one and only one of the above properties. You can also specify the height
of the space, with these properties:

:height height

Specifies the height of the space. If height is an integer or floating point number,
it specifies that the space height should be height times the normal character
height. The height may also be a pixel height specification (see Section 38.15.3
[Pixel Specification], page 352).

Chapter 38: Emacs Display 352

:relative-height factor

Specifies the height of the space, multiplying the ordinary height of the text
having this display specification by factor.

:ascent ascent

If the value of ascent is a non-negative number no greater than 100, it specifies
that ascent percent of the height of the space should be considered as the
ascent of the space—that is, the part above the baseline. The ascent may also
be specified in pixel units with a pixel ascent specification (see Section 38.15.3
[Pixel Specification], page 352).

Don’t use both :height and :relative-height together.

The :width and :align-to properties are supported on non-graphic terminals, but the
other space properties in this section are not.

Note that space properties are treated as paragraph separators for the purposes of re-
ordering bidirectional text for display. See Section 38.23 [Bidirectional Display], page 382,
for the details.

38.15.3 Pixel Specification for Spaces

The value of the :width, :align-to, :height, and :ascent properties can be a special
kind of expression that is evaluated during redisplay. The result of the evaluation is used
as an absolute number of pixels.

The following expressions are supported:

expr ::= num | (num) | unit | elem | pos | image | form

num ::= integer | float | symbol

unit ::= in | mm | cm | width | height

elem ::= left-fringe | right-fringe | left-margin | right-margin

| scroll-bar | text

pos ::= left | center | right

form ::= (num . expr) | (op expr ...)

op ::= + | -

The form num specifies a fraction of the default frame font height or width. The form
(num) specifies an absolute number of pixels. If num is a symbol, symbol, its buffer-local
variable binding is used.

The in, mm, and cm units specify the number of pixels per inch, millimeter, and centime-
ter, respectively. The width and height units correspond to the default width and height
of the current face. An image specification image corresponds to the width or height of the
image.

The elements left-fringe, right-fringe, left-margin, right-margin, scroll-bar,
and text specify to the width of the corresponding area of the window.

The left, center, and right positions can be used with :align-to to specify a position
relative to the left edge, center, or right edge of the text area.

Any of the above window elements (except text) can also be used with :align-to to
specify that the position is relative to the left edge of the given area. Once the base offset
for a relative position has been set (by the first occurrence of one of these symbols), further
occurrences of these symbols are interpreted as the width of the specified area. For example,
to align to the center of the left-margin, use

Chapter 38: Emacs Display 353

:align-to (+ left-margin (0.5 . left-margin))

If no specific base offset is set for alignment, it is always relative to the left edge of the
text area. For example, ‘:align-to 0’ in a header-line aligns with the first text column in
the text area.

A value of the form (num . expr) stands for the product of the values of num and expr.
For example, (2 . in) specifies a width of 2 inches, while (0.5 . image) specifies half the
width (or height) of the specified image.

The form (+ expr ...) adds up the value of the expressions. The form (- expr ...)

negates or subtracts the value of the expressions.

38.15.4 Other Display Specifications

Here are the other sorts of display specifications that you can use in the display text
property.

string Display string instead of the text that has this property.

Recursive display specifications are not supported—string ’s display properties,
if any, are not used.

(image . image-props)

This kind of display specification is an image descriptor (see Section 38.16
[Images], page 355). When used as a display specification, it means to display
the image instead of the text that has the display specification.

(slice x y width height)

This specification together with image specifies a slice (a partial area) of the
image to display. The elements y and x specify the top left corner of the slice,
within the image; width and height specify the width and height of the slice.
Integer values are numbers of pixels. A floating point number in the range
0.0–1.0 stands for that fraction of the width or height of the entire image.

((margin nil) string)

A display specification of this form means to display string instead of the text
that has the display specification, at the same position as that text. It is
equivalent to using just string, but it is done as a special case of marginal
display (see Section 38.15.5 [Display Margins], page 354).

(left-fringe bitmap [face])
(right-fringe bitmap [face])

This display specification on any character of a line of text causes the specified
bitmap be displayed in the left or right fringes for that line, instead of the
characters that have the display specification. The optional face specifies the
colors to be used for the bitmap. See Section 38.13.4 [Fringe Bitmaps], page 346,
for the details.

(space-width factor)

This display specification affects all the space characters within the text that has
the specification. It displays all of these spaces factor times as wide as normal.
The element factor should be an integer or float. Characters other than spaces
are not affected at all; in particular, this has no effect on tab characters.

Chapter 38: Emacs Display 354

(height height)

This display specification makes the text taller or shorter. Here are the possi-
bilities for height:

(+ n) This means to use a font that is n steps larger. A “step” is defined
by the set of available fonts—specifically, those that match what
was otherwise specified for this text, in all attributes except height.
Each size for which a suitable font is available counts as another
step. n should be an integer.

(- n) This means to use a font that is n steps smaller.

a number, factor
A number, factor, means to use a font that is factor times as tall
as the default font.

a symbol, function
A symbol is a function to compute the height. It is called with the
current height as argument, and should return the new height to
use.

anything else, form
If the height value doesn’t fit the previous possibilities, it is a form.
Emacs evaluates it to get the new height, with the symbol height
bound to the current specified font height.

(raise factor)

This kind of display specification raises or lowers the text it applies to, relative
to the baseline of the line.

factor must be a number, which is interpreted as a multiple of the height of the
affected text. If it is positive, that means to display the characters raised. If it
is negative, that means to display them lower down.

If the text also has a height display specification, that does not affect the
amount of raising or lowering, which is based on the faces used for the text.

You can make any display specification conditional. To do that, package it in another
list of the form (when condition . spec). Then the specification spec applies only when
condition evaluates to a non-nil value. During the evaluation, object is bound to the string
or buffer having the conditional display property. position and buffer-position are
bound to the position within object and the buffer position where the display property
was found, respectively. Both positions can be different when object is a string.

38.15.5 Displaying in the Margins

A buffer can have blank areas called display margins on the left and on the right. Ordinary
text never appears in these areas, but you can put things into the display margins using
the display property. There is currently no way to make text or images in the margin
mouse-sensitive.

The way to display something in the margins is to specify it in a margin display spec-
ification in the display property of some text. This is a replacing display specification,

Chapter 38: Emacs Display 355

meaning that the text you put it on does not get displayed; the margin display appears,
but that text does not.

A margin display specification looks like ((margin right-margin) spec) or ((margin
left-margin) spec). Here, spec is another display specification that says what to display
in the margin. Typically it is a string of text to display, or an image descriptor.

To display something in the margin in association with certain buffer text, without
altering or preventing the display of that text, put a before-string property on the text
and put the margin display specification on the contents of the before-string.

Before the display margins can display anything, you must give them a nonzero width.
The usual way to do that is to set these variables:

[Variable]left-margin-width
This variable specifies the width of the left margin. It is buffer-local in all buffers.

[Variable]right-margin-width
This variable specifies the width of the right margin. It is buffer-local in all buffers.

Setting these variables does not immediately affect the window. These variables are
checked when a new buffer is displayed in the window. Thus, you can make changes take
effect by calling set-window-buffer.

You can also set the margin widths immediately.

[Function]set-window-margins window left &optional right
This function specifies the margin widths for window window. The argument left
controls the left margin and right controls the right margin (default 0).

[Function]window-margins &optional window
This function returns the left and right margins of window as a cons cell of the form
(left . right). If window is nil, the selected window is used.

38.16 Images

To display an image in an Emacs buffer, you must first create an image descriptor, then use
it as a display specifier in the display property of text that is displayed (see Section 38.15
[Display Property], page 350).

Emacs is usually able to display images when it is run on a graphical terminal. Images
cannot be displayed in a text terminal, on certain graphical terminals that lack the support
for this, or if Emacs is compiled without image support. You can use the function display-

images-p to determine if images can in principle be displayed (see Section 29.23 [Display
Feature Testing], page 95).

38.16.1 Image Formats

Emacs can display a number of different image formats. Some of these image formats are
supported only if particular support libraries are installed. On some platforms, Emacs can
load support libraries on demand; if so, the variable dynamic-library-alist can be used
to modify the set of known names for these dynamic libraries. See Section 39.19 [Dynamic
Libraries], page 417.

Chapter 38: Emacs Display 356

Supported image formats (and the required support libraries) include PBM and XBM
(which do not depend on support libraries and are always available), XPM (libXpm), GIF
(libgif or libungif), PostScript (gs), JPEG (libjpeg), TIFF (libtiff), PNG (libpng),
and SVG (librsvg).

Each of these image formats is associated with an image type symbol. The symbols for
the above formats are, respectively, pbm, xbm, xpm, gif, postscript, jpeg, tiff, png, and
svg.

Furthermore, if you build Emacs with ImageMagick (libMagickWand) support, Emacs
can display any image format that ImageMagick can. See Section 38.16.8 [ImageMagick
Images], page 361. All images displayed via ImageMagick have type symbol imagemagick.

[Variable]image-types
This variable contains a list of type symbols for image formats which are potentially
supported in the current configuration.

“Potentially” means that Emacs knows about the image types, not necessarily that
they can be used (for example, they could depend on unavailable dynamic libraries).
To know which image types are really available, use image-type-available-p.

[Function]image-type-available-p type
This function returns non-nil if images of type type can be loaded and displayed.
type must be an image type symbol.

For image types whose support libraries are statically linked, this function always
returns t. For image types whose support libraries are dynamically loaded, it returns
t if the library could be loaded and nil otherwise.

38.16.2 Image Descriptors

An image descriptor is a list which specifies the underlying data for an image, and how
to display it. It is typically used as the value of a display overlay or text property (see
Section 38.15.4 [Other Display Specs], page 353); but See Section 38.16.11 [Showing Images],
page 364, for convenient helper functions to insert images into buffers.

Each image descriptor has the form (image . props), where props is a property list
of alternating keyword symbols and values, including at least the pair :type TYPE which
specifies the image type.

The following is a list of properties that are meaningful for all image types (there are
also properties which are meaningful only for certain image types, as documented in the
following subsections):

:type type

The image type. Every image descriptor must include this property.

:file file

This says to load the image from file file. If file is not an absolute file name, it
is expanded in data-directory.

:data data

This specifies the raw image data. Each image descriptor must have either
:data or :file, but not both.

Chapter 38: Emacs Display 357

For most image types, the value of a :data property should be a string contain-
ing the image data. Some image types do not support :data; for some others,
:data alone is not enough, so you need to use other image properties along
with :data. See the following subsections for details.

:margin margin

This specifies how many pixels to add as an extra margin around the image.
The value, margin, must be a non-negative number, or a pair (x . y) of such
numbers. If it is a pair, x specifies how many pixels to add horizontally, and
y specifies how many pixels to add vertically. If :margin is not specified, the
default is zero.

:ascent ascent

This specifies the amount of the image’s height to use for its ascent—that is,
the part above the baseline. The value, ascent, must be a number in the range
0 to 100, or the symbol center.

If ascent is a number, that percentage of the image’s height is used for its ascent.

If ascent is center, the image is vertically centered around a centerline which
would be the vertical centerline of text drawn at the position of the image,
in the manner specified by the text properties and overlays that apply to the
image.

If this property is omitted, it defaults to 50.

:relief relief

This adds a shadow rectangle around the image. The value, relief, specifies the
width of the shadow lines, in pixels. If relief is negative, shadows are drawn
so that the image appears as a pressed button; otherwise, it appears as an
unpressed button.

:conversion algorithm

This specifies a conversion algorithm that should be applied to the image before
it is displayed; the value, algorithm, specifies which algorithm.

laplace

emboss Specifies the Laplace edge detection algorithm, which blurs out
small differences in color while highlighting larger differences. Peo-
ple sometimes consider this useful for displaying the image for a
“disabled” button.

(edge-detection :matrix matrix :color-adjust adjust)

Specifies a general edge-detection algorithm. matrix must be either
a nine-element list or a nine-element vector of numbers. A pixel at
position x/y in the transformed image is computed from original
pixels around that position. matrix specifies, for each pixel in the
neighborhood of x/y, a factor with which that pixel will influence
the transformed pixel; element 0 specifies the factor for the pixel
at x− 1/y− 1, element 1 the factor for the pixel at x/y− 1 etc., as

Chapter 38: Emacs Display 358

shown below:x− 1/y − 1 x/y − 1 x+ 1/y − 1
x− 1/y x/y x+ 1/y

x− 1/y + 1 x/y + 1 x+ 1/y + 1

The resulting pixel is computed from the color intensity of the color
resulting from summing up the RGB values of surrounding pixels,
multiplied by the specified factors, and dividing that sum by the
sum of the factors’ absolute values.

Laplace edge-detection currently uses a matrix of 1 0 0
0 0 0
0 0 −1

Emboss edge-detection uses a matrix of 2 −1 0

−1 0 1
0 1 −2

disabled Specifies transforming the image so that it looks “disabled”.

:mask mask

If mask is heuristic or (heuristic bg), build a clipping mask for the image,
so that the background of a frame is visible behind the image. If bg is not
specified, or if bg is t, determine the background color of the image by looking
at the four corners of the image, assuming the most frequently occurring color
from the corners is the background color of the image. Otherwise, bg must be
a list (red green blue) specifying the color to assume for the background of
the image.

If mask is nil, remove a mask from the image, if it has one. Images in some
formats include a mask which can be removed by specifying :mask nil.

:pointer shape

This specifies the pointer shape when the mouse pointer is over this image. See
Section 29.17 [Pointer Shape], page 90, for available pointer shapes.

:map map This associates an image map of hot spots with this image.

An image map is an alist where each element has the format (area id plist).
An area is specified as either a rectangle, a circle, or a polygon.

A rectangle is a cons (rect . ((x0 . y0) . (x1 . y1))) which specifies the
pixel coordinates of the upper left and bottom right corners of the rectangle
area.

A circle is a cons (circle . ((x0 . y0) . r)) which specifies the center and
the radius of the circle; r may be a float or integer.

A polygon is a cons (poly . [x0 y0 x1 y1 ...]) where each pair in the vector
describes one corner in the polygon.

Chapter 38: Emacs Display 359

When the mouse pointer lies on a hot-spot area of an image, the plist of that
hot-spot is consulted; if it contains a help-echo property, that defines a tool-tip
for the hot-spot, and if it contains a pointer property, that defines the shape of
the mouse cursor when it is on the hot-spot. See Section 29.17 [Pointer Shape],
page 90, for available pointer shapes.

When you click the mouse when the mouse pointer is over a hot-spot, an event
is composed by combining the id of the hot-spot with the mouse event; for
instance, [area4 mouse-1] if the hot-spot’s id is area4.

[Function]image-mask-p spec &optional frame
This function returns t if image spec has a mask bitmap. frame is the frame on which
the image will be displayed. frame nil or omitted means to use the selected frame
(see Section 29.9 [Input Focus], page 83).

38.16.3 XBM Images

To use XBM format, specify xbm as the image type. This image format doesn’t require an
external library, so images of this type are always supported.

Additional image properties supported for the xbm image type are:

:foreground foreground

The value, foreground, should be a string specifying the image foreground color,
or nil for the default color. This color is used for each pixel in the XBM that
is 1. The default is the frame’s foreground color.

:background background

The value, background, should be a string specifying the image background
color, or nil for the default color. This color is used for each pixel in the XBM
that is 0. The default is the frame’s background color.

If you specify an XBM image using data within Emacs instead of an external file, use
the following three properties:

:data data

The value, data, specifies the contents of the image. There are three formats
you can use for data:

• A vector of strings or bool-vectors, each specifying one line of the image.
Do specify :height and :width.

• A string containing the same byte sequence as an XBM file would contain.
You must not specify :height and :width in this case, because omitting
them is what indicates the data has the format of an XBM file. The file
contents specify the height and width of the image.

• A string or a bool-vector containing the bits of the image (plus perhaps
some extra bits at the end that will not be used). It should contain at least
width * height bits. In this case, you must specify :height and :width,
both to indicate that the string contains just the bits rather than a whole
XBM file, and to specify the size of the image.

:width width

The value, width, specifies the width of the image, in pixels.

Chapter 38: Emacs Display 360

:height height

The value, height, specifies the height of the image, in pixels.

38.16.4 XPM Images

To use XPM format, specify xpm as the image type. The additional image property :color-

symbols is also meaningful with the xpm image type:

:color-symbols symbols

The value, symbols, should be an alist whose elements have the form (name .

color). In each element, name is the name of a color as it appears in the image
file, and color specifies the actual color to use for displaying that name.

38.16.5 GIF Images

For GIF images, specify image type gif.

:index index

You can use :index to specify image number index from a GIF file that contains
more than one image. If the GIF file doesn’t contain an image with the specified
index, the image displays as a hollow box. GIF files with more than one image
can be animated, see Section 38.16.12 [Animated Images], page 365.

38.16.6 TIFF Images

For TIFF images, specify image type tiff.

:index index

You can use :index to specify image number index from a TIFF file that
contains more than one image. If the TIFF file doesn’t contain an image with
the specified index, the image displays as a hollow box.

38.16.7 PostScript Images

To use PostScript for an image, specify image type postscript. This works only if you
have Ghostscript installed. You must always use these three properties:

:pt-width width

The value, width, specifies the width of the image measured in points (1/72
inch). width must be an integer.

:pt-height height

The value, height, specifies the height of the image in points (1/72 inch). height
must be an integer.

:bounding-box box

The value, box, must be a list or vector of four integers, which specifying
the bounding box of the PostScript image, analogous to the ‘BoundingBox’
comment found in PostScript files.

%%BoundingBox: 22 171 567 738

Chapter 38: Emacs Display 361

38.16.8 ImageMagick Images

If you build Emacs with ImageMagick support, you can use the ImageMagick library to
load many image formats. The image type symbol for images loaded via ImageMagick is
imagemagick, regardless of the actual underlying image format.

[Function]imagemagick-types
This function returns a list of image file extensions supported by the current Im-
ageMagick installation.

By default, Emacs does not use ImageMagick to display images in Image mode, e.g.
when visiting such files with C-x C-f. This feature is enabled by calling imagemagick-

register-types.

[Function]imagemagick-register-types
This function enables using Image mode to visit image files supported by
ImageMagick. See Section “File Conveniences” in The GNU Emacs Manual. It also
causes create-image and other helper functions to associate such file names with
the imagemagick image type (see Section 38.16.10 [Defining Images], page 362).

All image file extensions supported by ImageMagick are registered, except those spec-
ified in imagemagick-types-inhibit. If Emacs was not compiled with ImageMagick
support, this function does nothing.

[User Option]imagemagick-types-inhibit
This variable specifies a list of image types that should not be registered by
imagemagick-register-types. Each entry in this list should be one of the symbols
returned by imagemagick-types. The default value lists several file types that are
considered “images” by ImageMagick, but which should not be considered as images
by Emacs, including C files and HTML files.

Images loaded with ImageMagick support the following additional image descriptor prop-
erties:

:width, :height

The :width and :height keywords are used for scaling the image. If only one
of them is specified, the other one will be calculated so as to preserve the aspect
ratio. If both are specified, aspect ratio may not be preserved.

:rotation

Specifies a rotation angle in degrees.

:index This has the same meaning as it does for GIF images (see Section 38.16.5 [GIF
Images], page 360), i.e. it specifies which image to view inside an image bundle
file format such as DJVM. You can use the image-metadata function to retrieve
the total number of images in an image bundle.

38.16.9 Other Image Types

For PBM images, specify image type pbm. Color, gray-scale and monochromatic images are
supported. For mono PBM images, two additional image properties are supported.

Chapter 38: Emacs Display 362

:foreground foreground

The value, foreground, should be a string specifying the image foreground color,
or nil for the default color. This color is used for each pixel in the PBM that
is 1. The default is the frame’s foreground color.

:background background

The value, background, should be a string specifying the image background
color, or nil for the default color. This color is used for each pixel in the PBM
that is 0. The default is the frame’s background color.

For JPEG images, specify image type jpeg.

For TIFF images, specify image type tiff.

For PNG images, specify image type png.

For SVG images, specify image type svg.

38.16.10 Defining Images

The functions create-image, defimage and find-image provide convenient ways to create
image descriptors.

[Function]create-image file-or-data &optional type data-p &rest props
This function creates and returns an image descriptor which uses the data in file-or-
data. file-or-data can be a file name or a string containing the image data; data-p
should be nil for the former case, non-nil for the latter case.

The optional argument type is a symbol specifying the image type. If type is omitted
or nil, create-image tries to determine the image type from the file’s first few bytes,
or else from the file’s name.

The remaining arguments, props, specify additional image properties—for example,

(create-image "foo.xpm" ’xpm nil :heuristic-mask t)

The function returns nil if images of this type are not supported. Otherwise it
returns an image descriptor.

[Macro]defimage symbol specs &optional doc
This macro defines symbol as an image name. The arguments specs is a list which
specifies how to display the image. The third argument, doc, is an optional documen-
tation string.

Each argument in specs has the form of a property list, and each one should specify
at least the :type property and either the :file or the :data property. The value of
:type should be a symbol specifying the image type, the value of :file is the file to
load the image from, and the value of :data is a string containing the actual image
data. Here is an example:

(defimage test-image

((:type xpm :file "~/test1.xpm")

(:type xbm :file "~/test1.xbm")))

defimage tests each argument, one by one, to see if it is usable—that is, if the type
is supported and the file exists. The first usable argument is used to make an image
descriptor which is stored in symbol.

If none of the alternatives will work, then symbol is defined as nil.

Chapter 38: Emacs Display 363

[Function]find-image specs
This function provides a convenient way to find an image satisfying one of a list of
image specifications specs.

Each specification in specs is a property list with contents depending on image
type. All specifications must at least contain the properties :type type and either
:file file or :data DATA, where type is a symbol specifying the image type, e.g.
xbm, file is the file to load the image from, and data is a string containing the actual
image data. The first specification in the list whose type is supported, and file ex-
ists, is used to construct the image specification to be returned. If no specification is
satisfied, nil is returned.

The image is looked for in image-load-path.

[Variable]image-load-path
This variable’s value is a list of locations in which to search for image files. If an
element is a string or a variable symbol whose value is a string, the string is taken to
be the name of a directory to search. If an element is a variable symbol whose value
is a list, that is taken to be a list of directory names to search.

The default is to search in the ‘images’ subdirectory of the directory specified by
data-directory, then the directory specified by data-directory, and finally in the
directories in load-path. Subdirectories are not automatically included in the search,
so if you put an image file in a subdirectory, you have to supply the subdirectory
name explicitly. For example, to find the image ‘images/foo/bar.xpm’ within data-

directory, you should specify the image as follows:

(defimage foo-image ’((:type xpm :file "foo/bar.xpm")))

[Function]image-load-path-for-library library image &optional path no-error
This function returns a suitable search path for images used by the Lisp package
library.

The function searches for image first using image-load-path, excluding
‘data-directory/images’, and then in load-path, followed by a path suitable for
library, which includes ‘../../etc/images’ and ‘../etc/images’ relative to the
library file itself, and finally in ‘data-directory/images’.

Then this function returns a list of directories which contains first the directory in
which image was found, followed by the value of load-path. If path is given, it is
used instead of load-path.

If no-error is non-nil and a suitable path can’t be found, don’t signal an error.
Instead, return a list of directories as before, except that nil appears in place of the
image directory.

Here is an example of using image-load-path-for-library:

(defvar image-load-path) ; shush compiler

(let* ((load-path (image-load-path-for-library

"mh-e" "mh-logo.xpm"))

(image-load-path (cons (car load-path)

image-load-path)))

(mh-tool-bar-folder-buttons-init))

Chapter 38: Emacs Display 364

38.16.11 Showing Images

You can use an image descriptor by setting up the display property yourself, but it is
easier to use the functions in this section.

[Function]insert-image image &optional string area slice
This function inserts image in the current buffer at point. The value image should be
an image descriptor; it could be a value returned by create-image, or the value of a
symbol defined with defimage. The argument string specifies the text to put in the
buffer to hold the image. If it is omitted or nil, insert-image uses " " by default.

The argument area specifies whether to put the image in a margin. If it is left-

margin, the image appears in the left margin; right-margin specifies the right mar-
gin. If area is nil or omitted, the image is displayed at point within the buffer’s
text.

The argument slice specifies a slice of the image to insert. If slice is nil or omitted the
whole image is inserted. Otherwise, slice is a list (x y width height) which specifies
the x and y positions and width and height of the image area to insert. Integer values
are in units of pixels. A floating point number in the range 0.0–1.0 stands for that
fraction of the width or height of the entire image.

Internally, this function inserts string in the buffer, and gives it a display property
which specifies image. See Section 38.15 [Display Property], page 350.

[Function]insert-sliced-image image &optional string area rows cols
This function inserts image in the current buffer at point, like insert-image, but
splits the image into rowsxcols equally sized slices.

If an image is inserted “sliced”, Emacs displays each slice as a separate image, and
allow more intuitive scrolling up/down, instead of jumping up/down the entire image
when paging through a buffer that displays (large) images.

[Function]put-image image pos &optional string area
This function puts image image in front of pos in the current buffer. The argument
pos should be an integer or a marker. It specifies the buffer position where the image
should appear. The argument string specifies the text that should hold the image as
an alternative to the default.

The argument image must be an image descriptor, perhaps returned by create-image
or stored by defimage.

The argument area specifies whether to put the image in a margin. If it is left-

margin, the image appears in the left margin; right-margin specifies the right mar-
gin. If area is nil or omitted, the image is displayed at point within the buffer’s
text.

Internally, this function creates an overlay, and gives it a before-string property
containing text that has a display property whose value is the image. (Whew!)

[Function]remove-images start end &optional buffer
This function removes images in buffer between positions start and end. If buffer is
omitted or nil, images are removed from the current buffer.

This removes only images that were put into buffer the way put-image does it, not
images that were inserted with insert-image or in other ways.

Chapter 38: Emacs Display 365

[Function]image-size spec &optional pixels frame
This function returns the size of an image as a pair (width . height). spec is an
image specification. pixels non-nil means return sizes measured in pixels, otherwise
return sizes measured in canonical character units (fractions of the width/height of
the frame’s default font). frame is the frame on which the image will be displayed.
frame null or omitted means use the selected frame (see Section 29.9 [Input Focus],
page 83).

[Variable]max-image-size
This variable is used to define the maximum size of image that Emacs will load.
Emacs will refuse to load (and display) any image that is larger than this limit.

If the value is an integer, it directly specifies the maximum image height and width,
measured in pixels. If it is a floating point number, it specifies the maximum image
height and width as a ratio to the frame height and width. If the value is non-numeric,
there is no explicit limit on the size of images.

The purpose of this variable is to prevent unreasonably large images from accidentally
being loaded into Emacs. It only takes effect the first time an image is loaded.
Once an image is placed in the image cache, it can always be displayed, even if the
value of max-image-size is subsequently changed (see Section 38.16.13 [Image Cache],
page 365).

38.16.12 Animated Images

Some image files can contain more than one image. This can be used to create animation.
Currently, Emacs only supports animated GIF files. The following functions related to
animated images are available.

[Function]image-animated-p image
This function returns non-nil if image can be animated. The actual return value is
a cons (nimages . delay), where nimages is the number of frames and delay is the
delay in seconds between them.

[Function]image-animate image &optional index limit
This function animates image. The optional integer index specifies the frame from
which to start (default 0). The optional argument limit controls the length of the
animation. If omitted or nil, the image animates once only; if t it loops forever; if a
number animation stops after that many seconds.

Animation operates by means of a timer. Note that Emacs imposes a minimum frame delay
of 0.01 seconds.

[Function]image-animate-timer image
This function returns the timer responsible for animating image, if there is one.

38.16.13 Image Cache

Emacs caches images so that it can display them again more efficiently. When Emacs
displays an image, it searches the image cache for an existing image specification equal

to the desired specification. If a match is found, the image is displayed from the cache.
Otherwise, Emacs loads the image normally.

Chapter 38: Emacs Display 366

[Function]image-flush spec &optional frame
This function removes the image with specification spec from the image cache of frame
frame. Image specifications are compared using equal. If frame is nil, it defaults to
the selected frame. If frame is t, the image is flushed on all existing frames.

In Emacs’s current implementation, each graphical terminal possesses an image cache,
which is shared by all the frames on that terminal (see Section 29.2 [Multiple Termi-
nals], page 67). Thus, refreshing an image in one frame also refreshes it in all other
frames on the same terminal.

One use for image-flush is to tell Emacs about a change in an image file. If an image
specification contains a :file property, the image is cached based on the file’s contents
when the image is first displayed. Even if the file subsequently changes, Emacs continues
displaying the old version of the image. Calling image-flush flushes the image from the
cache, forcing Emacs to re-read the file the next time it needs to display that image.

Another use for image-flush is for memory conservation. If your Lisp program cre-
ates a large number of temporary images over a period much shorter than image-cache-

eviction-delay (see below), you can opt to flush unused images yourself, instead of waiting
for Emacs to do it automatically.

[Function]clear-image-cache &optional filter
This function clears an image cache, removing all the images stored in it. If filter is
omitted or nil, it clears the cache for the selected frame. If filter is a frame, it clears
the cache for that frame. If filter is t, all image caches are cleared. Otherwise, filter
is taken to be a file name, and all images associated with that file name are removed
from all image caches.

If an image in the image cache has not been displayed for a specified period of time,
Emacs removes it from the cache and frees the associated memory.

[Variable]image-cache-eviction-delay
This variable specifies the number of seconds an image can remain in the cache without
being displayed. When an image is not displayed for this length of time, Emacs
removes it from the image cache.

Under some circumstances, if the number of images in the cache grows too large, the
actual eviction delay may be shorter than this.

If the value is nil, Emacs does not remove images from the cache except when you
explicitly clear it. This mode can be useful for debugging.

38.17 Buttons

The Button package defines functions for inserting and manipulating buttons that can be
activated with the mouse or via keyboard commands. These buttons are typically used for
various kinds of hyperlinks.

A button is essentially a set of text or overlay properties, attached to a stretch of text
in a buffer. These properties are called button properties. One of these properties, the
action property, specifies a function which is called when the user invokes the button using
the keyboard or the mouse. The action function may examine the button and use its other
properties as desired.

Chapter 38: Emacs Display 367

In some ways, the Button package duplicates the functionality in the Widget package.
See Section “Introduction” in The Emacs Widget Library . The advantage of the Button
package is that it is faster, smaller, and simpler to program. From the point of view of the
user, the interfaces produced by the two packages are very similar.

38.17.1 Button Properties

Each button has an associated list of properties defining its appearance and behavior, and
other arbitrary properties may be used for application specific purposes. The following
properties have special meaning to the Button package:

action The function to call when the user invokes the button, which is passed the single
argument button. By default this is ignore, which does nothing.

mouse-action

This is similar to action, and when present, will be used instead of action
for button invocations resulting from mouse-clicks (instead of the user hitting
RET). If not present, mouse-clicks use action instead.

face This is an Emacs face controlling how buttons of this type are displayed; by
default this is the button face.

mouse-face

This is an additional face which controls appearance during mouse-overs
(merged with the usual button face); by default this is the usual Emacs
highlight face.

keymap The button’s keymap, defining bindings active within the button region. By
default this is the usual button region keymap, stored in the variable button-

map, which defines RET and mouse-2 to invoke the button.

type The button type. See Section 38.17.2 [Button Types], page 367.

help-echo

A string displayed by the Emacs tool-tip help system; by default, "mouse-2,
RET: Push this button".

follow-link

The follow-link property, defining how a Mouse-1 click behaves on this button,
See Section 32.19.8 [Clickable Text], page 169.

button All buttons have a non-nil button property, which may be useful in finding
regions of text that comprise buttons (which is what the standard button func-
tions do).

There are other properties defined for the regions of text in a button, but these are not
generally interesting for typical uses.

38.17.2 Button Types

Every button has a button type, which defines default values for the button’s properties.
Button types are arranged in a hierarchy, with specialized types inheriting from more general
types, so that it’s easy to define special-purpose types of buttons for specific tasks.

Chapter 38: Emacs Display 368

[Function]define-button-type name &rest properties
Define a ‘button type’ called name (a symbol). The remaining arguments form a
sequence of property value pairs, specifying default property values for buttons with
this type (a button’s type may be set by giving it a type property when creating the
button, using the :type keyword argument).

In addition, the keyword argument :supertype may be used to specify a button-type
from which name inherits its default property values. Note that this inheritance hap-
pens only when name is defined; subsequent changes to a supertype are not reflected
in its subtypes.

Using define-button-type to define default properties for buttons is not necessary—
buttons without any specified type use the built-in button-type button—but it is encour-
aged, since doing so usually makes the resulting code clearer and more efficient.

38.17.3 Making Buttons

Buttons are associated with a region of text, using an overlay or text properties to hold
button-specific information, all of which are initialized from the button’s type (which de-
faults to the built-in button type button). Like all Emacs text, the appearance of the
button is governed by the face property; by default (via the face property inherited from
the button button-type) this is a simple underline, like a typical web-page link.

For convenience, there are two sorts of button-creation functions, those that add button
properties to an existing region of a buffer, called make-...button, and those that also
insert the button text, called insert-...button.

The button-creation functions all take the &rest argument properties, which should
be a sequence of property value pairs, specifying properties to add to the button; see
Section 38.17.1 [Button Properties], page 367. In addition, the keyword argument
:type may be used to specify a button-type from which to inherit other properties; see
Section 38.17.2 [Button Types], page 367. Any properties not explicitly specified during
creation will be inherited from the button’s type (if the type defines such a property).

The following functions add a button using an overlay (see Section 38.9 [Overlays],
page 315) to hold the button properties:

[Function]make-button beg end &rest properties
This makes a button from beg to end in the current buffer, and returns it.

[Function]insert-button label &rest properties
This insert a button with the label label at point, and returns it.

The following functions are similar, but using text properties (see Section 32.19 [Text
Properties], page 156) to hold the button properties. Such buttons do not add markers
to the buffer, so editing in the buffer does not slow down if there is an extremely large
numbers of buttons. However, if there is an existing face text property on the text (e.g.
a face assigned by Font Lock mode), the button face may not be visible. Both of these
functions return the starting position of the new button.

[Function]make-text-button beg end &rest properties
This makes a button from beg to end in the current buffer, using text properties.

Chapter 38: Emacs Display 369

[Function]insert-text-button label &rest properties
This inserts a button with the label label at point, using text properties.

38.17.4 Manipulating Buttons

These are functions for getting and setting properties of buttons. Often these are used by
a button’s invocation function to determine what to do.

Where a button parameter is specified, it means an object referring to a specific button,
either an overlay (for overlay buttons), or a buffer-position or marker (for text property
buttons). Such an object is passed as the first argument to a button’s invocation function
when it is invoked.

[Function]button-start button
Return the position at which button starts.

[Function]button-end button
Return the position at which button ends.

[Function]button-get button prop
Get the property of button button named prop.

[Function]button-put button prop val
Set button’s prop property to val.

[Function]button-activate button &optional use-mouse-action
Call button’s action property (i.e., invoke it). If use-mouse-action is non-nil, try to
invoke the button’s mouse-action property instead of action; if the button has no
mouse-action property, use action as normal.

[Function]button-label button
Return button’s text label.

[Function]button-type button
Return button’s button-type.

[Function]button-has-type-p button type
Return t if button has button-type type, or one of type’s subtypes.

[Function]button-at pos
Return the button at position pos in the current buffer, or nil. If the button at pos
is a text property button, the return value is a marker pointing to pos.

[Function]button-type-put type prop val
Set the button-type type’s prop property to val.

[Function]button-type-get type prop
Get the property of button-type type named prop.

[Function]button-type-subtype-p type supertype
Return t if button-type type is a subtype of supertype.

Chapter 38: Emacs Display 370

38.17.5 Button Buffer Commands

These are commands and functions for locating and operating on buttons in an Emacs
buffer.

push-button is the command that a user uses to actually ‘push’ a button, and is bound
by default in the button itself to RET and to mouse-2 using a local keymap in the button’s
overlay or text properties. Commands that are useful outside the buttons itself, such as
forward-button and backward-button are additionally available in the keymap stored in
button-buffer-map; a mode which uses buttons may want to use button-buffer-map as
a parent keymap for its keymap.

If the button has a non-nil follow-link property, and mouse-1-click-follows-link is set,
a quick Mouse-1 click will also activate the push-button command. See Section 32.19.8
[Clickable Text], page 169.

[Command]push-button &optional pos use-mouse-action
Perform the action specified by a button at location pos. pos may be either a buffer
position or a mouse-event. If use-mouse-action is non-nil, or pos is a mouse-event (see
Section 21.7.3 [Mouse Events], page 329, vol. 1), try to invoke the button’s mouse-
action property instead of action; if the button has no mouse-action property,
use action as normal. pos defaults to point, except when push-button is invoked
interactively as the result of a mouse-event, in which case, the mouse event’s position
is used. If there’s no button at pos, do nothing and return nil, otherwise return t.

[Command]forward-button n &optional wrap display-message
Move to the nth next button, or nth previous button if n is negative. If n is zero,
move to the start of any button at point. If wrap is non-nil, moving past either
end of the buffer continues from the other end. If display-message is non-nil, the
button’s help-echo string is displayed. Any button with a non-nil skip property is
skipped over. Returns the button found.

[Command]backward-button n &optional wrap display-message
Move to the nth previous button, or nth next button if n is negative. If n is zero,
move to the start of any button at point. If wrap is non-nil, moving past either
end of the buffer continues from the other end. If display-message is non-nil, the
button’s help-echo string is displayed. Any button with a non-nil skip property is
skipped over. Returns the button found.

[Function]next-button pos &optional count-current
[Function]previous-button pos &optional count-current

Return the next button after (for next-button or before (for previous-button)
position pos in the current buffer. If count-current is non-nil, count any button at
pos in the search, instead of starting at the next button.

38.18 Abstract Display

The Ewoc package constructs buffer text that represents a structure of Lisp objects, and
updates the text to follow changes in that structure. This is like the “view” component in
the “model/view/controller” design paradigm.

Chapter 38: Emacs Display 371

An ewoc is a structure that organizes information required to construct buffer text that
represents certain Lisp data. The buffer text of the ewoc has three parts, in order: first,
fixed header text; next, textual descriptions of a series of data elements (Lisp objects that
you specify); and last, fixed footer text. Specifically, an ewoc contains information on:

• The buffer which its text is generated in.

• The text’s start position in the buffer.

• The header and footer strings.

• A doubly-linked chain of nodes, each of which contains:

• A data element, a single Lisp object.

• Links to the preceding and following nodes in the chain.

• A pretty-printer function which is responsible for inserting the textual representation
of a data element value into the current buffer.

Typically, you define an ewoc with ewoc-create, and then pass the resulting ewoc
structure to other functions in the Ewoc package to build nodes within it, and display it in
the buffer. Once it is displayed in the buffer, other functions determine the correspondence
between buffer positions and nodes, move point from one node’s textual representation to
another, and so forth. See Section 38.18.1 [Abstract Display Functions], page 371.

A node encapsulates a data element much the way a variable holds a value. Normally,
encapsulation occurs as a part of adding a node to the ewoc. You can retrieve the data
element value and place a new value in its place, like so:

(ewoc-data node)

⇒ value

(ewoc-set-data node new-value)

⇒ new-value

You can also use, as the data element value, a Lisp object (list or vector) that is a container
for the “real” value, or an index into some other structure. The example (see Section 38.18.2
[Abstract Display Example], page 373) uses the latter approach.

When the data changes, you will want to update the text in the buffer. You can update
all nodes by calling ewoc-refresh, or just specific nodes using ewoc-invalidate, or all
nodes satisfying a predicate using ewoc-map. Alternatively, you can delete invalid nodes
using ewoc-delete or ewoc-filter, and add new nodes in their place. Deleting a node
from an ewoc deletes its associated textual description from buffer, as well.

38.18.1 Abstract Display Functions

In this subsection, ewoc and node stand for the structures described above (see Section 38.18
[Abstract Display], page 370), while data stands for an arbitrary Lisp object used as a data
element.

[Function]ewoc-create pretty-printer &optional header footer nosep
This constructs and returns a new ewoc, with no nodes (and thus no data elements).
pretty-printer should be a function that takes one argument, a data element of the
sort you plan to use in this ewoc, and inserts its textual description at point using
insert (and never insert-before-markers, because that would interfere with the
Ewoc package’s internal mechanisms).

Chapter 38: Emacs Display 372

Normally, a newline is automatically inserted after the header, the footer and every
node’s textual description. If nosep is non-nil, no newline is inserted. This may be
useful for displaying an entire ewoc on a single line, for example, or for making nodes
“invisible” by arranging for pretty-printer to do nothing for those nodes.

An ewoc maintains its text in the buffer that is current when you create it, so switch
to the intended buffer before calling ewoc-create.

[Function]ewoc-buffer ewoc
This returns the buffer where ewoc maintains its text.

[Function]ewoc-get-hf ewoc
This returns a cons cell (header . footer) made from ewoc’s header and footer.

[Function]ewoc-set-hf ewoc header footer
This sets the header and footer of ewoc to the strings header and footer, respectively.

[Function]ewoc-enter-first ewoc data
[Function]ewoc-enter-last ewoc data

These add a new node encapsulating data, putting it, respectively, at the beginning
or end of ewoc’s chain of nodes.

[Function]ewoc-enter-before ewoc node data
[Function]ewoc-enter-after ewoc node data

These add a new node encapsulating data, adding it to ewoc before or after node,
respectively.

[Function]ewoc-prev ewoc node
[Function]ewoc-next ewoc node

These return, respectively, the previous node and the next node of node in ewoc.

[Function]ewoc-nth ewoc n
This returns the node in ewoc found at zero-based index n. A negative n means count
from the end. ewoc-nth returns nil if n is out of range.

[Function]ewoc-data node
This extracts the data encapsulated by node and returns it.

[Function]ewoc-set-data node data
This sets the data encapsulated by node to data.

[Function]ewoc-locate ewoc &optional pos guess
This determines the node in ewoc which contains point (or pos if specified), and
returns that node. If ewoc has no nodes, it returns nil. If pos is before the first
node, it returns the first node; if pos is after the last node, it returns the last node.
The optional third arg guess should be a node that is likely to be near pos; this
doesn’t alter the result, but makes the function run faster.

[Function]ewoc-location node
This returns the start position of node.

Chapter 38: Emacs Display 373

[Function]ewoc-goto-prev ewoc arg
[Function]ewoc-goto-next ewoc arg

These move point to the previous or next, respectively, argth node in ewoc. ewoc-

goto-prev does not move if it is already at the first node or if ewoc is empty, whereas
ewoc-goto-nextmoves past the last node, returning nil. Excepting this special case,
these functions return the node moved to.

[Function]ewoc-goto-node ewoc node
This moves point to the start of node in ewoc.

[Function]ewoc-refresh ewoc
This function regenerates the text of ewoc. It works by deleting the text between the
header and the footer, i.e., all the data elements’ representations, and then calling
the pretty-printer function for each node, one by one, in order.

[Function]ewoc-invalidate ewoc &rest nodes
This is similar to ewoc-refresh, except that only nodes in ewoc are updated instead
of the entire set.

[Function]ewoc-delete ewoc &rest nodes
This deletes each node in nodes from ewoc.

[Function]ewoc-filter ewoc predicate &rest args
This calls predicate for each data element in ewoc and deletes those nodes for which
predicate returns nil. Any args are passed to predicate.

[Function]ewoc-collect ewoc predicate &rest args
This calls predicate for each data element in ewoc and returns a list of those elements
for which predicate returns non-nil. The elements in the list are ordered as in the
buffer. Any args are passed to predicate.

[Function]ewoc-map map-function ewoc &rest args
This calls map-function for each data element in ewoc and updates those nodes for
which map-function returns non-nil. Any args are passed to map-function.

38.18.2 Abstract Display Example

Here is a simple example using functions of the ewoc package to implement a “color com-
ponents display”, an area in a buffer that represents a vector of three integers (itself repre-
senting a 24-bit RGB value) in various ways.

(setq colorcomp-ewoc nil

colorcomp-data nil

colorcomp-mode-map nil

colorcomp-labels ["Red" "Green" "Blue"])

(defun colorcomp-pp (data)

(if data

(let ((comp (aref colorcomp-data data)))

(insert (aref colorcomp-labels data) "\t: #x"

(format "%02X" comp) " "

Chapter 38: Emacs Display 374

(make-string (ash comp -2) ?#) "\n"))

(let ((cstr (format "#%02X%02X%02X"

(aref colorcomp-data 0)

(aref colorcomp-data 1)

(aref colorcomp-data 2)))

(samp " (sample text) "))

(insert "Color\t: "

(propertize samp ’face

‘(foreground-color . ,cstr))

(propertize samp ’face

‘(background-color . ,cstr))

"\n"))))

(defun colorcomp (color)

"Allow fiddling with COLOR in a new buffer.

The buffer is in Color Components mode."

(interactive "sColor (name or #RGB or #RRGGBB): ")

(when (string= "" color)

(setq color "green"))

(unless (color-values color)

(error "No such color: %S" color))

(switch-to-buffer

(generate-new-buffer (format "originally: %s" color)))

(kill-all-local-variables)

(setq major-mode ’colorcomp-mode

mode-name "Color Components")

(use-local-map colorcomp-mode-map)

(erase-buffer)

(buffer-disable-undo)

(let ((data (apply ’vector (mapcar (lambda (n) (ash n -8))

(color-values color))))

(ewoc (ewoc-create ’colorcomp-pp

"\nColor Components\n\n"

(substitute-command-keys

"\n\\{colorcomp-mode-map}"))))

(set (make-local-variable ’colorcomp-data) data)

(set (make-local-variable ’colorcomp-ewoc) ewoc)

(ewoc-enter-last ewoc 0)

(ewoc-enter-last ewoc 1)

(ewoc-enter-last ewoc 2)

(ewoc-enter-last ewoc nil)))

This example can be extended to be a “color selection widget” (in other words, the
controller part of the “model/view/controller” design paradigm) by defining commands to
modify colorcomp-data and to “finish” the selection process, and a keymap to tie it all
together conveniently.

(defun colorcomp-mod (index limit delta)

(let ((cur (aref colorcomp-data index)))

Chapter 38: Emacs Display 375

(unless (= limit cur)

(aset colorcomp-data index (+ cur delta)))

(ewoc-invalidate

colorcomp-ewoc

(ewoc-nth colorcomp-ewoc index)

(ewoc-nth colorcomp-ewoc -1))))

(defun colorcomp-R-more () (interactive) (colorcomp-mod 0 255 1))

(defun colorcomp-G-more () (interactive) (colorcomp-mod 1 255 1))

(defun colorcomp-B-more () (interactive) (colorcomp-mod 2 255 1))

(defun colorcomp-R-less () (interactive) (colorcomp-mod 0 0 -1))

(defun colorcomp-G-less () (interactive) (colorcomp-mod 1 0 -1))

(defun colorcomp-B-less () (interactive) (colorcomp-mod 2 0 -1))

(defun colorcomp-copy-as-kill-and-exit ()

"Copy the color components into the kill ring and kill the buffer.

The string is formatted #RRGGBB (hash followed by six hex digits)."

(interactive)

(kill-new (format "#%02X%02X%02X"

(aref colorcomp-data 0)

(aref colorcomp-data 1)

(aref colorcomp-data 2)))

(kill-buffer nil))

(setq colorcomp-mode-map

(let ((m (make-sparse-keymap)))

(suppress-keymap m)

(define-key m "i" ’colorcomp-R-less)

(define-key m "o" ’colorcomp-R-more)

(define-key m "k" ’colorcomp-G-less)

(define-key m "l" ’colorcomp-G-more)

(define-key m "," ’colorcomp-B-less)

(define-key m "." ’colorcomp-B-more)

(define-key m " " ’colorcomp-copy-as-kill-and-exit)

m))

Note that we never modify the data in each node, which is fixed when the ewoc is created
to be either nil or an index into the vector colorcomp-data, the actual color components.

38.19 Blinking Parentheses

This section describes the mechanism by which Emacs shows a matching open parenthesis
when the user inserts a close parenthesis.

[Variable]blink-paren-function
The value of this variable should be a function (of no arguments) to be called whenever
a character with close parenthesis syntax is inserted. The value of blink-paren-
function may be nil, in which case nothing is done.

[User Option]blink-matching-paren
If this variable is nil, then blink-matching-open does nothing.

[User Option]blink-matching-paren-distance
This variable specifies the maximum distance to scan for a matching parenthesis
before giving up.

Chapter 38: Emacs Display 376

[User Option]blink-matching-delay
This variable specifies the number of seconds for the cursor to remain at the matching
parenthesis. A fraction of a second often gives good results, but the default is 1, which
works on all systems.

[Command]blink-matching-open
This function is the default value of blink-paren-function. It assumes that point
follows a character with close parenthesis syntax and moves the cursor momentarily
to the matching opening character. If that character is not already on the screen, it
displays the character’s context in the echo area. To avoid long delays, this function
does not search farther than blink-matching-paren-distance characters.

Here is an example of calling this function explicitly.

(defun interactive-blink-matching-open ()

"Indicate momentarily the start of sexp before point."

(interactive)

(let ((blink-matching-paren-distance

(buffer-size))

(blink-matching-paren t))

(blink-matching-open)))

38.20 Character Display

This section describes how characters are actually displayed by Emacs. Typically, a charac-
ter is displayed as a glyph (a graphical symbol which occupies one character position on the
screen), whose appearance corresponds to the character itself. For example, the character
‘a’ (character code 97) is displayed as ‘a’. Some characters, however, are displayed specially.
For example, the formfeed character (character code 12) is usually displayed as a sequence
of two glyphs, ‘^L’, while the newline character (character code 10) starts a new screen line.

You can modify how each character is displayed by defining a display table, which maps
each character code into a sequence of glyphs. See Section 38.20.2 [Display Tables], page 377.

38.20.1 Usual Display Conventions

Here are the conventions for displaying each character code (in the absence of a display
table, which can override these conventions).

• The printable ASCII characters, character codes 32 through 126 (consisting of numerals,
English letters, and symbols like ‘#’) are displayed literally.

• The tab character (character code 9) displays as whitespace stretching up to the next
tab stop column. See Section “Text Display” in The GNU Emacs Manual. The variable
tab-width controls the number of spaces per tab stop (see below).

• The newline character (character code 10) has a special effect: it ends the preceding
line and starts a new line.

• The non-printable ASCII control characters—character codes 0 through 31, as well
as the DEL character (character code 127)—display in one of two ways according to
the variable ctl-arrow. If this variable is non-nil (the default), these characters are
displayed as sequences of two glyphs, where the first glyph is ‘^’ (a display table can
specify a glyph to use instead of ‘^’); e.g. the DEL character is displayed as ‘^?’.

If ctl-arrow is nil, these characters are displayed as octal escapes (see below).

Chapter 38: Emacs Display 377

This rule also applies to carriage return (character code 13), if that character appears
in the buffer. But carriage returns usually do not appear in buffer text; they are
eliminated as part of end-of-line conversion (see Section 33.9.1 [Coding System Basics],
page 193).

• Raw bytes are non-ASCII characters with codes 128 through 255 (see Section 33.1 [Text
Representations], page 182). These characters display as octal escapes: sequences of
four glyphs, where the first glyph is the ASCII code for ‘\’, and the others are digit
characters representing the character code in octal. (A display table can specify a glyph
to use instead of ‘\’.)

• Each non-ASCII character with code above 255 is displayed literally, if the terminal
supports it. If the terminal does not support it, the character is said to be glyphless,
and it is usually displayed using a placeholder glyph. For example, if a graphical
terminal has no font for a character, Emacs usually displays a box containing the
character code in hexadecimal. See Section 38.20.5 [Glyphless Chars], page 380.

The above display conventions apply even when there is a display table, for any character
whose entry in the active display table is nil. Thus, when you set up a display table, you
need only specify the characters for which you want special behavior.

The following variables affect how certain characters are displayed on the screen. Since
they change the number of columns the characters occupy, they also affect the indentation
functions. They also affect how the mode line is displayed; if you want to force redisplay
of the mode line using the new values, call the function force-mode-line-update (see
Section 23.4 [Mode Line Format], page 419, vol. 1).

[User Option]ctl-arrow
This buffer-local variable controls how control characters are displayed. If it is non-
nil, they are displayed as a caret followed by the character: ‘^A’. If it is nil, they
are displayed as octal escapes: a backslash followed by three octal digits, as in ‘\001’.

[User Option]tab-width
The value of this buffer-local variable is the spacing between tab stops used for dis-
playing tab characters in Emacs buffers. The value is in units of columns, and the
default is 8. Note that this feature is completely independent of the user-settable tab
stops used by the command tab-to-tab-stop. See Section 32.17.5 [Indent Tabs],
page 154.

38.20.2 Display Tables

A display table is a special-purpose char-table (see Section 6.6 [Char-Tables], page 92,
vol. 1), with display-table as its subtype, which is used to override the usual character
display conventions. This section describes how to make, inspect, and assign elements to a
display table object.

[Function]make-display-table
This creates and returns a display table. The table initially has nil in all elements.

The ordinary elements of the display table are indexed by character codes; the element
at index c says how to display the character code c. The value should be nil (which means
to display the character c according to the usual display conventions; see Section 38.20.1

Chapter 38: Emacs Display 378

[Usual Display], page 376), or a vector of glyph codes (which means to display the character
c as those glyphs; see Section 38.20.4 [Glyphs], page 379).

Warning: if you use the display table to change the display of newline characters, the
whole buffer will be displayed as one long “line”.

The display table also has six “extra slots” which serve special purposes. Here is a table
of their meanings; nil in any slot means to use the default for that slot, as stated below.

0 The glyph for the end of a truncated screen line (the default for this is ‘$’). See
Section 38.20.4 [Glyphs], page 379. On graphical terminals, Emacs uses arrows
in the fringes to indicate truncation, so the display table has no effect.

1 The glyph for the end of a continued line (the default is ‘\’). On graphical
terminals, Emacs uses curved arrows in the fringes to indicate continuation, so
the display table has no effect.

2 The glyph for indicating a character displayed as an octal character code (the
default is ‘\’).

3 The glyph for indicating a control character (the default is ‘^’).

4 A vector of glyphs for indicating the presence of invisible lines (the default is
‘...’). See Section 38.7 [Selective Display], page 312.

5 The glyph used to draw the border between side-by-side windows (the default
is ‘|’). See Section 28.5 [Splitting Windows], page 26. This takes effect only
when there are no scroll bars; if scroll bars are supported and in use, a scroll
bar separates the two windows.

For example, here is how to construct a display table that mimics the effect of setting
ctl-arrow to a non-nil value (see Section 38.20.4 [Glyphs], page 379, for the function
make-glyph-code):

(setq disptab (make-display-table))

(dotimes (i 32)

(or (= i ?\t)

(= i ?\n)

(aset disptab i

(vector (make-glyph-code ?^ ’escape-glyph)

(make-glyph-code (+ i 64) ’escape-glyph)))))

(aset disptab 127

(vector (make-glyph-code ?^ ’escape-glyph)

(make-glyph-code ?? ’escape-glyph)))))

[Function]display-table-slot display-table slot
This function returns the value of the extra slot slot of display-table. The argument
slot may be a number from 0 to 5 inclusive, or a slot name (symbol). Valid symbols are
truncation, wrap, escape, control, selective-display, and vertical-border.

[Function]set-display-table-slot display-table slot value
This function stores value in the extra slot slot of display-table. The argument slot
may be a number from 0 to 5 inclusive, or a slot name (symbol). Valid symbols are
truncation, wrap, escape, control, selective-display, and vertical-border.

Chapter 38: Emacs Display 379

[Function]describe-display-table display-table
This function displays a description of the display table display-table in a help buffer.

[Command]describe-current-display-table
This command displays a description of the current display table in a help buffer.

38.20.3 Active Display Table

Each window can specify a display table, and so can each buffer. The window’s display
table, if there is one, takes precedence over the buffer’s display table. If neither exists,
Emacs tries to use the standard display table; if that is nil, Emacs uses the usual character
display conventions (see Section 38.20.1 [Usual Display], page 376).

Note that display tables affect how the mode line is displayed, so if you want to force
redisplay of the mode line using a new display table, call force-mode-line-update (see
Section 23.4 [Mode Line Format], page 419, vol. 1).

[Function]window-display-table &optional window
This function returns window ’s display table, or nil if there is none. The default for
window is the selected window.

[Function]set-window-display-table window table
This function sets the display table of window to table. The argument table should
be either a display table or nil.

[Variable]buffer-display-table
This variable is automatically buffer-local in all buffers; its value specifies the buffer’s
display table. If it is nil, there is no buffer display table.

[Variable]standard-display-table
The value of this variable is the standard display table, which is used when Emacs
is displaying a buffer in a window with neither a window display table nor a buffer
display table defined. Its default is nil.

The ‘disp-table’ library defines several functions for changing the standard display
table.

38.20.4 Glyphs

A glyph is a graphical symbol which occupies a single character position on the screen. Each
glyph is represented in Lisp as a glyph code, which specifies a character and optionally a
face to display it in (see Section 38.12 [Faces], page 325). The main use of glyph codes is as
the entries of display tables (see Section 38.20.2 [Display Tables], page 377). The following
functions are used to manipulate glyph codes:

[Function]make-glyph-code char &optional face
This function returns a glyph code representing char char with face face. If face is
omitted or nil, the glyph uses the default face; in that case, the glyph code is an
integer. If face is non-nil, the glyph code is not necessarily an integer object.

[Function]glyph-char glyph
This function returns the character of glyph code glyph.

Chapter 38: Emacs Display 380

[Function]glyph-face glyph
This function returns face of glyph code glyph, or nil if glyph uses the default face.

38.20.5 Glyphless Character Display

Glyphless characters are characters which are displayed in a special way, e.g. as a box
containing a hexadecimal code, instead of being displayed literally. These include characters
which are explicitly defined to be glyphless, as well as characters for which there is no
available font (on a graphical display), and characters which cannot be encoded by the
terminal’s coding system (on a text terminal).

[Variable]glyphless-char-display
The value of this variable is a char-table which defines glyphless characters and how
they are displayed. Each entry must be one of the following display methods:

nil Display the character in the usual way.

zero-width

Don’t display the character.

thin-space

Display a thin space, 1-pixel wide on graphical displays, or 1-character
wide on text terminals.

empty-box

Display an empty box.

hex-code Display a box containing the Unicode codepoint of the character, in hex-
adecimal notation.

an ASCII string
Display a box containing that string.

a cons cell (graphical . text)

Display with graphical on graphical displays, and with text on text ter-
minals. Both graphical and text must be one of the display methods
described above.

The thin-space, empty-box, hex-code, and ASCII string display methods are drawn
with the glyphless-char face.

The char-table has one extra slot, which determines how to display any character that
cannot be displayed with any available font, or cannot be encoded by the terminal’s
coding system. Its value should be one of the above display methods, except zero-
width or a cons cell.

If a character has a non-nil entry in an active display table, the display table takes
effect; in this case, Emacs does not consult glyphless-char-display at all.

[User Option]glyphless-char-display-control
This user option provides a convenient way to set glyphless-char-display for
groups of similar characters. Do not set its value directly from Lisp code; the value
takes effect only via a custom :set function (see Section 14.3 [Variable Definitions],
page 193, vol. 1), which updates glyphless-char-display.

Chapter 38: Emacs Display 381

Its value should be an alist of elements (group . method), where group is a symbol
specifying a group of characters, and method is a symbol specifying how to display
them.

group should be one of the following:

c0-control

ASCII control characters U+0000 to U+001F, excluding the newline and tab
characters (normally displayed as escape sequences like ‘^A’; see Section
“How Text Is Displayed” in The GNU Emacs Manual).

c1-control

Non-ASCII, non-printing characters U+0080 to U+009F (normally
displayed as octal escape sequences like ‘\230’).

format-control

Characters of Unicode General Category ‘Cf’, such as ‘U+200E’ (Left-to-
Right Mark), but excluding characters that have graphic images, such as
‘U+00AD’ (Soft Hyphen).

no-font Characters for there is no suitable font, or which cannot be encoded by
the terminal’s coding system.

The method symbol should be one of zero-width, thin-space, empty-box, or hex-
code. These have the same meanings as in glyphless-char-display, above.

38.21 Beeping

This section describes how to make Emacs ring the bell (or blink the screen) to attract the
user’s attention. Be conservative about how often you do this; frequent bells can become
irritating. Also be careful not to use just beeping when signaling an error is more appropriate
(see Section 10.5.3 [Errors], page 128, vol. 1).

[Function]ding &optional do-not-terminate
This function beeps, or flashes the screen (see visible-bell below). It also termi-
nates any keyboard macro currently executing unless do-not-terminate is non-nil.

[Function]beep &optional do-not-terminate
This is a synonym for ding.

[User Option]visible-bell
This variable determines whether Emacs should flash the screen to represent a bell.
Non-nil means yes, nil means no. This is effective on graphical displays, and on
text terminals provided the terminal’s Termcap entry defines the visible bell capability
(‘vb’).

[Variable]ring-bell-function
If this is non-nil, it specifies how Emacs should “ring the bell”. Its value should be
a function of no arguments. If this is non-nil, it takes precedence over the visible-
bell variable.

Chapter 38: Emacs Display 382

38.22 Window Systems

Emacs works with several window systems, most notably the X Window System. Both
Emacs and X use the term “window”, but use it differently. An Emacs frame is a single
window as far as X is concerned; the individual Emacs windows are not known to X at all.

[Variable]window-system
This terminal-local variable tells Lisp programs what window system Emacs is using
for displaying the frame. The possible values are

x Emacs is displaying the frame using X.

w32 Emacs is displaying the frame using native MS-Windows GUI.

ns Emacs is displaying the frame using the Nextstep interface (used on
GNUstep and Mac OS X).

pc Emacs is displaying the frame using MS-DOS direct screen writes.

nil Emacs is displaying the frame on a character-based terminal.

[Variable]initial-window-system
This variable holds the value of window-system used for the first frame created by
Emacs during startup. (When Emacs is invoked with the ‘--daemon’ option, it does
not create any initial frames, so initial-window-system is nil. See Section “Initial
Options” in The GNU Emacs Manual.)

[Function]window-system &optional frame
This function returns a symbol whose name tells what window system is used for
displaying frame (which defaults to the currently selected frame). The list of possible
symbols it returns is the same one documented for the variable window-system above.

Do not use window-system and initial-window-system as predicates or boolean flag
variables, if you want to write code that works differently on text terminals and graphic
displays. That is because window-system is not a good indicator of Emacs capabilities on
a given display type. Instead, use display-graphic-p or any of the other display-*-p

predicates described in Section 29.23 [Display Feature Testing], page 95.

[Variable]window-setup-hook
This variable is a normal hook which Emacs runs after handling the initialization
files. Emacs runs this hook after it has completed loading your init file, the default
initialization file (if any), and the terminal-specific Lisp code, and running the hook
term-setup-hook.

This hook is used for internal purposes: setting up communication with the window
system, and creating the initial window. Users should not interfere with it.

38.23 Bidirectional Display

Emacs can display text written in scripts, such as Arabic, Farsi, and Hebrew, whose natural
ordering for horizontal text display runs from right to left. Furthermore, segments of Latin
script and digits embedded in right-to-left text are displayed left-to-right, while segments of
right-to-left script embedded in left-to-right text (e.g. Arabic or Hebrew text in comments

Chapter 38: Emacs Display 383

or strings in a program source file) are appropriately displayed right-to-left. We call such
mixtures of left-to-right and right-to-left text bidirectional text. This section describes the
facilities and options for editing and displaying bidirectional text.

Text is stored in Emacs buffers and strings in logical (or reading) order, i.e. the order
in which a human would read each character. In right-to-left and bidirectional text, the
order in which characters are displayed on the screen (called visual order) is not the same
as logical order; the characters’ screen positions do not increase monotonically with string
or buffer position. In performing this bidirectional reordering, Emacs follows the Unicode
Bidirectional Algorithm (a.k.a. UBA), which is described in Annex #9 of the Unicode stan-
dard (http://www.unicode.org/reports/tr9/). Emacs provides a “Full Bidirectionality”
class implementation of the UBA.

[Variable]bidi-display-reordering
If the value of this buffer-local variable is non-nil (the default), Emacs performs
bidirectional reordering for display. The reordering affects buffer text, as well as
display strings and overlay strings from text and overlay properties in the buffer
(see Section 38.9.2 [Overlay Properties], page 318, and see Section 38.15 [Display
Property], page 350). If the value is nil, Emacs does not perform bidirectional
reordering in the buffer.

The default value of bidi-display-reordering controls the reordering of strings
which are not directly supplied by a buffer, including the text displayed in mode
lines (see Section 23.4 [Mode Line Format], page 419, vol. 1) and header lines (see
Section 23.4.7 [Header Lines], page 426, vol. 1).

Emacs never reorders the text of a unibyte buffer, even if bidi-display-reordering is
non-nil in the buffer. This is because unibyte buffers contain raw bytes, not characters, and
thus lack the directionality properties required for reordering. Therefore, to test whether
text in a buffer will be reordered for display, it is not enough to test the value of bidi-
display-reordering alone. The correct test is this:

(if (and enable-multibyte-characters

bidi-display-reordering)

;; Buffer is being reordered for display

)

However, unibyte display and overlay strings are reordered if their parent buffer is re-
ordered. This is because plain-ascii strings are stored by Emacs as unibyte strings. If a
unibyte display or overlay string includes non-ascii characters, these characters are assumed
to have left-to-right direction.

Text covered by display text properties, by overlays with display properties whose
value is a string, and by any other properties that replace buffer text, is treated as a single
unit when it is reordered for display. That is, the entire chunk of text covered by these
properties is reordered together. Moreover, the bidirectional properties of the characters in
such a chunk of text are ignored, and Emacs reorders them as if they were replaced with
a single character U+FFFC, known as the Object Replacement Character. This means that
placing a display property over a portion of text may change the way that the surrounding
text is reordered for display. To prevent this unexpected effect, always place such properties
on text whose directionality is identical with text that surrounds it.

http://www.unicode.org/reports/tr9/

Chapter 38: Emacs Display 384

Each paragraph of bidirectional text has a base direction, either right-to-left or left-to-
right. Left-to-right paragraphs are displayed beginning at the left margin of the window, and
are truncated or continued when the text reaches the right margin. Right-to-left paragraphs
are displayed beginning at the right margin, and are continued or truncated at the left
margin.

By default, Emacs determines the base direction of each paragraph by looking at the
text at its beginning. The precise method of determining the base direction is specified by
the UBA; in a nutshell, the first character in a paragraph that has an explicit directionality
determines the base direction of the paragraph. However, sometimes a buffer may need to
force a certain base direction for its paragraphs. For example, buffers containing program
source code should force all paragraphs to be displayed left-to-right. You can use following
variable to do this:

[Variable]bidi-paragraph-direction
If the value of this buffer-local variable is the symbol right-to-left or left-to-

right, all paragraphs in the buffer are assumed to have that specified direction. Any
other value is equivalent to nil (the default), which means to determine the base
direction of each paragraph from its contents.

Modes for program source code should set this to left-to-right. Prog mode does
this by default, so modes derived from Prog mode do not need to set this explicitly
(see Section 23.2.5 [Basic Major Modes], page 407, vol. 1).

[Function]current-bidi-paragraph-direction &optional buffer
This function returns the paragraph direction at point in the named buffer. The
returned value is a symbol, either left-to-right or right-to-left. If buffer is
omitted or nil, it defaults to the current buffer. If the buffer-local value of the vari-
able bidi-paragraph-direction is non-nil, the returned value will be identical to
that value; otherwise, the returned value reflects the paragraph direction determined
dynamically by Emacs. For buffers whose value of bidi-display-reordering is nil
as well as unibyte buffers, this function always returns left-to-right.

Bidirectional reordering can have surprising and unpleasant effects when two strings with
bidirectional content are juxtaposed in a buffer, or otherwise programmatically concatenated
into a string of text. A typical problematic case is when a buffer consists of sequences of
text “fields” separated by whitespace or punctuation characters, like Buffer Menu mode or
Rmail Summary Mode. Because the punctuation characters used as separators have weak
directionality, they take on the directionality of surrounding text. As result, a numeric field
that follows a field with bidirectional content can be displayed to the left of the preceding
field, messing up the expected layout. There are several ways to avoid this problem:

− Append the special character U+200E, LEFT-TO-RIGHT MARK, or LRM, to the end
of each field that may have bidirectional content, or prepend it to the beginning of the
following field. The function bidi-string-mark-left-to-right, described below,
comes in handy for this purpose. (In a right-to-left paragraph, use U+200F, RIGHT-
TO-LEFT MARK, or RLM, instead.) This is one of the solutions recommended by the
UBA.

− Include the tab character in the field separator. The tab character plays the role of
segment separator in bidirectional reordering, causing the text on either side to be
reordered separately.

Chapter 38: Emacs Display 385

− Separate fields with a display property or overlay with a property value of the form
(space . PROPS) (see Section 38.15.2 [Specified Space], page 351). Emacs treats this
display specification as a paragraph separator, and reorders the text on either side
separately.

[Function]bidi-string-mark-left-to-right string
This function returns its argument string, possibly modified, such that the result can
be safely concatenated with another string, or juxtaposed with another string in a
buffer, without disrupting the relative layout of this string and the next one on display.
If the string returned by this function is displayed as part of a left-to-right paragraph,
it will always appear on display to the left of the text that follows it. The function
works by examining the characters of its argument, and if any of those characters
could cause reordering on display, the function appends the LRM character to the
string. The appended LRM character is made invisible by giving it an invisible

text property of t (see Section 38.6 [Invisible Text], page 309).

The reordering algorithm uses the bidirectional properties of the characters stored as
their bidi-class property (see Section 33.5 [Character Properties], page 186). Lisp pro-
grams can change these properties by calling the put-char-code-property function. How-
ever, doing this requires a thorough understanding of the UBA, and is therefore not recom-
mended. Any changes to the bidirectional properties of a character have global effect: they
affect all Emacs frames and windows.

Similarly, the mirroring property is used to display the appropriate mirrored character
in the reordered text. Lisp programs can affect the mirrored display by changing this
property. Again, any such changes affect all of Emacs display.

Chapter 39: Operating System Interface 386

39 Operating System Interface

This chapter is about starting and getting out of Emacs, access to values in the operating
system environment, and terminal input, output.

See Section E.1 [Building Emacs], page 457, for related information. See Chapter 38
[Display], page 299, for additional operating system status information pertaining to the
terminal and the screen.

39.1 Starting Up Emacs

This section describes what Emacs does when it is started, and how you can customize
these actions.

39.1.1 Summary: Sequence of Actions at Startup

When Emacs is started up, it performs the following operations (see normal-top-level in
‘startup.el’):

1. It adds subdirectories to load-path, by running the file named ‘subdirs.el’ in each
directory in the list. Normally, this file adds the directory’s subdirectories to the list,
and those are scanned in their turn. The files ‘subdirs.el’ are normally generated
automatically when Emacs is installed.

2. It registers input methods by loading any ‘leim-list.el’ file found in the load-path.

3. It sets the variable before-init-time to the value of current-time (see Section 39.5
[Time of Day], page 399). It also sets after-init-time to nil, which signals to Lisp
programs that Emacs is being initialized.

4. It sets the language environment and the terminal coding system, if requested by
environment variables such as LANG.

5. It does some basic parsing of the command-line arguments.

6. If not running in batch mode, it initializes the window system that the variable
initial-window-system specifies (see Section 38.22 [Window Systems], page 382).
The initialization function for each supported window system is specified by
window-system-initialization-alist. If the value of initial-window-system

is windowsystem, then the appropriate initialization function is defined in the file
‘term/windowsystem-win.el’. This file should have been compiled into the Emacs
executable when it was built.

7. It runs the normal hook before-init-hook.

8. If appropriate, it creates a graphical frame. This is not done if the options ‘--batch’
or ‘--daemon’ were specified.

9. It initializes the initial frame’s faces, and sets up the menu bar and tool bar if needed.
If graphical frames are supported, it sets up the tool bar even if the current frame is
not a graphical one, since a graphical frame may be created later on.

10. It use custom-reevaluate-setting to re-initialize the members of the list custom-

delayed-init-variables. These are any pre-loaded user options whose default value
depends on the run-time, rather than build-time, context. See Section E.1 [Building
Emacs], page 457.

Chapter 39: Operating System Interface 387

11. It loads the library ‘site-start’, if it exists. This is not done if the options ‘-Q’ or
‘--no-site-file’ were specified.

12. It loads your init file (see Section 39.1.2 [Init File], page 389). This is not done if the
options ‘-q’, ‘-Q’, or ‘--batch’ were specified. If the ‘-u’ option was specified, Emacs
looks for the init file in that user’s home directory instead.

13. It loads the library ‘default’, if it exists. This is not done if inhibit-default-init
is non-nil, nor if the options ‘-q’, ‘-Q’, or ‘--batch’ were specified.

14. It loads your abbrevs from the file specified by abbrev-file-name, if that file exists
and can be read (see Section 36.3 [Abbrev Files], page 252). This is not done if the
option ‘--batch’ was specified.

15. If package-enable-at-startup is non-nil, it calls the function package-initialize

to activate any optional Emacs Lisp package that has been installed. See Section 40.1
[Packaging Basics], page 418.

16. It sets the variable after-init-time to the value of current-time. This variable was
set to nil earlier; setting it to the current time signals that the initialization phase is
over, and, together with before-init-time, provides the measurement of how long it
took.

17. It runs the normal hook after-init-hook.

18. If the buffer ‘*scratch*’ exists and is still in Fundamental mode (as it should be by
default), it sets its major mode according to initial-major-mode.

19. If started on a text terminal, it loads the terminal-specific Lisp library, which is specified
by the variable term-file-prefix (see Section 39.1.3 [Terminal-Specific], page 390).
This is not done in --batch mode, nor if term-file-prefix is nil.

20. It displays the initial echo area message, unless you have suppressed that with inhibit-

startup-echo-area-message.

21. It processes any command-line options that were not handled earlier.

22. It now exits if the option --batch was specified.

23. If initial-buffer-choice is a string, it visits the file with that name. If the
‘*scratch*’ buffer exists and is empty, it inserts initial-scratch-message into that
buffer.

24. It runs emacs-startup-hook and then term-setup-hook.

25. It calls frame-notice-user-settings, which modifies the parameters of the selected
frame according to whatever the init files specify.

26. It runs window-setup-hook. See Section 38.22 [Window Systems], page 382.

27. It displays the startup screen, which is a special buffer that contains information about
copyleft and basic Emacs usage. This is not done if inhibit-startup-screen or
initial-buffer-choice are non-nil, or if the ‘--no-splash’ or ‘-Q’ command-line
options were specified.

28. If the option --daemon was specified, it calls server-start and detaches from the
controlling terminal. See Section “Emacs Server” in The GNU Emacs Manual.

29. If started by the X session manager, it calls emacs-session-restore passing it as
argument the ID of the previous session. See Section 39.17 [Session Management],
page 414.

Chapter 39: Operating System Interface 388

The following options affect some aspects of the startup sequence.

[User Option]inhibit-startup-screen
This variable, if non-nil, inhibits the startup screen. In that case, Emacs typically
displays the ‘*scratch*’ buffer; but see initial-buffer-choice, below.

Do not set this variable in the init file of a new user, or in a way that affects more than
one user, as that would prevent new users from receiving information about copyleft
and basic Emacs usage.

inhibit-startup-message and inhibit-splash-screen are aliases for this variable.

[User Option]initial-buffer-choice
If non-nil, this variable is a string that specifies a file or directory for Emacs to
display after starting up, instead of the startup screen.

[User Option]inhibit-startup-echo-area-message
This variable controls the display of the startup echo area message. You can suppress
the startup echo area message by adding text with this form to your init file:

(setq inhibit-startup-echo-area-message

"your-login-name")

Emacs explicitly checks for an expression as shown above in your init file; your login
name must appear in the expression as a Lisp string constant. You can also use
the Customize interface. Other methods of setting inhibit-startup-echo-area-

message to the same value do not inhibit the startup message. This way, you can
easily inhibit the message for yourself if you wish, but thoughtless copying of your
init file will not inhibit the message for someone else.

[User Option]initial-scratch-message
This variable, if non-nil, should be a string, which is inserted into the ‘*scratch*’
buffer when Emacs starts up. If it is nil, the ‘*scratch*’ buffer is empty.

The following command-line options affect some aspects of the startup sequence. See Section
“Initial Options” in The GNU Emacs Manual.

--no-splash

Do not display a splash screen.

--batch Run without an interactive terminal. See Section 39.16 [Batch Mode], page 413.

--daemon Do not initialize any display; just start a server in the background.

--no-init-file

-Q Do not load either the init file, or the ‘default’ library.

--no-site-file

Do not load the ‘site-start’ library.

--quick

-Q Equivalent to ‘-q --no-site-file --no-splash’.

Chapter 39: Operating System Interface 389

39.1.2 The Init File

When you start Emacs, it normally attempts to load your init file. This is either a file
named ‘.emacs’ or ‘.emacs.el’ in your home directory, or a file named ‘init.el’ in a
subdirectory named ‘.emacs.d’ in your home directory.

The command-line switches ‘-q’, ‘-Q’, and ‘-u’ control whether and where to find the
init file; ‘-q’ (and the stronger ‘-Q’) says not to load an init file, while ‘-u user’ says to
load user’s init file instead of yours. See Section “Entering Emacs” in The GNU Emacs
Manual. If neither option is specified, Emacs uses the LOGNAME environment variable, or the
USER (most systems) or USERNAME (MS systems) variable, to find your home directory and
thus your init file; this way, even if you have su’d, Emacs still loads your own init file. If
those environment variables are absent, though, Emacs uses your user-id to find your home
directory.

An Emacs installation may have a default init file, which is a Lisp library named
‘default.el’. Emacs finds this file through the standard search path for libraries (see
Section 15.1 [How Programs Do Loading], page 209, vol. 1). The Emacs distribution does
not come with this file; it is intended for local customizations. If the default init file exists, it
is loaded whenever you start Emacs. But your own personal init file, if any, is loaded first; if
it sets inhibit-default-init to a non-nil value, then Emacs does not subsequently load
the ‘default.el’ file. In batch mode, or if you specify ‘-q’ (or ‘-Q’), Emacs loads neither
your personal init file nor the default init file.

Another file for site-customization is ‘site-start.el’. Emacs loads this before the user’s
init file. You can inhibit the loading of this file with the option ‘--no-site-file’.

[User Option]site-run-file
This variable specifies the site-customization file to load before the user’s init file. Its
normal value is "site-start". The only way you can change it with real effect is to
do so before dumping Emacs.

See Section “Init File Examples” in The GNU Emacs Manual, for examples of how to
make various commonly desired customizations in your ‘.emacs’ file.

[User Option]inhibit-default-init
If this variable is non-nil, it prevents Emacs from loading the default initialization
library file. The default value is nil.

[Variable]before-init-hook
This normal hook is run, once, just before loading all the init files (‘site-start.el’,
your init file, and ‘default.el’). (The only way to change it with real effect is before
dumping Emacs.)

[Variable]after-init-hook
This normal hook is run, once, just after loading all the init files (‘site-start.el’,
your init file, and ‘default.el’), before loading the terminal-specific library (if started
on a text terminal) and processing the command-line action arguments.

[Variable]emacs-startup-hook
This normal hook is run, once, just after handling the command line arguments, just
before term-setup-hook. In batch mode, Emacs does not run either of these hooks.

Chapter 39: Operating System Interface 390

[Variable]user-init-file
This variable holds the absolute file name of the user’s init file. If the actual init file
loaded is a compiled file, such as ‘.emacs.elc’, the value refers to the corresponding
source file.

[Variable]user-emacs-directory
This variable holds the name of the ‘.emacs.d’ directory. It is ‘~/.emacs.d’ on all
platforms but MS-DOS.

39.1.3 Terminal-Specific Initialization

Each terminal type can have its own Lisp library that Emacs loads when run on that type
of terminal. The library’s name is constructed by concatenating the value of the variable
term-file-prefix and the terminal type (specified by the environment variable TERM).
Normally, term-file-prefix has the value "term/"; changing this is not recommended.
Emacs finds the file in the normal manner, by searching the load-path directories, and
trying the ‘.elc’ and ‘.el’ suffixes.

The usual role of a terminal-specific library is to enable special keys to send sequences
that Emacs can recognize. It may also need to set or add to input-decode-map if the Term-
cap or Terminfo entry does not specify all the terminal’s function keys. See Section 39.12
[Terminal Input], page 409.

When the name of the terminal type contains a hyphen or underscore, and no library
is found whose name is identical to the terminal’s name, Emacs strips from the terminal’s
name the last hyphen or underscore and everything that follows it, and tries again. This
process is repeated until Emacs finds a matching library, or until there are no more hy-
phens or underscores in the name (i.e. there is no terminal-specific library). For example,
if the terminal name is ‘xterm-256color’ and there is no ‘term/xterm-256color.el’ li-
brary, Emacs tries to load ‘term/xterm.el’. If necessary, the terminal library can evaluate
(getenv "TERM") to find the full name of the terminal type.

Your init file can prevent the loading of the terminal-specific library by setting the
variable term-file-prefix to nil. This feature is useful when experimenting with your
own peculiar customizations.

You can also arrange to override some of the actions of the terminal-specific library
by setting the variable term-setup-hook. This is a normal hook that Emacs runs at the
end of its initialization, after loading both your init file and any terminal-specific libraries.
You could use this hook to define initializations for terminals that do not have their own
libraries. See Section 23.1 [Hooks], page 396, vol. 1.

[Variable]term-file-prefix
If the value of this variable is non-nil, Emacs loads a terminal-specific initialization
file as follows:

(load (concat term-file-prefix (getenv "TERM")))

You may set the term-file-prefix variable to nil in your init file if you do not
wish to load the terminal-initialization file.

On MS-DOS, Emacs sets the TERM environment variable to ‘internal’.

Chapter 39: Operating System Interface 391

[Variable]term-setup-hook
This variable is a normal hook that Emacs runs after loading your init file, the default
initialization file (if any) and the terminal-specific Lisp file.

You can use term-setup-hook to override the definitions made by a terminal-specific
file.

For a related feature, see Section 38.22 [Window Systems], page 382.

39.1.4 Command-Line Arguments

You can use command-line arguments to request various actions when you start Emacs.
Note that the recommended way of using Emacs is to start it just once, after logging
in, and then do all editing in the same Emacs session (see Section “Entering Emacs” in
The GNU Emacs Manual). For this reason, you might not use command-line arguments
very often; nonetheless, they can be useful when invoking Emacs from session scripts or
debugging Emacs. This section describes how Emacs processes command-line arguments.

[Function]command-line
This function parses the command line that Emacs was called with, processes it, and
(amongst other things) loads the user’s init file and displays the startup messages.

[Variable]command-line-processed
The value of this variable is t once the command line has been processed.

If you redump Emacs by calling dump-emacs, you may wish to set this variable to
nil first in order to cause the new dumped Emacs to process its new command-line
arguments.

[Variable]command-switch-alist
This variable is an alist of user-defined command-line options and associated handler
functions. By default it is empty, but you can add elements if you wish.

A command-line option is an argument on the command line, which has the form:

-option

The elements of the command-switch-alist look like this:

(option . handler-function)

The car, option, is a string, the name of a command-line option (not including the
initial hyphen). The handler-function is called to handle option, and receives the
option name as its sole argument.

In some cases, the option is followed in the command line by an argument. In these
cases, the handler-function can find all the remaining command-line arguments in the
variable command-line-args-left. (The entire list of command-line arguments is in
command-line-args.)

The command-line arguments are parsed by the command-line-1 function in the
‘startup.el’ file. See also Section “Command Line Arguments for Emacs Invocation”
in The GNU Emacs Manual.

[Variable]command-line-args
The value of this variable is the list of command-line arguments passed to Emacs.

Chapter 39: Operating System Interface 392

[Variable]command-line-args-left
The value of this variable is the list of command-line arguments that have not yet
been processed.

[Variable]command-line-functions
This variable’s value is a list of functions for handling an unrecognized command-line
argument. Each time the next argument to be processed has no special meaning, the
functions in this list are called, in order of appearance, until one of them returns a
non-nil value.

These functions are called with no arguments. They can access the command-line
argument under consideration through the variable argi, which is bound temporarily
at this point. The remaining arguments (not including the current one) are in the
variable command-line-args-left.

When a function recognizes and processes the argument in argi, it should return a
non-nil value to say it has dealt with that argument. If it has also dealt with some of
the following arguments, it can indicate that by deleting them from command-line-

args-left.

If all of these functions return nil, then the argument is treated as a file name to
visit.

39.2 Getting Out of Emacs

There are two ways to get out of Emacs: you can kill the Emacs job, which exits perma-
nently, or you can suspend it, which permits you to reenter the Emacs process later. (In
a graphical environment, you can of course simply switch to another application without
doing anything special to Emacs, then switch back to Emacs when you want.)

39.2.1 Killing Emacs

Killing Emacs means ending the execution of the Emacs process. If you started Emacs from
a terminal, the parent process normally resumes control. The low-level primitive for killing
Emacs is kill-emacs.

[Command]kill-emacs &optional exit-data
This command calls the hook kill-emacs-hook, then exits the Emacs process and
kills it.

If exit-data is an integer, that is used as the exit status of the Emacs process. (This
is useful primarily in batch operation; see Section 39.16 [Batch Mode], page 413.)

If exit-data is a string, its contents are stuffed into the terminal input buffer so that
the shell (or whatever program next reads input) can read them.

The kill-emacs function is normally called via the higher-level command C-x C-c

(save-buffers-kill-terminal). See Section “Exiting” in The GNU Emacs Manual. It
is also called automatically if Emacs receives a SIGTERM or SIGHUP operating system signal
(e.g. when the controlling terminal is disconnected), or if it receives a SIGINT signal while
running in batch mode (see Section 39.16 [Batch Mode], page 413).

[Variable]kill-emacs-hook
This normal hook is run by kill-emacs, before it kills Emacs.

Chapter 39: Operating System Interface 393

Because kill-emacs can be called in situations where user interaction is impossible
(e.g. when the terminal is disconnected), functions on this hook should not attempt
to interact with the user. If you want to interact with the user when Emacs is shutting
down, use kill-emacs-query-functions, described below.

When Emacs is killed, all the information in the Emacs process, aside from files that
have been saved, is lost. Because killing Emacs inadvertently can lose a lot of work, the
save-buffers-kill-terminal command queries for confirmation if you have buffers that
need saving or subprocesses that are running. It also runs the abnormal hook kill-emacs-

query-functions:

[Variable]kill-emacs-query-functions
When save-buffers-kill-terminal is killing Emacs, it calls the functions in this
hook, after asking the standard questions and before calling kill-emacs. The func-
tions are called in order of appearance, with no arguments. Each function can ask for
additional confirmation from the user. If any of them returns nil, save-buffers-
kill-emacs does not kill Emacs, and does not run the remaining functions in this
hook. Calling kill-emacs directly does not run this hook.

39.2.2 Suspending Emacs

On text terminals, it is possible to suspend Emacs, which means stopping Emacs temporarily
and returning control to its superior process, which is usually the shell. This allows you to
resume editing later in the same Emacs process, with the same buffers, the same kill ring,
the same undo history, and so on. To resume Emacs, use the appropriate command in the
parent shell—most likely fg.

Suspending works only on a terminal device from which the Emacs session was started.
We call that device the controlling terminal of the session. Suspending is not allowed if the
controlling terminal is a graphical terminal. Suspending is usually not relevant in graphical
environments, since you can simply switch to another application without doing anything
special to Emacs.

Some operating systems (those without SIGTSTP, or MS-DOS) do not support suspen-
sion of jobs; on these systems, “suspension” actually creates a new shell temporarily as a
subprocess of Emacs. Then you would exit the shell to return to Emacs.

[Command]suspend-emacs &optional string
This function stops Emacs and returns control to the superior process. If and when
the superior process resumes Emacs, suspend-emacs returns nil to its caller in Lisp.

This function works only on the controlling terminal of the Emacs session; to relin-
quish control of other tty devices, use suspend-tty (see below). If the Emacs session
uses more than one terminal, you must delete the frames on all the other terminals
before suspending Emacs, or this function signals an error. See Section 29.2 [Multiple
Terminals], page 67.

If string is non-nil, its characters are sent to Emacs’s superior shell, to be read as
terminal input. The characters in string are not echoed by the superior shell; only
the results appear.

Chapter 39: Operating System Interface 394

Before suspending, suspend-emacs runs the normal hook suspend-hook. After the
user resumes Emacs, suspend-emacs runs the normal hook suspend-resume-hook.
See Section 23.1 [Hooks], page 396, vol. 1.

The next redisplay after resumption will redraw the entire screen, unless the variable
no-redraw-on-reenter is non-nil. See Section 38.1 [Refresh Screen], page 299.

Here is an example of how you could use these hooks:
(add-hook ’suspend-hook

(lambda () (or (y-or-n-p "Really suspend? ")

(error "Suspend canceled"))))

(add-hook ’suspend-resume-hook (lambda () (message "Resumed!")

(sit-for 2)))

Here is what you would see upon evaluating (suspend-emacs "pwd"):
---------- Buffer: Minibuffer ----------

Really suspend? y

---------- Buffer: Minibuffer ----------

---------- Parent Shell ----------

bash$ /home/username

bash$ fg

---------- Echo Area ----------

Resumed!

Note that ‘pwd’ is not echoed after Emacs is suspended. But it is read and executed
by the shell.

[Variable]suspend-hook
This variable is a normal hook that Emacs runs before suspending.

[Variable]suspend-resume-hook
This variable is a normal hook that Emacs runs on resuming after a suspension.

[Function]suspend-tty &optional tty
If tty specifies a terminal device used by Emacs, this function relinquishes the device
and restores it to its prior state. Frames that used the device continue to exist, but
are not updated and Emacs doesn’t read input from them. tty can be a terminal
object, a frame (meaning the terminal for that frame), or nil (meaning the terminal
for the selected frame). See Section 29.2 [Multiple Terminals], page 67.

If tty is already suspended, this function does nothing.

This function runs the hook suspend-tty-functions, passing the terminal object as
an argument to each function.

[Function]resume-tty &optional tty
This function resumes the previously suspended terminal device tty ; where tty has
the same possible values as it does for suspend-tty.

This function reopens the terminal device, re-initializes it, and redraws it with that
terminal’s selected frame. It then runs the hook resume-tty-functions, passing the
terminal object as an argument to each function.

If the same device is already used by another Emacs terminal, this function signals
an error. If tty is not suspended, this function does nothing.

Chapter 39: Operating System Interface 395

[Function]controlling-tty-p &optional tty
This function returns non-nil if tty is the controlling terminal of the Emacs session;
tty can be a terminal object, a frame (meaning the terminal for that frame), or nil
(meaning the terminal for the selected frame).

[Command]suspend-frame
This command suspends a frame. For GUI frames, it calls iconify-frame (see
Section 29.10 [Visibility of Frames], page 85); for frames on text terminals, it calls
either suspend-emacs or suspend-tty, depending on whether the frame is displayed
on the controlling terminal device or not.

39.3 Operating System Environment

Emacs provides access to variables in the operating system environment through various
functions. These variables include the name of the system, the user’s UID, and so on.

[Variable]system-configuration
This variable holds the standard GNU configuration name for the hardware/software
configuration of your system, as a string. For example, a typical value for a 64-bit
GNU/Linux system is ‘"x86_64-unknown-linux-gnu"’.

[Variable]system-type
The value of this variable is a symbol indicating the type of operating system Emacs
is running on. The possible values are:

aix IBM’s AIX.

berkeley-unix

Berkeley BSD and its variants.

cygwin Cygwin, a Posix layer on top of MS-Windows.

darwin Darwin (Mac OS X).

gnu The GNU system (using the GNU kernel, which consists of the HURD
and Mach).

gnu/linux

A GNU/Linux system—that is, a variant GNU system, using the Linux
kernel. (These systems are the ones people often call “Linux”, but actu-
ally Linux is just the kernel, not the whole system.)

gnu/kfreebsd

A GNU (glibc-based) system with a FreeBSD kernel.

hpux Hewlett-Packard HPUX operating system.

irix Silicon Graphics Irix system.

ms-dos Microsoft’s DOS. Emacs compiled with DJGPP for MS-DOS binds
system-type to ms-dos even when you run it on MS-Windows.

usg-unix-v

AT&T Unix System V.

Chapter 39: Operating System Interface 396

windows-nt

Microsoft Windows NT, 9X and later. The value of system-type is
always windows-nt, e.g. even on Windows 7.

We do not wish to add new symbols to make finer distinctions unless it is absolutely
necessary! In fact, we hope to eliminate some of these alternatives in the future.
If you need to make a finer distinction than system-type allows for, you can test
system-configuration, e.g. against a regexp.

[Function]system-name
This function returns the name of the machine you are running on, as a string.

The symbol system-name is a variable as well as a function. In fact, the function returns
whatever value the variable system-name currently holds. Thus, you can set the variable
system-name in case Emacs is confused about the name of your system. The variable is
also useful for constructing frame titles (see Section 29.5 [Frame Titles], page 81).

[User Option]mail-host-address
If this variable is non-nil, it is used instead of system-name for purposes of generating
email addresses. For example, it is used when constructing the default value of user-
mail-address. See Section 39.4 [User Identification], page 398. (Since this is done
when Emacs starts up, the value actually used is the one saved when Emacs was
dumped. See Section E.1 [Building Emacs], page 457.)

[Command]getenv var &optional frame
This function returns the value of the environment variable var, as a string. var
should be a string. If var is undefined in the environment, getenv returns nil. It
returns ‘""’ if var is set but null. Within Emacs, a list of environment variables and
their values is kept in the variable process-environment.

(getenv "USER")

⇒ "lewis"

The shell command printenv prints all or part of the environment:

bash$ printenv

PATH=/usr/local/bin:/usr/bin:/bin

USER=lewis

TERM=xterm

SHELL=/bin/bash

HOME=/home/lewis

...

[Command]setenv variable &optional value substitute
This command sets the value of the environment variable named variable to value.
variable should be a string. Internally, Emacs Lisp can handle any string. However,
normally variable should be a valid shell identifier, that is, a sequence of letters, digits
and underscores, starting with a letter or underscore. Otherwise, errors may occur
if subprocesses of Emacs try to access the value of variable. If value is omitted or
nil (or, interactively, with a prefix argument), setenv removes variable from the
environment. Otherwise, value should be a string.

Chapter 39: Operating System Interface 397

If the optional argument substitute is non-nil, Emacs calls the function substitute-

env-vars to expand any environment variables in value.

setenv works by modifying process-environment; binding that variable with let

is also reasonable practice.

setenv returns the new value of variable, or nil if it removed variable from the
environment.

[Variable]process-environment
This variable is a list of strings, each describing one environment variable. The
functions getenv and setenv work by means of this variable.

process-environment
⇒ ("PATH=/usr/local/bin:/usr/bin:/bin"

"USER=lewis"

"TERM=xterm"

"SHELL=/bin/bash"

"HOME=/home/lewis"

...)

If process-environment contains “duplicate” elements that specify the same en-
vironment variable, the first of these elements specifies the variable, and the other
“duplicates” are ignored.

[Variable]initial-environment
This variable holds the list of environment variables Emacs inherited from its parent
process when Emacs started.

[Variable]path-separator
This variable holds a string that says which character separates directories in a search
path (as found in an environment variable). Its value is ":" for Unix and GNU
systems, and ";" for MS systems.

[Function]parse-colon-path path
This function takes a search path string such as the value of the PATH environment
variable, and splits it at the separators, returning a list of directory names. nil in
this list means the current directory. Although the function’s name says “colon”, it
actually uses the value of path-separator.

(parse-colon-path ":/foo:/bar")

⇒ (nil "/foo/" "/bar/")

[Variable]invocation-name
This variable holds the program name under which Emacs was invoked. The value is
a string, and does not include a directory name.

[Variable]invocation-directory
This variable holds the directory from which the Emacs executable was invoked, or
nil if that directory cannot be determined.

[Variable]installation-directory
If non-nil, this is a directory within which to look for the ‘lib-src’ and ‘etc’ sub-
directories. In an installed Emacs, it is normally nil. It is non-nil when Emacs
can’t find those directories in their standard installed locations, but can find them

Chapter 39: Operating System Interface 398

in a directory related somehow to the one containing the Emacs executable (i.e.,
invocation-directory).

[Function]load-average &optional use-float
This function returns the current 1-minute, 5-minute, and 15-minute system load
averages, in a list. The load average indicates the number of processes trying to run
on the system.

By default, the values are integers that are 100 times the system load averages, but
if use-float is non-nil, then they are returned as floating point numbers without
multiplying by 100.

If it is impossible to obtain the load average, this function signals an error. On some
platforms, access to load averages requires installing Emacs as setuid or setgid so that
it can read kernel information, and that usually isn’t advisable.

If the 1-minute load average is available, but the 5- or 15-minute averages are not,
this function returns a shortened list containing the available averages.

(load-average)

⇒ (169 48 36)

(load-average t)

⇒ (1.69 0.48 0.36)

The shell command uptime returns similar information.

[Function]emacs-pid
This function returns the process ID of the Emacs process, as an integer.

[Variable]tty-erase-char
This variable holds the erase character that was selected in the system’s terminal
driver, before Emacs was started.

39.4 User Identification

[Variable]init-file-user
This variable says which user’s init files should be used by Emacs—or nil if none. ""
stands for the user who originally logged in. The value reflects command-line options
such as ‘-q’ or ‘-u user’.

Lisp packages that load files of customizations, or any other sort of user profile, should
obey this variable in deciding where to find it. They should load the profile of the
user name found in this variable. If init-file-user is nil, meaning that the ‘-q’
option was used, then Lisp packages should not load any customization files or user
profile.

[User Option]user-mail-address
This holds the nominal email address of the user who is using Emacs. Emacs normally
sets this variable to a default value after reading your init files, but not if you have
already set it. So you can set the variable to some other value in your init file if you
do not want to use the default value.

Chapter 39: Operating System Interface 399

[Function]user-login-name &optional uid
This function returns the name under which the user is logged in. It uses the envi-
ronment variables LOGNAME or USER if either is set. Otherwise, the value is based on
the effective UID, not the real UID.

If you specify uid (a number), the result is the user name that corresponds to uid, or
nil if there is no such user.

[Function]user-real-login-name
This function returns the user name corresponding to Emacs’s real UID. This ignores
the effective UID, and the environment variables LOGNAME and USER.

[Function]user-full-name &optional uid
This function returns the full name of the logged-in user—or the value of the envi-
ronment variable NAME, if that is set.

If the Emacs process’s user-id does not correspond to any known user (and provided
NAME is not set), the result is "unknown".

If uid is non-nil, then it should be a number (a user-id) or a string (a login name).
Then user-full-name returns the full name corresponding to that user-id or login
name. If you specify a user-id or login name that isn’t defined, it returns nil.

The symbols user-login-name, user-real-login-name and user-full-name are vari-
ables as well as functions. The functions return the same values that the variables hold.
These variables allow you to “fake out” Emacs by telling the functions what to return.
The variables are also useful for constructing frame titles (see Section 29.5 [Frame Titles],
page 81).

[Function]user-real-uid
This function returns the real UID of the user. The value may be a floating point
number, in the (unlikely) event that the UID is too large to fit in a Lisp integer.

[Function]user-uid
This function returns the effective UID of the user. The value may be a floating point
number.

39.5 Time of Day

This section explains how to determine the current time and time zone.

Most of these functions represent time as a list of either three integers, (sec-high

sec-low microsec), or of two integers, (sec-high sec-low). The integers sec-high and
sec-low give the high and low bits of an integer number of seconds. This integer number,
high∗216+ low, is the number of seconds from the epoch (0:00 January 1, 1970 UTC) to the
specified time. The third list element microsec, if present, gives the number of microseconds
from the start of that second to the specified time.

The return value of current-time represents time using three integers, while the time-
stamps in the return value of file-attributes use two integers (see [Definition of file-
attributes], page 476, vol. 1). In function arguments, e.g. the time-value argument to
current-time-string, both two- and three-integer lists are accepted. You can convert

Chapter 39: Operating System Interface 400

times from the list representation into standard human-readable strings using current-

time, or to other forms using the decode-time and format-time-string functions docu-
mented in the following sections.

[Function]current-time-string &optional time-value
This function returns the current time and date as a human-readable string. The
format of the string is unvarying; the number of characters used for each part is
always the same, so you can reliably use substring to extract pieces of it. You
should count characters from the beginning of the string rather than from the end,
as additional information may some day be added at the end.

The argument time-value, if given, specifies a time to format (represented as a list of
integers), instead of the current time.

(current-time-string)

⇒ "Wed Oct 14 22:21:05 1987"

[Function]current-time
This function returns the current time, represented as a list of three integers (sec-
high sec-low microsec). On systems with only one-second time resolutions, mi-
crosec is 0.

[Function]float-time &optional time-value
This function returns the current time as a floating-point number of seconds since the
epoch. The optional argument time-value, if given, specifies a time (represented as a
list of integers) to convert instead of the current time.

Warning : Since the result is floating point, it may not be exact. Do not use this
function if precise time stamps are required.

[Function]current-time-zone &optional time-value
This function returns a list describing the time zone that the user is in.

The value has the form (offset name). Here offset is an integer giving the number
of seconds ahead of UTC (east of Greenwich). A negative value means west of Green-
wich. The second element, name, is a string giving the name of the time zone. Both
elements change when daylight saving time begins or ends; if the user has specified a
time zone that does not use a seasonal time adjustment, then the value is constant
through time.

If the operating system doesn’t supply all the information necessary to compute the
value, the unknown elements of the list are nil.

The argument time-value, if given, specifies a time (represented as a list of integers)
to analyze instead of the current time.

The current time zone is determined by the TZ environment variable. See Section 39.3
[System Environment], page 395. For example, you can tell Emacs to use universal time with
(setenv "TZ" "UTC0"). If TZ is not in the environment, Emacs uses a platform-dependent
default time zone.

Chapter 39: Operating System Interface 401

39.6 Time Conversion

These functions convert time values (lists of two or three integers, as explained in the
previous section) into calendrical information and vice versa.

Many 32-bit operating systems are limited to time values containing 32 bits of informa-
tion; these systems typically handle only the times from 1901-12-13 20:45:52 UTC through
2038-01-19 03:14:07 UTC. However, 64-bit and some 32-bit operating systems have larger
time values, and can represent times far in the past or future.

Time conversion functions always use the Gregorian calendar, even for dates before the
Gregorian calendar was introduced. Year numbers count the number of years since the
year 1 B.C., and do not skip zero as traditional Gregorian years do; for example, the year
number −37 represents the Gregorian year 38 B.C.

[Function]decode-time &optional time
This function converts a time value into calendrical information. If you don’t specify
time, it decodes the current time. The return value is a list of nine elements, as
follows:

(seconds minutes hour day month year dow dst zone)

Here is what the elements mean:

seconds The number of seconds past the minute, as an integer between 0 and 59.
On some operating systems, this is 60 for leap seconds.

minutes The number of minutes past the hour, as an integer between 0 and 59.

hour The hour of the day, as an integer between 0 and 23.

day The day of the month, as an integer between 1 and 31.

month The month of the year, as an integer between 1 and 12.

year The year, an integer typically greater than 1900.

dow The day of week, as an integer between 0 and 6, where 0 stands for
Sunday.

dst t if daylight saving time is effect, otherwise nil.

zone An integer indicating the time zone, as the number of seconds east of
Greenwich.

Common Lisp Note: Common Lisp has different meanings for dow and zone.

[Function]encode-time seconds minutes hour day month year &optional zone
This function is the inverse of decode-time. It converts seven items of calendrical
data into a time value. For the meanings of the arguments, see the table above under
decode-time.

Year numbers less than 100 are not treated specially. If you want them to stand for
years above 1900, or years above 2000, you must alter them yourself before you call
encode-time.

The optional argument zone defaults to the current time zone and its daylight saving
time rules. If specified, it can be either a list (as you would get from current-time-

zone), a string as in the TZ environment variable, t for Universal Time, or an integer

Chapter 39: Operating System Interface 402

(as you would get from decode-time). The specified zone is used without any further
alteration for daylight saving time.

If you pass more than seven arguments to encode-time, the first six are used as
seconds through year, the last argument is used as zone, and the arguments in between
are ignored. This feature makes it possible to use the elements of a list returned by
decode-time as the arguments to encode-time, like this:

(apply ’encode-time (decode-time ...))

You can perform simple date arithmetic by using out-of-range values for the sec-
onds, minutes, hour, day, and month arguments; for example, day 0 means the day
preceding the given month.

The operating system puts limits on the range of possible time values; if you try to
encode a time that is out of range, an error results. For instance, years before 1970
do not work on some systems; on others, years as early as 1901 do work.

39.7 Parsing and Formatting Times

These functions convert time values (lists of two or three integers) to text in a string, and
vice versa.

[Function]date-to-time string
This function parses the time-string string and returns the corresponding time value.

[Function]format-time-string format-string &optional time universal
This function converts time (or the current time, if time is omitted) to a string
according to format-string. The argument format-string may contain ‘%’-sequences
which say to substitute parts of the time. Here is a table of what the ‘%’-sequences
mean:

‘%a’ This stands for the abbreviated name of the day of week.

‘%A’ This stands for the full name of the day of week.

‘%b’ This stands for the abbreviated name of the month.

‘%B’ This stands for the full name of the month.

‘%c’ This is a synonym for ‘%x %X’.

‘%C’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%A, %B %e, %Y’.

‘%d’ This stands for the day of month, zero-padded.

‘%D’ This is a synonym for ‘%m/%d/%y’.

‘%e’ This stands for the day of month, blank-padded.

‘%h’ This is a synonym for ‘%b’.

‘%H’ This stands for the hour (00-23).

‘%I’ This stands for the hour (01-12).

‘%j’ This stands for the day of the year (001-366).

Chapter 39: Operating System Interface 403

‘%k’ This stands for the hour (0-23), blank padded.

‘%l’ This stands for the hour (1-12), blank padded.

‘%m’ This stands for the month (01-12).

‘%M’ This stands for the minute (00-59).

‘%n’ This stands for a newline.

‘%N’ This stands for the nanoseconds (000000000-999999999). To ask for fewer
digits, use ‘%3N’ for milliseconds, ‘%6N’ for microseconds, etc. Any excess
digits are discarded, without rounding. Currently Emacs time stamps are
at best microsecond resolution so the last three digits generated by plain
‘%N’ are always zero.

‘%p’ This stands for ‘AM’ or ‘PM’, as appropriate.

‘%r’ This is a synonym for ‘%I:%M:%S %p’.

‘%R’ This is a synonym for ‘%H:%M’.

‘%S’ This stands for the seconds (00-59).

‘%t’ This stands for a tab character.

‘%T’ This is a synonym for ‘%H:%M:%S’.

‘%U’ This stands for the week of the year (01-52), assuming that weeks start
on Sunday.

‘%w’ This stands for the numeric day of week (0-6). Sunday is day 0.

‘%W’ This stands for the week of the year (01-52), assuming that weeks start
on Monday.

‘%x’ This has a locale-specific meaning. In the default locale (named ‘C’), it
is equivalent to ‘%D’.

‘%X’ This has a locale-specific meaning. In the default locale (named ‘C’), it
is equivalent to ‘%T’.

‘%y’ This stands for the year without century (00-99).

‘%Y’ This stands for the year with century.

‘%Z’ This stands for the time zone abbreviation (e.g., ‘EST’).

‘%z’ This stands for the time zone numerical offset (e.g., ‘-0500’).

You can also specify the field width and type of padding for any of these ‘%’-sequences.
This works as in printf: you write the field width as digits in the middle of a ‘%’-
sequences. If you start the field width with ‘0’, it means to pad with zeros. If you
start the field width with ‘_’, it means to pad with spaces.

For example, ‘%S’ specifies the number of seconds since the minute; ‘%03S’ means to
pad this with zeros to 3 positions, ‘%_3S’ to pad with spaces to 3 positions. Plain
‘%3S’ pads with zeros, because that is how ‘%S’ normally pads to two positions.

The characters ‘E’ and ‘O’ act as modifiers when used between ‘%’ and one of the
letters in the table above. ‘E’ specifies using the current locale’s “alternative” version

Chapter 39: Operating System Interface 404

of the date and time. In a Japanese locale, for example, %Ex might yield a date format
based on the Japanese Emperors’ reigns. ‘E’ is allowed in ‘%Ec’, ‘%EC’, ‘%Ex’, ‘%EX’,
‘%Ey’, and ‘%EY’.

‘O’ means to use the current locale’s “alternative” representation of numbers, instead
of the ordinary decimal digits. This is allowed with most letters, all the ones that
output numbers.

If universal is non-nil, that means to describe the time as Universal Time; nil means
describe it using what Emacs believes is the local time zone (see current-time-zone).

This function uses the C library function strftime (see Section “Formatting Calendar
Time” in The GNU C Library Reference Manual) to do most of the work. In order
to communicate with that function, it first encodes its argument using the coding
system specified by locale-coding-system (see Section 33.11 [Locales], page 207);
after strftime returns the resulting string, format-time-string decodes the string
using that same coding system.

[Function]seconds-to-time seconds
This function converts seconds, a floating point number of seconds since the epoch,
to a time value and returns that. To perform the inverse conversion, use float-time.

[Function]format-seconds format-string seconds
This function converts its argument seconds into a string of years, days, hours, etc.,
according to format-string. The argument format-string may contain ‘%’-sequences
which control the conversion. Here is a table of what the ‘%’-sequences mean:

‘%y’
‘%Y’ The integer number of 365-day years.

‘%d’
‘%D’ The integer number of days.

‘%h’
‘%H’ The integer number of hours.

‘%m’
‘%M’ The integer number of minutes.

‘%s’
‘%S’ The integer number of seconds.

‘%z’ Non-printing control flag. When it is used, other specifiers must be given
in the order of decreasing size, i.e. years before days, hours before minutes,
etc. Nothing will be produced in the result string to the left of ‘%z’ until
the first non-zero conversion is encountered. For example, the default
format used by emacs-uptime (see Section 39.8 [Processor Run Time],
page 405) "%Y, %D, %H, %M, %z%S" means that the number of seconds
will always be produced, but years, days, hours, and minutes will only be
shown if they are non-zero.

‘%%’ Produces a literal ‘%’.

Chapter 39: Operating System Interface 405

Upper-case format sequences produce the units in addition to the numbers, lower-case
formats produce only the numbers.

You can also specify the field width by following the ‘%’ with a number; shorter
numbers will be padded with blanks. An optional period before the width requests
zero-padding instead. For example, "%.3Y" might produce "004 years".

Warning: This function works only with values of seconds that don’t exceed most-

positive-fixnum (see Section 3.1 [Integer Basics], page 33, vol. 1).

39.8 Processor Run time

Emacs provides several functions and primitives that return time, both elapsed and proces-
sor time, used by the Emacs process.

[Command]emacs-uptime &optional format
This function returns a string representing the Emacs uptime—the elapsed wall-clock
time this instance of Emacs is running. The string is formatted by format-seconds

according to the optional argument format. For the available format descriptors, see
Section 39.7 [Time Parsing], page 402. If format is nil or omitted, it defaults to "%Y,
%D, %H, %M, %z%S".

When called interactively, it prints the uptime in the echo area.

[Function]get-internal-run-time
This function returns the processor run time used by Emacs as a list of three integers:
(high low microsec). The integers high and low combine to give the number of
seconds, which is high ∗ 216 + low.

The third element, microsec, gives the microseconds (or 0 for systems that return
time with the resolution of only one second).

Note that the time returned by this function excludes the time Emacs was not using
the processor, and if the Emacs process has several threads, the returned value is the
sum of the processor times used up by all Emacs threads.

If the system doesn’t provide a way to determine the processor run time, get-

internal-run-time returns the same time as current-time.

[Command]emacs-init-time
This function returns the duration of the Emacs initialization (see Section 39.1.1
[Startup Summary], page 386) in seconds, as a string. When called interactively, it
prints the duration in the echo area.

39.9 Time Calculations

These functions perform calendrical computations using time values (the kind of list that
current-time returns).

[Function]time-less-p t1 t2
This returns t if time value t1 is less than time value t2.

[Function]time-subtract t1 t2
This returns the time difference t1 − t2 between two time values, in the same format
as a time value.

Chapter 39: Operating System Interface 406

[Function]time-add t1 t2
This returns the sum of two time values, one of which ought to represent a time
difference rather than a point in time. Here is how to add a number of seconds to a
time value:

(time-add time (seconds-to-time seconds))

[Function]time-to-days time
This function returns the number of days between the beginning of year 1 and time.

[Function]time-to-day-in-year time
This returns the day number within the year corresponding to time.

[Function]date-leap-year-p year
This function returns t if year is a leap year.

39.10 Timers for Delayed Execution

You can set up a timer to call a function at a specified future time or after a certain length
of idleness.

Emacs cannot run timers at any arbitrary point in a Lisp program; it can run them only
when Emacs could accept output from a subprocess: namely, while waiting or inside certain
primitive functions such as sit-for or read-event which can wait. Therefore, a timer’s
execution may be delayed if Emacs is busy. However, the time of execution is very precise
if Emacs is idle.

Emacs binds inhibit-quit to t before calling the timer function, because quitting out
of many timer functions can leave things in an inconsistent state. This is normally unprob-
lematical because most timer functions don’t do a lot of work. Indeed, for a timer to call a
function that takes substantial time to run is likely to be annoying. If a timer function needs
to allow quitting, it should use with-local-quit (see Section 21.11 [Quitting], page 351,
vol. 1). For example, if a timer function calls accept-process-output to receive output
from an external process, that call should be wrapped inside with-local-quit, to ensure
that C-g works if the external process hangs.

It is usually a bad idea for timer functions to alter buffer contents. When they do, they
usually should call undo-boundary both before and after changing the buffer, to separate
the timer’s changes from user commands’ changes and prevent a single undo entry from
growing to be quite large.

Timer functions should also avoid calling functions that cause Emacs to wait, such as
sit-for (see Section 21.10 [Waiting], page 350, vol. 1). This can lead to unpredictable
effects, since other timers (or even the same timer) can run while waiting. If a timer
function needs to perform an action after a certain time has elapsed, it can do this by
scheduling a new timer.

If a timer function calls functions that can change the match data, it should save and
restore the match data. See Section 34.6.4 [Saving Match Data], page 229.

[Command]run-at-time time repeat function &rest args
This sets up a timer that calls the function function with arguments args at time
time. If repeat is a number (integer or floating point), the timer is scheduled to run
again every repeat seconds after time. If repeat is nil, the timer runs only once.

Chapter 39: Operating System Interface 407

time may specify an absolute or a relative time.

Absolute times may be specified using a string with a limited variety of formats, and
are taken to be times today, even if already in the past. The recognized forms are
‘xxxx’, ‘x:xx’, or ‘xx:xx’ (military time), and ‘xxam’, ‘xxAM’, ‘xxpm’, ‘xxPM’, ‘xx:xxam’,
‘xx:xxAM’, ‘xx:xxpm’, or ‘xx:xxPM’. A period can be used instead of a colon to
separate the hour and minute parts.

To specify a relative time as a string, use numbers followed by units. For example:

‘1 min’ denotes 1 minute from now.

‘1 min 5 sec’
denotes 65 seconds from now.

‘1 min 2 sec 3 hour 4 day 5 week 6 fortnight 7 month 8 year’
denotes exactly 103 months, 123 days, and 10862 seconds from now.

For relative time values, Emacs considers a month to be exactly thirty days, and a
year to be exactly 365.25 days.

Not all convenient formats are strings. If time is a number (integer or floating point),
that specifies a relative time measured in seconds. The result of encode-time can
also be used to specify an absolute value for time.

In most cases, repeat has no effect on when first call takes place—time alone specifies
that. There is one exception: if time is t, then the timer runs whenever the time is a
multiple of repeat seconds after the epoch. This is useful for functions like display-
time.

The function run-at-time returns a timer value that identifies the particular sched-
uled future action. You can use this value to call cancel-timer (see below).

A repeating timer nominally ought to run every repeat seconds, but remember that any
invocation of a timer can be late. Lateness of one repetition has no effect on the scheduled
time of the next repetition. For instance, if Emacs is busy computing for long enough to
cover three scheduled repetitions of the timer, and then starts to wait, it will immediately
call the timer function three times in immediate succession (presuming no other timers
trigger before or between them). If you want a timer to run again no less than n seconds
after the last invocation, don’t use the repeat argument. Instead, the timer function should
explicitly reschedule the timer.

[Variable]timer-max-repeats
This variable’s value specifies the maximum number of times to repeat calling a timer
function in a row, when many previously scheduled calls were unavoidably delayed.

[Macro]with-timeout (seconds timeout-forms. . .) body. . .
Execute body, but give up after seconds seconds. If body finishes before the time
is up, with-timeout returns the value of the last form in body. If, however, the
execution of body is cut short by the timeout, then with-timeout executes all the
timeout-forms and returns the value of the last of them.

This macro works by setting a timer to run after seconds seconds. If body finishes be-
fore that time, it cancels the timer. If the timer actually runs, it terminates execution
of body, then executes timeout-forms.

Chapter 39: Operating System Interface 408

Since timers can run within a Lisp program only when the program calls a primitive
that can wait, with-timeout cannot stop executing body while it is in the midst of a
computation—only when it calls one of those primitives. So use with-timeout only
with a body that waits for input, not one that does a long computation.

The function y-or-n-p-with-timeout provides a simple way to use a timer to avoid
waiting too long for an answer. See Section 20.7 [Yes-or-No Queries], page 307, vol. 1.

[Function]cancel-timer timer
This cancels the requested action for timer, which should be a timer—usually, one
previously returned by run-at-time or run-with-idle-timer. This cancels the
effect of that call to one of these functions; the arrival of the specified time will not
cause anything special to happen.

39.11 Idle Timers

Here is how to set up a timer that runs when Emacs is idle for a certain length of time.
Aside from how to set them up, idle timers work just like ordinary timers.

[Command]run-with-idle-timer secs repeat function &rest args
Set up a timer which runs the next time Emacs is idle for secs seconds. The value of
secs may be an integer or a floating point number; a value of the type returned by
current-idle-time is also allowed.

If repeat is nil, the timer runs just once, the first time Emacs remains idle for a long
enough time. More often repeat is non-nil, which means to run the timer each time
Emacs remains idle for secs seconds.

The function run-with-idle-timer returns a timer value which you can use in calling
cancel-timer (see Section 39.10 [Timers], page 406).

Emacs becomes idle when it starts waiting for user input, and it remains idle until the
user provides some input. If a timer is set for five seconds of idleness, it runs approximately
five seconds after Emacs first becomes idle. Even if repeat is non-nil, this timer will not
run again as long as Emacs remains idle, because the duration of idleness will continue to
increase and will not go down to five seconds again.

Emacs can do various things while idle: garbage collect, autosave or handle data from a
subprocess. But these interludes during idleness do not interfere with idle timers, because
they do not reset the clock of idleness to zero. An idle timer set for 600 seconds will run
when ten minutes have elapsed since the last user command was finished, even if subprocess
output has been accepted thousands of times within those ten minutes, and even if there
have been garbage collections and autosaves.

When the user supplies input, Emacs becomes non-idle while executing the input. Then
it becomes idle again, and all the idle timers that are set up to repeat will subsequently run
another time, one by one.

[Function]current-idle-time
If Emacs is idle, this function returns the length of time Emacs has been idle, as a
list of three integers: (sec-high sec-low microsec), where high and low are the

Chapter 39: Operating System Interface 409

high and low bits for the number of seconds and microsec is the additional number
of microseconds (see Section 39.5 [Time of Day], page 399).

When Emacs is not idle, current-idle-time returns nil. This is a convenient way
to test whether Emacs is idle.

The main use of this function is when an idle timer function wants to “take a break”
for a while. It can set up another idle timer to call the same function again, after a
few seconds more idleness. Here’s an example:

(defvar resume-timer nil

"Timer that ‘timer-function’ used to reschedule itself, or nil.")

(defun timer-function ()

;; If the user types a command while resume-timer

;; is active, the next time this function is called from
;; its main idle timer, deactivate resume-timer.
(when resume-timer

(cancel-timer resume-timer))

...do the work for a while...

(when taking-a-break

(setq resume-timer

(run-with-idle-timer

;; Compute an idle time break-length

;; more than the current value.

(time-add (current-idle-time)

(seconds-to-time break-length))

nil

’timer-function))))

Do not write an idle timer function containing a loop which does a certain amount of
processing each time around, and exits when (input-pending-p) is non-nil. This approach
seems very natural but has two problems:

• It blocks out all process output (since Emacs accepts process output only while waiting).

• It blocks out any idle timers that ought to run during that time.

The correct approach is for the idle timer to reschedule itself after a brief pause, using the
method in the timer-function example above.

39.12 Terminal Input

This section describes functions and variables for recording or manipulating terminal input.
See Chapter 38 [Display], page 299, for related functions.

39.12.1 Input Modes

[Function]set-input-mode interrupt flow meta &optional quit-char
This function sets the mode for reading keyboard input. If interrupt is non-null, then
Emacs uses input interrupts. If it is nil, then it uses cbreak mode. The default
setting is system-dependent. Some systems always use cbreak mode regardless of
what is specified.

When Emacs communicates directly with X, it ignores this argument and uses inter-
rupts if that is the way it knows how to communicate.

Chapter 39: Operating System Interface 410

If flow is non-nil, then Emacs uses xon/xoff (C-q, C-s) flow control for output to
the terminal. This has no effect except in cbreak mode.

The argument meta controls support for input character codes above 127. If meta is
t, Emacs converts characters with the 8th bit set into Meta characters. If meta is
nil, Emacs disregards the 8th bit; this is necessary when the terminal uses it as a
parity bit. If meta is neither t nor nil, Emacs uses all 8 bits of input unchanged.
This is good for terminals that use 8-bit character sets.

If quit-char is non-nil, it specifies the character to use for quitting. Normally this
character is C-g. See Section 21.11 [Quitting], page 351, vol. 1.

The current-input-mode function returns the input mode settings Emacs is currently
using.

[Function]current-input-mode
This function returns the current mode for reading keyboard input. It returns a list,
corresponding to the arguments of set-input-mode, of the form (interrupt flow

meta quit) in which:

interrupt is non-nil when Emacs is using interrupt-driven input. If nil, Emacs is
using cbreak mode.

flow is non-nil if Emacs uses xon/xoff (C-q, C-s) flow control for output to
the terminal. This value is meaningful only when interrupt is nil.

meta is t if Emacs treats the eighth bit of input characters as the meta bit;
nil means Emacs clears the eighth bit of every input character; any other
value means Emacs uses all eight bits as the basic character code.

quit is the character Emacs currently uses for quitting, usually C-g.

39.12.2 Recording Input

[Function]recent-keys
This function returns a vector containing the last 300 input events from the keyboard
or mouse. All input events are included, whether or not they were used as parts of
key sequences. Thus, you always get the last 100 input events, not counting events
generated by keyboard macros. (These are excluded because they are less interesting
for debugging; it should be enough to see the events that invoked the macros.)

A call to clear-this-command-keys (see Section 21.5 [Command Loop Info],
page 324, vol. 1) causes this function to return an empty vector immediately
afterward.

[Command]open-dribble-file filename
This function opens a dribble file named filename. When a dribble file is open, each
input event from the keyboard or mouse (but not those from keyboard macros) is
written in that file. A non-character event is expressed using its printed representation
surrounded by ‘<...>’.

You close the dribble file by calling this function with an argument of nil.

This function is normally used to record the input necessary to trigger an Emacs bug,
for the sake of a bug report.

Chapter 39: Operating System Interface 411

(open-dribble-file "~/dribble")

⇒ nil

See also the open-termscript function (see Section 39.13 [Terminal Output], page 411).

39.13 Terminal Output

The terminal output functions send output to a text terminal, or keep track of output sent
to the terminal. The variable baud-rate tells you what Emacs thinks is the output speed
of the terminal.

[User Option]baud-rate
This variable’s value is the output speed of the terminal, as far as Emacs knows.
Setting this variable does not change the speed of actual data transmission, but the
value is used for calculations such as padding.

It also affects decisions about whether to scroll part of the screen or repaint on text
terminals. See Section 38.2 [Forcing Redisplay], page 299, for the corresponding
functionality on graphical terminals.

The value is measured in baud.

If you are running across a network, and different parts of the network work at different
baud rates, the value returned by Emacs may be different from the value used by your local
terminal. Some network protocols communicate the local terminal speed to the remote
machine, so that Emacs and other programs can get the proper value, but others do not.
If Emacs has the wrong value, it makes decisions that are less than optimal. To fix the
problem, set baud-rate.

[Function]send-string-to-terminal string &optional terminal
This function sends string to terminal without alteration. Control characters in
string have terminal-dependent effects. This function operates only on text terminals.
terminal may be a terminal object, a frame, or nil for the selected frame’s terminal.
In batch mode, string is sent to stdout when terminal is nil.

One use of this function is to define function keys on terminals that have downloadable
function key definitions. For example, this is how (on certain terminals) to define
function key 4 to move forward four characters (by transmitting the characters C-u
C-f to the computer):

(send-string-to-terminal "\eF4\^U\^F")

⇒ nil

[Command]open-termscript filename
This function is used to open a termscript file that will record all the characters sent
by Emacs to the terminal. It returns nil. Termscript files are useful for investigating
problems where Emacs garbles the screen, problems that are due to incorrect Termcap
entries or to undesirable settings of terminal options more often than to actual Emacs
bugs. Once you are certain which characters were actually output, you can determine
reliably whether they correspond to the Termcap specifications in use.

You close the termscript file by calling this function with an argument of nil.

See also open-dribble-file in Section 39.12.2 [Recording Input], page 410.

Chapter 39: Operating System Interface 412

(open-termscript "../junk/termscript")

⇒ nil

39.14 Sound Output

To play sound using Emacs, use the function play-sound. Only certain systems are sup-
ported; if you call play-sound on a system which cannot really do the job, it gives an
error.

The sound must be stored as a file in RIFF-WAVE format (‘.wav’) or Sun Audio format
(‘.au’).

[Function]play-sound sound
This function plays a specified sound. The argument, sound, has the form (sound

properties...), where the properties consist of alternating keywords (particular
symbols recognized specially) and values corresponding to them.

Here is a table of the keywords that are currently meaningful in sound, and their
meanings:

:file file

This specifies the file containing the sound to play. If the file name is not
absolute, it is expanded against the directory data-directory.

:data data

This specifies the sound to play without need to refer to a file. The value,
data, should be a string containing the same bytes as a sound file. We
recommend using a unibyte string.

:volume volume

This specifies how loud to play the sound. It should be a number in the
range of 0 to 1. The default is to use whatever volume has been specified
before.

:device device

This specifies the system device on which to play the sound, as a string.
The default device is system-dependent.

Before actually playing the sound, play-sound calls the functions in the list play-
sound-functions. Each function is called with one argument, sound.

[Command]play-sound-file file &optional volume device
This function is an alternative interface to playing a sound file specifying an optional
volume and device.

[Variable]play-sound-functions
A list of functions to be called before playing a sound. Each function is called with
one argument, a property list that describes the sound.

Chapter 39: Operating System Interface 413

39.15 Operating on X11 Keysyms

To define system-specific X11 keysyms, set the variable system-key-alist.

[Variable]system-key-alist
This variable’s value should be an alist with one element for each system-specific
keysym. Each element has the form (code . symbol), where code is the numeric
keysym code (not including the “vendor specific” bit, −228), and symbol is the name
for the function key.

For example (168 . mute-acute) defines a system-specific key (used by HP X servers)
whose numeric code is −228 + 168.

It is not crucial to exclude from the alist the keysyms of other X servers; those do no
harm, as long as they don’t conflict with the ones used by the X server actually in
use.

The variable is always local to the current terminal, and cannot be buffer-local. See
Section 29.2 [Multiple Terminals], page 67.

You can specify which keysyms Emacs should use for the Meta, Alt, Hyper, and Super
modifiers by setting these variables:

[Variable]x-alt-keysym
[Variable]x-meta-keysym
[Variable]x-hyper-keysym
[Variable]x-super-keysym

The name of the keysym that should stand for the Alt modifier (respectively, for Meta,
Hyper, and Super). For example, here is how to swap the Meta and Alt modifiers
within Emacs:

(setq x-alt-keysym ’meta)

(setq x-meta-keysym ’alt)

39.16 Batch Mode

The command-line option ‘-batch’ causes Emacs to run noninteractively. In this mode,
Emacs does not read commands from the terminal, it does not alter the terminal modes,
and it does not expect to be outputting to an erasable screen. The idea is that you specify
Lisp programs to run; when they are finished, Emacs should exit. The way to specify the
programs to run is with ‘-l file’, which loads the library named file, or ‘-f function’,
which calls function with no arguments, or ‘--eval form’.

Any Lisp program output that would normally go to the echo area, either using message,
or using prin1, etc., with t as the stream, goes instead to Emacs’s standard error descriptor
when in batch mode. Similarly, input that would normally come from the minibuffer is
read from the standard input descriptor. Thus, Emacs behaves much like a noninteractive
application program. (The echo area output that Emacs itself normally generates, such as
command echoing, is suppressed entirely.)

[Variable]noninteractive
This variable is non-nil when Emacs is running in batch mode.

Chapter 39: Operating System Interface 414

39.17 Session Management

Emacs supports the X Session Management Protocol, which is used to suspend and restart
applications. In the X Window System, a program called the session manager is responsible
for keeping track of the applications that are running. When the X server shuts down, the
session manager asks applications to save their state, and delays the actual shutdown until
they respond. An application can also cancel the shutdown.

When the session manager restarts a suspended session, it directs these applications to
individually reload their saved state. It does this by specifying a special command-line
argument that says what saved session to restore. For Emacs, this argument is ‘--smid
session’.

[Variable]emacs-save-session-functions
Emacs supports saving state via a hook called emacs-save-session-functions.
Emacs runs this hook when the session manager tells it that the window system
is shutting down. The functions are called with no arguments, and with the current
buffer set to a temporary buffer. Each function can use insert to add Lisp code to
this buffer. At the end, Emacs saves the buffer in a file, called the session file.

Subsequently, when the session manager restarts Emacs, it loads the session file auto-
matically (see Chapter 15 [Loading], page 209, vol. 1). This is performed by a function
named emacs-session-restore, which is called during startup. See Section 39.1.1
[Startup Summary], page 386.

If a function in emacs-save-session-functions returns non-nil, Emacs tells the
session manager to cancel the shutdown.

Here is an example that just inserts some text into ‘*scratch*’ when Emacs is restarted
by the session manager.

(add-hook ’emacs-save-session-functions ’save-yourself-test)

(defun save-yourself-test ()

(insert "(save-current-buffer

(switch-to-buffer \"*scratch*\")

(insert \"I am restored\"))")

nil)

39.18 Desktop Notifications

Emacs is able to send notifications on systems that support the freedesktop.org Desktop No-
tifications Specification. In order to use this functionality, Emacs must have been compiled
with D-Bus support, and the notifications library must be loaded.

[Function]notifications-notify &rest params
This function sends a notification to the desktop via D-Bus, consisting of the parame-
ters specified by the params arguments. These arguments should consist of alternating
keyword and value pairs. The supported keywords and values are as follows:

:title title

The notification title.

Chapter 39: Operating System Interface 415

:body text

The notification body text. Depending on the implementation of the
notification server, the text could contain HTML markups, like ‘"bold
text"’, or hyperlinks.

:app-name name

The name of the application sending the notification. The default is
notifications-application-name.

:replaces-id id

The notification id that this notification replaces. id must be the result
of a previous notifications-notify call.

:app-icon icon-file

The file name of the notification icon. If set to nil, no icon is displayed.
The default is notifications-application-icon.

:actions (key title key title ...)

A list of actions to be applied. key and title are both strings. The default
action (usually invoked by clicking the notification) should have a key
named ‘"default"’. The title can be anything, though implementations
are free not to display it.

:timeout timeout

The timeout time in milliseconds since the display of the notification at
which the notification should automatically close. If -1, the notification’s
expiration time is dependent on the notification server’s settings, and
may vary for the type of notification. If 0, the notification never expires.
Default value is -1.

:urgency urgency

The urgency level. It can be low, normal, or critical.

:category category

The type of notification this is, a string.

:desktop-entry filename

This specifies the name of the desktop filename representing the calling
program, like ‘"emacs"’.

:image-data (width height rowstride has-alpha bits channels data)

This is a raw data image format that describes the width, height, row-
stride, whether there is an alpha channel, bits per sample, channels and
image data, respectively.

:image-path path

This is represented either as a URI (‘file://’ is the only URI schema
supported right now) or a name in a freedesktop.org-compliant icon theme
from ‘$XDG_DATA_DIRS/icons’.

:sound-file filename

The path to a sound file to play when the notification pops up.

Chapter 39: Operating System Interface 416

:sound-name name

A themable named sound from the freedesktop.org sound naming spec-
ification from ‘$XDG_DATA_DIRS/sounds’, to play when the notification
pops up. Similar to the icon name, only for sounds. An example would
be ‘"message-new-instant"’.

:suppress-sound

Causes the server to suppress playing any sounds, if it has that ability.

:x position

:y position

Specifies the X, Y location on the screen that the notification should point
to. Both arguments must be used together.

:on-action function

Function to call when an action is invoked. The notification id and the
key of the action are passed as arguments to the function.

:on-close function

Function to call when the notification has been closed by timeout or by
the user. The function receive the notification id and the closing reason
as arguments:

• expired if the notification has expired

• dismissed if the notification was dismissed by the user

• close-notification if the notification was closed by a call to
notifications-close-notification

• undefined if the notification server hasn’t provided a reason

This function returns a notification id, an integer, which can be used to manipulate
the notification item with notifications-close-notification or the :replaces-

id argument of another notifications-notify call. For example:

(defun my-on-action-function (id key)

(message "Message %d, key \"%s\" pressed" id key))

⇒ my-on-action-function

(defun my-on-close-function (id reason)

(message "Message %d, closed due to \"%s\"" id reason))

⇒ my-on-close-function

(notifications-notify

:title "Title"

:body "This is important."

:actions ’("Confirm" "I agree" "Refuse" "I disagree")

:on-action ’my-on-action-function

:on-close ’my-on-close-function)

⇒ 22

Chapter 39: Operating System Interface 417

A message window opens on the desktop. Press "I agree"

⇒ Message 22, key "Confirm" pressed

Message 22, closed due to "dismissed"

[Function]notifications-close-notification id
This function closes a notification with identifier id.

39.19 Dynamically Loaded Libraries

A dynamically loaded library is a library that is loaded on demand, when its facilities are
first needed. Emacs supports such on-demand loading of support libraries for some of its
features.

[Variable]dynamic-library-alist
This is an alist of dynamic libraries and external library files implementing them.

Each element is a list of the form (library files...), where the car is a symbol
representing a supported external library, and the rest are strings giving alternate
filenames for that library.

Emacs tries to load the library from the files in the order they appear in the list; if
none is found, the Emacs session won’t have access to that library, and the features
it provides will be unavailable.

Image support on some platforms uses this facility. Here’s an example of setting this
variable for supporting images on MS-Windows:

(setq dynamic-library-alist

’((xpm "libxpm.dll" "xpm4.dll" "libXpm-nox4.dll")

(png "libpng12d.dll" "libpng12.dll" "libpng.dll"

"libpng13d.dll" "libpng13.dll")

(jpeg "jpeg62.dll" "libjpeg.dll" "jpeg-62.dll"

"jpeg.dll")

(tiff "libtiff3.dll" "libtiff.dll")

(gif "giflib4.dll" "libungif4.dll" "libungif.dll")

(svg "librsvg-2-2.dll")

(gdk-pixbuf "libgdk_pixbuf-2.0-0.dll")

(glib "libglib-2.0-0.dll")

(gobject "libgobject-2.0-0.dll")))

Note that image types pbm and xbm do not need entries in this variable because they
do not depend on external libraries and are always available in Emacs.

Also note that this variable is not meant to be a generic facility for accessing external
libraries; only those already known by Emacs can be loaded through it.

This variable is ignored if the given library is statically linked into Emacs.

Chapter 40: Preparing Lisp code for distribution 418

40 Preparing Lisp code for distribution

Emacs provides a standard way to distribute Emacs Lisp code to users. A package is a
collection of one or more files, formatted and bundled in such a way that users can easily
download, install, uninstall, and upgrade it.

The following sections describe how to create a package, and how to put it in a package
archive for others to download. See Section “Packages” in The GNU Emacs Manual, for a
description of user-level features of the packaging system.

40.1 Packaging Basics

A package is either a simple package or a multi-file package. A simple package is stored in
a package archive as a single Emacs Lisp file, while a multi-file package is stored as a tar
file (containing multiple Lisp files, and possibly non-Lisp files such as a manual).

In ordinary usage, the difference between simple packages and multi-file packages is
relatively unimportant; the Package Menu interface makes no distinction between them.
However, the procedure for creating them differs, as explained in the following sections.

Each package (whether simple or multi-file) has certain attributes:

Name A short word (e.g. ‘auctex’). This is usually also the symbol prefix used in the
program (see Section D.1 [Coding Conventions], page 444).

Version A version number, in a form that the function version-to-list understands
(e.g. ‘11.86’). Each release of a package should be accompanied by an increase
in the version number.

Brief description
This is shown when the package is listed in the Package Menu. It should occupy
a single line, ideally in 36 characters or less.

Long description
This is shown in the buffer created by C-h P (describe-package), following the
package’s brief description and installation status. It normally spans multiple
lines, and should fully describe the package’s capabilities and how to begin using
it once it is installed.

Dependencies
A list of other packages (possibly including minimal acceptable version num-
bers) on which this package depends. The list may be empty, meaning this
package has no dependencies. Otherwise, installing this package also automati-
cally installs its dependencies; if any dependency cannot be found, the package
cannot be installed.

Installing a package, either via the command package-install-file, or via the Package
Menu, creates a subdirectory of package-user-dir named ‘name-version’, where name is
the package’s name and version its version (e.g. ‘~/.emacs.d/elpa/auctex-11.86/’). We
call this the package’s content directory. It is where Emacs puts the package’s contents (the
single Lisp file for a simple package, or the files extracted from a multi-file package).

Emacs then searches every Lisp file in the content directory for autoload magic comments
(see Section 15.5 [Autoload], page 213, vol. 1). These autoload definitions are saved to a file

Chapter 40: Preparing Lisp code for distribution 419

named ‘name-autoloads.el’ in the content directory. They are typically used to autoload
the principal user commands defined in the package, but they can also perform other tasks,
such as adding an element to auto-mode-alist (see Section 23.2.2 [Auto Major Mode],
page 403, vol. 1). Note that a package typically does not autoload every function and
variable defined within it—only the handful of commands typically called to begin using
the package. Emacs then byte-compiles every Lisp file in the package.

After installation, the installed package is loaded: Emacs adds the package’s content
directory to load-path, and evaluates the autoload definitions in ‘name-autoloads.el’.

Whenever Emacs starts up, it automatically calls the function package-initialize to
load installed packages. This is done after loading the init file and abbrev file (if any)
and before running after-init-hook (see Section 39.1.1 [Startup Summary], page 386).
Automatic package loading is disabled if the user option package-enable-at-startup is
nil.

[Command]package-initialize &optional no-activate
This function initializes Emacs’ internal record of which packages are installed, and
loads them. The user option package-load-list specifies which packages to load;
by default, all installed packages are loaded. See Section “Package Installation” in
The GNU Emacs Manual.

The optional argument no-activate, if non-nil, causes Emacs to update its record of
installed packages without actually loading them; it is for internal use only.

40.2 Simple Packages

A simple package consists of a single Emacs Lisp source file. The file must conform to
the Emacs Lisp library header conventions (see Section D.8 [Library Headers], page 454).
The package’s attributes are taken from the various headers, as illustrated by the following
example:

;;; superfrobnicator.el --- Frobnicate and bifurcate flanges

;; Copyright (C) 2011 Free Software Foundation, Inc.

;; Author: J. R. Hacker <jrh@example.com>

;; Version: 1.3

;; Package-Requires: ((flange "1.0"))

;; Keywords: frobnicate

...

;;; Commentary:

;; This package provides a minor mode to frobnicate and/or

;; bifurcate any flanges you desire. To activate it, just type

...

;;;###autoload

(define-minor-mode superfrobnicator-mode

Chapter 40: Preparing Lisp code for distribution 420

...

The name of the package is the same as the base name of the file, as written on the first
line. Here, it is ‘superfrobnicator’.

The brief description is also taken from the first line. Here, it is ‘Frobnicate and

bifurcate flanges’.

The version number comes from the ‘Package-Version’ header, if it exists, or from the
‘Version’ header otherwise. One or the other must be present. Here, the version number
is 1.3.

If the file has a ‘;;; Commentary:’ section, this section is used as the long description.
(When displaying the description, Emacs omits the ‘;;; Commentary:’ line, as well as the
leading comment characters in the commentary itself.)

If the file has a ‘Package-Requires’ header, that is used as the package dependencies.
In the above example, the package depends on the ‘flange’ package, version 1.0 or higher.
See Section D.8 [Library Headers], page 454, for a description of the ‘Package-Requires’
header. If the header is omitted, the package has no dependencies.

The file ought to also contain one or more autoload magic comments, as explained
in Section 40.1 [Packaging Basics], page 418. In the above example, a magic comment
autoloads superfrobnicator-mode.

See Section 40.4 [Package Archives], page 421, for a explanation of how to add a single-file
package to a package archive.

40.3 Multi-file Packages

A multi-file package is less convenient to create than a single-file package, but it offers more
features: it can include multiple Emacs Lisp files, an Info manual, and other file types (such
as images).

Prior to installation, a multi-file package is stored in a package archive as a tar file. The
tar file must be named ‘name-version.tar’, where name is the package name and version
is the version number. Its contents, once extracted, must all appear in a directory named
‘name-version’, the content directory (see Section 40.1 [Packaging Basics], page 418). Files
may also extract into subdirectories of the content directory.

One of the files in the content directory must be named ‘name-pkg.el’. It must contain
a single Lisp form, consisting of a call to the function define-package, described below.
This defines the package’s version, brief description, and requirements.

For example, if we distribute version 1.3 of the superfrobnicator as a multi-file
package, the tar file would be ‘superfrobnicator-1.3.tar’. Its contents would
extract into the directory ‘superfrobnicator-1.3’, and one of these would be the file
‘superfrobnicator-pkg.el’.

[Function]define-package name version &optional docstring requirements
This function defines a package. name is the package name, a string. version is the
version, as a string of a form that can be understood by the function version-to-

list. docstring is the brief description.

requirements is a list of required packages and their versions. Each element in this list
should have the form (dep-name dep-version), where dep-name is a symbol whose

Chapter 40: Preparing Lisp code for distribution 421

name is the dependency’s package name, and dep-version is the dependency’s version
(a string).

If the content directory contains a file named ‘README’, this file is used as the long
description.

If the content directory contains a file named ‘dir’, this is assumed to be an Info di-
rectory file made with install-info. See Section “Invoking install-info” in Texinfo. The
relevant Info files should also be present in the content directory. In this case, Emacs
will automatically add the content directory to Info-directory-list when the package is
activated.

Do not include any ‘.elc’ files in the package. Those are created when the package is
installed. Note that there is no way to control the order in which files are byte-compiled.

Do not include any file named ‘name-autoloads.el’. This file is reserved for the pack-
age’s autoload definitions (see Section 40.1 [Packaging Basics], page 418). It is created
automatically when the package is installed, by searching all the Lisp files in the package
for autoload magic comments.

If the multi-file package contains auxiliary data files (such as images), the package’s Lisp
code can refer to these files via the variable load-file-name (see Chapter 15 [Loading],
page 209, vol. 1). Here is an example:

(defconst superfrobnicator-base (file-name-directory load-file-name))

(defun superfrobnicator-fetch-image (file)

(expand-file-name file superfrobnicator-base))

40.4 Creating and Maintaining Package Archives

Via the Package Menu, users may download packages from package archives. Such archives
are specified by the variable package-archives, whose default value contains a single entry:
the archive hosted by the GNU project at elpa.gnu.org. This section describes how to set
up and maintain a package archive.

[User Option]package-archives
The value of this variable is an alist of package archives recognized by the Emacs
package manager.

Each alist element corresponds to one archive, and should have the form (id .

location), where id is the name of the archive (a string) and location is its base
location (a string).

If the base location starts with ‘http:’, it is treated as a HTTP URL, and packages
are downloaded from this archive via HTTP (as is the case for the default GNU
archive).

Otherwise, the base location should be a directory name. In this case, Emacs retrieves
packages from this archive via ordinary file access. Such “local” archives are mainly
useful for testing.

A package archive is simply a directory in which the package files, and associated files,
are stored. If you want the archive to be reachable via HTTP, this directory must be
accessible to a web server. How to accomplish this is beyond the scope of this manual.

elpa.gnu.org

Chapter 40: Preparing Lisp code for distribution 422

A convenient way to set up and update a package archive is via the package-x li-
brary. This is included with Emacs, but not loaded by default; type M-x load-library

RET package-x RET to load it, or add (require ’package-x) to your init file. See Section
“Lisp Libraries” in The GNU Emacs Manual. Once loaded, you can make use of the fol-
lowing:

[User Option]package-archive-upload-base
The value of this variable is the base location of a package archive, as a directory
name. The commands in the package-x library will use this base location.

The directory name should be absolute. You may specify a remote name, such as
‘/ssh:foo@example.com:/var/www/packages/’, if the package archive is on a differ-
ent machine. See Section “Remote Files” in The GNU Emacs Manual.

[Command]package-upload-file filename
This command prompts for filename, a file name, and uploads that file to package-

archive-upload-base. The file must be either a simple package (a ‘.el’ file) or
a multi-file package (a ‘.tar’ file); otherwise, an error is raised. The package at-
tributes are automatically extracted, and the archive’s contents list is updated with
this information.

If package-archive-upload-base does not specify a valid directory, the function
prompts interactively for one. If the directory does not exist, it is created. The direc-
tory need not have any initial contents (i.e., you can use this command to populate
an initially empty archive).

[Command]package-upload-buffer
This command is similar to package-upload-file, but instead of prompting for a
package file, it uploads the contents of the current buffer. The current buffer must be
visiting a simple package (a ‘.el’ file) or a multi-file package (a ‘.tar’ file); otherwise,
an error is raised.

After you create an archive, remember that it is not accessible in the Package Menu interface
unless it is in package-archives.

Appendix A: Emacs 23 Antinews 423

Appendix A Emacs 23 Antinews

For those users who live backwards in time, here is information about downgrading to Emacs
version 23.4. We hope you will enjoy the greater simplicity that results from the absence of
many Emacs 24.1 features.

A.1 Old Lisp Features in Emacs 23

• Support for lexical scoping has been removed; all variables are dynamically scoped.
The lexical-binding variable has been removed, and so has the lexical argument to
eval. The defvar and defconst forms no longer mark variables as dynamic, since all
variables are dynamic.

Having only dynamic binding follows the spirit of Emacs extensibility, for it allows
any Emacs code to access any defined variable with a minimum of fuss. But See
Section 11.9.2 [Dynamic Binding Tips], page 147, vol. 1, for tips to avoid making your
programs hard to understand.

• Calling a minor mode function from Lisp with a nil or omitted argument does not
enable the minor mode unconditionally; instead, it toggles the minor mode—which is
the straightforward thing to do, since that is the behavior when invoked interactively.
One downside is that it is more troublesome to enable minor modes from hooks; you
have to do something like

(add-hook ’foo-hook (lambda () (bar-mode 1)))

or define turn-on-bar-mode and call that from the hook.

• The prog-mode dummy major mode has been removed. Instead of using it as a crutch
to meet programming mode conventions, you should explicitly ensure that your mode
follows those conventions. See Section 23.2.1 [Major Mode Conventions], page 399,
vol. 1.

• Emacs no longer supports bidirectional display and editing. Since there is no need to
worry about the insertion of right-to-left text messing up how lines and paragraphs
are displayed, the function bidi-string-mark-left-to-right has been removed; so
have many other functions and variables related to bidirectional display. Unicode
directionality characters like U+200E ("left-to-right mark") have no special effect on
display.

• Emacs windows now have most of their internal state hidden from Lisp. Internal
windows are no longer visible to Lisp; functions such as window-parent, window pa-
rameters related to window arrangement, and window-local buffer lists have all been
removed. Functions for resizing windows can delete windows if they become too small.

The “action function” feature for controlling buffer display has been removed, includ-
ing display-buffer-overriding-action and related variables, as well as the action
argument to display-buffer and other functions. The way to programmatically con-
trol how Emacs chooses a window to display a buffer is to bind the right combination
of special-display-regexps, pop-up-frames, and other variables.

• The standard completion interface has been simplified, eliminating the completion-

extra-properties variable, the metadata action flag for completion functions, and
the concept of “completion categories”. Lisp programmers may now find the choice of

Appendix A: Emacs 23 Antinews 424

methods for tuning completion less bewildering, but if a package finds the streamlined
interface insufficient for its needs, it must implement its own specialized completion
feature.

• copy-directory now behaves the same whether or not the destination is an existing
directory: if the destination exists, the contents of the first directory are copied into it
(with subdirectories handled recursively), rather than copying the first directory into
a subdirectory.

• The trash arguments for delete-file and delete-directory have been removed.
The variable delete-by-moving-to-trash must now be used with care; whenever it
is non-nil, all calls to delete-file or delete-directory use the trash.

• Because Emacs no longer supports SELinux file contexts, the preserve-selinux-context
argument to copy-file has been removed. The return value of backup-buffer no
longer has an entry for the SELinux file context.

• For mouse click input events in the text area, the Y pixel coordinate in the position
list (see Section 21.7.4 [Click Events], page 329, vol. 1) now counts from the top of the
header line, if there is one, rather than the top of the text area.

• Bindings in menu keymaps (see Section 22.3 [Format of Keymaps], page 361, vol. 1)
now sometimes get an additional cache entry in their definitions, like this:

(type item-name cache . binding)

The cache entry is used internally by Emacs to record equivalent keyboard key se-
quences for invoking the same command; Lisp programs should never use it.

• The gnutls library has been removed, and the function open-network-stream corre-
spondingly simplified. Lisp programs that want an encrypted network connection must
now call external utilities such as starttls or gnutls-cli.

• Tool bars can no longer display separators, which frees up several pixels of space on
each graphical frame.

• As part of the ongoing quest for simplicity, many other functions and variables have
been eliminated.

Appendix B: GNU Free Documentation License 425

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008, 2009 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix B: GNU Free Documentation License 426

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix B: GNU Free Documentation License 427

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix B: GNU Free Documentation License 428

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix B: GNU Free Documentation License 429

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix B: GNU Free Documentation License 430

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix B: GNU Free Documentation License 431

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 432

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix C: GNU General Public License 433

Appendix C GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

Appendix C: GNU General Public License 434

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix C: GNU General Public License 435

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

Appendix C: GNU General Public License 436

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix C: GNU General Public License 437

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

Appendix C: GNU General Public License 438

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix C: GNU General Public License 439

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

Appendix C: GNU General Public License 440

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix C: GNU General Public License 441

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

Appendix C: GNU General Public License 442

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix C: GNU General Public License 443

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Appendix D: Tips and Conventions 444

Appendix D Tips and Conventions

This chapter describes no additional features of Emacs Lisp. Instead it gives advice on mak-
ing effective use of the features described in the previous chapters, and describes conventions
Emacs Lisp programmers should follow.

You can automatically check some of the conventions described below by running the
command M-x checkdoc RET when visiting a Lisp file. It cannot check all of the conven-
tions, and not all the warnings it gives necessarily correspond to problems, but it is worth
examining them all.

D.1 Emacs Lisp Coding Conventions

Here are conventions that you should follow when writing Emacs Lisp code intended for
widespread use:

• Simply loading a package should not change Emacs’s editing behavior. Include a com-
mand or commands to enable and disable the feature, or to invoke it.

This convention is mandatory for any file that includes custom definitions. If fixing
such a file to follow this convention requires an incompatible change, go ahead and
make the incompatible change; don’t postpone it.

• You should choose a short word to distinguish your program from other Lisp programs.
The names of all global variables, constants, and functions in your program should begin
with that chosen prefix. Separate the prefix from the rest of the name with a hyphen,
‘-’. This practice helps avoid name conflicts, since all global variables in Emacs Lisp
share the same name space, and all functions share another name space1.

Occasionally, for a command name intended for users to use, it is more convenient
if some words come before the package’s name prefix. And constructs that define
functions, variables, etc., work better if they start with ‘defun’ or ‘defvar’, so put the
name prefix later on in the name.

This recommendation applies even to names for traditional Lisp primitives that are not
primitives in Emacs Lisp—such as copy-list. Believe it or not, there is more than one
plausible way to define copy-list. Play it safe; append your name prefix to produce
a name like foo-copy-list or mylib-copy-list instead.

If you write a function that you think ought to be added to Emacs under a certain
name, such as twiddle-files, don’t call it by that name in your program. Call it
mylib-twiddle-files in your program, and send mail to ‘bug-gnu-emacs@gnu.org’
suggesting we add it to Emacs. If and when we do, we can change the name easily
enough.

If one prefix is insufficient, your package can use two or three alternative common
prefixes, so long as they make sense.

• Put a call to provide at the end of each separate Lisp file. See Section 15.7 [Named
Features], page 217, vol. 1.

• If a file requires certain other Lisp programs to be loaded beforehand, then the com-
ments at the beginning of the file should say so. Also, use require to make sure they
are loaded. See Section 15.7 [Named Features], page 217, vol. 1.

1 The benefits of a Common Lisp-style package system are considered not to outweigh the costs.

Appendix D: Tips and Conventions 445

• If a file foo uses a macro defined in another file bar, but does not use any functions or
variables defined in bar, then foo should contain the following expression:

(eval-when-compile (require ’bar))

This tells Emacs to load bar just before byte-compiling foo, so that the macro definition
is available during compilation. Using eval-when-compile avoids loading bar when
the compiled version of foo is used. It should be called before the first use of the macro
in the file. See Section 13.3 [Compiling Macros], page 182, vol. 1.

• Avoid loading additional libraries at run time unless they are really needed. If your file
simply cannot work without some other library, then just require that library at the
top-level and be done with it. But if your file contains several independent features,
and only one or two require the extra library, then consider putting require statements
inside the relevant functions rather than at the top-level. Or use autoload statements
to load the extra library when needed. This way people who don’t use those aspects
of your file do not need to load the extra library.

• Please don’t require the cl package of Common Lisp extensions at run time. Use of
this package is optional, and it is not part of the standard Emacs namespace. If your
package loads cl at run time, that could cause name clashes for users who don’t use
that package.

However, there is no problem with using the cl package at compile time, with (eval-

when-compile (require ’cl)). That’s sufficient for using the macros in the cl pack-
age, because the compiler expands them before generating the byte-code.

• When defining a major mode, please follow the major mode conventions. See
Section 23.2.1 [Major Mode Conventions], page 399, vol. 1.

• When defining a minor mode, please follow the minor mode conventions. See
Section 23.3.1 [Minor Mode Conventions], page 414, vol. 1.

• If the purpose of a function is to tell you whether a certain condition is true or false,
give the function a name that ends in ‘p’ (which stands for “predicate”). If the name
is one word, add just ‘p’; if the name is multiple words, add ‘-p’. Examples are framep
and frame-live-p.

• If the purpose of a variable is to store a single function, give it a name that ends in
‘-function’. If the purpose of a variable is to store a list of functions (i.e., the variable
is a hook), please follow the naming conventions for hooks. See Section 23.1 [Hooks],
page 396, vol. 1.

• If loading the file adds functions to hooks, define a function feature-unload-hook,
where feature is the name of the feature the package provides, and make it undo any
such changes. Using unload-feature to unload the file will run this function. See
Section 15.9 [Unloading], page 220, vol. 1.

• It is a bad idea to define aliases for the Emacs primitives. Normally you should use the
standard names instead. The case where an alias may be useful is where it facilitates
backwards compatibility or portability.

• If a package needs to define an alias or a new function for compatibility with some
other version of Emacs, name it with the package prefix, not with the raw name with
which it occurs in the other version. Here is an example from Gnus, which provides
many examples of such compatibility issues.

Appendix D: Tips and Conventions 446

(defalias ’gnus-point-at-bol

(if (fboundp ’point-at-bol)

’point-at-bol

’line-beginning-position))

• Redefining or advising an Emacs primitive is a bad idea. It may do the right thing
for a particular program, but there is no telling what other programs might break as a
result.

• It is likewise a bad idea for one Lisp package to advise a function in another Lisp
package (see Chapter 17 [Advising Functions], page 233, vol. 1).

• Avoid using eval-after-load in libraries and packages (see Section 15.10 [Hooks for
Loading], page 221, vol. 1). This feature is meant for personal customizations; using it
in a Lisp program is unclean, because it modifies the behavior of another Lisp file in a
way that’s not visible in that file. This is an obstacle for debugging, much like advising
a function in the other package.

• If a file does replace any of the standard functions or library programs of Emacs, promi-
nent comments at the beginning of the file should say which functions are replaced,
and how the behavior of the replacements differs from that of the originals.

• Constructs that define a function or variable should be macros, not functions, and their
names should start with ‘define-’. The macro should receive the name to be defined
as the first argument. That will help various tools find the definition automatically.
Avoid constructing the names in the macro itself, since that would confuse these tools.

• In some other systems there is a convention of choosing variable names that begin and
end with ‘*’. We don’t use that convention in Emacs Lisp, so please don’t use it in
your programs. (Emacs uses such names only for special-purpose buffers.) People will
find Emacs more coherent if all libraries use the same conventions.

• If your program contains non-ASCII characters in string or character constants, you
should make sure Emacs always decodes these characters the same way, regardless of
the user’s settings. The easiest way to do this is to use the coding system utf-8-emacs

(see Section 33.9.1 [Coding System Basics], page 193), and specify that coding in the
‘-*-’ line or the local variables list. See Section “Local Variables in Files” in The GNU
Emacs Manual.

;; XXX.el -*- coding: utf-8-emacs; -*-

• Indent the file using the default indentation parameters.

• Don’t make a habit of putting close-parentheses on lines by themselves; Lisp program-
mers find this disconcerting.

• Please put a copyright notice and copying permission notice on the file if you distribute
copies. See Section D.8 [Library Headers], page 454.

D.2 Key Binding Conventions

• Many special major modes, like Dired, Info, Compilation, and Occur, are designed to
handle read-only text that contains hyper-links. Such a major mode should redefine
mouse-2 and RET to follow the links. It should also set up a follow-link condition,
so that the link obeys mouse-1-click-follows-link. See Section 32.19.8 [Clickable

Appendix D: Tips and Conventions 447

Text], page 169. See Section 38.17 [Buttons], page 366, for an easy method of imple-
menting such clickable links.

• Don’t define C-c letter as a key in Lisp programs. Sequences consisting of C-c and
a letter (either upper or lower case) are reserved for users; they are the only sequences
reserved for users, so do not block them.

Changing all the Emacs major modes to respect this convention was a lot of work;
abandoning this convention would make that work go to waste, and inconvenience
users. Please comply with it.

• Function keys F5 through F9 without modifier keys are also reserved for users to define.

• Sequences consisting of C-c followed by a control character or a digit are reserved for
major modes.

• Sequences consisting of C-c followed by {, }, <, >, : or ; are also reserved for major
modes.

• Sequences consisting of C-c followed by any other punctuation character are allocated
for minor modes. Using them in a major mode is not absolutely prohibited, but if you
do that, the major mode binding may be shadowed from time to time by minor modes.

• Don’t bind C-h following any prefix character (including C-c). If you don’t bind C-h, it
is automatically available as a help character for listing the subcommands of the prefix
character.

• Don’t bind a key sequence ending in ESC except following another ESC. (That is, it is
OK to bind a sequence ending in ESC ESC.)

The reason for this rule is that a non-prefix binding for ESC in any context prevents
recognition of escape sequences as function keys in that context.

• Similarly, don’t bind a key sequence ending in C-g, since that is commonly used to
cancel a key sequence.

• Anything that acts like a temporary mode or state that the user can enter and leave
should define ESC ESC or ESC ESC ESC as a way to escape.

For a state that accepts ordinary Emacs commands, or more generally any kind of state
in which ESC followed by a function key or arrow key is potentially meaningful, then you
must not define ESC ESC, since that would preclude recognizing an escape sequence after
ESC. In these states, you should define ESC ESC ESC as the way to escape. Otherwise,
define ESC ESC instead.

D.3 Emacs Programming Tips

Following these conventions will make your program fit better into Emacs when it runs.

• Don’t use next-line or previous-line in programs; nearly always, forward-line
is more convenient as well as more predictable and robust. See Section 30.2.4 [Text
Lines], page 102.

• Don’t call functions that set the mark, unless setting the mark is one of the intended
features of your program. The mark is a user-level feature, so it is incorrect to change
the mark except to supply a value for the user’s benefit. See Section 31.7 [The Mark],
page 117.

In particular, don’t use any of these functions:

Appendix D: Tips and Conventions 448

• beginning-of-buffer, end-of-buffer

• replace-string, replace-regexp

• insert-file, insert-buffer

If you just want to move point, or replace a certain string, or insert a file or buffer’s
contents, without any of the other features intended for interactive users, you can
replace these functions with one or two lines of simple Lisp code.

• Use lists rather than vectors, except when there is a particular reason to use a vector.
Lisp has more facilities for manipulating lists than for vectors, and working with lists
is usually more convenient.

Vectors are advantageous for tables that are substantial in size and are accessed in
random order (not searched front to back), provided there is no need to insert or delete
elements (only lists allow that).

• The recommended way to show a message in the echo area is with the message function,
not princ. See Section 38.4 [The Echo Area], page 302.

• When you encounter an error condition, call the function error (or signal). The
function error does not return. See Section 10.5.3.1 [Signaling Errors], page 128,
vol. 1.

Don’t use message, throw, sleep-for, or beep to report errors.

• An error message should start with a capital letter but should not end with a period.

• A question asked in the minibuffer with yes-or-no-p or y-or-n-p should start with a
capital letter and end with ‘? ’.

• When you mention a default value in a minibuffer prompt, put it and the word
‘default’ inside parentheses. It should look like this:

Enter the answer (default 42):

• In interactive, if you use a Lisp expression to produce a list of arguments, don’t
try to provide the “correct” default values for region or position arguments. Instead,
provide nil for those arguments if they were not specified, and have the function body
compute the default value when the argument is nil. For instance, write this:

(defun foo (pos)

(interactive

(list (if specified specified-pos)))

(unless pos (setq pos default-pos))

...)

rather than this:

(defun foo (pos)

(interactive

(list (if specified specified-pos

default-pos)))

...)

This is so that repetition of the command will recompute these defaults based on the
current circumstances.

You do not need to take such precautions when you use interactive specs ‘d’, ‘m’ and
‘r’, because they make special arrangements to recompute the argument values on
repetition of the command.

Appendix D: Tips and Conventions 449

• Many commands that take a long time to execute display a message that says something
like ‘Operating...’ when they start, and change it to ‘Operating...done’ when they
finish. Please keep the style of these messages uniform: no space around the ellipsis,
and no period after ‘done’. See Section 38.4.2 [Progress], page 303, for an easy way to
generate such messages.

• Try to avoid using recursive edits. Instead, do what the Rmail e command does: use
a new local keymap that contains a command defined to switch back to the old local
keymap. Or simply switch to another buffer and let the user switch back at will. See
Section 21.13 [Recursive Editing], page 355, vol. 1.

D.4 Tips for Making Compiled Code Fast

Here are ways of improving the execution speed of byte-compiled Lisp programs.

• Profile your program with the ‘elp’ library. See the file ‘elp.el’ for instructions.

• Check the speed of individual Emacs Lisp forms using the ‘benchmark’ library. See the
functions benchmark-run and benchmark-run-compiled in ‘benchmark.el’.

• Use iteration rather than recursion whenever possible. Function calls are slow in Emacs
Lisp even when a compiled function is calling another compiled function.

• Using the primitive list-searching functions memq, member, assq, or assoc is even faster
than explicit iteration. It can be worth rearranging a data structure so that one of
these primitive search functions can be used.

• Certain built-in functions are handled specially in byte-compiled code, avoiding the
need for an ordinary function call. It is a good idea to use these functions rather than
alternatives. To see whether a function is handled specially by the compiler, examine
its byte-compile property. If the property is non-nil, then the function is handled
specially.

For example, the following input will show you that aref is compiled specially (see
Section 6.3 [Array Functions], page 89, vol. 1):

(get ’aref ’byte-compile)

⇒ byte-compile-two-args

Note that in this case (and many others), you must first load the ‘bytecomp’ library,
which defines the byte-compile property.

• If calling a small function accounts for a substantial part of your program’s running
time, make the function inline. This eliminates the function call overhead. Since
making a function inline reduces the flexibility of changing the program, don’t do it
unless it gives a noticeable speedup in something slow enough that users care about
the speed. See Section 12.11 [Inline Functions], page 177, vol. 1.

D.5 Tips for Avoiding Compiler Warnings

• Try to avoid compiler warnings about undefined free variables, by adding dummy
defvar definitions for these variables, like this:

(defvar foo)

Such a definition has no effect except to tell the compiler not to warn about uses of
the variable foo in this file.

Appendix D: Tips and Conventions 450

• Similarly, to avoid a compiler warning about an undefined function that you know will
be defined, use a declare-function statement (see Section 12.12 [Declaring Functions],
page 178, vol. 1).

• If you use many functions and variables from a certain file, you can add a require for
that package to avoid compilation warnings for them. For instance,

(eval-when-compile

(require ’foo))

• If you bind a variable in one function, and use it or set it in another function, the
compiler warns about the latter function unless the variable has a definition. But
adding a definition would be unclean if the variable has a short name, since Lisp
packages should not define short variable names. The right thing to do is to rename
this variable to start with the name prefix used for the other functions and variables
in your package.

• The last resort for avoiding a warning, when you want to do something that is usually
a mistake but you know is not a mistake in your usage, is to put it inside with-no-

warnings. See Section 16.6 [Compiler Errors], page 228, vol. 1.

D.6 Tips for Documentation Strings

Here are some tips and conventions for the writing of documentation strings. You can check
many of these conventions by running the command M-x checkdoc-minor-mode.

• Every command, function, or variable intended for users to know about should have a
documentation string.

• An internal variable or subroutine of a Lisp program might as well have a documenta-
tion string. Documentation strings take up very little space in a running Emacs.

• Format the documentation string so that it fits in an Emacs window on an 80-column
screen. It is a good idea for most lines to be no wider than 60 characters. The first line
should not be wider than 67 characters or it will look bad in the output of apropos.

You can fill the text if that looks good. However, rather than blindly filling the entire
documentation string, you can often make it much more readable by choosing certain
line breaks with care. Use blank lines between sections if the documentation string is
long.

• The first line of the documentation string should consist of one or two complete sen-
tences that stand on their own as a summary. M-x apropos displays just the first line,
and if that line’s contents don’t stand on their own, the result looks bad. In particular,
start the first line with a capital letter and end it with a period.

For a function, the first line should briefly answer the question, “What does this func-
tion do?” For a variable, the first line should briefly answer the question, “What does
this value mean?”

Don’t limit the documentation string to one line; use as many lines as you need to
explain the details of how to use the function or variable. Please use complete sentences
for the rest of the text too.

• When the user tries to use a disabled command, Emacs displays just the first paragraph
of its documentation string—everything through the first blank line. If you wish, you

Appendix D: Tips and Conventions 451

can choose which information to include before the first blank line so as to make this
display useful.

• The first line should mention all the important arguments of the function, and should
mention them in the order that they are written in a function call. If the function
has many arguments, then it is not feasible to mention them all in the first line; in
that case, the first line should mention the first few arguments, including the most
important arguments.

• When a function’s documentation string mentions the value of an argument of the
function, use the argument name in capital letters as if it were a name for that value.
Thus, the documentation string of the function eval refers to its first argument as
‘FORM’, because the actual argument name is form:

Evaluate FORM and return its value.

Also write metasyntactic variables in capital letters, such as when you show the decom-
position of a list or vector into subunits, some of which may vary. ‘KEY’ and ‘VALUE’ in
the following example illustrate this practice:

The argument TABLE should be an alist whose elements

have the form (KEY . VALUE). Here, KEY is ...

• Never change the case of a Lisp symbol when you mention it in a doc string. If the
symbol’s name is foo, write “foo”, not “Foo” (which is a different symbol).

This might appear to contradict the policy of writing function argument values, but
there is no real contradiction; the argument value is not the same thing as the symbol
that the function uses to hold the value.

If this puts a lower-case letter at the beginning of a sentence and that annoys you,
rewrite the sentence so that the symbol is not at the start of it.

• Do not start or end a documentation string with whitespace.

• Do not indent subsequent lines of a documentation string so that the text is lined up
in the source code with the text of the first line. This looks nice in the source code,
but looks bizarre when users view the documentation. Remember that the indentation
before the starting double-quote is not part of the string!

• When a documentation string refers to a Lisp symbol, write it as it would be printed
(which usually means in lower case), with single-quotes around it. For example:
‘‘lambda’’. There are two exceptions: write t and nil without single-quotes.

Help mode automatically creates a hyperlink when a documentation string uses a sym-
bol name inside single quotes, if the symbol has either a function or a variable definition.
You do not need to do anything special to make use of this feature. However, when a
symbol has both a function definition and a variable definition, and you want to refer
to just one of them, you can specify which one by writing one of the words ‘variable’,
‘option’, ‘function’, or ‘command’, immediately before the symbol name. (Case makes
no difference in recognizing these indicator words.) For example, if you write

This function sets the variable ‘buffer-file-name’.

then the hyperlink will refer only to the variable documentation of buffer-file-name,
and not to its function documentation.

Appendix D: Tips and Conventions 452

If a symbol has a function definition and/or a variable definition, but those are irrelevant
to the use of the symbol that you are documenting, you can write the words ‘symbol’
or ‘program’ before the symbol name to prevent making any hyperlink. For example,

If the argument KIND-OF-RESULT is the symbol ‘list’,

this function returns a list of all the objects

that satisfy the criterion.

does not make a hyperlink to the documentation, irrelevant here, of the function list.

Normally, no hyperlink is made for a variable without variable documentation. You can
force a hyperlink for such variables by preceding them with one of the words ‘variable’
or ‘option’.

Hyperlinks for faces are only made if the face name is preceded or followed by the word
‘face’. In that case, only the face documentation will be shown, even if the symbol is
also defined as a variable or as a function.

To make a hyperlink to Info documentation, write the name of the Info node (or anchor)
in single quotes, preceded by ‘info node’, ‘Info node’, ‘info anchor’ or ‘Info anchor’.
The Info file name defaults to ‘emacs’. For example,

See Info node ‘Font Lock’ and Info node ‘(elisp)Font Lock Basics’.

Finally, to create a hyperlink to URLs, write the URL in single quotes, preceded by
‘URL’. For example,

The home page for the GNU project has more information (see URL

‘http://www.gnu.org/’).

• Don’t write key sequences directly in documentation strings. Instead, use the ‘\\[...]’
construct to stand for them. For example, instead of writing ‘C-f’, write the construct
‘\\[forward-char]’. When Emacs displays the documentation string, it substitutes
whatever key is currently bound to forward-char. (This is normally ‘C-f’, but it may
be some other character if the user has moved key bindings.) See Section 24.3 [Keys
in Documentation], page 454, vol. 1.

• In documentation strings for a major mode, you will want to refer to the key bindings of
that mode’s local map, rather than global ones. Therefore, use the construct ‘\\<...>’
once in the documentation string to specify which key map to use. Do this before the
first use of ‘\\[...]’. The text inside the ‘\\<...>’ should be the name of the variable
containing the local keymap for the major mode.

It is not practical to use ‘\\[...]’ very many times, because display of the documen-
tation string will become slow. So use this to describe the most important commands
in your major mode, and then use ‘\\{...}’ to display the rest of the mode’s keymap.

• For consistency, phrase the verb in the first sentence of a function’s documentation
string as an imperative—for instance, use “Return the cons of A and B.” in preference
to “Returns the cons of A and B.” Usually it looks good to do likewise for the rest
of the first paragraph. Subsequent paragraphs usually look better if each sentence is
indicative and has a proper subject.

• The documentation string for a function that is a yes-or-no predicate should start with
words such as “Return t if”, to indicate explicitly what constitutes “truth”. The word
“return” avoids starting the sentence with lower-case “t”, which could be somewhat
distracting.

Appendix D: Tips and Conventions 453

• If a line in a documentation string begins with an open-parenthesis, write a backslash
before the open-parenthesis, like this:

The argument FOO can be either a number

\(a buffer position) or a string (a file name).

This prevents the open-parenthesis from being treated as the start of a defun (see
Section “Defuns” in The GNU Emacs Manual).

• Write documentation strings in the active voice, not the passive, and in the present
tense, not the future. For instance, use “Return a list containing A and B.” instead of
“A list containing A and B will be returned.”

• Avoid using the word “cause” (or its equivalents) unnecessarily. Instead of, “Cause
Emacs to display text in boldface”, write just “Display text in boldface”.

• Avoid using “iff” (a mathematics term meaning “if and only if”), since many people
are unfamiliar with it and mistake it for a typo. In most cases, the meaning is clear
with just “if”. Otherwise, try to find an alternate phrasing that conveys the meaning.

• When a command is meaningful only in a certain mode or situation, do mention that
in the documentation string. For example, the documentation of dired-find-file is:

In Dired, visit the file or directory named on this line.

• When you define a variable that represents an option users might want to set, use
defcustom. See Section 11.5 [Defining Variables], page 141, vol. 1.

• The documentation string for a variable that is a yes-or-no flag should start with words
such as “Non-nil means”, to make it clear that all non-nil values are equivalent and
indicate explicitly what nil and non-nil mean.

D.7 Tips on Writing Comments

We recommend these conventions for comments:

‘;’ Comments that start with a single semicolon, ‘;’, should all be aligned to the
same column on the right of the source code. Such comments usually explain
how the code on that line does its job. For example:

(setq base-version-list ; there was a base

(assoc (substring fn 0 start-vn) ; version to which

file-version-assoc-list)) ; this looks like

; a subversion

‘;;’ Comments that start with two semicolons, ‘;;’, should be aligned to the same
level of indentation as the code. Such comments usually describe the purpose
of the following lines or the state of the program at that point. For example:

(prog1 (setq auto-fill-function

...

...

;; Update mode line.

(force-mode-line-update)))

We also normally use two semicolons for comments outside functions.
;; This Lisp code is run in Emacs when it is to operate as

;; a server for other processes.

If a function has no documentation string, it should instead have a
two-semicolon comment right before the function, explaining what the function

Appendix D: Tips and Conventions 454

does and how to call it properly. Explain precisely what each argument means
and how the function interprets its possible values. It is much better to
convert such comments to documentation strings, though.

‘;;;’ Comments that start with three semicolons, ‘;;;’, should start at the left mar-
gin. These are used, occasionally, for comments within functions that should
start at the margin. We also use them sometimes for comments that are be-
tween functions—whether to use two or three semicolons depends on whether
the comment should be considered a “heading” by Outline minor mode. By
default, comments starting with at least three semicolons (followed by a sin-
gle space and a non-whitespace character) are considered headings, comments
starting with two or fewer are not.

Another use for triple-semicolon comments is for commenting out lines within a
function. We use three semicolons for this precisely so that they remain at the
left margin. By default, Outline minor mode does not consider a comment to
be a heading (even if it starts with at least three semicolons) if the semicolons
are followed by at least two spaces. Thus, if you add an introductory comment
to the commented out code, make sure to indent it by at least two spaces after
the three semicolons.

(defun foo (a)

;;; This is no longer necessary.

;;; (force-mode-line-update)

(message "Finished with %s" a))

When commenting out entire functions, use two semicolons.

‘;;;;’ Comments that start with four semicolons, ‘;;;;’, should be aligned to the left
margin and are used for headings of major sections of a program. For example:

;;;; The kill ring

Generally speaking, the M-; (comment-dwim) command automatically starts a comment of
the appropriate type; or indents an existing comment to the right place, depending on the
number of semicolons. See Section “Manipulating Comments” in The GNU Emacs Manual.

D.8 Conventional Headers for Emacs Libraries

Emacs has conventions for using special comments in Lisp libraries to divide them into
sections and give information such as who wrote them. Using a standard format for these
items makes it easier for tools (and people) to extract the relevant information. This section
explains these conventions, starting with an example:

;;; foo.el --- Support for the Foo programming language

;; Copyright (C) 2010-2012 Your Name

;; Author: Your Name <yourname@example.com>

;; Maintainer: Someone Else <someone@example.com>

;; Created: 14 Jul 2010

Appendix D: Tips and Conventions 455

;; Keywords: languages

;; This file is not part of GNU Emacs.

;; This file is free software...

...

;; along with this file. If not, see <http://www.gnu.org/licenses/>.

The very first line should have this format:

;;; filename --- description

The description should be contained in one line. If the file needs a ‘-*-’ specification, put
it after description. If this would make the first line too long, use a Local Variables section
at the end of the file.

The copyright notice usually lists your name (if you wrote the file). If you have an
employer who claims copyright on your work, you might need to list them instead. Do
not say that the copyright holder is the Free Software Foundation (or that the file is part
of GNU Emacs) unless your file has been accepted into the Emacs distribution. For more
information on the form of copyright and license notices, see the guide on the GNU website.

After the copyright notice come several header comment lines, each beginning with ‘;;
header-name:’. Here is a table of the conventional possibilities for header-name:

‘Author’ This line states the name and email address of at least the principal author of
the library. If there are multiple authors, list them on continuation lines led by
;; and whitespace (this is easier for tools to parse than having more than one
author on one line). We recommend including a contact email address, of the
form ‘<...>’. For example:

;; Author: Your Name <yourname@example.com>

;; Someone Else <someone@example.com>

;; Another Person <another@example.com>

‘Maintainer’
This header has the same format as the Author header. It lists the person(s)
who currently maintain(s) the file (respond to bug reports, etc.).

If there is no maintainer line, the person(s) in the Author field is/are presumed
to be the maintainers. Some files in Emacs use ‘FSF’ for the maintainer. This
means that the original author is no longer responsible for the file, and that it
is maintained as part of Emacs.

‘Created’ This optional line gives the original creation date of the file, and is for historical
interest only.

‘Version’ If you wish to record version numbers for the individual Lisp program, put them
in this line. Lisp files distributed with Emacs generally do not have a ‘Version’
header, since the version number of Emacs itself serves the same purpose. If
you are distributing a collection of multiple files, we recommend not writing
the version in every file, but only the main one.

‘Keywords’
This line lists keywords for the finder-by-keyword help command. Please use
that command to see a list of the meaningful keywords.

http://www.gnu.org/licenses/gpl-howto.html

Appendix D: Tips and Conventions 456

This field is how people will find your package when they’re looking for things
by topic. To separate the keywords, you can use spaces, commas, or both.

The name of this field is unfortunate, since people often assume it is the place
to write arbitrary keywords that describe their package, rather than just the
relevant Finder keywords.

‘Package-Version’
If ‘Version’ is not suitable for use by the package manager, then a package can
define ‘Package-Version’; it will be used instead. This is handy if ‘Version’ is
an RCS id or something else that cannot be parsed by version-to-list. See
Section 40.1 [Packaging Basics], page 418.

‘Package-Requires’
If this exists, it names packages on which the current package depends for
proper operation. See Section 40.1 [Packaging Basics], page 418. This is used
by the package manager both at download time (to ensure that a complete set
of packages is downloaded) and at activation time (to ensure that a package is
only activated if all its dependencies have been).

Its format is a list of lists. The car of each sub-list is the name of a package, as
a symbol. The cadr of each sub-list is the minimum acceptable version number,
as a string. For instance:

;; Package-Requires: ((gnus "1.0") (bubbles "2.7.2"))

The package code automatically defines a package named ‘emacs’ with the ver-
sion number of the currently running Emacs. This can be used to require a
minimal version of Emacs for a package.

Just about every Lisp library ought to have the ‘Author’ and ‘Keywords’ header comment
lines. Use the others if they are appropriate. You can also put in header lines with other
header names—they have no standard meanings, so they can’t do any harm.

We use additional stylized comments to subdivide the contents of the library file. These
should be separated from anything else by blank lines. Here is a table of them:

‘;;; Commentary:’
This begins introductory comments that explain how the library works. It
should come right after the copying permissions, terminated by a ‘Change Log’,
‘History’ or ‘Code’ comment line. This text is used by the Finder package, so
it should make sense in that context.

‘;;; Change Log:’
This begins an optional log of changes to the file over time. Don’t put too
much information in this section—it is better to keep the detailed logs in a
separate ‘ChangeLog’ file (as Emacs does), and/or to use a version control
system. ‘History’ is an alternative to ‘Change Log’.

‘;;; Code:’
This begins the actual code of the program.

‘;;; filename ends here’
This is the footer line; it appears at the very end of the file. Its purpose is to
enable people to detect truncated versions of the file from the lack of a footer
line.

Appendix E: GNU Emacs Internals 457

Appendix E GNU Emacs Internals

This chapter describes how the runnable Emacs executable is dumped with the preloaded
Lisp libraries in it, how storage is allocated, and some internal aspects of GNU Emacs that
may be of interest to C programmers.

E.1 Building Emacs

This section explains the steps involved in building the Emacs executable. You don’t have
to know this material to build and install Emacs, since the makefiles do all these things
automatically. This information is pertinent to Emacs developers.

Compilation of the C source files in the ‘src’ directory produces an executable file called
‘temacs’, also called a bare impure Emacs. It contains the Emacs Lisp interpreter and I/O
routines, but not the editing commands.

The command temacs -l loadup would run ‘temacs’ and direct it to load ‘loadup.el’.
The loadup library loads additional Lisp libraries, which set up the normal Emacs editing
environment. After this step, the Emacs executable is no longer bare.

Because it takes some time to load the standard Lisp files, the ‘temacs’ executable
usually isn’t run directly by users. Instead, as one of the last steps of building Emacs,
the command ‘temacs -batch -l loadup dump’ is run. The special ‘dump’ argument causes
temacs to dump out an executable program, called ‘emacs’, which has all the standard Lisp
files preloaded. (The ‘-batch’ argument prevents ‘temacs’ from trying to initialize any of
its data on the terminal, so that the tables of terminal information are empty in the dumped
Emacs.)

The dumped ‘emacs’ executable (also called a pure Emacs) is the one which is installed.
The variable preloaded-file-list stores a list of the Lisp files preloaded into the dumped
Emacs. If you port Emacs to a new operating system, and are not able to implement
dumping, then Emacs must load ‘loadup.el’ each time it starts.

You can specify additional files to preload by writing a library named ‘site-load.el’
that loads them. You may need to rebuild Emacs with an added definition

#define SITELOAD_PURESIZE_EXTRA n

to make n added bytes of pure space to hold the additional files; see ‘src/puresize.h’. (Try
adding increments of 20000 until it is big enough.) However, the advantage of preloading
additional files decreases as machines get faster. On modern machines, it is usually not
advisable.

After ‘loadup.el’ reads ‘site-load.el’, it finds the documentation strings for primitive
and preloaded functions (and variables) in the file ‘etc/DOC’ where they are stored, by calling
Snarf-documentation (see [Accessing Documentation], page 454, vol. 1).

You can specify other Lisp expressions to execute just before dumping by putting them
in a library named ‘site-init.el’. This file is executed after the documentation strings
are found.

If you want to preload function or variable definitions, there are three ways you can do
this and make their documentation strings accessible when you subsequently run Emacs:

• Arrange to scan these files when producing the ‘etc/DOC’ file, and load them with
‘site-load.el’.

Appendix E: GNU Emacs Internals 458

• Load the files with ‘site-init.el’, then copy the files into the installation directory
for Lisp files when you install Emacs.

• Specify a nil value for byte-compile-dynamic-docstrings as a local variable in each
of these files, and load them with either ‘site-load.el’ or ‘site-init.el’. (This
method has the drawback that the documentation strings take up space in Emacs all
the time.)

It is not advisable to put anything in ‘site-load.el’ or ‘site-init.el’ that would
alter any of the features that users expect in an ordinary unmodified Emacs. If you feel
you must override normal features for your site, do it with ‘default.el’, so that users can
override your changes if they wish. See Section 39.1.1 [Startup Summary], page 386.

In a package that can be preloaded, it is sometimes necessary (or useful) to delay certain
evaluations until Emacs subsequently starts up. The vast majority of such cases relate to the
values of customizable variables. For example, tutorial-directory is a variable defined in
‘startup.el’, which is preloaded. The default value is set based on data-directory. The
variable needs to access the value of data-directory when Emacs starts, not when it is
dumped, because the Emacs executable has probably been installed in a different location
since it was dumped.

[Function]custom-initialize-delay symbol value
This function delays the initialization of symbol to the next Emacs start. You nor-
mally use this function by specifying it as the :initialize property of a customizable
variable. (The argument value is unused, and is provided only for compatibility with
the form Custom expects.)

In the unlikely event that you need a more general functionality than custom-

initialize-delay provides, you can use before-init-hook (see Section 39.1.1 [Startup
Summary], page 386).

[Function]dump-emacs to-file from-file
This function dumps the current state of Emacs into an executable file to-file. It takes
symbols from from-file (this is normally the executable file ‘temacs’).

If you want to use this function in an Emacs that was already dumped, you must run
Emacs with ‘-batch’.

E.2 Pure Storage

Emacs Lisp uses two kinds of storage for user-created Lisp objects: normal storage and
pure storage. Normal storage is where all the new data created during an Emacs session
are kept (see Section E.3 [Garbage Collection], page 459). Pure storage is used for certain
data in the preloaded standard Lisp files—data that should never change during actual use
of Emacs.

Pure storage is allocated only while temacs is loading the standard preloaded Lisp li-
braries. In the file ‘emacs’, it is marked as read-only (on operating systems that permit
this), so that the memory space can be shared by all the Emacs jobs running on the ma-
chine at once. Pure storage is not expandable; a fixed amount is allocated when Emacs is
compiled, and if that is not sufficient for the preloaded libraries, ‘temacs’ allocates dynamic
memory for the part that didn’t fit. The resulting image will work, but garbage collection

Appendix E: GNU Emacs Internals 459

(see Section E.3 [Garbage Collection], page 459) is disabled in this situation, causing a
memory leak. Such an overflow normally won’t happen unless you try to preload additional
libraries or add features to the standard ones. Emacs will display a warning about the
overflow when it starts. If this happens, you should increase the compilation parameter
SYSTEM_PURESIZE_EXTRA in the file ‘src/puresize.h’ and rebuild Emacs.

[Function]purecopy object
This function makes a copy in pure storage of object, and returns it. It copies a string
by simply making a new string with the same characters, but without text properties,
in pure storage. It recursively copies the contents of vectors and cons cells. It does
not make copies of other objects such as symbols, but just returns them unchanged.
It signals an error if asked to copy markers.

This function is a no-op except while Emacs is being built and dumped; it is usually
called only in preloaded Lisp files.

[Variable]pure-bytes-used
The value of this variable is the number of bytes of pure storage allocated so far.
Typically, in a dumped Emacs, this number is very close to the total amount of pure
storage available—if it were not, we would preallocate less.

[Variable]purify-flag
This variable determines whether defun should make a copy of the function definition
in pure storage. If it is non-nil, then the function definition is copied into pure
storage.

This flag is t while loading all of the basic functions for building Emacs initially
(allowing those functions to be shareable and non-collectible). Dumping Emacs as an
executable always writes nil in this variable, regardless of the value it actually has
before and after dumping.

You should not change this flag in a running Emacs.

E.3 Garbage Collection

When a program creates a list or the user defines a new function (such as by loading a
library), that data is placed in normal storage. If normal storage runs low, then Emacs
asks the operating system to allocate more memory. Different types of Lisp objects, such
as symbols, cons cells, markers, etc., are segregated in distinct blocks in memory. (Vectors,
long strings, buffers and certain other editing types, which are fairly large, are allocated in
individual blocks, one per object, while small strings are packed into blocks of 8k bytes.)

It is quite common to use some storage for a while, then release it by (for example)
killing a buffer or deleting the last pointer to an object. Emacs provides a garbage collector
to reclaim this abandoned storage. The garbage collector operates by finding and marking
all Lisp objects that are still accessible to Lisp programs. To begin with, it assumes all
the symbols, their values and associated function definitions, and any data presently on the
stack, are accessible. Any objects that can be reached indirectly through other accessible
objects are also accessible.

When marking is finished, all objects still unmarked are garbage. No matter what the
Lisp program or the user does, it is impossible to refer to them, since there is no longer a

Appendix E: GNU Emacs Internals 460

way to reach them. Their space might as well be reused, since no one will miss them. The
second (“sweep”) phase of the garbage collector arranges to reuse them.

The sweep phase puts unused cons cells onto a free list for future allocation; likewise for
symbols and markers. It compacts the accessible strings so they occupy fewer 8k blocks;
then it frees the other 8k blocks. Vectors, buffers, windows, and other large objects are
individually allocated and freed using malloc and free.

Common Lisp note: Unlike other Lisps, GNU Emacs Lisp does not call the
garbage collector when the free list is empty. Instead, it simply requests the
operating system to allocate more storage, and processing continues until gc-
cons-threshold bytes have been used.

This means that you can make sure that the garbage collector will not run
during a certain portion of a Lisp program by calling the garbage collector
explicitly just before it (provided that portion of the program does not use so
much space as to force a second garbage collection).

[Command]garbage-collect
This command runs a garbage collection, and returns information on the amount of
space in use. (Garbage collection can also occur spontaneously if you use more than
gc-cons-threshold bytes of Lisp data since the previous garbage collection.)

garbage-collect returns a list containing the following information:

((used-conses . free-conses)

(used-syms . free-syms)

(used-miscs . free-miscs)

used-string-chars

used-vector-slots

(used-floats . free-floats)

(used-intervals . free-intervals)

(used-strings . free-strings))

Here is an example:

(garbage-collect)

⇒ ((106886 . 13184) (9769 . 0)

(7731 . 4651) 347543 121628

(31 . 94) (1273 . 168)

(25474 . 3569))

Here is a table explaining each element:

used-conses
The number of cons cells in use.

free-conses
The number of cons cells for which space has been obtained from the
operating system, but that are not currently being used.

used-syms The number of symbols in use.

free-syms The number of symbols for which space has been obtained from the op-
erating system, but that are not currently being used.

Appendix E: GNU Emacs Internals 461

used-miscs
The number of miscellaneous objects in use. These include markers and
overlays, plus certain objects not visible to users.

free-miscs The number of miscellaneous objects for which space has been obtained
from the operating system, but that are not currently being used.

used-string-chars
The total size of all strings, in characters.

used-vector-slots
The total number of elements of existing vectors.

used-floats
The number of floats in use.

free-floats The number of floats for which space has been obtained from the operat-
ing system, but that are not currently being used.

used-intervals
The number of intervals in use. Intervals are an internal data structure
used for representing text properties.

free-intervals
The number of intervals for which space has been obtained from the
operating system, but that are not currently being used.

used-strings
The number of strings in use.

free-strings
The number of string headers for which the space was obtained from the
operating system, but which are currently not in use. (A string object
consists of a header and the storage for the string text itself; the latter is
only allocated when the string is created.)

If there was overflow in pure space (see Section E.2 [Pure Storage], page 458),
garbage-collect returns nil, because a real garbage collection cannot be done.

[User Option]garbage-collection-messages
If this variable is non-nil, Emacs displays a message at the beginning and end of
garbage collection. The default value is nil.

[Variable]post-gc-hook
This is a normal hook that is run at the end of garbage collection. Garbage collection
is inhibited while the hook functions run, so be careful writing them.

[User Option]gc-cons-threshold
The value of this variable is the number of bytes of storage that must be allocated for
Lisp objects after one garbage collection in order to trigger another garbage collection.
A cons cell counts as eight bytes, a string as one byte per character plus a few bytes
of overhead, and so on; space allocated to the contents of buffers does not count.
Note that the subsequent garbage collection does not happen immediately when the
threshold is exhausted, but only the next time the Lisp evaluator is called.

Appendix E: GNU Emacs Internals 462

The initial threshold value is 800,000. If you specify a larger value, garbage collection
will happen less often. This reduces the amount of time spent garbage collecting, but
increases total memory use. You may want to do this when running a program that
creates lots of Lisp data.

You can make collections more frequent by specifying a smaller value, down to 10,000.
A value less than 10,000 will remain in effect only until the subsequent garbage col-
lection, at which time garbage-collect will set the threshold back to 10,000.

[User Option]gc-cons-percentage
The value of this variable specifies the amount of consing before a garbage collection
occurs, as a fraction of the current heap size. This criterion and gc-cons-threshold

apply in parallel, and garbage collection occurs only when both criteria are satisfied.

As the heap size increases, the time to perform a garbage collection increases. Thus,
it can be desirable to do them less frequently in proportion.

The value returned by garbage-collect describes the amount of memory used by Lisp
data, broken down by data type. By contrast, the function memory-limit provides infor-
mation on the total amount of memory Emacs is currently using.

[Function]memory-limit
This function returns the address of the last byte Emacs has allocated, divided by
1024. We divide the value by 1024 to make sure it fits in a Lisp integer.

You can use this to get a general idea of how your actions affect the memory usage.

[Variable]memory-full
This variable is t if Emacs is nearly out of memory for Lisp objects, and nil otherwise.

[Function]memory-use-counts
This returns a list of numbers that count the number of objects created in this Emacs
session. Each of these counters increments for a certain kind of object. See the
documentation string for details.

[Variable]gcs-done
This variable contains the total number of garbage collections done so far in this
Emacs session.

[Variable]gc-elapsed
This variable contains the total number of seconds of elapsed time during garbage
collection so far in this Emacs session, as a floating point number.

E.4 Memory Usage

These functions and variables give information about the total amount of memory allocation
that Emacs has done, broken down by data type. Note the difference between these and the
values returned by garbage-collect; those count objects that currently exist, but these
count the number or size of all allocations, including those for objects that have since been
freed.

[Variable]cons-cells-consed
The total number of cons cells that have been allocated so far in this Emacs session.

Appendix E: GNU Emacs Internals 463

[Variable]floats-consed
The total number of floats that have been allocated so far in this Emacs session.

[Variable]vector-cells-consed
The total number of vector cells that have been allocated so far in this Emacs session.

[Variable]symbols-consed
The total number of symbols that have been allocated so far in this Emacs session.

[Variable]string-chars-consed
The total number of string characters that have been allocated so far in this session.

[Variable]misc-objects-consed
The total number of miscellaneous objects that have been allocated so far in this
session. These include markers and overlays, plus certain objects not visible to users.

[Variable]intervals-consed
The total number of intervals that have been allocated so far in this Emacs session.

[Variable]strings-consed
The total number of strings that have been allocated so far in this Emacs session.

E.5 Writing Emacs Primitives

Lisp primitives are Lisp functions implemented in C. The details of interfacing the C function
so that Lisp can call it are handled by a few C macros. The only way to really understand
how to write new C code is to read the source, but we can explain some things here.

An example of a special form is the definition of or, from ‘eval.c’. (An ordinary function
would have the same general appearance.)

DEFUN ("or", For, Sor, 0, UNEVALLED, 0,

doc: /* Eval args until one of them yields non-nil, then return

that value.

The remaining args are not evalled at all.

If all args return nil, return nil.

usage: (or CONDITIONS ...) */)

(Lisp_Object args)

{

register Lisp_Object val = Qnil;

struct gcpro gcpro1;

GCPRO1 (args);

while (CONSP (args))

{

val = eval_sub (XCAR (args));

if (!NILP (val))

break;

args = XCDR (args);

}

UNGCPRO;

return val;

}

Let’s start with a precise explanation of the arguments to the DEFUN macro. Here is a
template for them:

Appendix E: GNU Emacs Internals 464

DEFUN (lname, fname, sname, min, max, interactive, doc)

lname This is the name of the Lisp symbol to define as the function name; in the
example above, it is or.

fname This is the C function name for this function. This is the name that is used in
C code for calling the function. The name is, by convention, ‘F’ prepended to
the Lisp name, with all dashes (‘-’) in the Lisp name changed to underscores.
Thus, to call this function from C code, call For.

sname This is a C variable name to use for a structure that holds the data for the subr
object that represents the function in Lisp. This structure conveys the Lisp
symbol name to the initialization routine that will create the symbol and store
the subr object as its definition. By convention, this name is always fname with
‘F’ replaced with ‘S’.

min This is the minimum number of arguments that the function requires. The
function or allows a minimum of zero arguments.

max This is the maximum number of arguments that the function accepts, if there is
a fixed maximum. Alternatively, it can be UNEVALLED, indicating a special form
that receives unevaluated arguments, or MANY, indicating an unlimited number
of evaluated arguments (the equivalent of &rest). Both UNEVALLED and MANY

are macros. If max is a number, it must be more than min but less than 8.

interactive
This is an interactive specification, a string such as might be used as the ar-
gument of interactive in a Lisp function. In the case of or, it is 0 (a null
pointer), indicating that or cannot be called interactively. A value of "" indi-
cates a function that should receive no arguments when called interactively. If
the value begins with a ‘(’, the string is evaluated as a Lisp form. For examples
of the last two forms, see widen and narrow-to-region in ‘editfns.c’.

doc This is the documentation string. It uses C comment syntax rather than C
string syntax because comment syntax requires nothing special to include mul-
tiple lines. The ‘doc:’ identifies the comment that follows as the documentation
string. The ‘/*’ and ‘*/’ delimiters that begin and end the comment are not
part of the documentation string.

If the last line of the documentation string begins with the keyword ‘usage:’,
the rest of the line is treated as the argument list for documentation purposes.
This way, you can use different argument names in the documentation string
from the ones used in the C code. ‘usage:’ is required if the function has an
unlimited number of arguments.

All the usual rules for documentation strings in Lisp code (see Section D.6
[Documentation Tips], page 450) apply to C code documentation strings too.

After the call to the DEFUN macro, you must write the argument list for the C function,
including the types for the arguments. If the primitive accepts a fixed maximum number of
Lisp arguments, there must be one C argument for each Lisp argument, and each argument
must be of type Lisp_Object. (Various macros and functions for creating values of type
Lisp_Object are declared in the file ‘lisp.h’.) If the primitive has no upper limit on the

Appendix E: GNU Emacs Internals 465

number of Lisp arguments, it must have exactly two C arguments: the first is the number
of Lisp arguments, and the second is the address of a block containing their values. These
have types int and Lisp_Object * respectively.

Within the function For itself, note the use of the macros GCPRO1 and UNGCPRO. These
macros are defined for the sake of the few platforms which do not use Emacs’ default stack-
marking garbage collector. The GCPRO1macro “protects” a variable from garbage collection,
explicitly informing the garbage collector that that variable and all its contents must be as
accessible. GC protection is necessary in any function which can perform Lisp evaluation
by calling eval_sub or Feval as a subroutine, either directly or indirectly.

It suffices to ensure that at least one pointer to each object is GC-protected. Thus, a
particular local variable can do without protection if it is certain that the object it points to
will be preserved by some other pointer (such as another local variable that has a GCPRO).
Otherwise, the local variable needs a GCPRO.

The macro GCPRO1 protects just one local variable. If you want to protect two variables,
use GCPRO2 instead; repeating GCPRO1 will not work. Macros GCPRO3, GCPRO4, GCPRO5, and
GCPRO6 also exist. All these macros implicitly use local variables such as gcpro1; you must
declare these explicitly, with type struct gcpro. Thus, if you use GCPRO2, you must declare
gcpro1 and gcpro2.

UNGCPRO cancels the protection of the variables that are protected in the current function.
It is necessary to do this explicitly.

You must not use C initializers for static or global variables unless the variables are never
written once Emacs is dumped. These variables with initializers are allocated in an area
of memory that becomes read-only (on certain operating systems) as a result of dumping
Emacs. See Section E.2 [Pure Storage], page 458.

Defining the C function is not enough to make a Lisp primitive available; you must also
create the Lisp symbol for the primitive and store a suitable subr object in its function cell.
The code looks like this:

defsubr (&sname);

Here sname is the name you used as the third argument to DEFUN.

If you add a new primitive to a file that already has Lisp primitives defined in it, find
the function (near the end of the file) named syms_of_something, and add the call to
defsubr there. If the file doesn’t have this function, or if you create a new file, add to it
a syms_of_filename (e.g., syms_of_myfile). Then find the spot in ‘emacs.c’ where all of
these functions are called, and add a call to syms_of_filename there.

The function syms_of_filename is also the place to define any C variables that are to
be visible as Lisp variables. DEFVAR_LISP makes a C variable of type Lisp_Object visible
in Lisp. DEFVAR_INT makes a C variable of type int visible in Lisp with a value that is
always an integer. DEFVAR_BOOL makes a C variable of type int visible in Lisp with a value
that is either t or nil. Note that variables defined with DEFVAR_BOOL are automatically
added to the list byte-boolean-vars used by the byte compiler.

If you want to make a Lisp variables that is defined in C behave like one declared with
defcustom, add an appropriate entry to ‘cus-start.el’.

If you define a file-scope C variable of type Lisp_Object, you must protect it from
garbage-collection by calling staticpro in syms_of_filename, like this:

Appendix E: GNU Emacs Internals 466

staticpro (&variable);

Here is another example function, with more complicated arguments. This comes from
the code in ‘window.c’, and it demonstrates the use of macros and functions to manipulate
Lisp objects.

DEFUN ("coordinates-in-window-p", Fcoordinates_in_window_p,

Scoordinates_in_window_p, 2, 2, 0,

doc: /* Return non-nil if COORDINATES are in WINDOW.

...

or ‘right-margin’ is returned. */)

(register Lisp_Object coordinates, Lisp_Object window)

{

struct window *w;

struct frame *f;

int x, y;

Lisp_Object lx, ly;

CHECK_LIVE_WINDOW (window);

w = XWINDOW (window);

f = XFRAME (w->frame);

CHECK_CONS (coordinates);

lx = Fcar (coordinates);

ly = Fcdr (coordinates);

CHECK_NUMBER_OR_FLOAT (lx);

CHECK_NUMBER_OR_FLOAT (ly);

x = FRAME_PIXEL_X_FROM_CANON_X (f, lx) + FRAME_INTERNAL_BORDER_WIDTH(f);

y = FRAME_PIXEL_Y_FROM_CANON_Y (f, ly) + FRAME_INTERNAL_BORDER_WIDTH(f);

switch (coordinates_in_window (w, x, y))

{

case ON_NOTHING: /* NOT in window at all. */

return Qnil;

...

case ON_MODE_LINE: /* In mode line of window. */

return Qmode_line;

...

case ON_SCROLL_BAR: /* On scroll-bar of window. */

/* Historically we are supposed to return nil in this case. */

return Qnil;

default:

abort ();

}

}

Note that C code cannot call functions by name unless they are defined in C. The way
to call a function written in Lisp is to use Ffuncall, which embodies the Lisp function
funcall. Since the Lisp function funcall accepts an unlimited number of arguments, in C
it takes two: the number of Lisp-level arguments, and a one-dimensional array containing
their values. The first Lisp-level argument is the Lisp function to call, and the rest are the
arguments to pass to it. Since Ffuncall can call the evaluator, you must protect pointers
from garbage collection around the call to Ffuncall.

Appendix E: GNU Emacs Internals 467

The C functions call0, call1, call2, and so on, provide handy ways to call a Lisp
function conveniently with a fixed number of arguments. They work by calling Ffuncall.

‘eval.c’ is a very good file to look through for examples; ‘lisp.h’ contains the definitions
for some important macros and functions.

If you define a function which is side-effect free, update the code in ‘byte-opt.el’ that
binds side-effect-free-fns and side-effect-and-error-free-fns so that the compiler
optimizer knows about it.

E.6 Object Internals

GNU Emacs Lisp manipulates many different types of data. The actual data are stored in
a heap and the only access that programs have to it is through pointers. Each pointer is 32
bits wide on 32-bit machines, and 64 bits wide on 64-bit machines; three of these bits are
used for the tag that identifies the object’s type, and the remainder are used to address the
object.

Because Lisp objects are represented as tagged pointers, it is always possible to determine
the Lisp data type of any object. The C data type Lisp_Object can hold any Lisp object
of any data type. Ordinary variables have type Lisp_Object, which means they can hold
any type of Lisp value; you can determine the actual data type only at run time. The
same is true for function arguments; if you want a function to accept only a certain type
of argument, you must check the type explicitly using a suitable predicate (see Section 2.6
[Type Predicates], page 27, vol. 1).

E.6.1 Buffer Internals

Two structures (see ‘buffer.h’) are used to represent buffers in C. The buffer_text struc-
ture contains fields describing the text of a buffer; the buffer structure holds other fields. In
the case of indirect buffers, two or more buffer structures reference the same buffer_text
structure.

Here are some of the fields in struct buffer_text:

beg The address of the buffer contents.

gpt

gpt_byte The character and byte positions of the buffer gap. See Section 27.13 [Buffer
Gap], page 16.

z

z_byte The character and byte positions of the end of the buffer text.

gap_size The size of buffer’s gap. See Section 27.13 [Buffer Gap], page 16.

modiff

save_modiff

chars_modiff

overlay_modiff

These fields count the number of buffer-modification events performed in this
buffer. modiff is incremented after each buffer-modification event, and is never
otherwise changed; save_modiff contains the value of modiff the last time
the buffer was visited or saved; chars_modiff counts only modifications to

Appendix E: GNU Emacs Internals 468

the characters in the buffer, ignoring all other kinds of changes; and overlay_

modiff counts only modifications to the overlays.

beg_unchanged

end_unchanged

The number of characters at the start and end of the text that are known to
be unchanged since the last complete redisplay.

unchanged_modified

overlay_unchanged_modified

The values of modiff and overlay_modiff, respectively, after the last complete
redisplay. If their current values match modiff or overlay_modiff, that means
beg_unchanged and end_unchanged contain no useful information.

markers The markers that refer to this buffer. This is actually a single marker, and
successive elements in its marker chain are the other markers referring to this
buffer text.

intervals

The interval tree which records the text properties of this buffer.

Some of the fields of struct buffer are:

header A struct vectorlike_header structure where header.next points to the next
buffer, in the chain of all buffers (including killed buffers). This chain is used
only for garbage collection, in order to collect killed buffers properly. Note that
vectors, and most kinds of objects allocated as vectors, are all on one chain,
but buffers are on a separate chain of their own.

own_text A struct buffer_text structure that ordinarily holds the buffer contents. In
indirect buffers, this field is not used.

text A pointer to the buffer_text structure for this buffer. In an ordinary buffer,
this is the own_text field above. In an indirect buffer, this is the own_text field
of the base buffer.

pt

pt_byte The character and byte positions of point in a buffer.

begv

begv_byte

The character and byte positions of the beginning of the accessible range of
text in the buffer.

zv

zv_byte The character and byte positions of the end of the accessible range of text in
the buffer.

base_buffer

In an indirect buffer, this points to the base buffer. In an ordinary buffer, it is
null.

local_flags

This field contains flags indicating that certain variables are local in this buffer.
Such variables are declared in the C code using DEFVAR_PER_BUFFER, and their

Appendix E: GNU Emacs Internals 469

buffer-local bindings are stored in fields in the buffer structure itself. (Some of
these fields are described in this table.)

modtime The modification time of the visited file. It is set when the file is written or read.
Before writing the buffer into a file, this field is compared to the modification
time of the file to see if the file has changed on disk. See Section 27.5 [Buffer
Modification], page 7.

auto_save_modified

The time when the buffer was last auto-saved.

last_window_start

The window-start position in the buffer as of the last time the buffer was
displayed in a window.

clip_changed

This flag indicates that narrowing has changed in the buffer. See Section 30.4
[Narrowing], page 109.

prevent_redisplay_optimizations_p

This flag indicates that redisplay optimizations should not be used to display
this buffer.

overlay_center

This field holds the current overlay center position. See Section 38.9.1 [Manag-
ing Overlays], page 316.

overlays_before

overlays_after

These fields hold, respectively, a list of overlays that end at or before the current
overlay center, and a list of overlays that end after the current overlay center.
See Section 38.9.1 [Managing Overlays], page 316. overlays_before is sorted
in order of decreasing end position, and overlays_after is sorted in order of
increasing beginning position.

name A Lisp string that names the buffer. It is guaranteed to be unique. See
Section 27.3 [Buffer Names], page 4.

save_length

The length of the file this buffer is visiting, when last read or saved. This and
other fields concerned with saving are not kept in the buffer_text structure
because indirect buffers are never saved.

directory

The directory for expanding relative file names. This is the value of the buffer-
local variable default-directory (see Section 25.8.4 [File Name Expansion],
page 486, vol. 1).

filename The name of the file visited in this buffer, or nil. This is the value of the
buffer-local variable buffer-file-name (see Section 27.4 [Buffer File Name],
page 5).

Appendix E: GNU Emacs Internals 470

undo_list

backed_up

auto_save_file_name

auto_save_file_format

read_only

file_format

file_truename

invisibility_spec

display_count

display_time

These fields store the values of Lisp variables that are automatically buffer-local
(see Section 11.10 [Buffer-Local Variables], page 150, vol. 1), whose correspond-
ing variable names have the additional prefix buffer- and have underscores
replaced with dashes. For instance, undo_list stores the value of buffer-
undo-list.

mark The mark for the buffer. The mark is a marker, hence it is also included on the
list markers. See Section 31.7 [The Mark], page 117.

local_var_alist

The association list describing the buffer-local variable bindings of this buffer,
not including the built-in buffer-local bindings that have special slots in the
buffer object. (Those slots are omitted from this table.) See Section 11.10
[Buffer-Local Variables], page 150, vol. 1.

major_mode

Symbol naming the major mode of this buffer, e.g., lisp-mode.

mode_name

Pretty name of the major mode, e.g., "Lisp".

keymap

abbrev_table

syntax_table

category_table

display_table

These fields store the buffer’s local keymap (see Chapter 22 [Keymaps],
page 360, vol. 1), abbrev table (see Section 36.1 [Abbrev Tables], page 250),
syntax table (see Chapter 35 [Syntax Tables], page 234), category table (see
Section 35.9 [Categories], page 247), and display table (see Section 38.20.2
[Display Tables], page 377).

downcase_table

upcase_table

case_canon_table

These fields store the conversion tables for converting text to lower case, upper
case, and for canonicalizing text for case-fold search. See Section 4.9 [Case
Tables], page 61, vol. 1.

minor_modes

An alist of the minor modes of this buffer.

Appendix E: GNU Emacs Internals 471

pt_marker

begv_marker

zv_marker

These fields are only used in an indirect buffer, or in a buffer that is the base
of an indirect buffer. Each holds a marker that records pt, begv, and zv

respectively, for this buffer when the buffer is not current.

mode_line_format

header_line_format

case_fold_search

tab_width

fill_column

left_margin

auto_fill_function

truncate_lines

word_wrap

ctl_arrow

bidi_display_reordering

bidi_paragraph_direction

selective_display

selective_display_ellipses

overwrite_mode

abbrev_mode

mark_active

enable_multibyte_characters

buffer_file_coding_system

cache_long_line_scans

point_before_scroll

left_fringe_width

right_fringe_width

fringes_outside_margins

scroll_bar_width

indicate_empty_lines

indicate_buffer_boundaries

fringe_indicator_alist

fringe_cursor_alist

scroll_up_aggressively

scroll_down_aggressively

cursor_type

cursor_in_non_selected_windows

These fields store the values of Lisp variables that are automatically buffer-
local (see Section 11.10 [Buffer-Local Variables], page 150, vol. 1), whose corre-
sponding variable names have underscores replaced with dashes. For instance,
mode_line_format stores the value of mode-line-format.

last_selected_window

This is the last window that was selected with this buffer in it, or nil if that
window no longer displays this buffer.

Appendix E: GNU Emacs Internals 472

E.6.2 Window Internals

The fields of a window (for a complete list, see the definition of struct window in
‘window.h’) include:

frame The frame that this window is on.

mini_p Non-nil if this window is a minibuffer window.

parent Internally, Emacs arranges windows in a tree; each group of siblings has a parent
window whose area includes all the siblings. This field points to a window’s
parent.

Parent windows do not display buffers, and play little role in display except to
shape their child windows. Emacs Lisp programs usually have no access to the
parent windows; they operate on the windows at the leaves of the tree, which
actually display buffers.

hchild

vchild These fields contain the window’s leftmost child and its topmost child respec-
tively. hchild is used if the window is subdivided horizontally by child windows,
and vchild if it is subdivided vertically. In a live window, only one of hchild,
vchild, and buffer (q.v.) is non-nil.

next

prev The next sibling and previous sibling of this window. next is nil if the window
is the right-most or bottom-most in its group; prev is nil if it is the left-most
or top-most in its group.

left_col The left-hand edge of the window, measured in columns, relative to the leftmost
column in the frame (column 0).

top_line The top edge of the window, measured in lines, relative to the topmost line in
the frame (line 0).

total_cols

total_lines

The width and height of the window, measured in columns and lines respec-
tively. The width includes the scroll bar and fringes, and/or the separator line
on the right of the window (if any).

buffer The buffer that the window is displaying.

start A marker pointing to the position in the buffer that is the first character dis-
played in the window.

pointm This is the value of point in the current buffer when this window is selected;
when it is not selected, it retains its previous value.

force_start

If this flag is non-nil, it says that the window has been scrolled explicitly by
the Lisp program. This affects what the next redisplay does if point is off the
screen: instead of scrolling the window to show the text around point, it moves
point to a location that is on the screen.

Appendix E: GNU Emacs Internals 473

frozen_window_start_p

This field is set temporarily to 1 to indicate to redisplay that start of this
window should not be changed, even if point gets invisible.

start_at_line_beg

Non-nil means current value of start was the beginning of a line when it was
chosen.

use_time This is the last time that the window was selected. The function get-lru-

window uses this field.

sequence_number

A unique number assigned to this window when it was created.

last_modified

The modiff field of the window’s buffer, as of the last time a redisplay completed
in this window.

last_overlay_modified

The overlay_modiff field of the window’s buffer, as of the last time a redisplay
completed in this window.

last_point

The buffer’s value of point, as of the last time a redisplay completed in this
window.

last_had_star

A non-nil value means the window’s buffer was “modified” when the window
was last updated.

vertical_scroll_bar

This window’s vertical scroll bar.

left_margin_cols

right_margin_cols

The widths of the left and right margins in this window. A value of nil means
no margin.

left_fringe_width

right_fringe_width

The widths of the left and right fringes in this window. A value of nil or t

means use the values of the frame.

fringes_outside_margins

A non-nil value means the fringes outside the display margins; othersize they
are between the margin and the text.

window_end_pos

This is computed as z minus the buffer position of the last glyph in the current
matrix of the window. The value is only valid if window_end_valid is not nil.

window_end_bytepos

The byte position corresponding to window_end_pos.

Appendix E: GNU Emacs Internals 474

window_end_vpos

The window-relative vertical position of the line containing window_end_pos.

window_end_valid

This field is set to a non-nil value if window_end_pos is truly valid. This is
nil if nontrivial redisplay is pre-empted, since in that case the display that
window_end_pos was computed for did not get onto the screen.

cursor A structure describing where the cursor is in this window.

last_cursor

The value of cursor as of the last redisplay that finished.

phys_cursor

A structure describing where the cursor of this window physically is.

phys_cursor_type

phys_cursor_height

phys_cursor_width

The type, height, and width of the cursor that was last displayed on this window.

phys_cursor_on_p

This field is non-zero if the cursor is physically on.

cursor_off_p

Non-zero means the cursor in this window is logically off. This is used for
blinking the cursor.

last_cursor_off_p

This field contains the value of cursor_off_p as of the time of the last redisplay.

must_be_updated_p

This is set to 1 during redisplay when this window must be updated.

hscroll This is the number of columns that the display in the window is scrolled hori-
zontally to the left. Normally, this is 0.

vscroll Vertical scroll amount, in pixels. Normally, this is 0.

dedicated

Non-nil if this window is dedicated to its buffer.

display_table

The window’s display table, or nil if none is specified for it.

update_mode_line

Non-nil means this window’s mode line needs to be updated.

base_line_number

The line number of a certain position in the buffer, or nil. This is used for
displaying the line number of point in the mode line.

base_line_pos

The position in the buffer for which the line number is known, or nil meaning
none is known. If it is a buffer, don’t display the line number as long as the
window shows that buffer.

Appendix E: GNU Emacs Internals 475

region_showing

If the region (or part of it) is highlighted in this window, this field holds the
mark position that made one end of that region. Otherwise, this field is nil.

column_number_displayed

The column number currently displayed in this window’s mode line, or nil if
column numbers are not being displayed.

current_matrix

desired_matrix

Glyph matrices describing the current and desired display of this window.

E.6.3 Process Internals

The fields of a process (for a complete list, see the definition of struct Lisp_Process in
‘process.h’) include:

name A string, the name of the process.

command A list containing the command arguments that were used to start this process.
For a network or serial process, it is nil if the process is running or t if the
process is stopped.

filter If non-nil, a function used to accept output from the process instead of a buffer.

sentinel If non-nil, a function called whenever the state of the process changes.

buffer The associated buffer of the process.

pid An integer, the operating system’s process ID. Pseudo-processes such as network
or serial connections use a value of 0.

childp A flag, t if this is really a child process. For a network or serial connection, it
is a plist based on the arguments to make-network-process or make-serial-
process.

mark A marker indicating the position of the end of the last output from this process
inserted into the buffer. This is often but not always the end of the buffer.

kill_without_query

If this is non-zero, killing Emacs while this process is still running does not ask
for confirmation about killing the process.

raw_status

The raw process status, as returned by the wait system call.

status The process status, as process-status should return it.

tick

update_tick

If these two fields are not equal, a change in the status of the process needs
to be reported, either by running the sentinel or by inserting a message in the
process buffer.

pty_flag Non-nil if communication with the subprocess uses a PTY; nil if it uses a
pipe.

Appendix E: GNU Emacs Internals 476

infd The file descriptor for input from the process.

outfd The file descriptor for output to the process.

tty_name The name of the terminal that the subprocess is using, or nil if it is using
pipes.

decode_coding_system

Coding-system for decoding the input from this process.

decoding_buf

A working buffer for decoding.

decoding_carryover

Size of carryover in decoding.

encode_coding_system

Coding-system for encoding the output to this process.

encoding_buf

A working buffer for encoding.

inherit_coding_system_flag

Flag to set coding-system of the process buffer from the coding system used
to decode process output.

type Symbol indicating the type of process: real, network, serial.

Appendix F: Standard Errors 477

Appendix F Standard Errors

Here is a list of the more important error symbols in standard Emacs, grouped by concept.
The list includes each symbol’s message (on the error-message property of the symbol)
and a cross reference to a description of how the error can occur.

Each error symbol has an error-conditions property that is a list of symbols. Normally
this list includes the error symbol itself and the symbol error. Occasionally it includes ad-
ditional symbols, which are intermediate classifications, narrower than error but broader
than a single error symbol. For example, all the errors in accessing files have the condi-
tion file-error. If we do not say here that a certain error symbol has additional error
conditions, that means it has none.

As a special exception, the error symbol quit does not have the condition error, because
quitting is not considered an error.

Most of these error symbols are defined in C (mainly ‘data.c’), but some are defined in
Lisp. For example, the file ‘userlock.el’ defines the file-locked and file-supersession

errors. Several of the specialized Lisp libraries distributed with Emacs define their own error
symbols. We do not attempt to list of all those here.

See Section 10.5.3 [Errors], page 128, vol. 1, for an explanation of how errors are generated
and handled.

error "error"

See Section 10.5.3 [Errors], page 128, vol. 1.

quit "Quit"

See Section 21.11 [Quitting], page 351, vol. 1.

args-out-of-range

"Args out of range"

This happens when trying to access an element beyond the range of a sequence
or buffer.
See Chapter 6 [Sequences Arrays Vectors], page 86, vol. 1, See Chapter 32
[Text], page 122.

arith-error

"Arithmetic error"

See Section 3.6 [Arithmetic Operations], page 39, vol. 1.

beginning-of-buffer

"Beginning of buffer"

See Section 30.2.1 [Character Motion], page 100.

buffer-read-only

"Buffer is read-only"

See Section 27.7 [Read Only Buffers], page 9.

circular-list

"List contains a loop"

This happens when some operations (e.g. resolving face names) encounter cir-
cular structures.
See Section 2.5 [Circular Objects], page 26, vol. 1.

Appendix F: Standard Errors 478

cl-assertion-failed

"Assertion failed"

This happens when the assert macro fails a test.
See Section “Assertions” in Common Lisp Extensions.

coding-system-error

"Invalid coding system"

See Section 33.9.3 [Lisp and Coding Systems], page 195.

cyclic-function-indirection

"Symbol’s chain of function indirections contains a loop"

See Section 9.1.4 [Function Indirection], page 112, vol. 1.

cyclic-variable-indirection

"Symbol’s chain of variable indirections contains a loop"

See Section 11.13 [Variable Aliases], page 160, vol. 1.

dbus-error

"D-Bus error"

This is only defined if Emacs was compiled with D-Bus support.
See Section “Errors and Events” in D-Bus integration in Emacs.

end-of-buffer

"End of buffer"

See Section 30.2.1 [Character Motion], page 100.

end-of-file

"End of file during parsing"

Note that this is not a subcategory of file-error, because it pertains to the
Lisp reader, not to file I/O.
See Section 19.3 [Input Functions], page 276, vol. 1.

file-already-exists

This is a subcategory of file-error.
See Section 25.4 [Writing to Files], page 468, vol. 1.

file-date-error

This is a subcategory of file-error. It occurs when copy-file tries and fails
to set the last-modification time of the output file.
See Section 25.7 [Changing Files], page 479, vol. 1.

file-error

We do not list the error-strings of this error and its subcategories, because the
error message is normally constructed from the data items alone when the error
condition file-error is present. Thus, the error-strings are not very relevant.
However, these error symbols do have error-message properties, and if no data
is provided, the error-message property is used.
See Chapter 25 [Files], page 461, vol. 1.

compression-error

This is a subcategory of file-error, which results from problems handling a
compressed file.
See Section 15.1 [How Programs Do Loading], page 209, vol. 1.

Appendix F: Standard Errors 479

file-locked

This is a subcategory of file-error.
See Section 25.5 [File Locks], page 470, vol. 1.

file-supersession

This is a subcategory of file-error.
See Section 27.6 [Modification Time], page 8.

ftp-error

This is a subcategory of file-error, which results from problems in accessing
a remote file using ftp.
See Section “Remote Files” in The GNU Emacs Manual.

invalid-function

"Invalid function"

See Section 9.1.4 [Function Indirection], page 112, vol. 1.

invalid-read-syntax

"Invalid read syntax"

See Section 2.1 [Printed Representation], page 8, vol. 1.

invalid-regexp

"Invalid regexp"

See Section 34.3 [Regular Expressions], page 211.

mark-inactive

"The mark is not active now"

See Section 31.7 [The Mark], page 117.

no-catch "No catch for tag"

See Section 10.5.1 [Catch and Throw], page 126, vol. 1.

scan-error

"Scan error"

This happens when certain syntax-parsing functions find invalid syntax or mis-
matched parentheses.
See Section 30.2.6 [List Motion], page 106, and Section 35.6 [Parsing Expres-
sions], page 242.

search-failed

"Search failed"

See Chapter 34 [Searching and Matching], page 209.

setting-constant

"Attempt to set a constant symbol"

The values of the symbols nil and t, and any symbols that start with ‘:’, may
not be changed.
See Section 11.2 [Variables that Never Change], page 137, vol. 1.

text-read-only

"Text is read-only"

This is a subcategory of buffer-read-only.
See Section 32.19.4 [Special Properties], page 162.

Appendix F: Standard Errors 480

undefined-color

"Undefined color"

See Section 29.20 [Color Names], page 92.

void-function

"Symbol’s function definition is void"

See Section 12.8 [Function Cells], page 175, vol. 1.

void-variable

"Symbol’s value as variable is void"

See Section 11.7 [Accessing Variables], page 144, vol. 1.

wrong-number-of-arguments

"Wrong number of arguments"

See Section 9.1.3 [Classifying Lists], page 112, vol. 1.

wrong-type-argument

"Wrong type argument"

See Section 2.6 [Type Predicates], page 27, vol. 1.

The following kinds of error, which are classified as special cases of arith-error, can
occur on certain systems for invalid use of mathematical functions. See Section 3.9 [Math
Functions], page 46, vol. 1.

domain-error

"Arithmetic domain error"

overflow-error

"Arithmetic overflow error"

This is a subcategory of domain-error.

range-error

"Arithmetic range error"

singularity-error

"Arithmetic singularity error"

This is a subcategory of domain-error.

underflow-error

"Arithmetic underflow error"

This is a subcategory of domain-error.

Appendix G: Standard Keymaps 481

Appendix G Standard Keymaps

In this section we list some of the more general keymaps. Many of these exist when Emacs
is first started, but some are loaded only when the respective feature is accessed.

There are many other, more specialized, maps than these; in particular those associated
with major and minor modes. The minibuffer uses several keymaps (see Section 20.6.3
[Completion Commands], page 296, vol. 1). For more details on keymaps, see Chapter 22
[Keymaps], page 360, vol. 1.

2C-mode-map

A sparse keymap for subcommands of the prefix C-x 6.
See Section “Two-Column Editing” in The GNU Emacs Manual.

abbrev-map

A sparse keymap for subcommands of the prefix C-x a.
See Section “Defining Abbrevs” in The GNU Emacs Manual.

button-buffer-map

A sparse keymap useful for buffers containing buffers.
You may want to use this as a parent keymap. See Section 38.17 [Buttons],
page 366.

button-map

A sparse keymap used by buttons.

ctl-x-4-map

A sparse keymap for subcommands of the prefix C-x 4.

ctl-x-5-map

A sparse keymap for subcommands of the prefix C-x 5.

ctl-x-map

A full keymap for C-x commands.

ctl-x-r-map

A sparse keymap for subcommands of the prefix C-x r.
See Section “Registers” in The GNU Emacs Manual.

esc-map A full keymap for ESC (or Meta) commands.

facemenu-keymap

A sparse keymap used for the M-o prefix key.

function-key-map

The parent keymap of all local-function-key-map (q.v.) instances.

global-map

The full keymap containing default global key bindings.
Modes should not modify the Global map.

goto-map A sparse keymap used for the M-g prefix key.

help-map A sparse keymap for the keys following the help character C-h.
See Section 24.5 [Help Functions], page 457, vol. 1.

Appendix G: Standard Keymaps 482

Helper-help-map

A full keymap used by the help utility package.
It has the same keymap in its value cell and in its function cell.

input-decode-map

The keymap for translating keypad and function keys.
If there are none, then it contains an empty sparse keymap. See Section 22.14
[Translation Keymaps], page 378, vol. 1.

key-translation-map

A keymap for translating keys. This one overrides ordinary key bindings, unlike
local-function-key-map. See Section 22.14 [Translation Keymaps], page 378,
vol. 1.

kmacro-keymap

A sparse keymap for keys that follows the C-x C-k prefix search.
See Section “Keyboard Macros” in The GNU Emacs Manual.

local-function-key-map

The keymap for translating key sequences to preferred alternatives.
If there are none, then it contains an empty sparse keymap. See Section 22.14
[Translation Keymaps], page 378, vol. 1.

menu-bar-file-menu

menu-bar-edit-menu

menu-bar-options-menu

global-buffers-menu-map

menu-bar-tools-menu

menu-bar-help-menu

These keymaps display the main, top-level menus in the menu bar.
Some of them contain sub-menus. For example, the Edit menu contains menu-
bar-search-menu, etc. See Section 22.17.5 [Menu Bar], page 391, vol. 1.

minibuffer-inactive-mode-map

A full keymap used in the minibuffer when it is not active.
See Section “Editing in the Minibuffer” in The GNU Emacs Manual.

mode-line-coding-system-map

mode-line-input-method-map

mode-line-column-line-number-mode-map

These keymaps control various areas of the mode line.
See Section 23.4 [Mode Line Format], page 419, vol. 1.

mode-specific-map

The keymap for characters following C-c. Note, this is in the global map. This
map is not actually mode-specific: its name was chosen to be informative in
C-h b (display-bindings), where it describes the main use of the C-c prefix
key.

mouse-appearance-menu-map

A sparse keymap used for the S-mouse-1 key.

Appendix G: Standard Keymaps 483

mule-keymap

The global keymap used for the C-x RET prefix key.

narrow-map

A sparse keymap for subcommands of the prefix C-x n.

prog-mode-map

The keymap used by Prog mode.
See Section 23.2.5 [Basic Major Modes], page 407, vol. 1.

query-replace-map

multi-query-replace-map

A sparse keymap used for responses in query-replace and related commands;
also for y-or-n-p and map-y-or-n-p. The functions that use this map do
not support prefix keys; they look up one event at a time. multi-query-

replace-map extends query-replace-map for multi-buffer replacements. See
Section 34.7 [Search and Replace], page 230.

search-map

A sparse keymap that provides global bindings for search-related commands.

special-mode-map

The keymap used by Special mode.
See Section 23.2.5 [Basic Major Modes], page 407, vol. 1.

tool-bar-map

The keymap defining the contents of the tool bar.
See Section 22.17.6 [Tool Bar], page 392, vol. 1.

universal-argument-map

A sparse keymap used while processing C-u.
See Section 21.12 [Prefix Command Arguments], page 353, vol. 1.

vc-prefix-map

The global keymap used for the C-x v prefix key.

x-alternatives-map

A sparse keymap used to map certain keys under graphical frames.
The function x-setup-function-keys uses this.

Appendix H: Standard Hooks 484

Appendix H Standard Hooks

The following is a list of some hook variables that let you provide functions to be called
from within Emacs on suitable occasions.

Most of these variables have names ending with ‘-hook’. They are normal hooks, run by
means of run-hooks. The value of such a hook is a list of functions; the functions are called
with no arguments and their values are completely ignored. The recommended way to put
a new function on such a hook is to call add-hook. See Section 23.1 [Hooks], page 396,
vol. 1, for more information about using hooks.

The variables whose names end in ‘-hooks’ or ‘-functions’ are usually abnormal hooks;
their values are lists of functions, but these functions are called in a special way (they are
passed arguments, or their values are used). The variables whose names end in ‘-function’
have single functions as their values.

This is not an exhaustive list, it only covers the more general hooks. For example, every
major mode defines a hook named ‘modename-mode-hook’. The major mode command runs
this normal hook with run-mode-hooks as the very last thing it does. See Section 23.2.6
[Mode Hooks], page 408, vol. 1. Most minor modes have mode hooks too.

A special feature allows you to specify expressions to evaluate if and when a file is loaded
(see Section 15.10 [Hooks for Loading], page 221, vol. 1). That feature is not exactly a hook,
but does a similar job.

activate-mark-hook

deactivate-mark-hook

See Section 31.7 [The Mark], page 117.

after-change-functions

before-change-functions

first-change-hook

See Section 32.27 [Change Hooks], page 180.

after-change-major-mode-hook

change-major-mode-after-body-hook

See Section 23.2.6 [Mode Hooks], page 408, vol. 1.

after-init-hook

before-init-hook

emacs-startup-hook

See Section 39.1.2 [Init File], page 389.

after-insert-file-functions

write-region-annotate-functions

write-region-post-annotation-function

See Section 25.12 [Format Conversion], page 497, vol. 1.

after-make-frame-functions

before-make-frame-hook

See Section 29.1 [Creating Frames], page 67.

Appendix H: Standard Hooks 485

after-save-hook

before-save-hook

write-contents-functions

write-file-functions

See Section 25.2 [Saving Buffers], page 465, vol. 1.

after-setting-font-hook

Hook run after a frame’s font changes.

auto-save-hook

See Section 26.2 [Auto-Saving], page 507, vol. 1.

before-hack-local-variables-hook

hack-local-variables-hook

See Section 11.11 [File Local Variables], page 156, vol. 1.

buffer-access-fontify-functions

See Section 32.19.7 [Lazy Properties], page 169.

buffer-list-update-hook

Hook run when the buffer list changes.

buffer-quit-function

Function to call to “quit” the current buffer.

change-major-mode-hook

See Section 11.10.2 [Creating Buffer-Local], page 152, vol. 1.

command-line-functions

See Section 39.1.4 [Command-Line Arguments], page 391.

delayed-warnings-hook

The command loop runs this soon after post-command-hook (q.v.).

delete-frame-functions

See Section 29.6 [Deleting Frames], page 82.

delete-terminal-functions

See Section 29.2 [Multiple Terminals], page 67.

display-buffer-function

pop-up-frame-function

special-display-function

split-window-preferred-function

See Section 28.13 [Choosing Window Options], page 41.

echo-area-clear-hook

See Section 38.4.4 [Echo Area Customization], page 306.

find-file-hook

find-file-not-found-functions

See Section 25.1.1 [Visiting Functions], page 461, vol. 1.

font-lock-extend-after-change-region-function

See Section 23.6.9.2 [Region to Refontify], page 440, vol. 1.

Appendix H: Standard Hooks 486

font-lock-extend-region-functions

See Section 23.6.9 [Multiline Font Lock], page 438, vol. 1.

font-lock-fontify-buffer-function

font-lock-fontify-region-function

font-lock-mark-block-function

font-lock-unfontify-buffer-function

font-lock-unfontify-region-function

See Section 23.6.4 [Other Font Lock Variables], page 435, vol. 1.

fontification-functions

See Section 38.12.7 [Automatic Face Assignment], page 336.

frame-auto-hide-function

See Section 28.16 [Quitting Windows], page 47.

kill-buffer-hook

kill-buffer-query-functions

See Section 27.10 [Killing Buffers], page 13.

kill-emacs-hook

kill-emacs-query-functions

See Section 39.2.1 [Killing Emacs], page 392.

menu-bar-update-hook

See Section 22.17.5 [Menu Bar], page 391, vol. 1.

minibuffer-setup-hook

minibuffer-exit-hook

See Section 20.14 [Minibuffer Misc], page 313, vol. 1.

mouse-leave-buffer-hook

Hook run when about to switch windows with a mouse command.

mouse-position-function

See Section 29.14 [Mouse Position], page 87.

post-command-hook

pre-command-hook

See Section 21.1 [Command Overview], page 315, vol. 1.

post-gc-hook

See Section E.3 [Garbage Collection], page 459.

post-self-insert-hook

See Section 23.3.2 [Keymaps and Minor Modes], page 415, vol. 1.

suspend-hook

suspend-resume-hook

suspend-tty-functions

resume-tty-functions

See Section 39.2.2 [Suspending Emacs], page 393.

Appendix H: Standard Hooks 487

syntax-begin-function

syntax-propertize-extend-region-functions

syntax-propertize-function

font-lock-syntactic-face-function

See Section 23.6.8 [Syntactic Font Lock], page 437, vol. 1. See Section 35.4
[Syntax Properties], page 240.

temp-buffer-setup-hook

temp-buffer-show-function

temp-buffer-show-hook

See Section 38.8 [Temporary Displays], page 313.

term-setup-hook

See Section 39.1.3 [Terminal-Specific], page 390.

window-configuration-change-hook

window-scroll-functions

window-size-change-functions

See Section 28.25 [Window Hooks], page 64.

window-setup-hook

See Section 38.22 [Window Systems], page 382.

window-text-change-functions

Functions to call in redisplay when text in the window might change.

Index 488

Index

"
‘"’ in printing . I:279
‘"’ in strings . I:18

#
‘##’ read syntax . I:14
‘#$’ . I:226
‘#’’ syntax . I:174
‘#(’ read syntax . I:20
‘#:’ read syntax . I:14
‘#@count’ . I:226
‘#n#’ read syntax . I:26
‘#n=’ read syntax . I:26

$
‘$’ in display . 300
‘$’ in regexp . 214

%
% . I:41
‘%’ in format . I:57

&
‘&’ in replacement . 226
&optional . I:166
&rest . I:166

’
‘’’ for quoting . I:116

(
‘(’ in regexp . 217
‘(...)’ in lists . I:15
‘(?:’ in regexp . 217

)
‘)’ in regexp . 217

*
* . I:40
‘*’ in interactive . I:317
‘*’ in regexp . 212
‘*scratch*’ . I:404

+
+ . I:40
‘+’ in regexp . 213

,
, (with backquote) . I:117
,@ (with backquote) . I:117

-
- . I:40

.
‘.’ in lists . I:17
‘.’ in regexp . 212
‘.emacs’ . 389

/
/ . I:40
/= . I:37
‘/dev/tty’ . 289

;
‘;’ in comment . I:9

<
< . I:37
<= . I:37

=
= . I:37

>
> . I:37
>= . I:37

?
‘?’ in character constant . I:10
? in minibuffer . I:288
‘?’ in regexp . 213

@
‘@’ in interactive . I:317

Index 489

[
‘[’ in regexp . 213
[. . .] (Edebug) . I:267

]
‘]’ in regexp . 213

^
‘^’ in interactive . I:317
‘^’ in regexp . 214

‘
‘ . I:116
‘ (list substitution) . I:116

\
‘\’ in character constant . I:11
‘\’ in display . 300
‘\’ in printing . I:279
‘\’ in regexp . 214
‘\’ in replacement . 226
‘\’ in strings . I:18
‘\’ in symbols . I:13
‘\’’ in regexp . 219
‘\<’ in regexp . 219
‘\=’ in regexp . 219
‘\>’ in regexp . 219
‘_<’ in regexp . 219
‘_>’ in regexp . 219
‘\‘’ in regexp . 219
‘\a’ . I:10
‘\b’ . I:10
‘\b’ in regexp . 219
‘\B’ in regexp . 219
‘\e’ . I:10
‘\f’ . I:10
‘\n’ . I:10
‘\n’ in print . I:282
‘\n’ in replacement . 226
‘\r’ . I:10
‘\s’ . I:10
‘\s’ in regexp . 218
‘\S’ in regexp . 219
‘\t’ . I:10
‘\v’ . I:10
‘\w’ in regexp . 218
‘\W’ in regexp . 218

|
‘|’ in regexp . 217

1
1+ . I:39
1- . I:39
1value . I:273

2
2C-mode-map . I:366

A
abbrev . 250
abbrev tables in modes . I:401
abbrev-all-caps . 253
abbrev-expand-functions 254
abbrev-expansion . 253
abbrev-file-name . 252
abbrev-get . 255
abbrev-insert . 253
abbrev-map . 481
abbrev-minor-mode-table-alist 255
abbrev-prefix-mark . 253
abbrev-put . 255
abbrev-start-location . 253
abbrev-start-location-buffer 254
abbrev-symbol . 253
abbrev-table-get . 256
abbrev-table-name-list . 251
abbrev-table-p . 250
abbrev-table-put . 256
abbreviate-file-name . I:485
abbreviated file names . I:485
abbrevs-changed . 252
abnormal hook . I:396
abort-recursive-edit . I:356
aborting . I:355
abs . I:37
absolute file name . I:484
accept input from processes 275
accept-change-group . 179
accept-process-output . 275
access-file . I:472
accessibility of a file . I:471
accessible portion (of a buffer) 109
accessible-keymaps . I:382
acos . I:46
action (button property) . 367
action alist, for display-buffer 39
action function, for display-buffer 39
action, customization keyword I:204
activate-change-group . 179
activate-mark-hook . 119
activating advice . I:237
active display table . 379
active keymap . I:367
active-minibuffer-window I:311
ad-activate . I:238
ad-activate-all . I:238

Index 490

ad-activate-regexp . I:238
ad-add-advice . I:237
ad-deactivate . I:238
ad-deactivate-all . I:238
ad-deactivate-regexp . I:238
ad-default-compilation-action I:239
ad-disable-advice . I:239
ad-disable-regexp . I:239
ad-do-it . I:236
ad-enable-advice . I:239
ad-enable-regexp . I:239
ad-get-arg . I:241
ad-get-args . I:241
ad-return-value . I:234
ad-set-arg . I:241
ad-set-args . I:241
ad-start-advice . I:238
ad-stop-advice . I:238
ad-unadvise . I:236
ad-unadvise-all . I:236
ad-update . I:238
ad-update-all . I:238
ad-update-regexp . I:238
adaptive-fill-first-line-regexp 145
adaptive-fill-function . 146
adaptive-fill-mode . 145
adaptive-fill-regexp . 145
add-hook . I:398
add-name-to-file . I:479
add-text-properties . 158
add-to-history . I:290
add-to-invisibility-spec 310
add-to-list . I:72
add-to-ordered-list . I:72
address field of register . I:14
adjust-window-trailing-edge 25
adjusting point . I:326
advertised binding . I:455
advice, activating . I:237
advice, defining . I:234
advice, enabling and disabling I:239
advice, preactivating . I:240
advising functions . I:233
after-advice . I:234
after-change-functions . 180
after-change-major-mode-hook I:409
after-find-file . I:464
after-init-hook . 389
after-init-time . 387
after-insert-file-functions I:501
after-load-alist . I:222
after-load-functions . I:221
after-make-frame-functions 67
after-revert-hook . I:511
after-save-hook . I:467
after-setting-font-hook 485
after-string (overlay property) 321
alist . I:82

alist vs. plist . I:107
all-completions . I:293
alpha, a frame parameter . 78
alt characters . I:13
and . I:123
animation . 365
anonymous function . I:174
apostrophe for quoting . I:116
append . I:69
append-to-file . I:468
apply . I:171
apply, and debugging . I:250
apply-partially . I:171
apropos . I:457
aref . I:89
args, customization keyword I:202
argument . I:163
argument binding . I:166
argument lists, features . I:166
arguments for shell commands 258
arguments, interactive entry I:316
arguments, reading . I:284
argv . 392
arith-error example . I:132
arith-error in division . I:40
arithmetic operations . I:39
arithmetic shift . I:43
around-advice . I:234
array . I:88
array elements . I:89
arrayp . I:89
ASCII character codes . I:10
ASCII control characters . 376
ascii-case-table . I:62
aset . I:89
ash . I:43
asin . I:46
ask-user-about-lock . I:470
ask-user-about-supersession-threat 9
asking the user questions . I:307
assoc . I:82
assoc-default . I:84
assoc-string . I:55
association list . I:82
assq . I:83
assq-delete-all . I:85
asynchronous subprocess . 264
atan . I:46
atom . I:65
atomic changes . 179
atoms . I:15
attributes of text . 156
Auto Fill mode . 146
auto-coding-alist . 200
auto-coding-functions . 200
auto-coding-regexp-alist 199
auto-fill-chars . 146
auto-fill-function . 146

Index 491

auto-hscroll-mode . 57
auto-lower, a frame parameter 75
auto-mode-alist . I:404
auto-raise, a frame parameter 75
auto-raise-tool-bar-buttons I:394
auto-resize-tool-bars . I:394
auto-save-default . I:509
auto-save-file-name-p . I:507
auto-save-hook . I:509
auto-save-interval . I:509
auto-save-list-file-name I:510
auto-save-list-file-prefix I:510
auto-save-mode . I:507
auto-save-timeout . I:509
auto-save-visited-file-name I:508
auto-window-vscroll . 56
autoload . I:213
autoload . I:214
autoload cookie . I:215
autoload errors . I:215
autoload object . I:164
automatic face assignment . 336
automatically buffer-local I:151

B
back-to-indentation . 155
background-color, a frame parameter 78
background-mode, a frame parameter 77
backquote (list substitution) I:116
backslash in character constants I:11
backslash in regular expressions 217
backslash in strings . I:18
backslash in symbols . I:13
backspace . I:10
backtrace . I:250
backtrace-debug . I:250
backtrace-frame . I:251
backtracking . I:268
backtracking and POSIX regular expressions . . 224
backtracking and regular expressions 212
backup file . I:502
backup files, rename or copy I:504
backup-buffer . I:502
backup-by-copying . I:504
backup-by-copying-when-linked I:504
backup-by-copying-when-mismatch I:504
backup-by-copying-when-privileged-mismatch

. I:504
backup-directory-alist I:503
backup-enable-predicate I:503
backup-file-name-p . I:506
backup-inhibited . I:503
backups and auto-saving . I:502
backward-button . 370
backward-char . 101
backward-delete-char-untabify 129
backward-delete-char-untabify-method 130

backward-list . 106
backward-prefix-chars . 242
backward-sexp . 106
backward-to-indentation 155
backward-word . 101
balance-windows . 26
balance-windows-area . 26
balanced parenthesis motion 106
balancing parentheses . 375
balancing window sizes . 26
barf-if-buffer-read-only 10
base 64 encoding . 177
base buffer . 15
base coding system . 193
base direction of a paragraph 383
base for reading an integer I:33
base location, package archive 421
base64-decode-region . 177
base64-decode-string . 177
base64-encode-region . 177
base64-encode-string . 177
basic code (of input character) I:327
batch mode . 413
batch-byte-compile . I:225
baud, in serial connections . 291
baud-rate . 411
beep . 381
before point, insertion . 126
before-advice . I:234
before-change-functions 180
before-hack-local-variables-hook I:157
before-init-hook . 389
before-init-time . 386
before-make-frame-hook . 67
before-revert-hook . I:511
before-save-hook . I:467
before-string (overlay property) 321
beginning of line . 103
beginning of line in regexp . 214
beginning-of-buffer . 102
beginning-of-defun . 107
beginning-of-defun-function 107
beginning-of-line . 102
bell . 381
bell character . I:10
‘benchmark.el’ . 449
benchmarking . 449
bidi-display-reordering 383
bidi-paragraph-direction 384
bidi-string-mark-left-to-right 385
bidirectional class of characters 187
bidirectional display . 382
bidirectional reordering . 383
big endian . 292
binary coding system . 194
binary files and text files . 205
bindat-get-field . 294
bindat-ip-to-string . 295

Index 492

bindat-length . 295
bindat-pack . 295
bindat-unpack . 294
binding arguments . I:166
binding local variables . I:138
binding of a key . I:361
bitmap-spec-p . 330
bitmaps, fringe . 346
bitwise arithmetic . I:42
blink-cursor-alist . 77
blink-matching-delay . 376
blink-matching-open . 376
blink-matching-paren . 375
blink-matching-paren-distance 375
blink-paren-function . 375
blinking parentheses . 375
bobp . 123
body height of a window . 23
body of a window . 22
body of function . I:165
body size of a window . 23
body width of a window . 23
bolp . 123
bool-vector-p . I:94
Bool-vectors . I:94
boolean . I:2
booleanp . I:3
border-color, a frame parameter 78
border-width, a frame parameter 74
boundp . I:140
box diagrams, for lists . I:15
break . I:243
breakpoints (Edebug) . I:256
bucket (in obarray) . I:104
buffer . 1
buffer contents . 122
buffer file name . 5
buffer input stream . I:274
buffer internals . 467
buffer list . 10
buffer modification . 7
buffer names . 4
buffer output stream . I:277
buffer text notation . I:4
buffer, read-only . 9
buffer-access-fontified-property 169
buffer-access-fontify-functions 169
buffer-auto-save-file-format I:500
buffer-auto-save-file-name I:507
buffer-backed-up . I:502
buffer-base-buffer . 16
buffer-chars-modified-tick 8
buffer-disable-undo . 140
buffer-display-count . 36
buffer-display-table . 379
buffer-display-time . 36
buffer-enable-undo . 139
buffer-end . 100

buffer-file-coding-system 194
buffer-file-format . I:499
buffer-file-name . 5
buffer-file-number . 6
buffer-file-truename . 6
buffer-file-type . 206
buffer-has-markers-at . 115
buffer-invisibility-spec 310
buffer-list . 11
buffer-list, a frame parameter 75
buffer-list-update-hook 485
buffer-live-p . 15
buffer-local variables . I:150
buffer-local variables in modes I:402
buffer-local-value . I:153
buffer-local-variables I:153
buffer-modified-p . 7
buffer-modified-tick . 8
buffer-name . 4
buffer-name-history . I:290
buffer-offer-save . 15
buffer-predicate, a frame parameter 75
buffer-quit-function . 485
buffer-read-only . 10
buffer-save-without-query 15
buffer-saved-size . I:509
buffer-size . 100
buffer-stale-function . I:511
buffer-string . 124
buffer-substring . 123
buffer-substring-filters 125
buffer-substring-no-properties 124
buffer-swap-text . 16
buffer-undo-list . 137
bufferp . 1
buffers without undo information 4
buffers, controlled in windows 36
buffers, creating . 13
buffers, killing . 13
bugs . I:1
bugs in this manual . I:1
building Emacs . 457
building lists . I:68
built-in function . I:163
bury-buffer . 12
butlast . I:68
button (button property) . 367
button buffer commands . 370
button properties . 367
button types . 367
button-activate . 369
button-at . 369
button-down event . I:332
button-end . 369
button-face, customization keyword I:204
button-get . 369
button-has-type-p . 369
button-label . 369

Index 493

button-prefix, customization keyword I:204
button-put . 369
button-start . 369
button-suffix, customization keyword I:204
button-type . 369
button-type-get . 369
button-type-put . 369
button-type-subtype-p . 369
buttons in buffers . 366
byte compilation . I:223
byte compiler warnings, how to avoid 449
byte packing and unpacking 292
byte to string . 184
byte-boolean-vars . I:162, 465
byte-code . I:223
byte-code function . I:229
byte-code-function-p . I:164
byte-compile . I:224
byte-compile-dynamic . I:227
byte-compile-dynamic-docstrings I:226
byte-compile-file . I:225
byte-compiling macros . I:182
byte-compiling require . I:218
byte-recompile-directory I:225
byte-to-position . 183
byte-to-string . 184
bytes . I:48
bytesize, in serial connections 291

C
C-c . I:365
C-g . I:351
C-h . I:365
C-M-x . I:253
c-mode-syntax-table . 246
C-x . I:365
C-x 4 . I:365
C-x 5 . I:366
C-x 6 . I:366
C-x RET . I:365
C-x v . I:366
C-x X = . I:262
caar . I:67
cache-long-line-scans . 301
cadr . I:67
call stack . I:250
call-interactively . I:322
call-process . 260
call-process, command-line arguments from

minibuffer . 259
call-process-region . 262
call-process-shell-command 263
called-interactively-p I:323
calling a function . I:170
cancel-change-group . 180
cancel-debug-on-entry . I:246
cancel-timer . 408

capitalization . I:60
capitalize . I:60
capitalize-region . 155
capitalize-word . 156
car . I:65
car-safe . I:66
case conversion in buffers . 155
case conversion in Lisp . I:59
case in replacements . 225
case-fold-search . 211
case-replace . 211
case-table-p . I:62
catch . I:127
categories of characters . 247
category (overlay property) 319
category (text property) . 162
category table . 247
category, regexp search for . 219
category-docstring . 248
category-set-mnemonics . 249
category-table . 248
category-table-p . 248
cdar . I:67
cddr . I:68
cdr . I:65
cdr-safe . I:66
ceiling . I:38
centering point . 55
change hooks . 180
change hooks for a character 166
change-major-mode-after-body-hook I:409
change-major-mode-hook I:154
changing key bindings . I:375
changing to another buffer . 1
changing window size . 24
char-after . 122
char-before . 122
char-category-set . 248
char-charset . 190
char-code-property-description 188
char-displayable-p . 341
char-equal . I:53
char-or-string-p . I:49
char-property-alias-alist 158
char-script-table . 189
char-syntax . 239
char-table length . I:86
char-table-extra-slot . I:93
char-table-p . I:93
char-table-parent . I:93
char-table-range . I:93
char-table-subtype . I:93
char-tables . I:92
char-to-string . I:56
char-width . 323
char-width-table . 189
character alternative (in regexp) 213
character arrays . I:48

Index 494

character case . I:59
character categories . 247
character classes in regexp . 215
character code conversion . 193
character codepoint . 182
character codes . 185
character insertion . 128
character printing . I:456
character properties . 186
character sets . 189
character to string . I:56
character translation tables 191
characterp . 185
characters . I:48
characters for interactive codes I:318
characters, multi-byte . 182
characters, representation in buffers and strings

. 182
charset . 189
charset, coding systems to encode 197
charset, text property . 204
charset-after . 191
charset-list . 189
charset-plist . 190
charset-priority-list . 190
charsetp . 189
charsets supported by a coding system 197
check-coding-system . 196
check-coding-systems-region 197
checkdoc-minor-mode . 450
child process . 257
child window . 20
circular list . I:64
circular structure, read syntax I:26
cl . I:2
CL note—allocate more storage 460
CL note—case of letters . I:13
CL note—default optional arg I:166
CL note—integers vrs eq . I:36
CL note—interning existing symbol I:105
CL note—lack union, intersection I:78
CL note—no continuable errors I:130
CL note—only throw in Emacs I:126
CL note—rplaca vs setcar I:73
CL note—special forms compared I:115
CL note—symbol in obarrays I:104
class of advice . I:234
cleanup forms . I:135
clear-abbrev-table . 250
clear-image-cache . 366
clear-string . I:53
clear-this-command-keys I:326
clear-visited-file-modtime 9
click event . I:329
clickable buttons in buffers 366
clickable text . 169
clipboard . 91
clipboard support (for MS-Windows) 91

clone-indirect-buffer . 16
closures . I:148
clrhash . I:99
coded character set . 189
codepoint, largest value . 185
codes, interactive, description of I:318
codespace . 182
coding conventions in Emacs Lisp 444
coding standards . 444
coding system . 193
coding system, automatically determined 199
coding system, validity check 196
coding systems for encoding a string 196
coding systems for encoding region 196
coding systems, priority . 203
coding-system-aliases . 194
coding-system-change-eol-conversion 196
coding-system-change-text-conversion 196
coding-system-charset-list 197
coding-system-eol-type . 196
coding-system-for-read . 202
coding-system-for-write 202
coding-system-get . 194
coding-system-list . 195
coding-system-p . 196
coding-system-priority-list 203
collapse-delayed-warnings 309
color names . 92
color-defined-p . 92
color-gray-p . 93
color-supported-p . 93
color-values . 93
colors on text terminals . 93
columns . 150
‘COM1’ . 289
combine-after-change-calls 181
combine-and-quote-strings 259
command . I:164
command descriptions . I:4
command history . I:357
command in keymap . I:372
command loop . I:315
command loop, recursive . I:355
command-debug-status . I:251
command-error-function I:130
command-execute . I:322
command-history . I:357
command-line . 391
command-line arguments . 391
command-line options . 391
command-line-args . 391
command-line-args-left . 392
command-line-functions . 392
command-line-processed . 391
command-remapping . I:378
command-switch-alist . 391
commandp . I:321
commandp example . I:299

Index 495

commands, defining . I:316
comment syntax . 237
comments . I:9
comments, Lisp convention for 453
Common Lisp . I:1
compare-buffer-substrings 125
compare-strings . I:54
compare-window-configurations 62
comparing buffer text . 125
comparing file modification time 8
comparing numbers . I:36
compilation (Emacs Lisp) I:223
compilation functions . I:223
compile-defun . I:224
compile-time constant . I:228
compiled function . I:229
compiler errors . I:228
complete key . I:361
completing-read . I:294
completing-read-function I:296
completion . I:291
completion styles . I:303
completion table . I:292
completion, file name . I:489
completion-at-point . I:306
completion-at-point-functions I:306
completion-auto-help . I:297
completion-boundaries . I:294
completion-category-overrides I:304
completion-extra-properties I:304
completion-ignore-case I:294
completion-ignored-extensions I:490
completion-in-region . I:307
completion-regexp-list I:294
completion-styles . I:303
completion-styles-alist I:303
completion-table-dynamic I:306
complex arguments . I:284
complex command . I:357
composite types (customization) I:198
composition (text property) 167
composition property, and point display I:326
compute-motion . 105
concat . I:50
concatenating bidirectional strings 384
concatenating lists . I:76
concatenating strings . I:50
cond . I:122
condition name . I:134
condition-case . I:131
condition-case-unless-debug I:131
conditional evaluation . I:121
conditional selection of windows 36
cons . I:68
cons cells . I:68
cons-cells-consed . 462
consing . I:68
consp . I:65

constant variables . I:137, I:142
constrain-to-field . 173
content directory, package . 418
continuation lines . 300
continue-process . 271
control character key constants I:375
control character printing I:456
control characters . I:12
control characters in display 377
control characters, reading I:348
control structures . I:120
Control-X-prefix . I:365
controller part, model/view/controller 374
controlling terminal . 393
controlling-tty-p . 395
conventions for writing major modes I:399
conventions for writing minor modes I:414
conversion of strings . I:55
convert-standard-filename I:491
converting numbers . I:38
coordinate, relative to frame 58
coordinates-in-window-p . 59
copy-abbrev-table . 250
copy-alist . I:84
copy-category-table . 248
copy-directory . I:493
copy-file . I:480
copy-hash-table . I:101
copy-keymap . I:364
copy-marker . 114
copy-overlay . 317
copy-region-as-kill . 133
copy-sequence . I:87
copy-syntax-table . 239
copy-tree . I:70
copying alists . I:84
copying files . I:479
copying lists . I:69
copying sequences . I:87
copying strings . I:50
copying vectors . I:91
copysign . I:35
cos . I:46
count-lines . 103
count-loop . I:5
count-screen-lines . 104
count-words . 103
counting columns . 150
coverage testing . I:272
coverage testing (Edebug) I:262
create-file-buffer . I:464
create-fontset-from-fontset-spec 340
create-image . 362
creating buffers . 13
creating hash tables . I:97
creating keymaps . I:363
creating, copying and deleting directories I:493
cryptographic hash . 177

Index 496

ctl-arrow . 377
ctl-x-4-map . I:365
ctl-x-5-map . I:366
ctl-x-map . I:365
ctl-x-r-map . 481
current binding . I:138
current buffer . 1
current buffer mark . 117
current buffer point and mark (Edebug) I:263
current buffer position . 99
current command . I:325
current stack frame . I:247
current-active-maps . I:368
current-bidi-paragraph-direction 384
current-buffer . 1
current-case-table . I:62
current-column . 150
current-fill-column . 144
current-frame-configuration 86
current-global-map . I:369
current-idle-time . 408
current-indentation . 151
current-input-method . 206
current-input-mode . 410
current-justification . 142
current-kill . 135
current-left-margin . 144
current-local-map . I:369
current-message . 303
current-minor-mode-maps I:370
current-prefix-arg . I:354
current-time . 400
current-time-string . 400
current-time-zone . 400
current-window-configuration 60
current-word . 125
currying . I:171
cursor . 49
cursor (text property) . 164
cursor position for display properties and overlays

. 165
cursor, and frame parameters 76
cursor, fringe . 346
cursor-color, a frame parameter 78
cursor-in-echo-area . 306
cursor-in-non-selected-windows 76
cursor-type . 76
cursor-type, a frame parameter 76
cust-print . I:260
custom-add-frequent-value I:196
custom-initialize-delay 458
custom-reevaluate-setting I:196
custom-set-faces . I:206
custom-set-variables . I:206
custom-theme-p . I:207
custom-theme-set-faces I:207
custom-theme-set-variables I:207
custom-unlispify-remove-prefixes I:193

custom-variable-p . I:196
customization groups, defining I:192
customization item . I:190
customization keywords . I:190
customization types . I:196
customization variables, how to define I:193
customize-package-emacs-version-alist . . I:192
cyclic ordering of windows . 34

D
data type . I:8
data-directory . I:459
datagrams . 284
date-leap-year-p . 406
date-to-time . 402
deactivate-mark . 119
deactivate-mark-hook . 119
deactivating advice . I:238
debug . I:248
debug-ignored-errors . I:244
debug-on-entry . I:245
debug-on-error . I:243
debug-on-error use . I:130
debug-on-event . I:244
debug-on-next-call . I:250
debug-on-quit . I:245
debug-on-signal . I:244
debugger . I:250
debugger command list . I:247
debugger for Emacs Lisp . I:243
debugging errors . I:243
debugging invalid Lisp syntax I:271
debugging specific functions I:245
declare . I:184
declare-function . I:178, I:179
declaring functions . I:178
decode process output . 275
decode-char . 190
decode-coding-inserted-region 205
decode-coding-region . 204
decode-coding-string . 204
decode-time . 401
decoding file formats . I:497
decoding in coding systems 203
decrement field of register . I:14
dedicated window . 46
def-edebug-spec . I:265
defadvice . I:234
defalias . I:170
default argument string . I:318
default coding system . 199
default coding system, functions to determine

. 200
default init file . 389
default key binding . I:362
default value . I:155
default value of char-table . I:92

Index 497

default-boundp . I:155
default-directory . I:487
default-file-modes . I:481
default-frame-alist . 71
default-input-method . 206
default-justification . 142
default-minibuffer-frame 83
default-process-coding-system 200
default-text-properties 158
default-value . I:155
‘default.el’ . 387
defconst . I:142
defcustom . I:193
defface . 325
defgroup . I:192
defimage . 362
define customization group I:192
define customization options I:193
define hash comparisons . I:100
define-abbrev . 251
define-abbrev-table . 251
define-button-type . 368
define-category . 247
define-derived-mode . I:406
define-fringe-bitmap . 347
define-generic-mode . I:411
define-globalized-minor-mode I:418
define-hash-table-test I:100
define-key . I:375
define-key-after . I:395
define-minor-mode . I:416
define-obsolete-face-alias 336
define-obsolete-function-alias I:177
define-obsolete-variable-alias I:161
define-package . 420
define-prefix-command . I:366
defined-colors . 92
defining a function . I:169
defining advice . I:234
defining commands . I:316
defining customization variables in C 465
defining Lisp variables in C 465
defining menus . I:384
defining-kbd-macro . I:358
definitions of symbols . I:103
defmacro . I:183
defsubr, Lisp symbol for a primitive 465
defsubst . I:177
deftheme . I:206
defun . I:169
DEFUN, C macro to define Lisp primitives 463
defun-prompt-regexp . 107
defvar . I:141
DEFVAR_INT, DEFVAR_LISP, DEFVAR_BOOL 465
defvaralias . I:160
delay-mode-hooks . I:409
delayed-warnings-hook 309, 485
delayed-warnings-list . 309

delete . I:80
delete-and-extract-region 129
delete-auto-save-file-if-necessary I:509
delete-auto-save-files I:509
delete-backward-char . 129
delete-blank-lines . 131
delete-by-moving-to-trash I:480, I:493
delete-char . 129
delete-directory . I:493
delete-dups . I:81
delete-exited-processes 266
delete-field . 173
delete-file . I:480
delete-frame . 82
delete-frame event . I:334
delete-frame-functions . 82
delete-horizontal-space 130
delete-indentation . 130
delete-minibuffer-contents I:313
delete-old-versions . I:505
delete-other-windows . 32
delete-overlay . 316
delete-process . 266
delete-region . 129
delete-terminal . 68
delete-terminal-functions 68
delete-to-left-margin . 144
delete-window . 31
delete-windows-on . 32
deleting files . I:479
deleting frames . 82
deleting list elements . I:79
deleting previous char . 129
deleting processes . 266
deleting text vs killing . 128
deleting whitespace . 130
deleting windows . 31
delq . I:79
dependencies . 418
derived mode . I:405
derived-mode-p . I:407
describe characters and events I:456
describe-bindings . I:383
describe-buffer-case-table I:63
describe-categories . 249
describe-current-display-table 379
describe-display-table . 379
describe-mode . I:405
describe-prefix-bindings I:458
description for interactive codes I:318
description format . I:4
deserializing . 292
desktop notifications . 414
desktop save mode . I:449
desktop-buffer-mode-handlers I:450
desktop-save-buffer . I:449
destroy-fringe-bitmap . 348
destructive list operations . I:73

Index 498

detect-coding-region . 197
detect-coding-string . 197
diagrams, boxed, for lists . I:15
dialog boxes . 89
digit-argument . I:354
ding . 381
dir-locals-class-alist I:160
dir-locals-directory-cache I:160
dir-locals-file . I:159
dir-locals-set-class-variables I:159
dir-locals-set-directory-class I:160
directory local variables . I:159
directory name . I:485
directory part (of file name) I:482
directory-file-name . I:485
directory-files . I:491
directory-files-and-attributes I:492
directory-oriented functions I:491
dired-kept-versions . I:505
disable-command . I:357
disable-point-adjustment I:326
disable-theme . I:208
disabled . I:356
disabled command . I:356
disabled-command-function I:357
disabling advice . I:239
disabling undo . 140
disassemble . I:230
disassembled byte-code . I:230
discard-input . I:350
discarding input . I:350
display (overlay property) 320
display (text property) . 350
display action . 39
display feature testing . 95
display margins . 354
display message in echo area 302
display properties, and bidi reordering of text

. 383
display property, and point display I:326
display specification . 350
display table . 377
display, a frame parameter 72
display, abstract . 370
display, arbitrary objects . 370
display-backing-store . 97
display-buffer . 39
display-buffer-alist . 40
display-buffer-base-action 40
display-buffer-fallback-action 40
display-buffer-function . 44
display-buffer-overriding-action 40
display-buffer-pop-up-frame 41
display-buffer-pop-up-window 41
display-buffer-reuse-frames 41
display-buffer-reuse-window 41
display-buffer-same-window 40
display-buffer-use-some-window 41

display-color-cells . 97
display-color-p . 96
display-completion-list I:297
display-delayed-warnings 309
display-graphic-p . 95
display-grayscale-p . 96
display-images-p . 96
display-message-or-buffer 303
display-mm-dimensions-alist 97
display-mm-height . 97
display-mm-width . 97
display-mouse-p . 96
display-pixel-height . 96
display-pixel-width . 96
display-planes . 97
display-popup-menus-p . 95
display-save-under . 97
display-screens . 96
display-selections-p . 96
display-supports-face-attributes-p 96
display-table-slot . 378
display-type, a frame parameter 72
display-visual-class . 97
display-warning . 307
displaying a buffer . 37
displays, multiple . 67
dnd-protocol-alist . 92
do-auto-save . I:509
doc, customization keyword I:204
doc-directory . I:454
‘DOC-version’ (documentation) file I:451
documentation . I:452
documentation conventions I:451
documentation for major mode I:405
documentation notation . I:3
documentation of function I:167
documentation strings . I:451
documentation strings, conventions and tips . . 450
documentation, keys in . I:454
documentation-property I:452
dolist . I:125
DOS file types . 205
dotimes . I:125
dotimes-with-progress-reporter 305
dotted list . I:64
dotted lists (Edebug) . I:267
dotted pair notation . I:17
double-click events . I:332
double-click-fuzz . I:333
double-click-time . I:334
double-quote in strings . I:18
down-list . 106
downcase . I:60
downcase-region . 156
downcase-word . 156
downcasing in lookup-key I:343
drag event . I:332
drag-n-drop event . I:335

Index 499

dribble file . 410
dump-emacs . 458
dumping Emacs . 457
dynamic binding . I:146
dynamic extent . I:146
dynamic libraries . 417
dynamic loading of documentation I:226
dynamic loading of functions I:226
dynamic-library-alist . 417

E
easy-mmode-define-minor-mode I:417
echo area . 302
echo-area-clear-hook . 306
echo-keystrokes . 306
edebug . I:257
Edebug debugging facility I:251
Edebug execution modes . I:253
Edebug specification list . I:265
edebug-all-defs . I:270
edebug-all-forms . I:270
edebug-continue-kbd-macro I:271
edebug-display-freq-count I:262
edebug-eval-macro-args I:265
edebug-eval-top-level-form I:253
edebug-global-break-condition I:271
edebug-initial-mode . I:270
edebug-on-error . I:271
edebug-on-quit . I:271
edebug-print-circle . I:261
edebug-print-length . I:260
edebug-print-level . I:261
edebug-print-trace-after I:261
edebug-print-trace-before I:261
edebug-save-displayed-buffer-points I:270
edebug-save-windows . I:270
edebug-set-global-break-condition I:257
edebug-setup-hook . I:269
edebug-sit-for-seconds I:254
edebug-temp-display-freq-count I:262
edebug-test-coverage . I:270
edebug-trace . I:261, I:270
edebug-tracing . I:261
edebug-unwrap-results . I:271
edit-and-eval-command . I:288
editing types . I:23
editor command loop . I:315
eight-bit, a charset . 189
electric-future-map . I:6
element (of list) . I:64
elements of sequences . I:87
‘elp.el’ . 449
elt . I:87
Emacs event standard notation I:456
Emacs process run time . 405
emacs, a charset . 189
emacs-build-time . I:6

emacs-init-time . 405
emacs-internal coding system 194
emacs-lisp-docstring-fill-column I:451
emacs-lisp-mode-syntax-table 246
emacs-major-version . I:6
emacs-minor-version . I:6
emacs-pid . 398
emacs-save-session-functions 414
emacs-session-restore . 414
emacs-startup-hook . 389
emacs-uptime . 405
emacs-version . I:6
EMACSLOADPATH environment variable I:212
empty list . I:16
emulation-mode-map-alists I:371
enable-command . I:357
enable-local-eval . I:158
enable-local-variables I:156
enable-multibyte-characters 182
enable-recursive-minibuffers I:313
enable-theme . I:207
enabling advice . I:239
encode-char . 190
encode-coding-region . 203
encode-coding-string . 204
encode-time . 401
encoding file formats . I:497
encoding in coding systems 203
encrypted network connections 281
end of line in regexp . 214
end-of-buffer . 102
end-of-defun . 107
end-of-defun-function . 107
end-of-file . I:277
end-of-line . 102
end-of-line conversion . 193
endianness . 292
environment . I:110
environment variable access 396
environment variables, subprocesses 258
eobp . 123
EOL conversion . 193
eol conversion of coding system 196
eol type of coding system . 196
eolp . 123
epoch . 399
eq . I:30
eql . I:37
equal . I:31
equal-including-properties I:32
equality . I:30
erase-buffer . 129
error . I:129
error cleanup . I:135
error debugging . I:243
error description . I:132
error display . 302
error handler . I:130

Index 500

error in debug . I:249
error message notation . I:3
error name . I:134
error symbol . I:134
error-conditions . I:134
error-message-string . I:132
errors . I:128
ESC . I:374
esc-map . I:365
ESC-prefix . I:365
escape (ASCII character) . I:10
escape characters . I:282
escape characters in printing I:279
escape sequence . I:11
eval . I:118
eval, and debugging . I:250
eval-after-load . I:221
eval-and-compile . I:227
eval-buffer . I:118
eval-buffer (Edebug) . I:253
eval-current-buffer . I:119
eval-current-buffer (Edebug) I:253
eval-defun (Edebug) . I:253
eval-expression (Edebug) I:253
eval-expression-debug-on-error I:244
eval-expression-print-length I:283
eval-expression-print-level I:283
eval-minibuffer . I:288
eval-region . I:118
eval-region (Edebug) . I:253
eval-when-compile . I:227
evaluated expression argument I:320
evaluation . I:110
evaluation error . I:139
evaluation list group . I:259
evaluation notation . I:3
evaluation of buffer contents I:118
evaluation of special forms I:114
evaporate (overlay property) 321
event printing . I:456
event type . I:336
event, reading only one . I:344
event-basic-type . I:337
event-click-count . I:333
event-convert-list . I:338
event-end . I:338
event-modifiers . I:337
event-start . I:338
eventp . I:327
events . I:327
ewoc . 370
ewoc-buffer . 372
ewoc-collect . 373
ewoc-create . 371
ewoc-data . 372
ewoc-delete . 373
ewoc-enter-after . 372
ewoc-enter-before . 372

ewoc-enter-first . 372
ewoc-enter-last . 372
ewoc-filter . 373
ewoc-get-hf . 372
ewoc-goto-next . 373
ewoc-goto-node . 373
ewoc-goto-prev . 373
ewoc-invalidate . 373
ewoc-locate . 372
ewoc-location . 372
ewoc-map . 373
ewoc-next . 372
ewoc-nth . 372
ewoc-prev . 372
ewoc-refresh . 373
ewoc-set-data . 372
ewoc-set-hf . 372
examining the interactive form I:318
examining windows . 36
examples of using interactive I:321
excursion . 108
exec-directory . 258
exec-path . 258
exec-suffixes . 257
executable-find . I:478
execute program . 257
execute with prefix argument I:323
execute-extended-command I:323
execute-kbd-macro . I:358
executing-kbd-macro . I:358
execution speed . 449
exit . I:355
exit recursive editing . I:355
exit-minibuffer . I:311
exit-recursive-edit . I:356
exiting Emacs . 392
exp . I:46
expand-abbrev . 253
expand-file-name . I:486
expansion of file names . I:486
expansion of macros . I:181
expression . I:110
expt . I:46
extended menu item . I:385
extended-command-history I:290
extent . I:146
extra slots of char-table . I:92
extra-keyboard-modifiers I:346

F
face (button property) . 367
face (overlay property) . 319
face (text property) . 162
face alias . 336
face attributes . 327
face codes of text . 162
face id . 325

Index 501

face specification . 326
face-all-attributes . 331
face-attribute . 331
face-attribute-relative-p 331
face-background . 332
face-bold-p . 333
face-differs-from-default-p 336
face-documentation 335, I:453
face-equal . 336
face-font . 333
face-font-family-alternatives 337
face-font-registry-alternatives 338
face-font-rescale-alist 338
face-font-selection-order 338
face-foreground . 332
face-id . 335
face-inverse-video-p . 333
face-italic-p . 333
face-list . 335
face-name-history . I:290
face-remap-add-relative 335
face-remap-remove-relative 335
face-remap-reset-base . 335
face-remap-set-base . 335
face-remapping-alist . 334
face-stipple . 333
face-underline-p . 333
facemenu-keymap . I:366
facep . 325
faces . 325
faces for font lock . I:436
faces, automatic choice . 336
false . I:2
fboundp . I:175
fceiling . I:42
feature-unload-function I:220
featurep . I:219
features . I:217
features . I:219
fetch-bytecode . I:227
ffloor . I:42
field (text property) . 164
field width . I:58
field-beginning . 172
field-end . 172
field-string . 173
field-string-no-properties 173
fields . 172
fifo data structure . I:96
file accessibility . I:471
file age . I:472
file attributes . I:475
file contents, and default coding system 199
file format conversion . I:497
file hard link . I:479
file local variables . I:156
file locks . I:470
file mode specification error I:403

file modes . I:475
file modes and MS-DOS . I:475
file modes, setting . I:480
file modification time . I:472
file name abbreviations . I:485
file name completion subroutines I:489
file name of buffer . 5
file name of directory . I:485
file name, and default coding system 199
file names . I:482
file names in directory . I:491
file open error . I:464
file permissions . I:475
file permissions, setting . I:480
file symbolic links . I:473
file types on MS-DOS and Windows 205
file with multiple names . I:479
file, information about . I:471
file-accessible-directory-p I:472
file-already-exists . I:480
file-attributes . I:476
file-chase-links . I:474
file-coding-system-alist 199
file-directory-p . I:473
file-equal-p . I:473
file-error . I:210
file-executable-p . I:471
file-exists-p . I:471
file-expand-wildcards . I:492
file-in-directory-p . I:474
file-local-copy . I:496
file-local-variables-alist I:157
file-locked . I:470
file-locked-p . I:470
file-modes . I:475
file-modes-symbolic-to-number I:481
file-name-absolute-p . I:484
file-name-all-completions I:489
file-name-as-directory I:485
file-name-buffer-file-type-alist 206
file-name-coding-system 195
file-name-completion . I:489
file-name-directory . I:482
file-name-extension . I:483
file-name-handler-alist I:493
file-name-history . I:290
file-name-nondirectory I:483
file-name-sans-extension I:483
file-name-sans-versions I:483
file-newer-than-file-p I:472
file-newest-backup . I:507
file-nlinks . I:475
file-ownership-preserved-p I:472
file-precious-flag . I:467
file-readable-p . I:471
file-regular-p . I:473
file-relative-name . I:484
file-remote-p . I:496

Index 502

file-selinux-context . I:478
file-supersession . 9
file-symlink-p . I:473
file-truename . I:474
file-writable-p . I:471
fill-column . 143
fill-context-prefix . 145
fill-forward-paragraph-function 143
fill-individual-paragraphs 141
fill-individual-varying-indent 141
fill-nobreak-predicate . 144
fill-paragraph . 141
fill-paragraph-function 143
fill-prefix . 143
fill-region . 141
fill-region-as-paragraph 142
fillarray . I:90
filling text . 140
filling, automatic . 146
filter function . 273
filter multibyte flag, of process 275
filter-buffer-substring 124
filter-buffer-substring-functions 124
find file in path . I:478
find library . I:211
find-auto-coding . 201
find-backup-file-name . I:506
find-buffer-visiting . 6
find-charset-region . 191
find-charset-string . 191
find-coding-systems-for-charsets 197
find-coding-systems-region 196
find-coding-systems-string 196
find-file . I:462
find-file-hook . I:463
find-file-literally I:462, I:464
find-file-name-handler I:496
find-file-noselect . I:462
find-file-not-found-functions I:463
find-file-other-window I:463
find-file-read-only . I:463
find-file-wildcards . I:463
find-font . 343
find-image . 363
find-operation-coding-system 201
finding files . I:461
finding windows . 35
first-change-hook . 181
fit-window-to-buffer . 25
fixed-size window . 23
fixup-whitespace . 131
flags in format specifications I:59
float . I:38
float-e . I:46
float-output-format . I:283
float-pi . I:47
float-time . 400
floating-point functions . I:46

floatp . I:35
floats-consed . 463
floor . I:38
flowcontrol, in serial connections 291
flushing input . I:350
fmakunbound . I:175
fn in function’s documentation string I:216
focus event . I:334
focus-follows-mouse . 85
follow links . 169
follow-link (button property) 367
following-char . 122
font and color, frame parameters 77
font lock faces . I:436
Font Lock mode . I:429
font, a frame parameter . 78
font-at . 342
font-backend, a frame parameter 77
font-face-attributes . 343
font-family-list . 330
font-get . 343
font-list-limit . 339
font-lock-add-keywords I:434
font-lock-beginning-of-syntax-function

. I:438
font-lock-builtin-face I:437
font-lock-comment-delimiter-face I:437
font-lock-comment-face I:437
font-lock-constant-face I:437
font-lock-defaults . I:429
font-lock-doc-face . I:437
font-lock-extend-after-change-region-

function . I:440
font-lock-extra-managed-props I:435
font-lock-face (text property) 162
font-lock-fontify-buffer-function I:435
font-lock-fontify-region-function I:435
font-lock-function-name-face I:437
font-lock-keyword-face I:437
font-lock-keywords . I:431
font-lock-keywords-case-fold-search I:434
font-lock-keywords-only I:438
font-lock-mark-block-function I:435
font-lock-multiline . I:439
font-lock-negation-char-face I:437
font-lock-preprocessor-face I:437
font-lock-remove-keywords I:434
font-lock-string-face . I:437
font-lock-syntactic-face-function I:438
font-lock-syntax-table I:438
font-lock-type-face . I:437
font-lock-unfontify-buffer-function I:435
font-lock-unfontify-region-function I:435
font-lock-variable-name-face I:437
font-lock-warning-face I:437
font-put . 342
font-spec . 342
font-xlfd-name . 343

Index 503

fontification-functions 336
fontified (text property) . 163
fontp . 341
foo . I:4
for . I:185
force-mode-line-update I:419
force-window-update . 300
forcing redisplay . 299
foreground-color, a frame parameter 78
form . I:110
format . I:57
format definition . I:498
format of keymaps . I:361
format specification . I:57
format, customization keyword I:203
format-alist . I:498
format-find-file . I:500
format-insert-file . I:500
format-mode-line . I:426
format-network-address . 289
format-seconds . 404
format-time-string . 402
format-write-file . I:499
formatting strings . I:57
formfeed . I:10
forward advice . I:235
forward-button . 370
forward-char . 100
forward-comment . 243
forward-line . 103
forward-list . 106
forward-sexp . 106
forward-to-indentation . 155
forward-word . 101
frame . 66
frame configuration . 86
frame layout parameters . 74
frame parameters . 70
frame parameters for windowed displays 71
frame size . 79
frame title . 81
frame visibility . 85
frame-alpha-lower-limit . 78
frame-auto-hide-function 48
frame-background-mode . 327
frame-char-height . 79
frame-char-width . 79
frame-current-scroll-bars 349
frame-first-window . 21
frame-height . 79
frame-inherited-parameters 67
frame-list . 82
frame-live-p . 82
frame-parameter . 70
frame-parameters . 70
frame-pixel-height . 79
frame-pixel-width . 79
frame-pointer-visible-p . 88

frame-relative coordinate . 58
frame-root-window . 19
frame-selected-window . 33
frame-terminal . 66
frame-title-format . 81
frame-visible-p . 85
frame-width . 79
framep . 66
frames, scanning all . 82
free list . 460
frequency counts . I:262
frexp . I:35
fringe bitmaps . 346
fringe cursors . 346
fringe indicators . 344
fringe-bitmaps-at-pos . 347
fringe-cursor-alist . 346
fringe-indicator-alist . 345
fringes . 344
fringes, and empty line indication 345
fringes-outside-margins 344
fround . I:42
fset . I:176
ftp-login . I:136
ftruncate . I:42
full keymap . I:361
full-height window . 23
full-screen frames . 73
full-width window . 23
fullscreen, a frame parameter 73
funcall . I:170
funcall, and debugging . I:250
function . I:174
function aliases . I:170
function call . I:113
function call debugging . I:245
function cell . I:102
function cell in autoload . I:214
function declaration . I:178
function definition . I:168
function descriptions . I:4
function form evaluation . I:113
function input stream . I:275
function invocation . I:170
function keys . I:328
function name . I:168
function output stream . I:278
function quoting . I:174
function safety . I:179
function-documentation I:451
functionals . I:172
functionp . I:164
functions in modes . I:400
functions, making them interactive I:316
fundamental-mode . I:399
fundamental-mode-abbrev-table 255

Index 504

G
gamma correction . 77
gap-position . 17
gap-size . 17
garbage collection . 459
garbage collection protection 463
garbage-collect . 460
garbage-collection-messages 461
gc-cons-percentage . 462
gc-cons-threshold . 461
gc-elapsed . 462
GCPRO and UNGCPRO . 465
gcs-done . 462
generate-autoload-cookie I:216
generate-new-buffer . 13
generate-new-buffer-name . 5
generated-autoload-file I:216
generic mode . I:411
geometry specification . 80
get . I:108
get, defcustom keyword . I:194
get-buffer . 4
get-buffer-create . 13
get-buffer-process . 273
get-buffer-window . 37
get-buffer-window-list . 37
get-byte . 186
get-char-code-property . 188
get-char-property . 157
get-char-property-and-overlay 157
get-charset-property . 190
get-device-terminal . 68
get-file-buffer . 6
get-internal-run-time . 405
get-largest-window . 35
get-load-suffixes . I:211
get-lru-window . 35
get-process . 267
get-register . 176
get-text-property . 157
get-unused-category . 248
get-window-with-predicate 36
getenv . 396
gethash . I:99
GIF . 360
global binding . I:138
global break condition . I:257
global keymap . I:367
global variable . I:137
global-abbrev-table . 255
global-buffers-menu-map 482
global-disable-point-adjustment I:327
global-key-binding . I:374
global-map . I:369
global-mode-string . I:423
global-set-key . I:381
global-unset-key . I:381
glyph . 379

glyph-char . 379
glyph-face . 380
glyphless characters . 380
glyphless-char-display . 380
glyphless-char-display-control 380
goto-char . 100
goto-map . I:366
graphical display . 66
graphical terminal . 66
group, customization keyword I:190

H
hack-dir-local-variables I:159
hack-dir-local-variables-non-file-buffer

. I:159
hack-local-variables . I:157
hack-local-variables-hook I:157
handle-shift-selection . 119
handle-switch-frame . 84
handling errors . I:130
hash code . I:100
hash notation . I:8
hash tables . I:97
hash, cryptographic . 177
hash-table-count . I:101
hash-table-p . I:101
hash-table-rehash-size I:101
hash-table-rehash-threshold I:101
hash-table-size . I:101
hash-table-test . I:101
hash-table-weakness . I:101
hashing . I:104
header comments . 454
header line (of a window) I:426
header-line prefix key . I:343
header-line-format . I:426
height of a window . 22
height, a frame parameter . 73
help for major mode . I:405
help-buffer . I:459
help-char . I:458
help-command . I:457
help-echo (overlay property) 320
help-echo (text property) . 163
help-echo event . I:335
help-echo, customization keyword I:204
help-event-list . I:458
help-form . I:458
help-index (button property) 367
help-map . I:457
help-setup-xref . I:459
Helper-describe-bindings I:458
Helper-help . I:459
Helper-help-map . I:459
hex numbers . I:33
hidden buffers . 4
history list . I:289

Index 505

history of commands . I:357
history-add-new-input . I:290
history-delete-duplicates I:290
history-length . I:290
HOME environment variable . 257
hook variables, list of . 484
hooks . I:396
hooks for changing a character 166
hooks for loading . I:221
hooks for motion of point . 166
hooks for text changes . 180
hooks for window operations 64
horizontal combination . 20
horizontal position . 150
horizontal scrolling . 56
horizontal-scroll-bar prefix key I:343
hyper characters . I:13
hyperlinks in documentation strings 451

I
icon-left, a frame parameter 72
icon-name, a frame parameter 75
icon-title-format . 81
icon-top, a frame parameter 73
icon-type, a frame parameter 75
iconified frame . 85
iconify-frame . 85
iconify-frame event . I:334
identity . I:172
idleness . 408
IEEE floating point . I:34
if . I:121
ignore . I:172
ignore-errors . I:133
ignore-window-parameters 63
ignored-local-variables I:158
image animation . 365
image cache . 365
image descriptor . 356
image formats . 355
image slice . 364
image types . 355
image-animate . 365
image-animate-timer . 365
image-animated-p . 365
image-cache-eviction-delay 366
image-flush . 366
image-load-path . 363
image-load-path-for-library 363
image-mask-p . 359
image-size . 365
image-type-available-p . 356
image-types . 356
ImageMagick images . 361
imagemagick-register-types 361
imagemagick-types . 361
imagemagick-types-inhibit 361

images in buffers . 355
images, support for more formats 361
Imenu . I:427
imenu-add-to-menubar . I:427
imenu-case-fold-search I:428
imenu-create-index-function I:429
imenu-extract-index-name-function I:428
imenu-generic-expression I:427
imenu-prev-index-position-function I:428
imenu-syntax-alist . I:428
implicit progn . I:120
inactive minibuffer . I:285
inc . I:181
indefinite extent . I:146
indefinite scope . I:146
indent-according-to-mode 152
indent-code-rigidly . 153
indent-for-tab-command . 152
indent-line-function . 152
indent-region . 153
indent-region-function . 153
indent-relative . 154
indent-relative-maybe . 154
indent-rigidly . 153
indent-tabs-mode . 151
indent-to . 151
indent-to-left-margin . 144
indentation . 151
indicate-buffer-boundaries 345
indicate-empty-lines . 345
indicators, fringe . 344
indirect buffers . 15
indirect specifications . I:267
indirect-function . I:113
indirect-variable . I:161
indirection for functions . I:112
infinite loops . I:245
infinite recursion . I:139
infinity . I:34
inheritance of text properties 167
inheriting a keymap’s bindings I:364
inhibit-default-init . 389
inhibit-eol-conversion . 202
inhibit-field-text-motion 101
inhibit-file-name-handlers I:496
inhibit-file-name-operation I:496
inhibit-iso-escape-detection 197
inhibit-local-variables-regexps . . . I:157, I:403
inhibit-modification-hooks 181
inhibit-null-byte-detection 197
inhibit-point-motion-hooks 167
inhibit-quit . I:352
inhibit-read-only . 10
inhibit-splash-screen . 388
inhibit-startup-echo-area-message 388
inhibit-startup-message 388
inhibit-startup-screen . 388
inhibit-x-resources . 95

Index 506

init file . 389
init-file-user . 398
‘init.el’ . 389
initial-buffer-choice . 388
initial-environment . 397
initial-frame-alist . 70
initial-major-mode . I:404
initial-scratch-message 388
initial-window-system . 382
initial-window-system, and startup 386
initialization of Emacs . 386
initialize, defcustom keyword I:194
inline completion . I:306
inline functions . I:177
innermost containing parentheses 244
input events . I:327
input focus . 83
input methods . 206
input modes . 409
input stream . I:274
input-decode-map . I:379
input-method-alist . 207
input-method-function . I:347
input-pending-p . I:349
insert . 126
insert-abbrev-table-description 251
insert-and-inherit . 168
insert-before-markers . 126
insert-before-markers-and-inherit 168
insert-behind-hooks (overlay property) 321
insert-behind-hooks (text property) 166
insert-buffer . 127
insert-buffer-substring 127
insert-buffer-substring-as-yank 133
insert-buffer-substring-no-properties . . . 127
insert-button . 368
insert-char . 127
insert-default-directory I:302
insert-directory . I:492
insert-directory-program I:492
insert-file-contents . I:467
insert-file-contents-literally I:468
insert-for-yank . 133
insert-image . 364
insert-in-front-hooks (overlay property) . . . 321
insert-in-front-hooks (text property) 166
insert-register . 176
insert-sliced-image . 364
insert-text-button . 369
inserting killed text . 134
insertion before point . 126
insertion of text . 126
insertion type of a marker . 116
inside comment . 244
inside string . 244
installation-directory . 397
int-to-string . I:55
intangible (overlay property) 321

intangible (text property) 164
integer to decimal . I:55
integer to hexadecimal . I:58
integer to octal . I:57
integer to string . I:55
integer-or-marker-p . 113
integerp . I:36
integers . I:33
integers in specific radix . I:33
interactive . I:316
interactive call . I:321
interactive code description I:318
interactive completion . I:318
interactive function . I:316
interactive, examples of using I:321
interactive-form . I:318
interactive-form, function property I:316
intern . I:105
intern-soft . I:105
internal representation of characters 182
internal windows . 18
internal-border-width, a frame parameter . . 74
internals, of buffer . 467
internals, of process . 475
internals, of window . 472
interning . I:104
interpreter . I:110
interpreter-mode-alist I:404
interprogram-cut-function 136
interprogram-paste-function 136
interrupt Lisp functions . I:351
interrupt-process . 271
intervals . 174
intervals-consed . 463
invalid prefix key error . I:376
invalid-function . I:112
invalid-read-syntax . I:8
invalid-regexp . 219
invert-face . 332
invisible (overlay property) 321
invisible (text property) . 164
invisible frame . 85
invisible text . 309
invisible-p . 311
invisible/intangible text, and point I:326
invocation-directory . 397
invocation-name . 397
isnan . I:35
iteration . I:124

J
jit-lock-register . I:435
jit-lock-unregister . I:436
joining lists . I:76
jumbled display of bidirectional text 384
just-one-space . 131
justify-current-line . 142

Index 507

K
kbd . I:360
kbd-macro-termination-hook I:359
kept-new-versions . I:505
kept-old-versions . I:505
key . I:360
key binding . I:361
key binding, conventions for 446
key lookup . I:371
key sequence . I:360
key sequence error . I:376
key sequence input . I:342
key translation function . I:380
key-binding . I:368
key-description . I:456
key-translation-map . I:379
keyboard events . I:327
keyboard events in strings I:341
keyboard input . I:342
keyboard input decoding on X 207
keyboard macro execution I:322
keyboard macro termination 381
keyboard macro, terminating I:350
keyboard macros . I:358
keyboard macros (Edebug) I:254
keyboard-coding-system . 205
keyboard-quit . I:353
keyboard-translate . I:347
keyboard-translate-table I:346
keymap . I:360
keymap (button property) . 367
keymap (overlay property) . 322
keymap (text property) . 163
keymap entry . I:371
keymap format . I:361
keymap in keymap . I:372
keymap inheritance . I:364
keymap inheritance from multiple maps I:365
keymap of character . 163
keymap of character (and overlays) 321
keymap prompt string . I:362
keymap-parent . I:364
keymap-prompt . I:384
keymapp . I:363
keymaps for translating events I:378
keymaps in modes . I:400
keymaps, standard . 481
keys in documentation strings I:454
keys, reserved . 447
keystroke . I:360
keyword symbol . I:137
keywordp . I:138
kill command repetition . I:325
kill ring . 132
kill-all-local-variables I:154
kill-append . 136
kill-buffer . 14
kill-buffer-hook . 14

kill-buffer-query-functions 14
kill-emacs . 392
kill-emacs-hook . 392
kill-emacs-query-functions 393
kill-local-variable . I:154
kill-new . 135
kill-process . 271
kill-read-only-ok . 133
kill-region . 133
kill-ring . 137
kill-ring-max . 137
kill-ring-yank-pointer . 137
killing buffers . 13
killing Emacs . 392
kmacro-keymap . 482

L
lambda . I:174
lambda expression . I:165
lambda in debug . I:249
lambda in keymap . I:372
lambda list . I:165
lambda-list (Edebug) . I:268
largest Lisp integer number I:34
largest window . 35
last . I:67
last-abbrev . 254
last-abbrev-location . 254
last-abbrev-text . 254
last-buffer . 12
last-coding-system-used 195
last-command . I:324
last-command-char . I:326
last-command-event . I:326
last-event-frame . I:326
last-input-char . I:349
last-input-event . I:349
last-kbd-macro . I:359
last-nonmenu-event . I:326
last-prefix-arg . I:354
last-repeatable-command I:325
lax-plist-get . I:109
lax-plist-put . I:109
layout on display, and bidirectional text 384
layout parameters of frames . 74
lazy loading . I:226
lazy-completion-table . I:294
ldexp . I:35
least recently used window . 35
left, a frame parameter . 72
left-fringe, a frame parameter 74
left-fringe-width . 344
left-margin . 144
left-margin-width . 355
length . I:86
let . I:139
let* . I:139

Index 508

lexical binding . I:146
lexical binding (Edebug) . I:259
lexical comparison . I:53
lexical environment . I:148
lexical scope . I:146
lexical-binding . I:150
library . I:209
library compilation . I:225
library header comments . 454
library search . I:211
libxml-parse-html-region 178
libxml-parse-xml-region 179
line end conversion . 193
line height . 324
line number . 103
line truncation . 300
line wrapping . 300
line-beginning-position 102
line-end-position . 103
line-height (text property) 165, 324
line-move-ignore-invisible 311
line-number-at-pos . 103
line-prefix . 301
line-spacing . 325
line-spacing (text property) 165, 325
line-spacing, a frame parameter 74
lines . 102
lines in region . 103
link, customization keyword I:190
linked list . I:14
linking files . I:479
Lisp debugger . I:243
Lisp expression motion . 106
Lisp history . I:1
Lisp library . I:209
Lisp nesting error . I:119
Lisp object . I:8
Lisp package . 418
Lisp printer . I:280
Lisp reader . I:274
lisp-mode-abbrev-table . 255
‘lisp-mode.el’ . I:412
list . I:68
list all coding systems . 195
list elements . I:65
list form evaluation . I:112
list in keymap . I:372
list length . I:86
list motion . 106
list structure . I:14, I:64
list-buffers-directory . 7
list-charset-chars . 190
list-fonts . 343
list-load-path-shadows I:213
list-processes . 266
list-system-processes . 278
listify-key-sequence . I:349
listp . I:65

lists . I:64
lists and cons cells . I:64
lists as sets . I:78
literal evaluation . I:111
little endian . 292
live buffer . 14
live windows . 18
ln . I:480
load . I:209
load error with require . I:217
load errors . I:210
load, customization keyword I:191
load-average . 398
load-file . I:210
load-file-name . I:210
load-file-rep-suffixes I:211
load-history . I:219
load-in-progress . I:210
load-library . I:210
load-path . I:212
load-read-function . I:211
load-suffixes . I:211
load-theme . I:207
loading . I:209
loading hooks . I:221
‘loadup.el’ . 457
local binding . I:138
local keymap . I:367
local variables . I:138
local-abbrev-table . 255
local-function-key-map I:379
local-key-binding . I:374
local-map (overlay property) 321
local-map (text property) . 163
local-set-key . I:381
local-unset-key . I:381
local-variable-if-set-p I:153
local-variable-p . I:153
locale . 207
locale-coding-system . 207
locale-info . 208
locate file in path . I:478
locate-file . I:478
locate-library . I:213
locate-user-emacs-file I:490
lock file . I:470
lock-buffer . I:470
log . I:46
log10 . I:46
logand . I:44
logb . I:35
logging echo-area messages 305
logical arithmetic . I:42
logical order . 383
logical shift . I:42
logior . I:45
lognot . I:45
logxor . I:45

Index 509

looking-at . 223
looking-at-p . 224
looking-back . 224
lookup tables . I:97
lookup-key . I:373
loops, infinite . I:245
lower case . I:59
lower-frame . 86
lowering a frame . 86
lsh . I:42
lwarn . 307

M
M-g . I:366
M-o . I:366
M-s . I:366
M-x . I:323
Maclisp . I:1
macro . I:163
macro argument evaluation I:185
macro call . I:181
macro call evaluation . I:114
macro compilation . I:224
macro descriptions . I:4
macro expansion . I:182
macroexpand . I:182
macroexpand-all . I:182
macros . I:181
macros, at compile time . I:228
magic autoload comment . I:215
magic file names . I:493
magic-fallback-mode-alist I:404
magic-mode-alist . I:404
mail-host-address . 396
major mode . I:399
major mode command . I:399
major mode conventions . I:399
major mode hook . I:402
major mode keymap . I:367
major mode, automatic selection I:403
major-mode . I:399
make-abbrev-table . 250
make-auto-save-file-name I:508
make-backup-file-name . I:506
make-backup-file-name-function I:503
make-backup-files . I:502
make-bool-vector . I:94
make-button . 368
make-byte-code . I:230
make-category-set . 248
make-category-table . 248
make-char-table . I:92
make-composed-keymap . I:365
make-directory . I:493
make-display-table . 377
make-frame . 67
make-frame-invisible . 85

make-frame-on-display . 69
make-frame-visible . 85
make-frame-visible event I:335
make-glyph-code . 379
make-hash-table . I:97
make-help-screen . I:459
make-indirect-buffer . 15
make-keymap . I:363
make-list . I:69
make-local-variable . I:152
make-marker . 114
make-network-process . 284
make-obsolete . I:177
make-obsolete-variable I:161
make-overlay . 316
make-progress-reporter . 304
make-ring . I:95
make-serial-process . 289
make-sparse-keymap . I:363
make-string . I:49
make-symbol . I:105
make-symbolic-link . I:480
make-syntax-table . 238
make-temp-file . I:488
make-temp-name . I:489
make-text-button . 368
make-translation-table . 191
make-translation-table-from-alist 192
make-translation-table-from-vector 192
make-variable-buffer-local I:152
make-vector . I:91
makehash . I:99
making buttons . 368
makunbound . I:140
manipulating buttons . 369
map-char-table . I:94
map-charset-chars . 191
map-keymap . I:382
map-y-or-n-p . I:309
mapatoms . I:106
mapc . I:173
mapcar . I:172
mapconcat . I:173
maphash . I:100
mapping functions . I:172
margins, display . 354
mark . 117
mark excursion . 108
mark ring . 117
mark, the . 117
mark-active . 119
mark-even-if-inactive . 119
mark-marker . 117
mark-ring . 120
mark-ring-max . 120
marker argument . I:320
marker garbage collection . 112
marker input stream . I:274

Index 510

marker output stream . I:278
marker relocation . 112
marker-buffer . 115
marker-insertion-type . 116
marker-position . 115
markerp . 113
markers . 112
markers as numbers . 112
match data . 225
match, customization keyword I:204
match-alternatives, customization keyword

. I:202
match-beginning . 227
match-data . 228
match-end . 227
match-string . 227
match-string-no-properties 227
match-substitute-replacement 226
mathematical functions . I:46
max . I:37
max-char . 185
max-image-size . 365
max-lisp-eval-depth . I:119
max-mini-window-height I:314
max-specpdl-size . I:139
maximize-window . 26
maximizing windows . 26
maximum Lisp integer number I:34
maximum value of character codepoint 185
md5 . 178
MD5 checksum . 177
member . I:80
member-ignore-case . I:81
membership in a list . I:79
memory allocation . 459
memory usage . 462
memory-full . 462
memory-limit . 462
memory-use-counts . 462
memq . I:79
memql . I:80
menu bar . I:391
menu bar keymaps . 482
menu definition example . I:390
menu item . I:384
menu keymaps . I:384
menu prompt string . I:384
menu separators . I:387
menu-bar prefix key . I:343
menu-bar-file-menu . 482
menu-bar-final-items . I:391
menu-bar-help-menu . 482
menu-bar-lines frame parameter 74
menu-bar-options-menu . 482
menu-bar-tools-menu . 482
menu-bar-update-hook . I:392
menu-item . I:385
menu-prompt-more-char . I:390

merge-face-attribute . 332
message . 302
message digest . 177
message-box . 303
message-log-max . 305
message-or-box . 302
message-truncate-lines . 306
meta character key constants I:375
meta character printing . I:456
meta characters . I:12
meta characters lookup . I:362
meta-prefix-char . I:374
min . I:37
minibuffer . I:284
minibuffer completion . I:294
minibuffer history . I:289
minibuffer input . I:355
minibuffer input, and command-line arguments

. 259
minibuffer window, and next-window 34
minibuffer windows . I:311
minibuffer, a frame parameter 75
minibuffer-allow-text-properties I:287
minibuffer-auto-raise . 86
minibuffer-complete . I:297
minibuffer-complete-and-exit I:297
minibuffer-complete-word I:297
minibuffer-completion-confirm I:296
minibuffer-completion-contents I:312
minibuffer-completion-help I:297
minibuffer-completion-predicate I:296
minibuffer-completion-table I:296
minibuffer-confirm-exit-commands I:296
minibuffer-contents . I:312
minibuffer-contents-no-properties I:312
minibuffer-depth . I:313
minibuffer-exit-hook . I:313
minibuffer-frame-alist . 71
minibuffer-help-form . I:313
minibuffer-history . I:290
minibuffer-inactive-mode I:314
minibuffer-local-completion-map I:298
minibuffer-local-filename-completion-map

. I:298
minibuffer-local-map . I:287
minibuffer-local-must-match-map I:298
minibuffer-local-ns-map I:288
minibuffer-local-shell-command-map I:303
minibuffer-message . I:314
minibuffer-message-timeout I:314
minibuffer-only frame . 71
minibuffer-prompt . I:312
minibuffer-prompt-end . I:312
minibuffer-prompt-width I:312
minibuffer-scroll-window I:313
minibuffer-selected-window I:314
minibuffer-setup-hook . I:313
minibuffer-window . I:312

Index 511

minibuffer-window-active-p I:312
minibufferp . I:313
minimize-window . 26
minimized frame . 85
minimizing windows . 26
minimum Lisp integer number I:34
minor mode . I:413
minor mode conventions . I:414
minor-mode-alist . I:423
minor-mode-key-binding I:374
minor-mode-list . I:413
minor-mode-map-alist . I:370
minor-mode-overriding-map-alist I:370
mirroring of characters . 187
misc-objects-consed . 463
mkdir . I:493
mod . I:41
mode . I:396
mode help . I:405
mode hook . I:402
mode line . I:419
mode line construct . I:419
mode loading . I:403
mode variable . I:414
mode-class (property) . I:402
mode-line prefix key . I:343
mode-line-buffer-identification I:422
mode-line-client . I:423
mode-line-coding-system-map 482
mode-line-column-line-number-mode-map . . . 482
mode-line-format . I:421
mode-line-frame-identification I:422
mode-line-input-method-map 482
mode-line-modes . I:423
mode-line-modified . I:422
mode-line-mule-info . I:422
mode-line-position . I:422
mode-line-process . I:423
mode-line-remote . I:423
mode-name . I:423
mode-specific-map . I:365
model/view/controller . 370
modification flag (of buffer) . 7
modification of lists . I:76
modification time of buffer . 8
modification time of file . I:476
modification-hooks (overlay property) 320
modification-hooks (text property) 166
modifier bits (of input character) I:327
modify-all-frames-parameters 70
modify-category-entry . 249
modify-frame-parameters . 70
modify-syntax-entry . 239
modulus . I:41
momentary-string-display 315
most recently selected windows 33
most-negative-fixnum . I:34
most-positive-fixnum . I:34

motion by chars, words, lines, lists 100
motion event . I:334
mouse click event . I:329
mouse drag event . I:332
mouse events, data in . I:338
mouse events, in special parts of frame I:343
mouse events, repeated . I:332
mouse motion events . I:334
mouse pointer shape . 90
mouse position . 87
mouse position list, accessing I:338
mouse tracking . 87
mouse, availability . 96
mouse-1 . 169
mouse-1-click-follows-link 170
mouse-2 . 446
mouse-action (button property) 367
mouse-appearance-menu-map 482
mouse-color, a frame parameter 78
mouse-face (button property) 367
mouse-face (overlay property) 320
mouse-face (text property) 162
mouse-leave-buffer-hook 486
mouse-movement-p . I:338
mouse-on-link-p . 172
mouse-pixel-position . 88
mouse-position . 87
mouse-position-function . 87
mouse-wheel-down-event I:335
mouse-wheel-up-event . I:335
move to beginning or end of buffer 101
move-marker . 116
move-overlay . 317
move-to-column . 150
move-to-left-margin . 144
move-to-window-line . 104
movemail . 258
MS-DOS and file modes . I:475
MS-DOS file types . 205
mule-keymap . I:365
multi-file package . 420
multi-query-replace-map 232
multi-tty . 67
multibyte characters . 182
multibyte text . 182
multibyte-char-to-unibyte 184
multibyte-string-p . 183
multibyte-syntax-as-symbol 245
multiline font lock . I:438
multiple terminals . 67
multiple windows . 18
multiple X displays . 67
multiple-frames . 81

N
name, a frame parameter . 72
named function . I:168

Index 512

NaN . I:34
narrow-map . 483
narrow-to-page . 110
narrow-to-region . 110
narrowing . 109
natnump . I:36
natural numbers . I:36
nbutlast . I:68
nconc . I:76
negative infinity . I:34
negative-argument . I:355
network byte ordering . 292
network connection . 281
network connection, encrypted 281
network servers . 283
network service name, and default coding system

. 200
network-coding-system-alist 200
network-interface-info . 288
network-interface-list . 288
new file message . I:464
newline . I:10
newline . 128
newline and Auto Fill mode 128
newline in print . I:281
newline in strings . I:18
newline-and-indent . 152
next input . I:348
next-button . 370
next-char-property-change 161
next-complete-history-element I:311
next-frame . 82
next-history-element . I:311
next-matching-history-element I:311
next-overlay-change . 322
next-property-change . 160
next-screen-context-lines 54
next-single-char-property-change 161
next-single-property-change 161
next-window . 34
nil . I:2
nil as a list . I:16
nil in keymap . I:372
nil input stream . I:275
nil output stream . I:278
nlistp . I:65
no-byte-compile . I:223
no-catch . I:127
no-conversion coding system 194
no-redraw-on-reenter . 299
no-self-insert property . 251
non-ASCII characters . 182
non-ASCII text in keybindings I:380
non-capturing group . 217
non-greedy repetition characters in regexp 213
nondirectory part (of file name) I:482
noninteractive . 413
nonlocal exits . I:126

nonprinting characters, reading I:348
noreturn . I:273
normal hook . I:396
normal-auto-fill-function 146
normal-backup-enable-predicate I:503
normal-mode . I:403
not . I:123
not-modified . 8
notation . I:3
notifications-close-notification 417
notifications-notify . 414
nreverse . I:77
nth . I:66
nthcdr . I:67
null . I:65
null bytes, and decoding text 197
num-input-keys . I:344
num-nonmacro-input-events I:345
number comparison . I:36
number conversions . I:38
number-or-marker-p . 113
number-sequence . I:71
number-to-string . I:55
numberp . I:36
numbers . I:33
numeric prefix argument . I:353
numeric prefix argument usage I:320
numerical RGB color specification 92

O
obarray . I:104
obarray . I:106
obarray in completion . I:292
object . I:8
object internals . 467
object to string . I:281
octal character code . I:11
octal character input . I:348
octal escapes . 377
octal numbers . I:33
one-window-p . 35
only-global-abbrevs . 252
opacity, frame . 78
open-dribble-file . 410
open-network-stream . 282
open-paren-in-column-0-is-defun-start . . . 107
open-termscript . 411
operating system environment 395
operating system signal . 392
operations (property) . I:496
option descriptions . I:6
optional arguments . I:166
options on command line . 391
options, defcustom keyword I:194
or . I:124
ordering of windows, cyclic . 34
other-buffer . 11

Index 513

other-window . 34
other-window-scroll-buffer 53
outer-window-id, a frame parameter 76
output from processes . 271
output stream . I:277
output-controlling variables I:282
overall prompt string . I:362
overflow . I:33
overflow-newline-into-fringe 346
overlay-arrow-position . 348
overlay-arrow-string . 348
overlay-arrow-variable-list 349
overlay-buffer . 316
overlay-end . 316
overlay-get . 319
overlay-properties . 319
overlay-put . 319
overlay-recenter . 318
overlay-start . 316
overlayp . 316
overlays . 315
overlays-at . 322
overlays-in . 322
overriding-local-map . I:370
overriding-local-map-menu-flag I:371
overriding-terminal-local-map I:371
overwrite-mode . 128

P
package . 418
package archive . 421
package attributes . 418
package autoloads . 418
package dependencies . 418
package name . 418
package version . 418
package-archive-upload-base 422
package-archives . 421
package-initialize . 419
package-upload-buffer . 422
package-upload-file . 422
package-version, customization keyword . . . I:191
packing . 292
padding . I:58
page-delimiter . 233
paragraph-separate . 233
paragraph-start . 233
parent of char-table . I:92
parent process . 257
parent window . 20
parenthesis . I:15
parenthesis depth . 245
parenthesis matching . 375
parenthesis mismatch, debugging I:271
parity, in serial connections 291
parse-colon-path . 397
parse-partial-sexp . 245

parse-sexp-ignore-comments 245
parse-sexp-lookup-properties 241, 245
parser state . 244
parsing buffer text . 234
parsing html . 178
parsing xml . 179
partial application of functions I:171
passwords, reading . I:310
PATH environment variable . 257
path-separator . 397
PBM . 361
peculiar error . I:134
peeking at input . I:348
percent symbol in mode line I:420
perform-replace . 230
performance analysis . I:262
permanent local variable . I:155
permissions, file . I:475, I:480
piece of advice . I:233
pipes . 265
play-sound . 412
play-sound-file . 412
play-sound-functions . 412
plist . I:106
plist vs. alist . I:107
plist-get . I:108
plist-member . I:109
plist-put . I:108
point . 99
point excursion . 108
point in window . 48
point with narrowing . 99
point-entered (text property) 166
point-left (text property) 166
point-marker . 114
point-max . 100
point-max-marker . 114
point-min . 99
point-min-marker . 114
pointer (text property) . 165
pointer shape . 90
pointers . I:14
pop . I:66
pop-mark . 118
pop-to-buffer . 39
pop-up-frame-alist . 43
pop-up-frame-function . 43
pop-up-frames . 42
pop-up-windows . 42
port number, and default coding system 200
pos-visible-in-window-p . 51
position (in buffer) . 99
position argument . I:319
position in window . 48
position of mouse . 87
position-bytes . 183
positive infinity . I:34
posix-looking-at . 225

Index 514

posix-search-backward . 225
posix-search-forward . 225
posix-string-match . 225
posn-actual-col-row . I:339
posn-area . I:339
posn-at-point . I:340
posn-at-x-y . I:340
posn-col-row . I:339
posn-image . I:339
posn-object . I:340
posn-object-width-height I:340
posn-object-x-y . I:340
posn-point . I:339
posn-string . I:339
posn-timestamp . I:340
posn-window . I:339
posn-x-y . I:339
post-command-hook . I:315
post-gc-hook . 461
post-self-insert-hook . 128
postscript images . 360
pp . I:281
pre-command-hook . I:315
preactivating advice . I:240
preceding-char . 123
precision in format specifications I:59
predicates for numbers . I:35
prefix argument . I:353
prefix argument unreading I:348
prefix command . I:366
prefix key . I:365
prefix, defgroup keyword I:193
prefix-arg . I:354
prefix-help-command . I:458
prefix-numeric-value . I:354
preloaded Lisp files . 457
preloaded-file-list . 457
preloading additional functions and variables . . 457
prepare-change-group . 179
preventing backtracking . I:267
preventing prefix key . I:373
preventing quitting . I:352
previous complete subexpression 244
previous-button . 370
previous-char-property-change 161
previous-complete-history-element I:311
previous-frame . 83
previous-history-element I:311
previous-matching-history-element I:311
previous-overlay-change 322
previous-property-change 161
previous-single-char-property-change 161
previous-single-property-change 161
previous-window . 34
primary selection . 91
primitive . I:163
primitive function . I:22
primitive function internals 463

primitive type . I:8
primitive-undo . 139
prin1 . I:280
prin1-to-string . I:281
princ . I:281
print . I:280
print example . I:278
print name cell . I:102
print-circle . I:283
print-continuous-numbering I:283
print-escape-multibyte I:282
print-escape-newlines . I:282
print-escape-nonascii . I:282
print-gensym . I:283
print-length . I:283
print-level . I:283
print-number-table . I:283
print-quoted . I:282
printable ASCII characters 376
printable-chars . 189
printed representation . I:8
printed representation for characters I:10
printing . I:274
printing (Edebug) . I:260
printing circular structures I:260
printing limits . I:283
printing notation . I:3
priority (overlay property) 319
priority order of coding systems 203
process . 257
process filter . 273
process filter multibyte flag 275
process input . 269
process internals . 475
process output . 271
process sentinel . 276
process signals . 270
process-adaptive-read-buffering 272
process-attributes . 278
process-buffer . 272
process-coding-system . 269
process-coding-system-alist 200
process-command . 267
process-connection-type 265
process-contact . 267
process-datagram-address 284
process-environment . 397
process-exit-status . 268
process-file . 262
process-file-shell-command 263
process-file-side-effects 262
process-filter . 274
process-get . 269
process-id . 267
process-kill-buffer-query-function 272
process-lines . 263
process-list . 267
process-live-p . 268

Index 515

process-mark . 273
process-name . 268
process-plist . 269
process-put . 269
process-query-on-exit-flag 277
process-running-child-p 270
process-send-eof . 270
process-send-region . 270
process-send-string . 270
process-sentinel . 277
process-status . 268
process-tty-name . 268
process-type . 268
processor run time . 405
processp . 257
profiling . 449
prog-mode . I:407
prog-mode, and bidi-paragraph-direction . . 384
prog-mode-hook . I:407
prog1 . I:121
prog2 . I:121
progn . I:120
program arguments . 258
program directories . 258
program name, and default coding system 200
programmed completion . I:305
programming conventions . 447
programming types . I:9
progress reporting . 303
progress-reporter-done . 305
progress-reporter-force-update 304
progress-reporter-update 304
prompt for file name . I:300
prompt string (of menu) . I:384
prompt string of keymap . I:362
properties of text . 156
propertize . 159
property category of text character 162
property list . I:106
property list cell . I:102
property lists vs association lists I:107
protect C variables from garbage collection 465
protected forms . I:135
provide . I:218
provide-theme . I:207
providing features . I:217
PTYs . 265
pure storage . 458
pure-bytes-used . 459
purecopy . 459
purify-flag . 459
push . I:71
push-button . 370
push-mark . 118
put . I:108
put-char-code-property . 189
put-charset-property . 190
put-image . 364

put-text-property . 158
puthash . I:99

Q
query-replace-history . I:290
query-replace-map . 231
querying the user . I:307
question mark in character constant I:10
quietly-read-abbrev-file 252
quit-flag . I:352
quit-process . 271
quit-window . 47
quitting . I:351
quitting from infinite loop I:245
quote . I:116
quote character . 244
quoted character input . I:348
quoted-insert suppression I:377
quoting and unquoting command-line arguments

. 259
quoting characters in printing I:279
quoting using apostrophe . I:116

R
radix for reading an integer I:33
raise-frame . 86
random . I:47
random numbers . I:47
rassoc . I:83
rassq . I:83
rassq-delete-all . I:85
raw prefix argument . I:353
raw prefix argument usage I:320
raw-text coding system . 193
re-builder . 211
re-search-backward . 222
re-search-forward . 222
reactivating advice . I:238
read . I:277
read command name . I:323
read file names . I:300
read input . I:342
read syntax . I:8
read syntax for characters . I:10
read-buffer . I:298
read-buffer-completion-ignore-case I:299
read-buffer-function . I:299
read-char . I:345
read-char-choice . I:346
read-char-exclusive . I:345
read-circle . I:277
read-coding-system . 199
read-color . I:300
read-command . I:299
read-directory-name . I:302
read-event . I:344

Index 516

read-expression-history I:290
read-file-modes . I:481
read-file-name . I:300
read-file-name-completion-ignore-case . . I:302
read-file-name-function I:302
read-from-minibuffer . I:285
read-from-string . I:277
read-input-method-name . 207
read-kbd-macro . I:457
read-key . I:346
read-key-sequence . I:342
read-key-sequence-vector I:343
read-minibuffer . I:288
read-no-blanks-input . I:287
read-non-nil-coding-system 199
read-only (text property) . 164
read-only buffer . 9
read-only buffers in interactive I:317
read-only character . 164
read-passwd . I:310
read-quoted-char . I:348
read-quoted-char quitting I:352
read-regexp . I:286
read-shell-command . I:303
read-string . I:286
read-variable . I:300
reading . I:274
reading a single event . I:344
reading from files . I:467
reading from minibuffer with completion I:294
reading interactive arguments I:318
reading numbers in hex, octal, and binary I:33
reading order . 383
reading symbols . I:104
real-last-command . I:324
rearrangement of lists . I:76
rebinding . I:375
recent-auto-save-p . I:508
recent-keys . 410
recenter . 55
recenter-positions . 55
recenter-redisplay . 55
recenter-top-bottom . 55
record command history . I:322
recording input . 410
recursion . I:124
recursion-depth . I:356
recursive command loop . I:355
recursive editing level . I:355
recursive evaluation . I:110
recursive minibuffers . I:313
recursive-edit . I:356
redirect-frame-focus . 84
redisplay . 299
redisplay-dont-pause . 299
redisplay-preemption-period 300
redo . 137
redraw-display . 299

redraw-frame . 299
references, following . 446
regexp . 211
regexp alternative . 217
regexp grouping . 217
regexp searching . 221
regexp-history . I:290
regexp-opt . 221
regexp-opt-charset . 221
regexp-opt-depth . 221
regexp-quote . 220
regexps used standardly in editing 233
region (between point and mark) 120
region argument . I:320
region-beginning . 120
region-end . 120
register-alist . 175
registers . 175
regular expression . 211
regular expression searching 221
regular expressions, developing 211
reindent-then-newline-and-indent 152
relative file name . I:484
remainder . I:41
remapping commands . I:378
remhash . I:99
remote-file-name-inhibit-cache I:497
remove . I:81
remove-from-invisibility-spec 310
remove-hook . I:398
remove-images . 364
remove-list-of-text-properties 159
remove-overlays . 317
remove-text-properties . 159
remq . I:80
rename-auto-save-file . I:509
rename-buffer . 4
rename-file . I:480
repeat events . I:332
repeated loading . I:216
replace bindings . I:377
replace characters . 174
replace matched text . 225
replace-buffer-in-windows 37
replace-match . 225
replace-re-search-function 232
replace-regexp-in-string 230
replace-search-function 232
replacement after search . 230
require . I:219
require, customization keyword I:191
require-final-newline . I:467
requiring features . I:217
reserved keys . 447
resize frame . 79
resize window . 24
rest arguments . I:166
restore-buffer-modified-p 8

Index 517

restriction (in a buffer) . 109
resume (cf. no-redraw-on-reenter) 299
resume-tty . 394
resume-tty-functions . 394
rethrow a signal . I:132
return (ASCII character) . I:10
return value . I:163
reverse . I:70
reversing a list . I:77
revert-buffer . I:510
revert-buffer-function I:511
revert-buffer-in-progress-p I:511
revert-buffer-insert-file-contents-function

. I:511
revert-without-query . I:511
rgb value . 93
right-fringe, a frame parameter 74
right-fringe-width . 344
right-margin-width . 355
right-to-left text . 382
ring data structure . I:95
ring-bell-function . 381
ring-copy . I:95
ring-elements . I:95
ring-empty-p . I:95
ring-insert . I:96
ring-insert-at-beginning I:96
ring-length . I:95
ring-p . I:95
ring-ref . I:95
ring-remove . I:96
ring-size . I:95
risky, defcustom keyword I:195
risky-local-variable-p I:158
rm . I:480
root window . 19
round . I:39
rounding in conversions . I:38
rounding without conversion I:42
rplaca . I:73
rplacd . I:73
run time stack . I:250
run-at-time . 406
run-hook-with-args . I:397
run-hook-with-args-until-failure I:397
run-hook-with-args-until-success I:397
run-hook-wrapped . I:398
run-hooks . I:397
run-mode-hooks . I:408
run-with-idle-timer . 408

S
S-expression . I:110
safe local variable . I:157
safe, defcustom keyword I:195
safe-length . I:67
safe-local-eval-forms . I:158

safe-local-variable-p . I:158
safe-local-variable-values I:158
safe-magic (property) . I:495
safely encode a string . 196
safely encode characters in a charset 197
safely encode region . 196
safety of functions . I:179
same-window-buffer-names 44
same-window-p . 44
same-window-regexps . 44
save-abbrevs . 252
save-buffer . I:465
save-buffer-coding-system 195
save-current-buffer . 3
save-excursion . 108
save-match-data . 230
save-restriction . 110
save-selected-window . 33
save-some-buffers . I:465
save-window-excursion . 61
saving buffers . I:465
saving text properties . I:497
saving window information . 60
scalability of overlays . 315
scalable-fonts-allowed . 338
scan-lists . 242
scan-sexps . 243
scope . I:146
screen layout . I:25
screen of terminal . 18
screen size . 79
screen-gamma, a frame parameter 77
scroll bar events, data in . I:340
scroll bars . 349
scroll-bar-background, a frame parameter . . 78
scroll-bar-event-ratio I:340
scroll-bar-foreground, a frame parameter . . 78
scroll-bar-mode . 350
scroll-bar-scale . I:340
scroll-bar-width . 350
scroll-bar-width, a frame parameter 74
scroll-command property . 54
scroll-conservatively . 54
scroll-down . 53
scroll-down-aggressively 54
scroll-down-command . 53
scroll-error-top-bottom . 54
scroll-left . 57
scroll-margin . 53
scroll-other-window . 53
scroll-preserve-screen-position 54
scroll-right . 57
scroll-step . 54
scroll-up . 52
scroll-up-aggressively . 54
scroll-up-command . 53
scrolling textually . 52
search-backward . 210

Index 518

search-failed . 209
search-forward . 209
search-map . I:366
search-spaces-regexp . 224
searching . 209
searching active keymaps for keys I:368
searching and case . 211
searching and replacing . 230
searching for regexp . 221
secondary selection . 91
seconds-to-time . 404
secure-hash . 178
select safe coding system . 198
select-frame . 84
select-frame-set-input-focus 84
select-safe-coding-system 198
select-safe-coding-system-accept-default-p

. 198
select-window . 33
selected window . 19
selected-frame . 83
selected-window . 19
selecting a buffer . 1
selecting a window . 33
selection (for window systems) 91
selection-coding-system . 91
selective-display . 312
selective-display-ellipses 313
self-evaluating form . I:111
self-insert-and-exit . I:311
self-insert-command . 128
self-insert-command override I:377
self-insert-command, minor modes I:415
self-insertion . 128
SELinux context . I:477
send-string-to-terminal 411
sending signals . 270
sentence-end . 233
sentence-end-double-space 142
sentence-end-without-period 142
sentence-end-without-space 142
sentinel (of process) . 276
sequence . I:86
sequence length . I:86
sequencep . I:86
serial connections . 289
serial-process-configure 291
serial-term . 289
serializing . 292
session manager . 414
set . I:145
set, defcustom keyword . I:194
set-advertised-calling-convention I:177
set-after, defcustom keyword I:195
set-auto-coding . 201
set-auto-mode . I:403
set-buffer . 2
set-buffer-auto-saved . I:508

set-buffer-major-mode . I:404
set-buffer-modified-p . 7
set-buffer-multibyte . 184
set-case-syntax . I:63
set-case-syntax-delims . I:63
set-case-syntax-pair . I:63
set-case-table . I:62
set-category-table . 248
set-char-table-extra-slot I:93
set-char-table-parent . I:93
set-char-table-range . I:93
set-charset-priority . 190
set-coding-system-priority 203
set-default . I:156
set-default-file-modes I:481
set-display-table-slot . 378
set-face-attribute . 330
set-face-background . 332
set-face-bold-p . 332
set-face-font . 332
set-face-foreground . 332
set-face-inverse-video-p 332
set-face-italic-p . 332
set-face-stipple . 332
set-face-underline-p . 332
set-file-modes . I:480
set-file-selinux-context I:482
set-file-times . I:482
set-fontset-font . 341
set-frame-configuration . 86
set-frame-height . 80
set-frame-parameter . 70
set-frame-position . 79
set-frame-selected-window 33
set-frame-size . 79
set-frame-width . 80
set-fringe-bitmap-face . 348
set-input-method . 207
set-input-mode . 409
set-keyboard-coding-system 205
set-keymap-parent . I:364
set-left-margin . 143
set-mark . 118
set-marker . 116
set-marker-insertion-type 116
set-match-data . 229
set-minibuffer-window . I:312
set-mouse-pixel-position 88
set-mouse-position . 87
set-network-process-option 288
set-process-buffer . 273
set-process-coding-system 269
set-process-datagram-address 284
set-process-filter . 274
set-process-plist . 269
set-process-query-on-exit-flag 278
set-process-sentinel . 277
set-register . 176

Index 519

set-right-margin . 144
set-standard-case-table I:62
set-syntax-table . 240
set-terminal-coding-system 205
set-terminal-parameter . 81
set-text-properties . 159
set-visited-file-modtime . 9
set-visited-file-name . 6
set-window-buffer . 36
set-window-combination-limit 29
set-window-configuration 61
set-window-dedicated-p . 47
set-window-display-table 379
set-window-fringes . 344
set-window-hscroll . 57
set-window-margins . 355
set-window-next-buffers . 45
set-window-parameter . 63
set-window-point . 49
set-window-prev-buffers . 45
set-window-scroll-bars . 349
set-window-start . 50
set-window-vscroll . 56
setcar . I:73
setcdr . I:75
setenv . 396
setplist . I:107
setq . I:145
setq-default . I:155
sets . I:78
setting modes of files . I:479
setting-constant error . I:137
severity level . 306
sexp motion . 106
SHA hash . 177
shadowed Lisp files . I:213
shadowing of variables . I:138
shared structure, read syntax I:26
shell command arguments . 258
shell-command-history . I:290
shell-command-to-string 263
shell-quote-argument . 258
shift-selection, and interactive spec I:317
shift-translation . I:343
show-help-function . 167
shrink-window-if-larger-than-buffer 26
shy groups . 217
sibling window . 20
side effect . I:110
SIGHUP . 392
SIGINT . 392
signal . I:129
signal-process . 271
signaling errors . I:128
signals . 270
SIGTERM . 392
SIGTSTP . 393
sigusr1 event . I:335

sigusr2 event . I:335
simple package . 419
sin . I:46
single file package . 419
single-key-description I:456
sit-for . I:350
‘site-init.el’ . 457
‘site-load.el’ . 457
site-run-file . 389
‘site-start.el’ . 387
size of frame . 79
size of window . 22
skip-chars-backward . 108
skip-chars-forward . 107
skip-syntax-backward . 241
skip-syntax-forward . 241
skipping characters . 107
skipping comments . 245
sleep-for . I:351
slice, image . 364
small-temporary-file-directory I:489
smallest Lisp integer number I:34
smie-bnf->prec2 . I:443
smie-close-block . I:442
smie-down-list . I:442
smie-merge-prec2s . I:442
smie-prec2->grammar . I:442
smie-precs->prec2 . I:442
smie-rule-bolp . I:447
smie-rule-hanging-p . I:447
smie-rule-next-p . I:448
smie-rule-parent . I:448
smie-rule-parent-p . I:448
smie-rule-prev-p . I:448
smie-rule-separator . I:448
smie-rule-sibling-p . I:448
smie-setup . I:442
Snarf-documentation . I:454
sort . I:78
sort-columns . 150
sort-fields . 149
sort-fold-case . 148
sort-lines . 149
sort-numeric-base . 150
sort-numeric-fields . 149
sort-pages . 149
sort-paragraphs . 149
sort-regexp-fields . 148
sort-subr . 146
sorting lists . I:78
sorting text . 146
sound . 412
source breakpoints . I:257
space (ASCII character) . I:10
space display spec, and bidirectional text 384
spaces, pixel specification . 352
spaces, specified height or width 351
sparse keymap . I:361

Index 520

SPC in minibuffer . I:288
special events . I:350
special form descriptions . I:4
special forms . I:114
special forms for control structures I:120
special modes . I:402
special variables . I:150
special-display-buffer-names 43
special-display-frame-alist 44
special-display-function 44
special-display-p . 44
special-display-popup-frame 44
special-display-regexps . 43
special-event-map . I:371
special-mode . I:408
special-variable-p . I:150
specify color . 92
speedups . 449
splicing (with backquote) . I:117
split-height-threshold . 42
split-string . I:51
split-string-and-unquote 259
split-string-default-separators I:52
split-width-threshold . 42
split-window . 26
split-window-below . 31
split-window-keep-point . 31
split-window-preferred-function 42
split-window-right . 31
split-window-sensibly . 42
splitting windows . 26
sqrt . I:46
stable sort . I:78
standard colors for character terminals 77
standard errors . 477
standard hooks . 484
standard regexps used in editing 233
standard-case-table . I:62
standard-category-table 248
standard-display-table . 379
standard-input . I:277
standard-output . I:282
standard-syntax-table . 246
standard-translation-table-for-decode . . . 192
standard-translation-table-for-encode . . . 192
standards of coding style . 444
start-file-process . 265
start-file-process-shell-command 265
start-process . 264
start-process, command-line arguments from

minibuffer . 259
start-process-shell-command 265
STARTTLS network connections 281
startup of Emacs . 386
‘startup.el’ . 386
staticpro, protection from GC 465
sticky text properties . 167
sticky, a frame parameter . 76

stop points . I:252
stop-process . 271
stopbits, in serial connections 291
stopping an infinite loop . I:245
stopping on events . I:257
store-match-data . 229
store-substring . I:52
stream (for printing) . I:277
stream (for reading) . I:274
string . I:49
string equality . I:53
string in keymap . I:372
string input stream . I:275
string length . I:86
string search . 209
string to number . I:56
string to object . I:277
string, number of bytes . 183
string, writing a doc string I:451
string-as-multibyte . 185
string-as-unibyte . 185
string-bytes . 183
string-chars-consed . 463
string-equal . I:53
string-lessp . I:54
string-match . 223
string-match-p . 223
string-or-null-p . I:49
string-prefix-p . I:54
string-to-char . I:56
string-to-int . I:56
string-to-multibyte . 184
string-to-number . I:56
string-to-syntax . 246
string-to-unibyte . 184
string-width . 323
string< . I:53
string= . I:53
stringp . I:49
strings . I:48
strings with keyboard events I:341
strings, formatting them . I:57
strings-consed . 463
submenu . I:389
subprocess . 257
subr . I:163
subr-arity . I:164
subrp . I:164
subst-char-in-region . 174
substitute-command-keys I:455
substitute-in-file-name I:487
substitute-key-definition I:377
substituting keys in documentation I:454
substring . I:49
substring-no-properties I:50
subtype of char-table . I:92
suggestions . I:1
super characters . I:13

Index 521

suppress-keymap . I:377
suspend (cf. no-redraw-on-reenter) 299
suspend evaluation . I:356
suspend-emacs . 393
suspend-frame . 395
suspend-hook . 394
suspend-resume-hook . 394
suspend-tty . 394
suspend-tty-functions . 394
suspending Emacs . 393
swap text between buffers . 16
switch-to-buffer . 38
switch-to-buffer-other-frame 38
switch-to-buffer-other-window 38
switch-to-next-buffer . 46
switch-to-prev-buffer . 46
switch-to-visible-buffer 46
switches on command line . 391
switching to a buffer . 37
sxhash . I:100
symbol . I:102
symbol components . I:102
symbol equality . I:104
symbol evaluation . I:111
symbol function indirection I:112
symbol in keymap . I:372
symbol name hashing . I:104
symbol that evaluates to itself I:137
symbol with constant value I:137
symbol-file . I:219
symbol-function . I:175
symbol-name . I:105
symbol-plist . I:107
symbol-value . I:144
symbolp . I:102
symbols-consed . 463
synchronous subprocess . 260
syntactic font lock . I:437
syntax class . 234
syntax descriptor . 234
syntax error (Edebug) . I:268
syntax flags . 237
syntax for characters . I:10
syntax table . 234
syntax table example . I:412
syntax table internals . 246
syntax tables in modes . I:401
syntax-after . 247
syntax-begin-function . 244
syntax-class . 247
syntax-ppss . 243
syntax-ppss-flush-cache 244
syntax-ppss-toplevel-pos 245
syntax-propertize-extend-region-functions

. 241
syntax-propertize-function 241
syntax-table . 240
syntax-table (text property) 240

syntax-table-p . 234
system abbrev . 250
system processes . 278
system type and name . 395
system-configuration . 395
system-key-alist . 413
system-messages-locale . 207
system-name . 396
system-time-locale . 207
system-type . 395

T
t . I:2
t input stream . I:275
t output stream . I:278
tab (ASCII character) . I:10
tab deletion . 129
TAB in minibuffer . I:288
tab-always-indent . 152
tab-stop-list . 155
tab-to-tab-stop . 155
tab-width . 377
tabs stops for indentation . 154
Tabulated List mode . I:409
tabulated-list-entries I:410
tabulated-list-format . I:409
tabulated-list-init-header I:410
tabulated-list-mode . I:409
tabulated-list-print . I:410
tabulated-list-printer I:410
tabulated-list-revert-hook I:410
tabulated-list-sort-key I:410
tag on run time stack . I:127
tag, customization keyword I:190
tan . I:46
TCP . 281
temacs . 457
TEMP environment variable I:488
temp-buffer-setup-hook . 314
temp-buffer-show-function 314
temp-buffer-show-hook . 315
temporary-file-directory I:488
TERM environment variable . 390
term-file-prefix . 390
term-setup-hook . 391
Termcap . 390
terminal . 66
terminal input . 409
terminal input modes . 409
terminal output . 411
terminal parameters . 80
terminal screen . 18
terminal type . I:25
terminal-coding-system . 205
terminal-list . 68
terminal-live-p . 66
terminal-local variables . 68

Index 522

terminal-name . 68
terminal-parameter . 81
terminal-parameters . 80
terminal-specific initialization 390
termscript file . 411
terpri . I:281
test-completion . I:293
testcover-mark-all . I:272
testcover-next-mark . I:272
testcover-start . I:272
testing types . I:27
text . 122
text area of a window . 22
text conversion of coding system 196
text deletion . 128
text files and binary files . 205
text insertion . 126
text near point . 122
text parsing . 234
text properties . 156
text properties in files . I:497
text properties in the mode line I:425
text properties, read syntax I:20
text representation . 182
text terminal . 66
text-char-description . I:456
text-mode . I:407
text-mode-abbrev-table . 255
text-mode-syntax-table . 246
text-properties-at . 158
text-property-any . 161
text-property-default-nonsticky 168
text-property-not-all . 162
textual order . I:120
textual scrolling . 52
thing-at-point . 125
this-command . I:325
this-command-keys . I:325
this-command-keys-shift-translated I:343
this-command-keys-vector I:326
this-original-command . I:325
three-step-help . I:460
throw . I:127
throw example . I:355
TIFF . 360
tiled windows . 18
time-add . 406
time-less-p . 405
time-subtract . 405
time-to-day-in-year . 406
time-to-days . 406
timer . 406
timer-max-repeats . 407
timestamp of a mouse event I:340
timing programs . 449
tips for writing Lisp . 444
title, a frame parameter . 72
TLS network connections . 281

TMP environment variable . I:488
TMPDIR environment variable I:488
toggle-read-only . 10
tool bar . I:392
tool-bar-add-item . I:393
tool-bar-add-item-from-menu I:394
tool-bar-border . I:394
tool-bar-button-margin I:394
tool-bar-button-relief I:394
tool-bar-lines frame parameter 74
tool-bar-local-item-from-menu I:394
tool-bar-map . I:393
tool-bar-position frame parameter 74
tooltip . 163
top, a frame parameter . 72
top-level . I:356
top-level form . I:209
total height of a window . 22
total width of a window . 22
tq-close . 281
tq-create . 280
tq-enqueue . 280
trace buffer . I:261
track-mouse . 87
transaction queue . 280
transcendental functions . I:46
transient-mark-mode . 118
translate-region . 175
translation tables . 191
translation-table-for-input 192
transparency, frame . 78
transpose-regions . 176
trash . I:480, I:493
triple-click events . I:332
true . I:2
true list . I:64
truename (of file) . I:474
truncate . I:38
truncate-lines . 300
truncate-partial-width-windows 300
truncate-string-to-width 323
truth value . I:2
try-completion . I:292
tty-color-alist . 94
tty-color-approximate . 94
tty-color-clear . 94
tty-color-define . 94
tty-color-mode, a frame parameter 77
tty-color-translate . 94
tty-erase-char . 398
two’s complement . I:33
type . I:8
type (button property) . 367
type checking . I:27
type checking internals . 467
type predicates . I:27
type, defcustom keyword I:196
type-of . I:30

Index 523

typographic conventions . I:2

U
UDP . 281
umask . I:481
unassigned character codepoints 186
unbalanced parentheses . I:271
unbinding keys . I:381
unbury-buffer . 12
undecided coding-system, when encoding 204
undefined . I:374
undefined in keymap . I:372
undefined key . I:361
underline-minimum-offset 330
undo avoidance . 174
undo-ask-before-discard 140
undo-boundary . 138
undo-in-progress . 139
undo-limit . 140
undo-outer-limit . 140
undo-strong-limit . 140
unexec . 458
unhandled-file-name-directory I:497
unibyte buffers, and bidi reordering 383
unibyte text . 182
unibyte-char-to-multibyte 184
unibyte-string . 183
Unicode . 182
unicode bidirectional algorithm 383
unicode character escape . I:11
unicode general category . 186
unicode, a charset . 189
unicode-category-table . 189
unintern . I:106
uninterned symbol . I:104
universal-argument . I:354
universal-argument-map . 483
unless . I:122
unload-feature . I:220
unload-feature-special-hooks I:221
unloading packages . I:220
unloading packages, preparing for 445
unlock-buffer . I:470
unnumbered group . 217
unpacking . 292
unread-command-events . I:348
unsafep . I:179
unsplittable, a frame parameter 75
unwind-protect . I:135
unwinding . I:135
up-list . 106
upcase . I:60
upcase-initials . I:61
upcase-region . 156
upcase-word . 156
update-directory-autoloads I:215
update-file-autoloads . I:215

upper case . I:59
upper case key sequence . I:343
use-global-map . I:370
use-hard-newlines . 143
use-local-map . I:370
use-region-p . 120
user identification . 398
user signals . I:335
user-defined error . I:134
user-emacs-directory . 390
user-full-name . 399
user-init-file . 390
user-login-name . 399
user-mail-address . 398
user-position, a frame parameter 73
user-real-login-name . 399
user-real-uid . 399
user-size, a frame parameter 73
user-uid . 399
user-variable-p . I:196
utf-8-emacs coding system 194

V
validity of coding system . 196
value cell . I:102
value of expression . I:110
value of function . I:163
values . I:119
variable . I:137
variable aliases . I:160
variable definition . I:141
variable descriptions . I:6
variable limit error . I:139
variable with constant value I:137
variable, buffer-local . I:150
variable-documentation I:451
variable-width spaces . 351
variant coding system . 193
vc-mode . I:422
vc-prefix-map . I:366
vconcat . I:91
vector . I:91
vector (type) . I:90
vector evaluation . I:111
vector length . I:86
vector-cells-consed . 463
vectorp . I:91
verify-visited-file-modtime 8
version number (in file name) I:482
version, customization keyword I:191
version-control . I:505
vertical combination . 20
vertical fractional scrolling . 55
vertical scroll position . 55
vertical tab . I:10
vertical-line prefix key I:343
vertical-motion . 104

Index 524

vertical-scroll-bar . 349
vertical-scroll-bar prefix key I:343
vertical-scroll-bars, a frame parameter . . . 74
view part, model/view/controller 370
view-register . 176
virtual buffers . 16
visibility, a frame parameter 75
visible frame . 85
visible-bell . 381
visible-frame-list . 82
visited file . 5
visited file mode . I:403
visited-file-modtime . 9
visiting files . I:461
visual order . 383
void function . I:112
void function cell . I:175
void variable . I:140
void-function . I:175
void-text-area-pointer . 90
void-variable error . I:140

W
wait-for-wm, a frame parameter 76
waiting . I:350
waiting for command key input I:349
waiting-for-user-input-p 277
walk-windows . 35
warn . 307
warning type . 307
warning-fill-prefix . 308
warning-levels . 307
warning-minimum-level . 308
warning-minimum-log-level 308
warning-prefix-function 308
warning-series . 308
warning-suppress-log-types 309
warning-suppress-types . 309
warning-type-format . 308
warnings . 306
wheel-down event . I:335
wheel-up event . I:335
when . I:122
where-is-internal . I:383
while . I:124
while-no-input . I:349
whitespace . I:10
wholenump number . I:36
widen . 110
widening . 110
width of a window . 22
width, a frame parameter . 73
window . 18
window (overlay property) . 319
window body . 22
window body height . 23
window body size . 23

window body width . 23
window combination . 20
window combination limit . 29
window configuration (Edebug) I:263
window configurations . 60
window end position . 50
window excursions . 109
window header line . I:426
window height . 22
window history . 45
window internals . 472
window layout in a frame . I:25
window layout, all frames . I:25
window manager interaction, and frame

parameters . 75
window ordering, cyclic . 34
window parameters . 62
window point . 48
window point internals . 472
window position . 48, 58
window position on display . 72
window positions and window managers 73
window resizing . 24
window selected within a frame 19
window size . 22
window size on display . 73
window size, changing . 24
window splitting . 26
window start position . 49
window that satisfies a predicate 36
window top line . 49
window tree . 19
window width . 22
window-absolute-pixel-edges 60
window-at . 59
window-body-height . 23
window-body-size . 23
window-body-width . 23
window-buffer . 36
window-child . 21
window-combination-limit 29, 30
window-combination-resize 28
window-combined-p . 21
window-configuration-change-hook 65
window-configuration-frame 62
window-configuration-p . 61
window-current-scroll-bars 350
window-dedicated-p . 47
window-display-table . 379
window-edges . 58
window-end . 50
window-frame . 19
window-fringes . 344
window-full-height-p . 23
window-full-width-p . 23
window-hscroll . 57
window-id, a frame parameter 75
window-inside-absolute-pixel-edges 60

Index 525

window-inside-edges . 59
window-inside-pixel-edges 60
window-left-child . 21
window-left-column . 59
window-line-height . 52
window-list . 19
window-live-p . 18
window-margins . 355
window-minibuffer-p . I:312
window-next-buffers . 45
window-next-sibling . 21
window-parameter . 63
window-parameters . 63
window-parent . 20
window-persistent-parameters 63
window-pixel-edges . 60
window-point . 49
window-point-insertion-type 49
window-prev-buffers . 45
window-prev-sibling . 21
window-resizable . 24
window-resize . 25
window-scroll-bars . 349
window-scroll-functions . 64
window-setup-hook . 382
window-size-change-functions 65
window-size-fixed . 24
window-size-fixed-p . 24
window-start . 49
window-state-get . 62
window-state-put . 62
window-system . 382
window-system-initialization-alist 386
window-text-change-functions 487
window-text-height . 23
window-top-child . 20
window-top-line . 59
window-total-height . 22
window-total-size . 23
window-total-width . 23
window-tree . 21
window-valid-p . 18
window-vscroll . 56
windowp . 18
Windows file types . 205
windows, controlling precisely 36
with-case-table . I:62
with-coding-priority . 203
with-current-buffer . 3
with-demoted-errors . I:133
with-help-window . I:459
with-local-quit . I:352
with-no-warnings . I:229
with-output-to-string . I:281
with-output-to-temp-buffer 313
with-selected-window . 33
with-syntax-table . 240
with-temp-buffer . 3

with-temp-file . I:469
with-temp-message . 302
with-timeout . 407
with-wrapper-hook . I:397
word-search-backward . 211
word-search-backward-lax 211
word-search-forward . 210
word-search-forward-lax 211
word-search-regexp . 210
words in region . 103
words-include-escapes . 101
wrap-prefix . 301
write-abbrev-file . 252
write-char . I:281
write-contents-functions I:466
write-file . I:465
write-file-functions . I:466
write-region . I:468
write-region-annotate-functions I:501
write-region-post-annotation-function . . I:501
writing a documentation string I:451
writing Emacs primitives . 463
writing to files . I:468
wrong-number-of-arguments I:166
wrong-type-argument . I:27

X
X Window System . 382
x-alt-keysym . 413
x-alternatives-map . 483
x-bitmap-file-path . 330
x-close-connection . 69
x-color-defined-p . 92
x-color-values . 93
x-defined-colors . 92
x-display-color-p . 96
x-display-list . 69
x-dnd-known-types . 91
x-dnd-test-function . 91
x-dnd-types-alist . 92
x-family-fonts . 339
x-get-resource . 94
x-get-selection . 91
x-hyper-keysym . 413
x-list-fonts . 339
x-meta-keysym . 413
x-open-connection . 69
x-parse-geometry . 80
x-pointer-shape . 90
x-popup-dialog . 89
x-popup-menu . 88
x-resource-class . 95
x-resource-name . 95
x-sensitive-text-pointer-shape 90
x-server-vendor . 97
x-server-version . 97
x-set-selection . 91

Index 526

x-setup-function-keys . 483
x-super-keysym . 413
X11 keysyms . 413
XBM . 359
XPM . 360

Y
y-or-n-p . I:307
y-or-n-p-with-timeout . I:308
yank . 134

yank suppression . I:377
yank-excluded-properties 134
yank-pop . 134
yank-undo-function . 135
yanking and text properties 134
yes-or-no questions . I:307
yes-or-no-p . I:309

Z
zerop . I:36

