Previous: , Up: Writing Autoconf Macros   [Contents][Index]


10.5 Coding Style

The Autoconf macros follow a strict coding style. You are encouraged to follow this style, especially if you intend to distribute your macro, either by contributing it to Autoconf itself or the Autoconf Macro Archive, or by other means.

The first requirement is to pay great attention to the quotation. For more details, see Autoconf Language, and M4 Quotation.

Do not try to invent new interfaces. It is likely that there is a macro in Autoconf that resembles the macro you are defining: try to stick to this existing interface (order of arguments, default values, etc.). We are conscious that some of these interfaces are not perfect; nevertheless, when harmless, homogeneity should be preferred over creativity.

Be careful about clashes both between M4 symbols and between shell variables.

If you stick to the suggested M4 naming scheme (see Macro Names), you are unlikely to generate conflicts. Nevertheless, when you need to set a special value, avoid using a regular macro name; rather, use an “impossible” name. For instance, up to version 2.13, the macro AC_SUBST used to remember what symbol macros were already defined by setting AC_SUBST_symbol, which is a regular macro name. But since there is a macro named AC_SUBST_FILE, it was just impossible to ‘AC_SUBST(FILE)’! In this case, AC_SUBST(symbol) or _AC_SUBST(symbol) should have been used (yes, with the parentheses).

No Autoconf macro should ever enter the user-variable name space; i.e., except for the variables that are the actual result of running the macro, all shell variables should start with ac_. In addition, small macros or any macro that is likely to be embedded in other macros should be careful not to use obvious names.

Do not use dnl to introduce comments: most of the comments you are likely to write are either header comments which are not output anyway, or comments that should make their way into configure. There are exceptional cases where you do want to comment special M4 constructs, in which case dnl is right, but keep in mind that it is unlikely.

M4 ignores the leading blanks and newlines before each argument. Use this feature to indent in such a way that arguments are (more or less) aligned with the opening parenthesis of the macro being called. For instance, instead of

AC_CACHE_CHECK(for EMX OS/2 environment,
ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, [return __EMX__;])],
[ac_cv_emxos2=yes], [ac_cv_emxos2=no])])

write

AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],
                   [ac_cv_emxos2=yes],
                   [ac_cv_emxos2=no])])

or even

AC_CACHE_CHECK([for EMX OS/2 environment],
               [ac_cv_emxos2],
               [AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
                                                   [return __EMX__;])],
                                  [ac_cv_emxos2=yes],
                                  [ac_cv_emxos2=no])])

When using AC_RUN_IFELSE or any macro that cannot work when cross-compiling, provide a pessimistic value (typically ‘no’).

Feel free to use various tricks to prevent auxiliary tools, such as syntax-highlighting editors, from behaving improperly. For instance, instead of:

m4_bpatsubst([$1], [$"])

use

m4_bpatsubst([$1], [$""])

so that Emacsen do not open an endless “string” at the first quote. For the same reasons, avoid:

test $[#] != 0

and use:

test $[@%:@] != 0

Otherwise, the closing bracket would be hidden inside a ‘#’-comment, breaking the bracket-matching highlighting from Emacsen. Note the preferred style to escape from M4: ‘$[1]’, ‘$[@]’, etc. Do not escape when it is unnecessary. Common examples of useless quotation are ‘[$]$1’ (write ‘$$1’), ‘[$]var’ (use ‘$var’), etc. If you add portability issues to the picture, you’ll prefer ‘${1+"$[@]"}’ to ‘"[$]@"’, and you’ll prefer do something better than hacking Autoconf :-).

When using sed, don’t use -e except for indenting purposes. With the s and y commands, the preferred separator is ‘/’ unless ‘/’ itself might appear in the pattern or replacement, in which case you should use ‘|’, or optionally ‘,’ if you know the pattern and replacement cannot contain a file name. If none of these characters will do, choose a printable character that cannot appear in the pattern or replacement. Characters from the set ‘"#$&'()*;<=>?`|~’ are good choices if the pattern or replacement might contain a file name, since they have special meaning to the shell and are less likely to occur in file names.

See Macro Definitions, for details on how to define a macro. If a macro doesn’t use AC_REQUIRE, is expected to never be the object of an AC_REQUIRE directive, and macros required by other macros inside arguments do not need to be expanded before this macro, then use m4_define. In case of doubt, use AC_DEFUN. Also take into account that public third-party macros need to use AC_DEFUN in order to be found by aclocal (see Extending aclocal in GNU Automake). All the AC_REQUIRE statements should be at the beginning of the macro, and each statement should be followed by dnl.

You should not rely on the number of arguments: instead of checking whether an argument is missing, test that it is not empty. It provides both a simpler and a more predictable interface to the user, and saves room for further arguments.

Unless the macro is short, try to leave the closing ‘])’ at the beginning of a line, followed by a comment that repeats the name of the macro being defined. This introduces an additional newline in configure; normally, that is not a problem, but if you want to remove it you can use ‘[]dnl’ on the last line. You can similarly use ‘[]dnl’ after a macro call to remove its newline. ‘[]dnl’ is recommended instead of ‘dnl’ to ensure that M4 does not interpret the ‘dnl’ as being attached to the preceding text or macro output. For example, instead of:

AC_DEFUN([AC_PATH_X],
[AC_MSG_CHECKING([for X])
AC_REQUIRE_CPP()
# …omitted…
  AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])
fi])

you would write:

AC_DEFUN([AC_PATH_X],
[AC_REQUIRE_CPP()[]dnl
AC_MSG_CHECKING([for X])
# …omitted…
  AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])
fi[]dnl
])# AC_PATH_X

If the macro is long, try to split it into logical chunks. Typically, macros that check for a bug in a function and prepare its AC_LIBOBJ replacement should have an auxiliary macro to perform this setup. Do not hesitate to introduce auxiliary macros to factor your code.

In order to highlight the recommended coding style, here is a macro written the old way:

dnl Check for EMX on OS/2.
dnl _AC_EMXOS2
AC_DEFUN(_AC_EMXOS2,
[AC_CACHE_CHECK(for EMX OS/2 environment, ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, return __EMX__;)],
ac_cv_emxos2=yes, ac_cv_emxos2=no)])
test "x$ac_cv_emxos2" = xyes && EMXOS2=yes])

and the new way:

# _AC_EMXOS2
# ----------
# Check for EMX on OS/2.
m4_define([_AC_EMXOS2],
[AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],
                   [ac_cv_emxos2=yes],
                   [ac_cv_emxos2=no])])
test "x$ac_cv_emxos2" = xyes && EMXOS2=yes[]dnl
])# _AC_EMXOS2

Previous: , Up: Writing Autoconf Macros   [Contents][Index]