GNU Parallel alternatives

NAME

parallel_alternatives - Alternatives to GNU parallel

DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES

There are a lot programs that share functionality with GNU parallel. Some of these are specialized
tools, and while GNU parallel can emulate many of them, a specialized tool can be better at a given
task. GNU parallel strives to include the best of the general functionality without sacrificing ease of
use.

parallel has existed since 2002-01-06 and as GNU parallel since 2010. A lot of the alternatives have
not had the vitality to survive that long, but have come and gone during that time.

GNU parallel is actively maintained with a new release every month since 2010. Most other
alternatives are fleeting interests of the developers with irregular releases and only maintained for a
few years.

SUMMARY LEGEND

Inputs

The following features are in some of the comparable tools:

[1. Arguments can be read from stdin

I2. Arguments can be read from a file

I3. Arguments can be read from multiple files

14. Arguments can be read from command line

I5. Arguments can be read from a table

I6. Arguments can be read from the same file using #! (shebang)

I7. Line oriented input as default (Quoting of special chars not needed)

Manipulation of input

Outputs

Execution

M1. Composed command

M2. Multiple arguments can fill up an execution line

M3. Arguments can be put anywhere in the execution line

M4. Multiple arguments can be put anywhere in the execution line
M5. Arguments can be replaced with context

M6. Input can be treated as the complete command line

O1. Grouping output so output from different jobs do not mix

02. Send stderr (standard error) to stderr (standard error)

03. Send stdout (standard output) to stdout (standard output)

O4. Order of output can be same as order of input

O5. Stdout only contains stdout (standard output) from the command
O6. Stderr only contains stderr (standard error) from the command
O7. Buffering on disk

08. No temporary files left if killed

09. Test if disk runs full during run

010. Output of a line bigger than 4 GB

El. Run jobs in parallel

Page 1

GNU Parallel alternatives

E2. List running jobs

E3. Finish running jobs, but do not start new jobs

E4. Number of running jobs can depend on number of cpus

E5. Finish running jobs, but do not start new jobs after first failure
E6. Number of running jobs can be adjusted while running

E7. Only spawn new jobs if load is less than a limit

Remote execution
R1. Jobs can be run on remote computers
R2. Basefiles can be transferred
R3. Argument files can be transferred
R4. Result files can be transferred
R5. Cleanup of transferred files
R6. No config files needed
R7. Do not run more than SSHD's MaxStartups can handle
R8. Configurable SSH command
R9. Retry if connection breaks occasionally

Semaphore
S1. Possibility to work as a mutex
S2. Possibility to work as a counting semaphore

Legend
-=no
X = not applicable
ID = yes

As every new version of the programs are not tested the table may be outdated. Please file a bug
report if you find errors (See REPORTING BUGS).

parallel:

111213141516 17

M1 M2 M3 M4 M5 M6

01 02 03 04 0506 O7 O8 09 010
E1E2E3E4E5E6GE7

R1 R2 R3 R4 R5 R6 R7 R8 R9
S1S82

DIFFERENCES BETWEEN xargs AND GNU Parallel
Summary (see legend above):

-M2 M3 - --
-0203-0506

xargs offers some of the same possibilities as GNU parallel.

Page 2

GNU Parallel alternatives

xargs deals badly with special characters (such as space, \, ' and "). To see the problem try this:

touch inmportant _file

touch 'not inportant _file'

s not* | xargs rm

nkdir -p "My brother's 12\" records”

Is | xargs rmdir

touch 'c:\w ndows\systenB2\cl fs. sys'

echo 'c:\wi ndows\systenB2\cl fs.sys' | xargs Is -|I

You can specify -0, but many input generators are not optimized for using NUL as separator but are
optimized for newline as separator. E.g. awk, Is, echo, tar -v, head (requires using -z), tail (requires
using -z), sed (requires using -z), perl (-0 and \0 instead of \n), locate (requires using -0), find
(requires using -print0), grep (requires using -z or -Z), sort (requires using -z).

GNU parallel's newline separation can be emulated with:

cat | xargs -d "\n" -nl comrand
xargs can run a given number of jobs in parallel, but has no support for running number-of-cpu-cores
jobs in parallel.

xargs has no support for grouping the output, therefore output may run together, e.g. the first half of a
line is from one process and the last half of the line is from another process. The example Parallel
grep cannot be done reliably with xargs because of this. To see this in action try:

parallel perl -e "'"' $a="1"."{}"x10000000; print $a,"\n"' """ \
"> {} ::: abcdef gh
Serial = no mxing = the wanted result

'tr -s a-z' squeezes repeating letters into a single letter
echo abcdef gh]| xargs -P1L -nl grep 1| tr -s a-z
Conpare to 8 jobs in parallel

parallel -kP8 -nl grep 1 ::: abcdef gh] tr -s a-z
echo abcdef gh]| xargs -P8 -nl grep 1| tr -s a-z
echo abcdef gh]| xargs -P8 -nl grep --line-buffered 1 | \
tr -s a-z
Or try this:

sl ow seq() {
echo Count to "$@
seq "$@ |
perl -ne '"$|=1; for(split//){ print; select($a, $a, $a, 0. 100);}"'

}
export -f slow seq
Serial = no mxing = the wanted result

seq 8 | xargs -nl -P1 -1 {} bash -c 'slow seq {}'
Conpare to 8 jobs in parallel
seq 8 | parallel -P8 slow seq {}
seq 8 | xargs -nl -P8 -1 {} bash -c 'slow seq {}'

xargs has no support for keeping the order of the output, therefore if running jobs in parallel using
xargs the output of the second job cannot be postponed till the first job is done.

xargs has no support for running jobs on remote computers.

xargs has no support for context replace, so you will have to create the arguments.

If you use a replace string in xargs (-1) you can not force xargs to use more than one argument.

Page 3

GNU Parallel alternatives

Quoting in xargs works like -g in GNU parallel. This means composed commands and redirection
require using bash -c.

Is | parallel "we {} >{}.wc"
s | parallel "echo {}; Is {}|w"

becomes (assuming you have 8 cores and that none of the filenames contain space, " or).

Is | xargs -d "\n" -P8 -1 {} bash -c "wc {} >{}.w"
Is | xargs -d "\n" -P8 -1 {} bash -c "echo {}; Is {}|w"

A more extreme example can be found on: https://unix.stackexchange.com/q/405552/
https://www.gnu.org/software/findutils/

DIFFERENCES BETWEEN find -exec AND GNU Parallel
Summary (see legend above):
- - - X - X -
-M2M3----
-02 0304 0506

X X
find -exec offers some of the same possibilities as GNU parallel.

find -exec only works on files. Processing other input (such as hosts or URLS) will require creating
these inputs as files. find -exec has no support for running commands in parallel.

https://lwww.gnu.org/software/findutils/ (Last checked: 2019-01)

DIFFERENCES BETWEEN make -j AND GNU Parallel
Summary (see legend above):

0102 03-x06
El---E5-

make -j can run jobs in parallel, but requires a crafted Makefile to do this. That results in extra quoting
to get filenames containing newlines to work correctly.

make -j computes a dependency graph before running jobs. Jobs run by GNU parallel does not
depend on each other.

(Very early versions of GNU parallel were coincidentally implemented using make -j).
https://lwww.gnu.org/software/make/ (Last checked: 2019-01)

DIFFERENCES BETWEEN ppss AND GNU Parallel
Summary (see legend above):

112----17
M1 - M3 - - M6

Page 4

GNU Parallel alternatives

Ol--X--
E1E2?E3E4---
R1R2R3R4--?R7?7?

ppss is also a tool for running jobs in parallel.

The output of ppss is status information and thus not useful for using as input for another command.
The output from the jobs are put into files.

The argument replace string ($ITEM) cannot be changed. Arguments must be quoted - thus
arguments containing special characters (space "&!*) may cause problems. More than one argument
is not supported. Filenames containing newlines are not processed correctly. When reading input
from a file null cannot be used as a terminator. ppss needs to read the whole input file before starting
any jobs.

Output and status information is stored in ppss_dir and thus requires cleanup when completed. If the
dir is not removed before running ppss again it may cause nothing to happen as ppss thinks the task
is already done. GNU parallel will normally not need cleaning up if running locally and will only need
cleaning up if stopped abnormally and running remote (--cleanup may not complete if stopped
abnormally). The example Parallel grep would require extra postprocessing if written using ppss.

For remote systems PPSS requires 3 steps: config, deploy, and start. GNU parallel only requires one
step.

EXAMPLES FROM ppss MANUAL
Here are the examples from ppss's manual page with the equivalent using GNU parallel:

1$./ ppss.sh standal one -d /path/to/files -c '"gzip '
1$ find /path/to/files -type f | parallel gzip

2% ./ppss.sh standal one -d /path/to/files \
-c 'cp "$ITEM /destination/dir '

2% find /path/to/files -type f | parallel cp {} /destination/dir

3% ./ppss.sh standalone -f list-of-urls.txt -c "wget -q
3% parallel -a list-of-urls.txt wget -q
4% ./ ppss.sh standalone -f list-of-urls.txt -c "wget -q "$I TEM''

4% parallel -a list-of-urls.txt wget -q {}

5% ./ppss config -C config.cfg -c 'encode. sh -d /source/dir \
-m 192. 168.1. 100 -u ppss -k ppss-key.key -S ./encode. sh \
-n nodes.txt -o /sonme/output/dir --upload --downl oad;
./ ppss deploy -C config.cfg
./ ppss start -C config

5% # parallel does not use configs. If you want
a different username put it in nodes.txt: user @ostnane
find source/dir -type f |
paral l el --sshloginfile nodes.txt --trc {.}.np3 \

Page 5

GNU Parallel alternatives

lane -a {} -0 {.}.np3 --preset standard --qui et

6% ./ppss stop -C config.cfg

6$ killall -TERM parall el

7% ./ppss pause -C config.cfg

7% Press: CTRL-Z or killall -SIGISTP parallel
8% ./ppss continue -C config.cfg

8% Enter: fg or killall -SIGCONT parallel

9% ./ppss.sh status -C config.cfg

9% killall -SIGUSR2 parallel

https://github.com/louwrentius/PPSS (Last checked: 2010-12)

DIFFERENCES BETWEEN pexec AND GNU Parallel
Summary (see legend above):

112-1415 - -

M1 - M3 - - M6
0102 03-0506
El--E4-E6-
R1----R6---
S1-

pexec is also a tool for running jobs in parallel.

EXAMPLES FROM pexec MANUAL

Here are the examples from pexec's info page with the equivalent using GNU parallel:

1$ pexec -0 sqrt-%.dat -p "$(seq 10)" -e NUM-n 4 -c -- \

"echo "scal e=10000; sqrt ($NUM " | bc'

1% seq 10 | parallel -j4 'echo "scal e=10000; sqgrt ({})"

bc > sqgrt-{}.dat'

|\

2% pexec -p "$(ls nyfiles*.ext)" -i % -0 ¥s.sort sort
2% I's nyfiles*.ext | parallel sort {} ">{}.sort"
3% pexec -f image.list -n auto -e B -u star.log -c -- \

"fistar $B.fits -f 100 -F id,x,y,flux -o $B.star'

3% parallel -a image.list \

"fistar {}.fits -f 100 -F id,x,y,flux -o {}.star’

2>star.log

Page 6

GNU Parallel alternatives

4% pexec -r *.png -e IMG-¢c -0 - -- \

"convert $I MG ${| M3% png}. | peg ;

"echo $I M5 done"'

4% |s *.png | parallel 'convert {} {.}.]jpeg; echo {}: done
5% pexec -r *.png -i % -0 %.jpg -c 'pngtopnm | pnntoj peg
56 I's *.png | parallel 'pngtopnm< {} | pnntojpeg > {}.]pg
6% for pin *.png ; do echo ${p% png} ; done | \

pexec -f - -i %.png -0 %.jpg -c 'pngtopnm | pnmt oj peg’
6% Is *.png | parallel 'pngtopnm< {} | pnntojpeg > {.}.]pg
7$ LIST=$(for p in *.png ; do echo ${p% png} ; done)

pexec -r $LIST -i

7% Is *.png | parallel 'pngtopnm< {}

8%

"pexec -j -mblockread -d $I MG |
j pegtopnm | pnnscale 0.5 | pnnt
pexec -j -mblockwite -s th_$I

8%
Is *jpg | parallel
"pnnscale 0.5 |

pnnt oj peg | sem

If reading and witing is done t
faster as only one process will
Is *jpg | parallel

"pnnscale 0.5 |

pnnt oj peg | sem

%.png -0 %.jpg -c 'pngtopnm |

-j8 'sem--id diskio cat {} |

pnnt oj peg’

| pnntojpeg > {.}.]pg

pexec -n 8 -r *.jpg -y unix -e MG -c \

\

oj peg | \
MG

Conbi ni ng GNU B<paral | el > and GNU B<senp.
-j8 "sem--id blockread cat {} |

j pegtopnm | "\
--id blockwite cat > th_{}'

o the same disk, this may be
be either reading or witing:
j pegtopnm | \
--id diskio cat > th_{}'

https://www.gnu.org/software/pexec/ (Last checked: 2010-12)

DIFFERENCES BETWEEN xjobs AND GNU Parallel

xjobs is also a tool for running jobs in parallel. It only supports running jobs on your local computer.

xjobs deals badly with special characters just like xargs. See the section DIFFERENCES BETWEEN

xargs AND GNU Parallel.

EXAMPLES FROM xjobs MANUAL

Here are the examples from xjobs's man page with the equivalent using GNU parallel:

1$Is -1 *.zip | xjobs unzip

1$ I's *.zip | parallel unzip

2$ 1s -1 *.zip | xjobs -n unzip

28 Is *.zip | parallel

3% find . -nane '*.bak' | xjobs gzip

unzi p >/dev/null

Page 7

GNU Parallel alternatives

3% find . -name '*.bak' | parallel gzip

4% Is -1 *.jar | sed "s/\(.*\)/\1 >\1.idx/' | xjobs jar tf
45 |s *.jar | parallel jar tf {} "> {}.idx

5% Xxj obs -s script

5% cat script | parallel

6% nkfifo /var/run/ny_nanmed_pi pe;
Xjobs -s /var/run/ ny_named_pi pe &
echo unzip 1.zip >> /var/run/ nmy_named_pi pe;
echo tar cf /backup/nyhone.tar /home/me >> /var/run/my_nanmed_pi pe

6% nkfifo /var/run/ny_named_pi pe;
cat /var/run/my_named _pipe | parallel &
echo unzip 1.zip >> /var/run/ nmy_naned_pi pe;
echo tar cf /backup/ nyhone.tar /hone/nme >> /var/run/nmy_nanmed_pi pe

https://www.maier-komor.de/xjobs.html (Last checked: 2019-01)
DIFFERENCES BETWEEN prll AND GNU Parallel

prll is also a tool for running jobs in parallel. It does not support running jobs on remote computers.

prll encourages using BASH aliases and BASH functions instead of scripts. GNU parallel supports
scripts directly, functions if they are exported using export -f, and aliases if using env_parallel.

prll generates a lot of status information on stderr (standard error) which makes it harder to use the
stderr (standard error) output of the job directly as input for another program.

EXAMPLES FROM prllI's MANUAL

Here is the example from prll's man page with the equivalent using GNU parallel:

1$ pril -s 'nogrify -flip $1' *.jpg
1$ parallel nogrify -flip ::: *.jpg

https://github.com/exzombie/prll (Last checked: 2019-01)

DIFFERENCES BETWEEN dxargs AND GNU Parallel
dxargs is also a tool for running jobs in parallel.

dxargs does not deal well with more simultaneous jobs than SSHD's MaxStartups. dxargs is only
built for remote run jobs, but does not support transferring of files.

https://web.archive.org/web/20120518070250/http://www.
semicomplete.com/blog/geekery/distributed-xargs.html (Last checked: 2019-01)

DIFFERENCES BETWEEN mdm/middleman AND GNU Parallel
middleman(mdm) is also a tool for running jobs in parallel.

EXAMPLES FROM middleman's WEBSITE

Here are the shellscripts of https://web.archive.org/web/20110728064735/http://mdm.
berlios.de/usage.html ported to GNU parallel:

Page 8

GNU Parallel alternatives

1% seq 19 | parallel buffon -o - | sort -n > result

cat files | parallel cnd
find dir -execdir semcnd {} \;
https://github.com/cklin/mdm (Last checked: 2019-01)

DIFFERENCES BETWEEN xapply AND GNU Parallel
xapply can run jobs in parallel on the local computer.

EXAMPLES FROM xapply's MANUAL

Here are the examples from xapply's man page with the equivalent using GNU parallel:

1$ xapply '(cd %4 && make all)' */
1$ parallel 'cd {} & make all' ::: */
2$ xapply -f "diff 9% ../version5/ %' nanifest

2% parallel diff {} ../version5/{} < manifest

3% xapply -p/dev/null -f '"diff % %' nmanifestl checklistl

3% parallel --link diff {1} {2} :::: manifestl checklistl

4% xapply 'indent' *.c
4% parallel indent ::: *.c

5% find ~ksb/bin -type f ! -perm-111 -print
xapply -f -v 'chrmod a+x' -

5% find ~ksb/bin -type f ! -perm-111 -print
parall el -v chnod a+x

6% find */ -... | fmt 960 1024 | xapply -f -

6% sh <(find */ -... | parallel -s 1024 echo vi)
6% find */ -... | parallel -s 1024 -Xuj 1l v

7% find ... | xapply -f -5 -i /dev/tty 'vi' -

7% sh <(find ... | parallel -n5 echo vi)

76 find ... | parallel -n5 -ujl vi

8% xapply -fn "" /etc/passwd
8% parallel -k echo < /etc/passwd

9% tr ':' '\012' < /etc/passwd | \

/dev/tty "vi' -

Page 9

GNU Parallel alternatives

xapply -7 -nf 'chowmn %4 %' - - - - - - -
9% tr ':' '\012' < /etc/passwd | parallel -N7 chown {1} {6}
10$ xapply '[-d %4/RCS] || echo ' */
10$ parallel '[-d {}/RCS] || echo {}' ::: */
11% xapply -f '[-f %4] && echo %' List |
11$ parallel '[-f {}] &% echo {}' < List |

https://www.databits.net/~ksb/msrc/local/bin/xapply/xapply.html (Last checked: 2010-12)

DIFFERENCES BETWEEN AIX apply AND GNU Parallel
apply can build command lines based on a template and arguments - very much like GNU parallel.
apply does not run jobs in parallel. apply does not use an argument separator (like :::); instead the
template must be the first argument.

EXAMPLES FROM IBM's KNOWLEDGE CENTER
Here are the examples from IBM's Knowledge Center and the corresponding command using GNU
parallel:

To obtain results similar to those of the Is command, enter:

1$ apply echo *
1$ parallel echo ::: *

To compare the file named al to the file named b1, and the file named a2 to the file named b2, enter:

2$ apply -2 cnp al bl a2 b2
2% parallel -N2 cnp ::: al bl a2 b2

To run the who command five times, enter:

3% apply -Owho 1 2 3 45
3% parallel -NO who ::: 12345

To link all files in the current directory to the directory /usr/joe, enter:

4% apply 'In % /usr/joe' *
4% parallel In {} /usr/joe ::: *

https://lwww-01.ibm.com/support/knowledgecenter/ ssw_aix_71/com.ibm.aix.cmdsl/apply.htm (Last
checked: 2019-01)

DIFFERENCES BETWEEN paexec AND GNU Parallel
paexec can run jobs in parallel on both the local and remote computers.

paexec requires commands to print a blank line as the last output. This means you will have to write a
wrapper for most programs.

paexec has a job dependency facility so a job can depend on another job to be executed
successfully. Sort of a poor-man's make.

Page 10

GNU Parallel alternatives

EXAMPLES FROM paexec's EXAMPLE CATALOG
Here are the examples from paexec's example catalog with the equivalent using GNU parallel:

1 div._X run
1$../../paexec -s -1 -c ""pwd’ /1 div_X cnmd" -n +1 <<ECF [...]

1$ parallel echo {} "|' “pwd /1_div_X cmd <<EOF [...]

all_substr_run
2% ../../paexec -lp -c ""pwd /all_substr_cnmd" -n +3 <<EOF [...]

2% parallel echo {} '|' "pwd /all_substr_cmd <<ECOF [...]

CcC_wrapper_run

3% ../../paexec -c "env CC=gcc CFLAGS=-2 "“pwd'/cc_wrapper_cnmd" \
-n "host1 host2' \
-t "/Jusr/bin/ssh -x'" <<EOF [...]

3% parallel echo {} '|' "env CC=gcc CFLAGS=-2 "pwd /cc_wrapper_cmd" \
-S host 1, host2 <<EOF [...]

This is not exactly the same, but avoids the w apper
parallel gcc -2 -c -o {.}.0 {} \
-S host 1, host2 <<EOF [...]

toupper_run
4% ../ ../ paexec -lp -c "“pwd /toupper_cmd" -n +10 <<ECOF [...]

4% parallel echo {} '|' ./toupper_cmd <<ECF [...]

Wthout the wrapper:
parallel echo {} '| awk {print\ toupper\(\$0\)}' <<EOF [...]
https://github.com/cheusov/paexec (Last checked: 2010-12)

DIFFERENCES BETWEEN map(sitaramc) AND GNU Parallel
Summary (see legend above):

11--14--(I7)
M1 (M2) M3 (M4) M5 M6
-0203-05--xx010

(I7): Only under special circumstances. See below.
(M2+M4): Only if there is a single replacement string.
map rejects input with special characters:

echo "The Cure" > My\ brother\'s\ 12\"\ records

Page 11

GNU Parallel alternatives

Is | nmap 'echo % wc %

It works with GNU parallel:

I's | parallel 'echo {}; wc {}'

Under some circumstances it also works with map:

Is | nap 'echo % works %

But tiny changes make it reject the input with special characters:

Is | nmap 'echo % does not work "9%'"
This means that many UTF-8 characters will be rejected. This is by design. From the web page: "As
such, programs that quietly handle them, with no warnings at all, are doing their users a disservice."
map delays each job by 0.01 s. This can be emulated by using parallel --delay 0.01.

map prints '+' on stderr when a job starts, and '-' when a job finishes. This cannot be disabled.
parallel has --bar if you need to see progress.

map's replacement strings (% %D %B %E) can be simulated in GNU parallel by putting this in
~/.parallel/config:

--rpl "%

--rpl "D $ =Q(::dirname($));"
--rpl "UB s: L */ s VL[N L] +S
--rpl "% s: . F\ L

map does not have an argument separator on the command line, but uses the first argument as
command. This makes quoting harder which again may affect readability. Compare:

map -p 2 'perl -ne """ /M SHs+\S+$/ and print $ARGY, "\n"' "t *
parallel -q perl -ne '/M\SH\s+\S+$/ and print $ARGY,"\n"' ::: *

map can do multiple arguments with context replace, but not without context replace:

parallel --xargs echo "BEGN'{}'}END ::: 1 2 3
map "echo "BEGAN{'%}END " 1 2 3

map has no support for grouping. So this gives the wrong results:

parallel perl -e "\$a=\"1{}\"x10000000\; print\ \$a,\"\\n\"" "> {} \

abcdef
Is -l abcdef
parallel -kP4 -nl grep 1 ::: abcdef > out.par
map -nl -p 4 "grep 1' abcdef > out.mp-unbuf
map -nl -p 4 "grep --line-buffered 1' a b c d e f > out. map-Iinebuf
map -nl -p 1 "grep --line-buffered 1' a b c d e f > out. map-seri al
Is -1 out*

nd5sum out *

Page 12

GNU Parallel alternatives

EXAMPLES FROM map's WEBSITE
Here are the examples from map's web page with the equivalent using GNU parallel:

1%

1%

2%

2%

3%

3%

4%

4%

5%

5%

6%

6%
or
6%

7$

7%

8%

8%

s *.gif | map convert % 9%B. png # default max-args: 1
s *.gif | parallel convert {} {.}.png

map "nkdir 9B; tar -C B -xf %W *.tgz # default max-args: 1
parallel '"nkdir {.}; tar -C{.} -xf {}' ::: *.tgz

s *.gif | map cp %/tnp # default max-args: 100
Is *.gif | parallel -Xcp {} /tnp

Is *.tar | map -n 1 tar -xf %

s *.tar | parallel tar -xf

map "cp %/tmp" *.tgz

parallel cp {} /tmp ::: *.tgz

map "du -sm/hone/ % mail" alice bob carol

parallel "du -sm/hone/{}/mil" ::: alice bob carol

if you prefer running a single job with multiple args:

parallel -Xj1 "du -sm/home/{}/mail"” ::: alice bob carol

cat /etc/passwd | map -d: 'echo user % has shell %'

cat /etc/passwd | parallel --colsep : 'echo user {1} has shell {7}
export MAP_MAX_PROCS=$(("nproc’ / 2))

export PARALLEL=-j50%

https://github.com/sitaramc/map (Last checked: 2020-05)

DIFFERENCES BETWEEN ladon AND GNU Parallel
ladon can run multiple jobs on files in parallel.

ladon only works on files and the only way to specify files is using a quoted glob string (such as
*.jpg). It is not possible to list the files manually.

As replacement strings it uses FULLPATH DIRNAME BASENAME EXT RELDIR RELPATH

These can be simulated using GNU parallel by putting this in ~/.parallel/config:

--rpl 'FULLPATH $ =Q($_);chomp($_=gx{readlink -f $ });"

--rpl "DIRNAME $_=Q(::dirname($_)); chonp($_=gx{readlink -f $_});"
--rpl "BASENAME s:.*/::;s:\.[M.]+%::;"

--rpl "EXT s:L*\Lc

Page 13

GNU Parallel alternatives

--rpl "RELDIR $_=Q($_); chomp(($_, $c) =gx{readlink -f $_;pwd});
s:\@c/\E: :;$_=::dirnane($);"

--rpl ' RELPATH $_=Q($_); chonmp(($_, $c)=gx{readlink -f $_; pwd});
s:\@c/\E: ;"

ladon deals badly with filenames containing " and newline, and it fails for output larger than 200k:
ladon '*' -- seq 36000 | wc
EXAMPLES FROM ladon MANUAL

It is assumed that the '--rpl's above are put in ~/.parallel/config and that it is run under a shell that
supports "** globbing (such as zsh):

1$ ladon "**/* txt" -- echo RELPATH

1$ parallel echo RELPATH ::: **/*.txt

2% ladon "~/ Documents/**/*, pdf" -- shasum FULLPATH >hashes. t xt
2% parallel shasum FULLPATH ::: ~/Docunents/**/*. pdf >hashes.txt

3% ladon -m thunbs/ RELDIR "**/* jpg" -- convert FULLPATH \
-thunbnail 100x100" -gravity center -extent 100x100 \
t hunbs/ RELPATH

3% parallel nmkdir -p thunmbs/RELDI R ; convert FULLPATH
-thunbnail 100x100~ -gravity center -extent 100x100 \

t hunbs/ RELPATH ::: **/*.| pg
4% |l adon "~/ Misic/*.wav" -- lame -V 2 FULLPATH DI RNAME/ BASENAME. np3
4% parallel lame -V 2 FULLPATH DI RNAME/ BASENAME. mp3 ::: ~/ Music/*. wav

https://github.com/danielgtaylor/ladon (Last checked: 2019-01)

DIFFERENCES BETWEEN jobflow AND GNU Parallel
Summary (see legend above):

11----- 17
- - M3 - - (M6)
01 02 03 - 05 06 (07) - - 010
El----E6-

jobflow can run multiple jobs in parallel.

Just like xargs output from jobflow jobs running in parallel mix together by default. jobflow can
buffer into files with -buffered (placed in /run/shm), but these are not cleaned up if jobflow dies
unexpectedly (e.g. by Ctrl-C). If the total output is big (in the order of RAM+swap) it can cause the
system to slow to a crawl and eventually run out of memory.

Just like xargs redirection and composed commands require wrapping with bash -c.

Page 14

GNU Parallel alternatives

Input lines can at most be 4096 bytes.
jobflow is faster than GNU parallel but around 6 times slower than parallel-bash.
jobflow has no equivalent for --pipe, or --sshlogin.

jobflow makes it possible to set resource limits on the running jobs. This can be emulated by GNU
parallel using bash's ulimit:

jobflow -1imts=mem=100M cpu=3, f si ze=20M nofi | es=300 mnyj ob
parallel 'ulinmt -v 102400 -t 3 -f 204800 -n 300 nyj ob’

EXAMPLES FROM jobflow README
1$ cat things.list | jobflow -threads=8 -exec ./nytask {}

1$ cat things.list | parallel -j8 ./nmytask {}

2% seq 100 | jobflow -threads=100 -exec echo {}

2% seq 100 | parallel -j100 echo {}

3% cat urls.txt | jobflow -threads=32 -exec wget {}
3% cat urls.txt | parallel -j32 wget {}

4% find . -nanme '*.bnmp' | \
jobflow -threads=8 -exec bnp2jpeg {.}.bnp {.}.]pg

4% find . -nane '*.bmp' | \
parallel -j8 brmp2jpeg {.}.bmp {.}.]jpg

5% seq 100 | jobflow -skip 10 -count 10
5% seq 100 | parallel --filter '{1} > 10 and {1} <= 20' echo
5% seq 100 | parallel echo '{= $_>10 and $_<=20 or skip() =}'

https://github.com/roflOr/jobflow (Last checked: 2022-05)

DIFFERENCES BETWEEN gargs AND GNU Parallel
gargs can run multiple jobs in parallel.

Older versions cache output in memory. This causes it to be extremely slow when the output is larger
than the physical RAM, and can cause the system to run out of memory.

See more details on this in man parallel_design.
Newer versions cache output in files, but leave files in $TMPDIR if it is killed.
Output to stderr (standard error) is changed if the command fails.

EXAMPLES FROM gargs WEBSITE
1$ seq 12 -1 1 | gargs -p 4 -n 3 "sleep {0}; echo {1} {2}"

Page 15

GNU Parallel alternatives
1$ seq 12 -1 1 | parallel -P 4 -n 3 "sleep {1}; echo {2} {3}"

2% cat t.txt | gargs --sep "\s+" \

-p 2 "echo "{0}:{1}-{2}" full-line: \"{}\""
2% cat t.txt | parallel --colsep "\\s+" \
-P 2 "echo "{1}:{2}-{3}" full-line: \'{}\""

https://github.com/brentp/gargs (Last checked: 2016-08)

DIFFERENCES BETWEEN orgalorg AND GNU Parallel
orgalorg can run the same job on multiple machines. This is related to --onall and --nonall.

orgalorg supports entering the SSH password - provided it is the same for all servers. GNU parallel
advocates using ssh-agent instead, but it is possible to emulate orgalorg's behavior by setting
SSHPASS and by using --ssh "sshpass ssh".

To make the emulation easier, make a simple alias:

alias par_emul ="parallel -j0 --ssh 'sshpass ssh' --nonall --tag --1b"

If you want to supply a password run:

SSHPASS="ssh- askpass”

or set the password directly:

SSHPASS=P4$$wO0r d!

If the above is set up you can then do:

orgalorg -o frontendl -o frontend2 -p -C uptine
par_enul -S frontendl -S frontend2 uptine

orgalorg -o frontendl -o frontend2 -p -Ctop -bid 1
par_enul -S frontendl -S frontend2 top -bid 1

orgalorg -o frontendl -o frontend2 -p -er /tnp -n \
"md5sum /tnp/bigfile -S bigfile

par_enmul -S frontendl -S frontend2 --basefile bigfile \
--workdir /tnp md5sum /tnp/bigfile

orgalorg has a progress indicator for the transferring of a file. GNU parallel does not.
https://github.com/reconquest/orgalorg (Last checked: 2016-08)

DIFFERENCES BETWEEN Rust parallel(mmstick) AND GNU Parallel

Rust parallel focuses on speed. It is almost as fast as xargs, but not as fast as parallel-bash. It
implements a few features from GNU parallel, but lacks many functions. All these fail:

Read argunents fromfile
parallel -a file echo

Changing the delimter
parallel -d _ echo ::: a_b_c_

These do something different from GNU parallel

Page 16

GNU Parallel alternatives

-q to protect quoted $ and space

parallel -q perl -e '"$a=shift; print "$a"x10000000' ::: a b c
Ceneration of conbination of inputs

paral l el echo {1} {2} ::: red green blue ::: S ML XL XXL

{= perl expression =} replacenent string

paral l el echo '{= s/newold/ =}"' ::: my.new your.new

--pipe

seqg 100000 | parallel --pipe w
linked argunents

parallel echo ::: SML :::+sm nedIrg ::: RGB:::+ red grn blu
Run different shell dialects

zsh -c 'parallel echo \={} ::: zsh && true

csh -c 'parallel echo \$\{\} ::: shell && true

bash -c¢ 'parallel echo \$\ ({}\) ::: pwd && true'

Rust parallel does not start before the last argunment is read
(seq 10; sleep 5; echo 2) | time parallel -j2 '"sleep 2; echo

tail -f /var/log/syslog | parallel echo

Most of the examples from the book GNU Parallel 2018 do not work, thus Rust parallel is not close to
being a compatible replacement.

Rust parallel has no remote facilities.

It uses /tmp/parallel for tmp files and does not clean up if terminated abruptly. If another user on the
system uses Rust parallel, then /tmp/parallel will have the wrong permissions and Rust parallel will
fail. A malicious user can setup the right permissions and symlink the output file to one of the user's
files and next time the user uses Rust parallel it will overwrite this file.

attacker$ nkdir /tnp/parallel

attacker$ chrmod a+rwX /tnp/parall el

Symink to the file the attacker wants to zero out

attacker$ In -s ~victinm.inportant-file /tnp/parallel/stderr_1
victin$ seq 1000 | parallel echo

This file is now overwitten with stderr from'echo'

victin$ cat ~victinm .inportant-file

If tmp/parallel runs full during the run, Rust parallel does not report this, but finishes with success -
thereby risking data loss.

https://github.com/mmstick/parallel (Last checked: 2016-08)

DIFFERENCES BETWEEN Rush AND GNU Parallel
rush (https://github.com/shenwei356/rush) is written in Go and based on gargs.

Just like GNU parallel rush buffers in temporary files. But opposite GNU parallel rush does not
clean up, if the process dies abnormally.

rush has some string manipulations that can be emulated by putting this into ~/.parallel/config (/ is
used instead of %, and % is used instead of * as that is closer to bash's ${var%postfix}):

--rpl Y st (VLM RS

corpl C{IY%[AY]#?)) sISSL(\L[AM]H) S

--rpl LT[N] Y st R (L F)SSL(N L [N] H) RSB
corpl {/rY st (L) 2([M 1R (VLA RS 820
--rpl "{@.*?)} /$%1/ and $_=%$1;'

Page 17

GNU Parallel alternatives

EXAMPLES FROM rush's WEBSITE
Here are the examples from rush's website with the equivalent command in GNU parallel.

1. Simple run, quoting is not necessary

1$ seq 1 3 | rush echo {}
1$ seq 1 3 | parallel echo {}

2. Read data from file (-i)

2% rush echo {} -i datal.txt -i data2.txt
2% cat datal.txt data2.txt | parallel echo {}

3. Keep output order (-k")
3%$ seq 1 3 | rush "echo {}' -k

3%$ seq 1 3 | parallel -k echo {}

4. Timeout (C-t")

4% time seq 1 | rush 'sleep 2; echo {}' -t 1
4% tinme seq 1 | parallel --timeout 1 'sleep 2; echo {}'

5. Retry (*-r)

5% seq 1 | rush 'python unexisted_script.py' -r 1
5% seq 1 | parallel --retries 2 'python unexisted_script.py'

Use -u to see it is really run twice:

5% seq 1 | parallel -u --retries 2 'python unexisted_script.py'

6. Dirname ({/}’) and basename (‘{%]}") and remove custom suffix ({*suffix}")

6% echo dir/file_1.txt.gz | rush "echo {/} {% {"_1.txt.gz}'

6% echo dir/file_1.txt.gz
parallel --plus echo {//} {/} {%1.txt.gz}

7. Get basename, and remove last ('{.}’) or any ({:})) extension

7% echo dir.d/file.txt.gz | rush "echo {.} {:} {%} {%}'
7% echo dir.d/file.txt.gz | parallel "echo {.} {:} {/.} {/:}'

8. Job ID, combine fields index and other replacement strings

8% echo 12 file.txt dir/s_1.fqg.9z
rush 'echo job {#}: {2} {2.} {3%~_1}'

Page 18

GNU Parallel alternatives

8% echo 12 file.txt dir/s_1.fqg.gz |
parallel --colsep ' ' "echo job {#}: {2} {2.} {3/:%1}'

9. Capture submatch using regular expression ({@regexp}’)

9% echo read_1.fqg.gz | rush '"echo {@.+)_\d}'
9% echo read_1.fq.gz | parallel 'echo {@.+)_\d}'

10. Custom field delimiter ("-d")
10% echo a=b=c | rush 'echo {1} {2} {3}' -d =

10$ echo a=b=c | parallel -d = echo {1} {2} {3}

11. Send multi-lines to every command ("-n")

11$ seq 5| rush -n 2 -k "echo "{}"; echo'

11% seq 5 |
parallel -n 2 -k \
"echo {=-1$ =join"\n",@rg[1..%$#arg] =}; echo

11$ seq 5| rush -n 2 -k '"echo "{}"; echo'" -J ' '
11$ seq 5| parallel -n 2 -k "echo {}; echo

12. Custom record delimiter ("-D"), note that empty records are not used.

12$ echo a bc d | rush -D" " -k '"echo {}'
12$ echo a b c d | parallel -d " " -k "echo {}'
12% echo abcd | rush -D "" -k 'echo {}'

Cannot be done by GNU Parall el

12% cat fasta.fa
>seql

tag

>seq2

cat

gat

>seq3

attac

a

cat

12% cat fasta.fa | rush -D ">" \
"echo FASTA record {#}: name: {1} sequence: {2}' -k -d "\n"
rush fails to join the nultiline sequences

12% cat fasta.fa | (read -nl ignore_first_char;

Page 19

GNU Parallel alternatives

parallel -d '>'" --colsep '\n'" echo FASTA record {#}: \
name: {1} sequence: '{=2 $_=join"", @rg[2..%#arg]=}"

13. Assign value to variable, like "awk -v* ("-v")

13% seq 1 |
rush 'echo Hello, {fnane} {lnanme}!’' -v fname=Wei -v | nanme=Shen
13% seq 1 |
paral l el -NO \
'fname=Wei ; | nane=Shen; echo Hello, ${fnanme} ${Inane}!’

13% for var in a b; do \
13% seq 1 3| rush -k -v var=$var 'echo var: {var}, data: {}'; \
13$ done

In GNU parallel you would typically do:

13%$ seq 1 3 | parallel -k echo var: {1}, data: {2} ::: a b :::: -

If you really want the var:
13% seq 1 3 |
parallel -k var={1} ';echo var: $var, data: {}' ::: ab :::: -
If you really want the for-loop:

13% for var in a b; do
export var;
seq 1 3| parallel -k 'echo var: $var, data: {}';
done
Contrary to rush this also works if the value is complex like:

My brother's 12" records

14. Preset variable ("-v"), avoid repeatedly writing verbose replacement strings

14$ # naive way
echo read_1.fg.gz | rush 'echo {:7~_1} {:~_1} 2.fq.9z

14% echo read_1.fqg.gz | parallel '"echo {:%1} {:%1}_2.fq.9z

14$ # macro + renoving suffix
echo read_1.fq.9z
rush -v p="{:~_1}" 'echo {p} {p}_2.fq.9z

14$ echo read_1.fq. gz
parallel 'p={:%1}; echo $p ${p}_2.fq.9z

14% # macro + regul ar expression
echo read_1.fqg.gz | rush -v p={@.+?) _\d}' 'echo {p} {p} _2.fq.0z

14$% echo read_1.fq.gz | parallel 'p={@.+?)_\d}; echo $p ${p}_2.fq.90z

Page 20

GNU Parallel alternatives

Contrary to rush GNU parallel works with complex values:

14% echo "My brother's 12\"read_1.fq. gz" |
parallel 'p={@.+?)_\d}; echo $p ${p}_2.fq. gz’

15. Interrupt jobs by “Ctrl-C’, rush will stop unfinished commands and exit.

15% seq 1 20 | rush 'sleep 1; echo {}'
rC

15% seq 1 20 | parallel 'sleep 1; echo {}'
~C

16. Continue/resume jobs (*-c*). When some jobs failed (by execution failure, timeout, or
canceling by user with “Ctrl + C°), please switch flag "-c/--continue™ on and run again, so that
‘rush’ can save successful commands and ignore them in NEXT run.

16% seq 1 3 | rush 'sleep {}; echo {}' -t 3 -c
cat successful _cnds. rush
seq 1 3 | rush '"sleep {}; echo {}' -t 3 -c

16% seq 1 3 | parallel --joblog nylog --timeout 2\
"sleep {}; echo {}'
cat nyl og
seq 1 3| parallel --joblog mylog --retry-failed \

"sleep {}; echo {}'

Multi-line jobs:

16% seq 1 3 | rush "sleep {}; echo {}; \
echo finish {}' -t 3 -c -C finished.rush
cat finished.rush
seq 1 3 | rush 'sleep {}; echo {}; \
echo finish {}' -t 3 -c -C finished.rush

16$ seq 1 3 |
parallel --joblog nylog --tineout 2 'sleep {}; echo {}; \
echo finish {}'

cat nyl og
seq 1 3 |
parallel --joblog nylog --retry-failed 'sleep {}; echo {}; \

echo finish {}'

17. A comprehensive example: downloading 1K+ pages given by three URL list files using
‘phantomjs save_page.js’ (some page contents are dynamically generated by Javascript, so
‘wget” does not work). Here | set max jobs number (<) as "20°, each job has a max running
time ("-t°) of 60" seconds and "3 retry changes (-r). Continue flag "-c” is also switched on, so
we can continue unfinished jobs. Luckily, it's accomplished in one run :)

17$ for f in $(seq 2014 2016); do \
/binfrm-rf $f; nkdir -p $f; \
cat $f.htm.txt | rush -v d=$f -d =\
'phantonj s save_page.js "{}" > {d}/{3}.htm" \
-j 20 -t 60 -r 3 -c; \
done

Page 21

GNU Parallel alternatives

GNU parallel can append to an existing joblog with '+

17$ rm nyl og
for f in $(seq 2014 2016); do
/binfrm-rf $f; nkdir -p $f;
cat $f.htnl.txt |
parallel -j20 --tineout 60 --retries 4 --joblog +nylog \
--colsep =\
phantonj s save_page.js {1}={2}={3} '>'" $f/{3}. htnl
done

18. A bioinformatics example: mapping with "bwa’, and processing result with “'samtools™:

18% ref=ref/xxx.fa

t hr eads=25

I's -d raw. cluster.cl ean. mappi ng/* \
| rush -v ref=$ref -v j=$threads -v p="{}/{%" \
"bwa mem -t {j} -M-a {ref} {p}_1.fq.g9z {p}_2.fqg.g9z >{p}.sam\
santool s view -bS {p}.sam > {p}. bam \
samools sort -T {p}.tnp -@{j} {p}.bam-o0 {p}.sorted. bam \
sam ool s i ndex {p}.sorted. bam \
sam ool s flagstat {p}.sorted. bam > {p}.sorted. bamflagstat; \
/[bin/rm {p}. bam {p}.sam "' \
-j 2 --verbose -c -C mapping. rush

GNU parallel would use a function:

18% ref=ref/xxx.fa

export ref

t hr =25

export thr

bwa_sam() {
p="$1"
bam="$p". bam
sans" $p". sam
sort bam="$p". sort ed. bam
bwa mem-t $thr -M-a $ref ${p}_1.fq.g9z ${p}_2.fq.gz > "$sant
sant ool s view -bS "$sant > "$ban
santools sort -T ${p}.tmp -@$thr "$bant -o "$sortbant
sant ool s i ndex "$sortbant
samt ool s flagstat "$sortbanmt > "$sortbani.fl agstat
/ bin/rm "$bant "$sant

}

export -f bwa_sam

Is -d raw. cluster.cl ean. mappi ng/* |
parallel -j 2 --verbose --joblog nylog bwa_sam

Other rush features
rush has:
* awk -v like custom defined variables (-v)
With GNU parallel you would simply set a shell variable:
parallel 'v={}; echo "$v"' ::: foo
echo foo | rush -v v={} "echo {v}'

Also rush does not like special chars. So these do not work:

Page 22

GNU Parallel alternatives

echo does not work | rush -v v=\" "echo {v}'
echo "My brother's 12\" records" | rush -v v={} 'echo {v}'

Whereas the corresponding GNU parallel version works:

parallel 'v=\"; echo "$v"' ::: works
parallel 'v={}; echo "$v"' ::: "My brother's 12\" records"

* Exit on first error(s) (-e)
This is called --halt now,fail=1 (or shorter: --halt 2) when used with GNU parallel.

* Settable records sending to every command (-n, default 1)
This is also called -n in GNU parallel.

* Practical replacement strings
{:} remove any extension
With GNU parallel this can be emulated by:
parallel --plus echo '{/\..*/}" ::: foo.ext.bar.gz

{*suffix}, remove suffix
With GNU parallel this can be emulated by:
parallel --plus echo '{%bar.gz}' ::: foo.ext.bar.gz

{@regexp}, capture submatch using regular expression
With GNU parallel this can be emulated by:

parallel --rpl "{@.*?)} /$$1/ and $_=$1;' \
echo '{@d_(.*).gz}' ::: 1 foo.9z

{%.}, {%:}, basename without extension
With GNU parallel this can be emulated by:
parallel echo '{=s:.*/::;s/\..*//] =}' ::: dir/foo.bar.gz

And if you need it often, you define a --rpl in $HOME/.parallel/config:
--rpl "{%} s:. ¥y sINL U F!
--rpl "{%} s:. ¥y sINLUF!

Then you can use them as:
parallel echo {%} {%} ::: dir/foo.bar.gz

* Preset variable (macro)
E.g.
echo foosuffix | rush -v p={~suffix} 'echo {p}_new suffix’

With GNU patrallel this can be emulated by:

echo foosuffix |
parallel --plus 'p={%uffix}; echo ${p}_new suffix’

Opposite rush GNU parallel works fine if the input contains double space, ' and ":

echo "1'6\" foosuffix" |
parallel --plus 'p={%uffix}; echo "${p}" _new suffix’

Page 23

GNU Parallel alternatives

* Commands of multi-lines

While you can use multi-lined commands in GNU parallel, to improve readability GNU
parallel discourages the use of multi-line commands. In most cases it can be written as a
function:

seq 1 3 |
parallel --timeout 2 --joblog ny.log '"sleep {}; echo {}; \
echo finish {}'

Could be written as:

doit() {
sl eep "$1"
echo "$1"
echo finish "$1"

}
export -f doit
seq 1 3| parallel --tinmeout 2 --joblog ny.log doit

The failed commands can be resumed with:
seq 1 3 |
parallel --resune-failed --joblog ny.log 'sleep {}; echo {};\
echo finish {}'
https://github.com/shenwei356/rush (Last checked: 2017-05)

DIFFERENCES BETWEEN ClusterSSH AND GNU Parallel
ClusterSSH solves a different problem than GNU parallel.

ClusterSSH opens a terminal window for each computer and using a master window you can run the
same command on all the computers. This is typically used for administrating several computers that
are almost identical.

GNU parallel runs the same (or different) commands with different arguments in parallel possibly
using remote computers to help computing. If more than one computer is listed in -S GNU parallel
may only use one of these (e.qg. if there are 8 jobs to be run and one computer has 8 cores).

GNU parallel can be used as a poor-man's version of ClusterSSH:
parallel --nonall -S server-a,server-b do_stuff foo bar
https://github.com/duncs/clusterssh (Last checked: 2010-12)

DIFFERENCES BETWEEN coshell AND GNU Parallel
coshell only accepts full commands on standard input. Any quoting needs to be done by the user.

Commands are run in sh so any bash/tcsh/zsh specific syntax will not work.

Output can be buffered by using -d. Output is buffered in memory, so big output can cause swapping
and therefore be terrible slow or even cause out of memory.

https://github.com/gdm85/coshell (Last checked: 2019-01)

DIFFERENCES BETWEEN spread AND GNU Parallel
spread runs commands on all directories.

It can be emulated with GNU parallel using this Bash function:

spread() {
_cmds() {
perl -e "$"=" && ";print "@RGV'' "cd {}" "$@

Page 24

GNU Parallel alternatives

}
paral lel $(_cnds "$@)'|| echo exit status $?' ::: */

}

This works except for the --exclude option.
(Last checked: 2017-11)

DIFFERENCES BETWEEN pyargs AND GNU Parallel

pyargs deals badly with input containing spaces. It buffers stdout, but not stderr. It buffers in RAM. {}
does not work as replacement string. It does not support running functions.

pyargs does not support composed commands if run with --lines, and fails on pyargs traceroute
gnu.org fsf.org.

Examples

pyargs -P50 -L seq
parallel -P50 --1b seq

seq 5| pyargs -P50 --nmark -L seq
seq 5| parallel -P50 --1b \
--tagstring OUTPUT' [{= $_=$j ob->replaced() =}]' seq
Simlar, but not precisely the sane
seq 5| parallel -P50 --1b --tag seq

seq 5| pyargs -P50 --mark command
Sonmewhat |onger with GNU Parallel due to the special
--mark formatting
cmd="$(echo "conmand" | parallel --shellquote)”
wrap_cnd() {
echo "MARK $cmd $@::::::::::::::::::::::::::::::::" >&3

echo "OUTPUT START[$cmd $@:"
eval $cnmd "$@
echo "OUTPUT END[$cmd $@"
}
(seq 5| env_parallel -P2 wap_cnd) 3>&1
Simlar, but not exactly the sane
seq 5| parallel -t --tag comrand

(echo "1 2 3 ;echo 45 6) | pyargs --stream seq
(echo "1 2 3 ;echo 45 6) | perl -pe "s/\n/ [' |

parallel -r -d ' seq
Simlar, but not exactly the same
parallel seq ::: 123456

https://github.com/robertblackwell/pyargs (Last checked: 2019-01)

DIFFERENCES BETWEEN concurrently AND GNU Parallel
concurrently runs jobs in parallel.
The output is prepended with the job number, and may be incomplete:
$ concurrently 'seq 100000' | (sleep 3;w -1)
7165

When pretty printing it caches output in memory. Output mixes by using test MIX below whether or

Page 25

GNU Parallel alternatives

not output is cached.

There seems to be no way of making a template command and have concurrently fill that with
different args. The full commands must be given on the command line.

There is also no way of controlling how many jobs should be run in parallel at a time - i.e. "number of
jobslots". Instead all jobs are simply started in parallel.

https://github.com/kimmobrunfeldt/concurrently (Last checked: 2019-01)

DIFFERENCES BETWEEN map(soveran) AND GNU Parallel

map does not run jobs in parallel by default. The README suggests using:
| map t 'sleep $t && say done &

But this fails if more jobs are run in parallel than the number of available processes. Since there is no
support for parallelization in map itself, the output also mixes:

seq 10 | map i 'echo start-$i && sleep 0.%i && echo end-$i &
The major difference is that GNU parallel is built for parallelization and map is not. So GNU parallel
has lots of ways of dealing with the issues that parallelization raises:

o Keep the number of processes manageable

e Make sure output does not mix

e Make Ctrl-C kill all running processes

EXAMPLES FROM maps WEBSITE

Here are the 5 examples converted to GNU Parallel:

1$Is *.c | map f 'foo $f'
1$ Is *.c | parallel foo

28 Is *.c | map f 'foo $f; bar $f'
28 Is *.c | parallel 'foo {}; bar {}'

3% cat urls | map u 'curl -0 $u'
3% cat urls | parallel curl -O

4% printf "1\nl\nl\n" | map t 'sleep $t && say done'
4% printf "1\nl\nl\n" | parallel 'sleep {} && say done'
4% parallel 'sleep {} & say done' ::: 111

5% printf "1\nl\nl\n" | map t 'sleep $t && say done &
5% printf "1\nl\nl\n" | parallel -jO '"sleep {} && say done'
5% parallel -jO "sleep {} &% say done' ::: 111

https://github.com/soveran/map (Last checked: 2019-01)

DIFFERENCES BETWEEN loop AND GNU Parallel

loop mixes stdout and stderr:

loop 'I's /no-such-file' >/dev/null

loop's replacement string $ITEM does not quote strings:

Page 26

GNU Parallel alternatives

echo 'two spaces' | loop 'echo $I TEM

loop cannot run functions:

nyfunc() { echo joe; }
export -f myfunc
loop 'nyfunc this fails'

EXAMPLES FROM loop's WEBSITE
Some of the examples from https://github.com/Miserlou/Loop/ can be emulated with GNU parallel:

A couple of functions will nake the code easier to read
$ loopy() {
yes | parallel -uNO -j1 "$@
}

$ export -f |oopy
$time_out() {

parallel -uNO -q --tineout "$@ ::: 1
}
$ match() {
perl -0777 -ne 'grep /'"$1"'/,$_and print or exit 1'
}

$ export -f match

$ loop '"Is' --every 10s
$ loopy --delay 10s Is

$ loop 'touch $COUNT.txt' --count-by 5
$ loopy touch '{= $_=seq()*5 =}".txt

$ loop --until-contains 200 -- \
./ get _response_code.sh --site nysite. biz’
$ loopy --halt now, success=1 \
'./get_response_code.sh --site nysite.biz | match 200

$ loop './poke_server' --for-duration 8h
$ tine_out 8h | oopy ./poke_server

$ loop './poke_server' --until-success
$ loopy --halt now, success=1 ./poke_server

$ cat files to create.txt | loop 'touch $I TEM
$ cat files to create.txt | parallel touch {}

$ loop 'Is' --for-duration 10m n --sunmary
--joblog is sonewhat nore verbose than --summary
$ time_out 10m | oopy --joblog ny.log ./poke_server; cat mny.log

$ loop 'echo hello
$ | oopy echo hello

| oop ' echo $COUNT'
G\U Parallel counts from1l
| oopy echo {#}

H &~

Page 27

GNU Parallel alternatives

B A H e *» H* e @ T+

@ P

@ P B P PR

»

»

Counting fromO can be forced
| oopy echo '{= $_=seq()-1 =}’

| oop 'echo $COUNT' --count-by 2
| oopy echo '{= $_=2*(seq()-1) =}'

| oop 'echo $COUNT' --count-by 2 --offset 10
| oopy echo '{= $_=10+2*(seq()-1) =}’

| oop 'echo $COUNT' --count-by 1.1
G\U Paral |l el rounds 3.3000000000000003 to 3.3
| oopy echo '{= $_=1.1*(seq()-1) =}'

[oop ' echo $COUNT $ACTUALCOUNT' --count-by 2

| oopy echo '{= $_=2*(seq()-1) =} {#}'

| oop 'echo $COUNT' --num 3 --sunmary

--joblog is sonewhat nore verbose than --sunmary

seq 3 | parallel --joblog ny.log echo; cat ny.log

loop 'I's -foobarbatz' --num 3 --summary

--joblog is sonewhat nore verbose than --sunmmary

seq 3 | parallel --joblog nmy.log -NO |Is -foobarbatz; c
| oop 'echo $COUNT' --count-by 2 --num 50 --only-I ast
Can be emul ated by running 2 jobs

seq 49 | parallel echo '{= $_=2*(seq()-1) =}' >/dev/nu
echo 50| parallel echo '{= $_=2*(seq()-1) =}'

| oop 'date' --every 5s
| oopy --delay 5s date

| oop 'date' --for-duration 8s --every 2s
time_out 8s |oopy --delay 2s date

loop 'date -u' --until-time '2018-05-25 20:50: 00" --ev
seconds=$((date -d 2019-05-25T20:50: 00 +%" - "date
time_out $seconds | oopy --delay 5s date -u

| oop 'echo $RANDOM --until-contains "666"
| oopy --halt now, success=1 'echo $RANDOM | match 666"

loop "if ((RANDOM % 2)); then
(echo "TRUE"; true);
el se
(echo "FALSE"; false);
fi' --until-success
| oopy --halt now, success=1 "if (($RANDOM % 2)); then
(echo "TRUE"; true);
el se
(echo "FALSE"; false);
fi'

at my. | og

ery 5s
+98°))s

Page 28

GNU Parallel alternatives

»

@ H e A &R

A &R *» &+

@ P

A &R

F*

loop "if ((RANDOM % 2)); then
(echo "TRUE"; true);
el se
(echo "FALSE"; false);
fi' --until-error
| oopy --halt now,fail=1"if (($RANDOM % 2)); then
(echo "TRUE"; true);
el se
(echo "FALSE"; false);
fi'
| oop 'date' --until-match "(\d{4})"
| oopy --halt now, success=1 'date | match [0-9][0-9][0-9][0-9]"'
| oop 'echo $I TEM --for red, green, bl ue
paral l el echo ::: red green blue
cat /tnp/ny-list-of-files-to-create.txt | loop 'touch $I TEM
cat /tmp/ny-list-of-files-to-create.txt | parallel touch

s | loop 'cp $I TEM $I TEM bak'; Is
Is | parallel cp {} {}.bak; Is

loop 'echo $ITEM| tr a-z A-Z' -
parallel 'echo {} | tr a-z A-Z
O nore efficiently:

parallel --pipe tr a-z A-Z

loop 'echo $ITEM --for "“Is™ "

paral l el echo {} ::: "“Is™"

Is | loop './my_program $I TEM --until-success;

Is | parallel --halt now, success=1 ./my_program{}

Is | loop './ny_program $I TEM --until-fail

Is | parallel --halt now fail=1 ./my_program {}

./ depl oy. sh

loop 'curl -sw "% http code}" http://coolwebsite.biz' \
--every 5s --until-contains 200;

./ announce_t o_sl ack. sh

./ depl oy. sh

| oopy --delay 5s --halt now, success=1 \

"curl -sw "% http_code}" http://cool website.biz | match 200

./ announce_t o_sl ack. sh

loop "ping -c 1 nmysite.com' --until-success; ./do_next_thing

| oopy --halt now, success=1 ping -c 1 nysite.com ./do_next _thing

./create_big file -o ny_big file.bin

loop 'Is" --until-contains 'ny_big file.bin";

./lupload_big file ny_big file.bin

inotifywait is a better tool to detect file system changes.

Page 29

GNU Parallel alternatives

It can even nmake sure the file is conplete

so you are not uploading an inconplete file

$ inotifywait -gqnre MOVED TO -e CLCSE_WRI TE --format %wW6 . |
grep my_big file.bin

$1s | loop 'cp $I TEM $I TEM bak'

$1s | parallel cp {} {}.bak

$ loop './do_thing.sh" --every 15s --until-success --num5

$ parallel --retries 5 --delay 15s ::: ./do_thing.sh

https://github.com/Miserlou/Loop/ (Last checked: 2018-10)

DIFFERENCES BETWEEN lorikeet AND GNU Parallel

lorikeet can run jobs in parallel. It does this based on a dependency graph described in a file, so this
is similar to make.

https://github.com/cetra3/lorikeet (Last checked: 2018-10)

DIFFERENCES BETWEEN spp AND GNU Parallel

spp can run jobs in parallel. spp does not use a command template to generate the jobs, but requires
jobs to be in a file. Output from the jobs mix.

https://github.com/john01dav/spp (Last checked: 2019-01)

DIFFERENCES BETWEEN paral AND GNU Parallel
paral prints a lot of status information and stores the output from the commands run into files. This
means it cannot be used the middle of a pipe like this

paral "echo this" "echo does not" "echo work" | wc

Instead it puts the output into files named like out_# command.out.log. To get a very similar
behaviour with GNU parallel use --results 'out_{#} {=s/[*"\sa-z_0-9]//g;s/\s+/_/g=}.log' --eta

paral only takes arguments on the command line and each argument should be a full command. Thus
it does not use command templates.

This limits how many jobs it can run in total, because they all need to fit on a single command line.
paral has no support for running jobs remotely.

EXAMPLES FROM README.markdown

The examples from README.markdown and the corresponding command run with GNU parallel (
--results 'out_{#} {=s/["\sa-z_0-9]//g;s/\s+/_/g=}.l0og' --eta is omitted from the GNU parallel
command):

1$ paral "conmand 1" "conmand 2 --flag" "comand argl arg2"
1$ parallel ::: "comand 1" "comuand 2 --flag" "command argl arg2"

2% paral "sleep 1 & echo cl" "sleep 2 & echo c2" \
"sleep 3 & echo c3" "sleep 4 && echo c4" "sleep 5 && echo c¢5"
2% parallel ::: "sleep 1 & echo c1" "sleep 2 & echo c2" \
"sleep 3 & echo c3" "sleep 4 && echo c4" "sleep 5 && echo c¢5"
O shorter:
parallel "sleep {} &% echo c{}" ::: {1..5}

3% paral -n=0 "sleep 5 &% echo c5" "sleep 4 && echo c4" \

Page 30

GNU Parallel alternatives

3%

4%
4%

5%
5%

6$

6$

7%

7%

"sleep 3 & & echo c3" "sleep 2 & echo c2" "sleep 1 & echo c1"
parallel ::: "sleep 5 & echo c5" "sleep 4 & echo c4" \

"sleep 3 & & echo c3" "sleep 2 & echo c2" "sleep 1 & echo c1"
O shorter:

parallel -jO "sleep {} & echo c{}" ::: 54321
paral -n=1 "sleep 5 &% echo c5" "sleep 4 &% echo c4" \

"sleep 3 & echo c3" "sleep 2 & echo c2" "sleep 1 & & echo c1"
parallel -j1 "sleep {} & echo c{}" ::: 54321
paral -n=2 "sleep 5 &% echo c5" "sleep 4 &% echo c4" \

"sleep 3 & echo c3" "sleep 2 & echo c2" "sleep 1 & & echo c1"
parallel -j2 "sleep {} & echo c{}" ::: 54321
paral -n=5 "sleep 5 &% echo c5" "sleep 4 && echo c4" \

"sleep 3 & & echo c3" "sleep 2 & echo c2" "sleep 1 & echo c1"
parallel -j5 "sleep {} & echo c{}" ::: 54321

paral -n=1 "echo a && sleep 0.5 &% echo b && sleep 0.5 && \
echo ¢ & sleep 0.5 & & echo d && sleep 0.5 && \
echo e & sleep 0.5 & & echo f && sleep 0.5 && \
echo g & sleep 0.5 && echo h"

parallel ::: "echo a & sleep 0.5 & echo b && sleep 0.5 && \
echo ¢ & sleep 0.5 & & echo d && sleep 0.5 && \
echo e & sleep 0.5 & & echo f && sleep 0.5 && \

echo g & sleep 0.5 && echo h"

https://github.com/amattn/paral (Last checked: 2019-01)

DIFFERENCES BETWEEN concurr AND GNU Parallel
concurr is built to run jobs in parallel using a client/server model.

EXAMPLES FROM README.md
The examples from README.md:

1%
1%

2%
2%

3%
3%

4%
4%

concurr 'echo job {#} on slot {%: {}' : argl arg2 arg3 arg4
parallel 'echo job {#} on slot {%: {}' ::: argl arg2 arg3 arg4
concurr 'echo job {#} on slot {%: {}' :: filel file2 file3
parallel 'echo job {#} on slot {%: {}' :::: filel file2 file3
concurr 'echo {}' < input _file

parallel '"echo {}' < input_file

cat file | concurr 'echo {}'
cat file | parallel 'echo {}'

concurr deals badly empty input files and with output larger than 64 KB.

https://github.com/mmstick/concurr (Last checked: 2019-01)

DIFFERENCES BETWEEN lesser-parallel AND GNU Parallel

lesser-parallel is the inspiration for parallel --embed. Both lesser-parallel and parallel --embed
define bash functions that can be included as part of a bash script to run jobs in parallel.

Page 31

GNU Parallel alternatives

lesser-parallel implements a few of the replacement strings, but hardly any options, whereas parallel
--embed gives you the full GNU parallel experience.

https://github.com/koulokada/lesser-parallel (Last checked: 2019-01)

DIFFERENCES BETWEEN npm-parallel AND GNU Parallel
npm-parallel can run npm tasks in parallel.

There are no examples and very little documentation, so it is hard to compare to GNU parallel.
https://github.com/spion/npm-parallel (Last checked: 2019-01)

DIFFERENCES BETWEEN machma AND GNU Parallel
machma runs tasks in parallel. It gives time stamped output. It buffers in RAM.

EXAMPLES FROM README.md
The examples from README.md:

1$ # Put shorthand for tinestanmp in config for the exanples
echo '"--rpl "\
V' {time} $_=:r:strftime(”%-%n% % 9M U, localtine())'\' \
> ~/.parallel/mchm
echo '--line-buffer --tagstring "{#} {time} {}"" \
>> ~/ . parallel/mchma

2% find . -inane '*.jpg" |
machma -- nogrify -resize 1200x1200 -filter Lanczos {}
find . -inane '*.jpg" |

paral l el --bar -Jmachma nogrify -resize 1200x1200 \
-filter Lanczos {}

3% cat /tnp/ips | machma -p 2 -- ping -c¢c 2 -q {}
3% cat /tnp/ips | parallel -j2 -Jmachma ping -c¢c 2 -q {}

4% cat /tmp/ips |

machma -- sh -c 'ping -c 2 -q $0 > /dev/null && echo alive' {}
4% cat /tmp/ips |

paral l el -Jmachma 'ping -c¢c 2 -q {} > /dev/null && echo alive'

5 find . -inane '*.jpg" |
machma --tinmeout 5s -- nogrify -resize 1200x1200 \

-filter Lanczos {}

5 find . -inane '*.jpg" |

paral l el --tineout 5s --bar nogrify -resize 1200x1200 \
-filter Lanczos {}

6$ find . -inane '*.jpg" -print0 |

machma --null -- nogrify -resize 1200x1200 -filter Lanczos {}
6$ find . -inane '*.jpg" -print0 |

parallel --null --bar nogrify -resize 1200x1200 \

-filter Lanczos {}

https://github.com/fd0/machma (Last checked: 2019-06)

Page 32

GNU Parallel alternatives

DIFFERENCES BETWEEN interlace AND GNU Parallel
Summary (see legend above):

-121314 - - -

M1 - M3 - - M6
-0203----xx
E1E2-----

interlace is built for network analysis to run network tools in parallel.
interface does not buffer output, so output from different jobs mixes.

The overhead for each target is O(n*n), so with 1000 targets it becomes very slow with an overhead
in the order of 500ms/target.

EXAMPLES FROM interlace's WEBSITE

Using prips most of the examples from https://github.com/codingo/Interlace can be run with GNU
parallel:

Blocker

comands. t xt :

nkdir -p _output / target /scans/

_bl ocker _

nmap _target_ -oA _output / target /scans/ _target -nnap
interlace -tL ./targets.txt -cL conmands.txt -o $out put

parallel -a targets.txt \
nkdir -p $output/{}/scans/\; nmap {} -o0A S$output/{}/scans/{}-nmap

Blocks

conmands. t xt :
bl ock: nmap
nkdir -p _target /output/scans/
nmap _target_ -oN _target_/output/scans/_target -nmap
bl ock: nmap
nikto --host _target_
interlace -tL ./targets.txt -cL commands. t xt

_nmap() {
nkdir -p $1/out put/scans/

nmap $1 -oN $1/ out put/ scans/ $1- nnap

}
export -f _nmap
parallel ::: _nmap "nikto --host" :::: targets.txt

Run Nikto Over Multiple Sites

interlace -tL ./targets.txt -threads 5\
-c "nikto --host _target_ > ./ _target_-nikto.txt" -v

parallel -a targets.txt -P5 nikto --host {} \> ./{} _-nikto.txt

Page 33

GNU Parallel alternatives

Run Nikto Over Multiple Sites and Ports

interlace -tL ./targets.txt -threads 5 -c \
"nikto --host _target_: port_ > ./ _target_-_port_-nikto.txt" \
-p 80,443 -v

parallel -P5 nikto --host {1}:{2} \> ./{1}-{2}-nikto.txt \
targets.txt ::: 80 443

Run a List of Commands against Target Hosts

comands. t xt :
nikto --host _target : port_ > output / target -nikto.txt
sslscan _target : port_ > output_ / target -sslscan.txt
testssl.sh target : port_ > output / target -testssl.txt
interlace -t exanple.com-o0o ~/ Engagenents/exanpl e/ \
-cL ./commuands.txt -p 80, 443

parallel --results ~/Engagenents/exanple/{2}:{3}{1} {1} {2}:{3} \
"ni kto --host" sslscan testssl.sh ::: exanple.com::: 80 443
CIDR notation with an application that doesn't support it

interlace -t 192.168.12.0/24 -c "vhostscan _target_\
-oN _output_/ target -vhosts.txt" -o ~/scans/ -threads 50

prips 192.168.12.0/24 |
paral |l el -P50 vhostscan {} -oN ~/scans/{}-vhosts. txt

Glob notation with an application that doesn't support it
interlace -t 192.168.12.* -c¢ "vhostscan _target_ \

-oN _output_/_target_-vhosts.txt" -o ~/scans/ -threads 50

dob is not supported in prips
prips 192.168.12.0/24 |
paral |l el -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt

Dash (-) notation with an application that doesn't support it

interlace -t 192.168.12.1-15 -c \
"vhostscan _target_ -oN _output / target -vhosts.txt" \
-0 ~/scans/ -threads 50

Dash notation is not supported in prips
prips 192.168.12.1 192.168.12.15 |
paral l el -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt

Threading Support for an application that doesn't support it

interlace -tL ./target-list.txt -c \
"vhostscan -t _target_ -oN _output / target_-vhosts.txt" \
-0 ~/scans/ -threads 50

cat ./target-list.txt |

Page 34

GNU Parallel alternatives

paral |l el -P50 vhostscan -t {} -oN ~/scans/{}-vhosts. txt

alternatively

./ vhost s- commands. t xt :
vhostscan -t $target -oN _output_/ _target_-vhosts.txt
interlace -cL ./vhosts-comands.txt -tL ./target-list.txt \
-threads 50 -0 ~/scans

./ vhost s- conmands. t xt :
vhostscan -t "$1" -oN "$2"
paral l el -P50 ./vhosts-comands.txt {} ~/scans/{}-vhosts.txt \
./target-1list.txt

Exclusions

interlace -t 192.168.12.0/24 -e 192.168.12.0/26 -c \
"vhostscan _target_ -oN _output / _target_-vhosts.txt" \
-0 ~/scans/ -threads 50

prips 192.168.12.0/24 | grep -xv -Ff <(prips 192.168.12.0/26) |
paral |l el -P50 vhostscan {} -oN ~/scans/{}-vhosts. txt

Run Nikto Using Multiple Proxies

interlace -tL ./targets.txt -pL ./proxies.txt -threads 5 -c \
"nikto --host _target_: _port_ -useproxy _proxy_ >\
./ _target - _port_-nikto.txt" -p 80,443 -v

parallel -j5\
"nikto --host {1}:{2} -useproxy {3} > ./{1}-{2}-nikto.txt" \
./targets.txt ::: 80 443 :::: ./proxies.txt

https://github.com/codingo/Interlace (Last checked: 2019-09)

DIFFERENCES BETWEEN otonvm Parallel AND GNU Parallel
| have been unable to get the code to run at all. It seems unfinished.

https://github.com/otonvm/Parallel (Last checked: 2019-02)

DIFFERENCES BETWEEN k-bx par AND GNU Parallel
par requires Haskell to work. This limits the number of platforms this can work on.

par does line buffering in memory. The memory usage is 3x the longest line (compared to 1x for
parallel --Ib). Commands must be given as arguments. There is no template.

These are the examples from https://github.com/k-bx/par with the corresponding GNU parallel
command.

par "echo foo; sleep 1; echo foo; sleep 1; echo foo" \
"echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success"
parallel --1b ::: "echo foo; sleep 1; echo foo; sleep 1; echo foo" \
"echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success"

par "echo foo; sleep 1; foofoo" \
"echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success"
parallel --1b --halt 1 ::: "echo foo; sleep 1; foofoo" \

Page 35

GNU Parallel alternatives

"echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success"

par " PARPREFI X=[f ooechoer] echo foo" "PARPREFI X=[bar] echo bar"
parallel --Ib --colsep , --tagstring {1} {2} \
"[fooechoer], echo foo" "[bar], echo bar"

par --succeed "foo" "bar" && echo 'wow
paral l el "foo" "bar"; true && echo 'wow
https://github.com/k-bx/par (Last checked: 2019-02)

DIFFERENCES BETWEEN parallelshell AND GNU Parallel
parallelshell does not allow for composed commands:

This does not work

paral | el shell 'echo foo;echo bar' 'echo baz; echo quuz’
Instead you have to wrap that in a shell:

paral | el shell 'sh -c "echo foo;echo bar"' 'sh -c "echo baz; echo quuz™’
It buffers output in RAM. All commands must be given on the command line and all commands are

started in parallel at the same time. This will cause the system to freeze if there are so many jobs that
there is not enough memory to run them all at the same time.

https://github.com/keithamus/parallelshell (Last checked: 2019-02)
https://github.com/darkguy2008/parallelshell (Last checked: 2019-03)

DIFFERENCES BETWEEN shell-executor AND GNU Parallel
shell-executor does not allow for composed commands:

This does not work
sx 'echo foo;echo bar' 'echo baz;echo quuz'
Instead you have to wrap that in a shell:
sx 'sh -c¢ "echo foo;echo bar"' 'sh -c¢ "echo baz;echo quuz"'
It buffers output in RAM. All commands must be given on the command line and all commands are

started in parallel at the same time. This will cause the system to freeze if there are so many jobs that
there is not enough memory to run them all at the same time.

https://github.com/royriojas/shell-executor (Last checked: 2019-02)

DIFFERENCES BETWEEN non-GNU par AND GNU Parallel
par buffers in memory to avoid mixing of jobs. It takes 1s per 1 million output lines.

par needs to have all commands before starting the first job. The jobs are read from stdin (standard
input) so any quoting will have to be done by the user.

Stdout (standard output) is prepended with o:. Stderr (standard error) is sendt to stdout (standard
output) and prepended with e:.

For short jobs with little output par is 20% faster than GNU parallel and 60% slower than xargs.
https://github.com/UnixJunkie/PAR

https://savannah.nongnu.org/projects/par (Last checked: 2019-02)

Page 36

GNU Parallel alternatives

DIFFERENCES BETWEEN fd AND GNU Parallel
fd does not support composed commands, so commands must be wrapped in sh -c.
It buffers output in RAM.
It only takes file names from the filesystem as input (similar to find).
https://github.com/sharkdp/fd (Last checked: 2019-02)

DIFFERENCES BETWEEN lateral AND GNU Parallel

lateral is very similar to sem: It takes a single command and runs it in the background. The design
means that output from parallel running jobs may mix. If it dies unexpectly it leaves a socket in
~/.lateral/socket.PID.

lateral deals badly with too long command lines. This makes the lateral server crash:

lateral run echo “seq 100000| head -c 1000k"

Any options will be read by lateral so this does not work (lateral interprets the -I):

lateral run s -1

Composed commands do not work:

l[ateral run pwd ';" Is

Functions do not work:

nyfunc() { echo a; }
export -f nyfunc
[ateral run nyfunc

Running emacs in the terminal causes the parent shell to die:

echo ' #!/bin/bash’ > nycnd
echo emacs -nw >> nycnd
chnmod +x nycnd

| ateral start

lateral run ./nmycnd

Here are the examples from https://github.com/akramer/lateral with the corresponding GNU sem and
GNU parallel commands:

1$ lateral start
for i in $(cat /tnp/nanmes); do
|ateral run -- sone_command $
done
| ateral wait

1% for i in $(cat /tnp/names); do
sem sone_comand $i

done
sem - -wai t
1$ parall el sonme_command :::: /tnp/ nanmes

2% lateral start

Page 37

GNU Parallel alternatives

for i in $(seq 1 100); do

lateral run -- ny_slow command < workfile$i > /tnp/logfile$
done
lateral wait

2% for i in $(seq 1 100); do
sem nmy_sl ow conmand < workfile$i > /tnp/logfile$
done
sem --wait

2% parallel 'ny_slow conmand < workfile{} > /tnp/logfile{}" \

{1..100}
3% lateral start -p O # yup, it will just queue tasks
for i in $(seq 1 100); do
lateral run -- comand_still_outputs_but wont _spaminputfile$

done
conmand out put spam can commence
|ateral config -p 10; lateral wait

3% for i in $(seq 1 100); do
echo "command inputfile$i" >> joblist
done
parallel -j 10 :::: joblist

3% echo 1 > /tnp/njobs

parallel -j /tnp/njobs command inputfile{} \
{1..100} &

echo 10 >/t nmp/ nj obs

wai t

https://github.com/akramer/lateral (Last checked: 2019-03)

DIFFERENCES BETWEEN with-this AND GNU Parallel

The examples from https://github.com/amritb/with-this.git and the corresponding GNU parallel
command:

with -v "$(cat myurls.txt)" "curl -L this"
parallel curl -L ::: myurls.txt

with -v "$(cat myregions.txt)" \
"aws --region=this ec2 describe-instance-status"
paral l el aws --region={} ec2 describe-instance-status \
nyr egi ons. t xt

with -v "$(1s)" "kubectl --kubeconfig=this get pods"

Is | parallel kubectl --kubeconfig={} get pods

with -v "$(ls | grep config)" "kubectl --kubeconfig=this get pods"
Is | grep config | parallel kubectl --kubeconfig={} get pods

with -v "$(echo {1..10})" "echo 123"
parall el -NO echo 123 ::: {1..10}

Page 38

GNU Parallel alternatives

Stderr is merged with stdout. with-this buffers in RAM. It uses 3x the output size, so you cannot have
output larger than 1/3rd the amount of RAM. The input values cannot contain spaces. Composed
commands do not work.

with-this gives some additional information, so the output has to be cleaned before piping it to the
next command.

https://github.com/amritb/with-this.git (Last checked: 2019-03)

DIFFERENCES BETWEEN Tollef's parallel (moreutils) AND GNU Parallel
Summary (see legend above):

---14--17
--M3--M6
-0203-0506 -xx
El----- E7

EXXXXXXXX

EXAMPLES FROM Tollef's parallel MANUAL
Tollef parallel sh -c "echo hi; sleep 2; echo bye"--12 3

GNU parallel "echo hi; sleep 2; echo bye":::12 3
Tollef parallel -j 3 ufraw -0 processed -- *.NEF
GNU parallel -j 3 ufraw -0 processed ::: *.NEF
Tollef parallel -j 3 -- Is df "echo hi"

GNU parallel - 3 ::: Is df "echo hi"

(Last checked: 2019-08)

DIFFERENCES BETWEEN rargs AND GNU Parallel
Summary (see legend above):

--M3 M4 --
-0203-0506-08 -
El--E4---

rargs has elegant ways of doing named regexp capture and field ranges.

With GNU parallel you can use --rpl to get a similar functionality as regexp capture gives, and use
join and @arg to get the field ranges. But the syntax is longer. This:

--rpl " {r(\d+)\.\. (\d+)} $ =join"S$opt::col sep", @rg[$51. . $$2]"

would make it possible to use:

{1r3..6}

for field 3..6.

For full support of {n..m:s} including negative numbers use a dynamic replacement string like this:

Page 39

GNU Parallel alternatives
PARALLEL=--rpl\ \'""{r((-2Ad+)2)\V.\. ((-2dH)?2)(C:([*]1"))?D}

$a = defined $$2 ? $$2 < 0 ? 1+$#arg+$$2 : $%$2 : 1;

$b = defined $$4 ? $34 < 0 ? 1+$#Harg+$$4 : $$4 : S$#ar g+1;
$s = defined $$6 ? $$7 : " ";

$ =join $s,@rg[%a..$b]"\"

export PARALLEL

You can then do:

head /etc/passwd | parallel --colsep : echo ..={1r..} ..3={1r..3} \
4. . ={1r4..} 2..4={1r2..4} 3..3={1r3..3} ..3:-={1r..3:-} \
.3 /={1r..3:/} -1={-1} -5={-5} -6={-6} -3..={1r-3..}

EXAMPLES FROM rargs MANUAL
1$ Is *.bak | rargs -p '(.*)\.bak' nmv {0} {1}

1$ |s *.bak | parallel nv {} {.}

2$ cat downl oad-1list.csv |
rargs -p ' (?P<url>.*), (?P<filename>. *)' wget {url} -O {filenane}

2$ cat downl oad-list.csv |
parall el --csv wget {1} -O {2}
or use regexps:
2$ cat downl oad-list.csv |
parallel --rpl *{url} s/,.*//" --rpl "{filename} s/.*?2,//" \
wget {url} -O {filenane}

3% cat /etc/passwd |
rargs -d: echo -e 'id: "{1}"\t nanme: "{5}"\t rest: "{6..::}""

3% cat /etc/passwd |
parallel -q --colsep : \
echo -e "id: "{1}"\t nanme: "{5}"\t rest: "{=6
$ =join":", @rg[6..$#arg] =}""

https://github.com/lotabout/rargs (Last checked: 2020-01)

DIFFERENCES BETWEEN threader AND GNU Parallel
Summary (see legend above):

1------

M1 - M3 - - M6
01-03-05--xx
El--E4---

Newline separates arguments, but newline at the end of file is treated as an empty argument. So this
runs 2 jobs:

echo two_jobs | threader -run 'echo "$THREADI D"

Page 40

GNU Parallel alternatives

threader ignores stderr, so any output to stderr is lost. threader buffers in RAM, so output bigger
than the machine's virtual memory will cause the machine to crash.

https://github.com/voodooEntity/threader (Last checked: 2020-04)

DIFFERENCES BETWEEN runp AND GNU Parallel
Summary (see legend above):

1112-----

M1 - (M3) - - M6

0102 03-0506 - X X -
El------

(M3): You can add a prefix and a postfix to the input, so it means you can only insert the argument on
the command line once.

runp runs 10 jobs in parallel by default. runp blocks if output of a command is > 64 Kbytes. Quoting
of input is needed. It adds output to stderr (this can be prevented with -q)

Examples as GNU Parallel

base=' https://i mges- api . nasa. gov/ sear ch’
query='"jupiter’

desc=' pl anet"

type='i mage'

ur | =" $base?q=$quer y&descri pt i on=$descé&nedi a_t ype=$t ype"

Downl oad the inmages in parallel using runp

curl -s $url | jg -r .collection.items[].href | \
runp -p "curl -s'" | jg -r .[] | grep large | \
runp -p 'curl -s -L -0

time curl -s $url | jg -r .collection.itenms[].href | \
runp -g 1 -gq -p 'curl -s" | jg-r .[] | grep large | \
runp -g 1 -q -p 'curl -s -L -0

Downl oad the inages in parallel

curl -s $url | jg -r .collection.itenms[].href | \
parallel curl -s | jg-r .[] | grep large | \
parallel curl -s -L -O

time curl -s $url | jg -r .collection.items[].href | \
parallel -j 1 curl -s | jq -r .[] | grep large | \
parallel -j 1 curl -s -L -O

Run some test commands (read from file)

Create a file containing conmands to run in parallel.
cat << EOF > /tnp/test-conmands.t xt

sleep 5

sleep 3

bl ah # this will fail

s $PWD # PWD shell variable is used here
ECF

Page 41

GNU Parallel alternatives

Run commands fromthe file.
runp /tnp/test-comuands.txt > /dev/null

parallel -a /tnp/test-commands.txt > /dev/null

Ping several hosts and see packet loss (read from stdin)

First copy this line and press Enter

runp -p 'ping -c 5 -W2' -s '| grep loss

| ocal host

1.1.1.1

8.8.8.8

Press Enter and Crl-D when done entering the hosts

First copy this line and press Enter

parallel ping -c 5 -W2 {} '| grep loss'

| ocal host

1.1.1.1

8.8.8.8

Press Enter and Crl-D when done entering the hosts

Get directories' sizes (read from stdin)
echo -e "$HOVE\n/etc\n/tmp" | runp -gq -p 'sudo du -sh'

echo -e "$HOVE\n/etc\n/tmp" | parallel sudo du -sh
or:
paral l el sudo du -sh ::: "$HOME" /etc /tnp

Compress files
find . -inane '"*.txt' | runp -p 'gzip --best

find . -inane '*.txt"' | parallel gzip --best

Measure HTTP request + response time

export CURL="curl -w'time_total: %tinme_total}\n"
CURL="$CURL -0 /dev/null -s https://golang.org/"
perl -wkE 'for (1..10) { say $ENV{CURL} }'

runp -q # Make 10 requests

perl -wkE 'for (1..10) { say $ENV{CURL} }' | parallel
or:
parallel -NO "$CURL" ::: {1..10}

Find open TCP ports

cat << EOF > /tnp/host-port.txt
| ocal host 22

| ocal host 80

| ocal host 81

127.0.0.1 443

127.0.0.1 444

scanne. nnmap. org 22

scanne. nnmap. org 23

scanne. nnmap. org 443

Page 42

GNU Parallel alternatives

EOF

1$ cat /tnp/host-port.txt |
runp -q -p 'netcat -v -w2 -z' 2>&l | egrep '(succeeded!|open)$

--colsep is needed to split the line

1$ cat /tnp/host-port.txt |
parallel --colsep ' ' netcat -v -w2 -z 2>&1 |
egrep ' (succeeded! | open)$'

or use uq for unquoted:

1$ cat /tnp/host-port.txt |
parall el netcat -v -w2 -z {=ug=} 2>&1 |
egrep ' (succeeded! | open)$'

https://github.coml/jreisinger/runp (Last checked: 2020-04)

DIFFERENCES BETWEEN papply AND GNU Parallel
Summary (see legend above):

-4 ---
M1 - M3 - - M6
--03-05--xx010
El--E4---

papply does not print the output if the command fails:
$ papply 'echo %-; false' foo
"echo foo; false" did not succeed

papply's replacement strings (%F %d %f %n %e %z) can be simulated in GNU parallel by putting
this in ~/.parallel/config:

--rpl 9%

--rpl "% $_=Q::dirname($)));"’
--rpl "9 s ¥/t

--rpl Y s * sV [N)+S !
--rpl "% s:.*\ .l

--rpl "% $_=""

papply buffers in RAM, and uses twice the amount of output. So output of 5 GB takes 10 GB RAM.

The buffering is very CPU intensive: Buffering a line of 5 GB takes 40 seconds (compared to 10
seconds with GNU parallel).

Examples as GNU Parallel
1$ papply gzip *.txt

1$ parallel gzip ::: *.txt
2$ papply "convert 9% %.jpg" *.png

2% parallel convert {} {.}.jpg ::: *.png

Page 43

GNU Parallel alternatives

https://pypi.org/project/papply/ (Last checked: 2020-04)

DIFFERENCES BETWEEN async AND GNU Parallel
Summary (see legend above):

14117

-0203-0506-xx010
El--E4-E6-

async is very similary to GNU parallel's --semaphore mode (aka sem). async requires the user to
start a server process.

The input is quoted like -g so you need bash -c "...;..." to run composed commands.

Examples as GNU Parallel

1%

1%

2%

2%

3%

3%

4%

4%

5%

5%

6$

S="/t mp/ exanpl e_socket"

| D=nyid

async -s="$S" server --start

G\U Paral | el does not need a server to run

for i in {1..20}; do

prints conmand out put to stdout

async -s="$S" cnd -- bash -c "sleep 1 && echo test $i"
done

for i in {1..20}; do

prints conmand out put to stdout

sem--id "$ID" -j100% "sleep 1 && echo test $i"

GNU Parallel will only print job when it is done

| f you need output fromdifferent jobs to mx

use -u or --line-buffer

sem--id "$ID" -j100%--1line-buffer "sleep 1 & echo test $i"
done

wait until all conmmands are finished
async -s="$S" wait

sem--id "$ID" --wait

configure the server to run four conmands in parallel
async -s="$S" server -j4

export PARALLEL=-j4

nkdir "/tnp/ex_dir"
for i in {21..40}; do
redirects command output to /tnp/ex_dir/file*

Page 44

GNU Parallel alternatives

async -s="$S" cnd -0 "/tnp/ex_dir/file$i" -- \
bash -c "sleep 1 & echo test $i"
done

6% nkdir "/tmp/ex_dir"
for i in {21..40}; do
redirects command output to /tnp/ex_dir/file*
sem--id "$ID" --result '/tnp/ny-ex/file-{=$_=""=}""Si" \
"sleep 1 & echo test $i"
done

7% sem--id "$ID" --wait
7% async -s="$S" wait

8% # stops server
async -s="$S" server --stop

8% # GNU Paral l el does not need to stop a server

https://github.com/ctbur/async/ (Last checked: 2023-01)

DIFFERENCES BETWEEN pardi AND GNU Parallel
Summary (see legend above):

1112----17
M1----M6
0102 03 04 05 - 07 - - 010
El--E4---

pardi is very similar to parallel --pipe --cat: It reads blocks of data and not arguments. So it cannot
insert an argument in the command line. It puts the block into a temporary file, and this file name
(%IN) can be put in the command line. You can only use %IN once.

It can also run full command lines in parallel (like: cat file | parallel).

EXAMPLES FROM pardi test.sh

1$ time pardi -v -c 100 -i data/decoys.sm -ie .sm -oe .sm \
-0 dat a/decoys_std_pardi.sm \
-w ' (standardiser -i %N -0 %OUT 2>&1) > /dev/null’

1$ cat data/decoys.sm |
time parallel -N 100 --pipe --cat \
'(standardiser -i {} -0 {#} 2>&1l) > /dev/null; cat {#}; rm{#}"' \
> dat a/ decoys_std_pardi.sm

2% pardi -n 1 -i data/test_in.types -0 data/test_out.types \
-d '"r:"atonms:' -w 'cat %N > %OUT

2$ cat data/test_in.types |
parallel -n 1 -k --pipe --cat --regexp --recstart '~#atons' \

Page 45

GNU Parallel alternatives

"cat {}' > datal/test_out.types

3% pardi -c 6 -i data/test_in.types -0 data/test_out.types \
-d '"r:"tatonms:' -w 'cat %N > %OUT

3% cat data/test_in.types |
parallel -n 6 -k --pipe --cat --regexp --recstart '~#atonms' \
‘cat {}' > datal/test_out.types

4% pardi -i data/decoys.nol2 -o data/still_decoys.nol2 \
-d 's: @TRI POS>SMOLECULE' -w 'cp %4 N %OUT'

4% cat data/decoys. ol 2 |
parallel -n 1 --pipe --cat --recstart ' @&TRI POSSMOLECULE' \
"cp {} {#};, cat {#}; rm{#}' > data/still_decoys. nol 2

5% pardi -i datal/decoys.nnl2 -0 datal/decoys2.nmol 2 \
-d b: 10000 -w 'cp AN %OUT" --preserve

5% cat data/decoys.nol 2 |
parallel -k --pipe --block 10k --recend '' --cat \
"cat {} > {#}; cat {#}; rm{#}' > datal/decoys2.nol?2
https://github.com/UnixJunkie/pardi (Last checked: 2021-01)

DIFFERENCES BETWEEN bthread AND GNU Parallel
Summary (see legend above):

e 4---

bthread takes around 1 sec per MB of output. The maximal output line length is 1073741759.

You cannot quote space in the command, so you cannot run composed commands like sh -c "echo
a; echo b".

https://gitlab.com/netikras/bthread (Last checked: 2021-01)

DIFFERENCES BETWEEN simple_gpu_scheduler AND GNU Parallel
Summary (see legend above):

11----- 17
M1----M6
-0203--06-xx010
El------

Page 46

GNU Parallel alternatives

EXAMPLES FROM simple_gpu_scheduler MANUAL
1% sinple_gpu_scheduler --gpus 0 1 2 < gpu_conmmands. t xt

1$ parallel -j3 --shuf \
CUDA VI SIBLE DEVI CES='{=1 $_=slot()-1 =} {=uqg;=}" \
< gpu_comuands. t xt

2% sinpl e_hypersearch \
"python3 train_dnn.py --Ir {Ir} --batch_size {bs}" \
-p Ir 0.001 0.0005 0.0001 -p bs 32 64 128 |
si nmpl e_gpu_schedul er --gpus 0, 1,2

2% parallel --header : --shuf -j3 -v \
CUDA_VI SI BLE_DEVI CES='{=1 $_=slot()-1 =}"' \
python3 train_dnn.py --lr {lr} --batch_size {bs} \
[r 0.001 0.0005 0.0001 ::: bs 32 64 128

3% sinpl e_hypersearch \
"python3 train_dnn.py --Ir {Ir} --batch_size {bs}" \
--n-sanmples 5 -p Ir 0.001 0.0005 0.0001 -p bs 32 64 128 |
si mpl e_gpu_schedul er --gpus 0, 1,2

3% parallel --header : --shuf \
CUDA VI SI BLE_DEVI CES='{=1 $_=slot()-1; seq()>5 and skip() =}" \
python3 train_dnn.py --Ir {Ir} --batch_size {bs} \
: [r 0.001 0.0005 0.0001 ::: bs 32 64 128

4% touch gpu. queue
tail -f -n O gpu.queue | sinple_gpu_scheduler --gpus 0,1,2 &
echo "nmy_comand with | and stuff > logfile" >> gpu.queue

4% touch gpu. queue
tail -f -n O gpu.queue |
parallel -j3 CUDA VISIBLE DEVICES='{=1 $_=slot()-1 =} {=uq;=}' &

Needed to fill job slots once
seq 3 | parallel echo true >> gpu.queue
Add j obs

echo "nmy_command with | and stuff > logfile"” >> gpu.queue
Needed to flush output from conpl eted jobs
seq 3 | parallel echo true >> gpu. queue

https://github.com/ExpectationMax/simple_gpu_scheduler (Last checked: 2021-01)

DIFFERENCES BETWEEN parasweep AND GNU Parallel
parasweep is a Python module for facilitating parallel parameter sweeps.

A parasweep job will normally take a text file as input. The text file contains arguments for the job.
Some of these arguments will be fixed and some of them will be changed by parasweep.

It does this by having a template file such as template.txt:

Xval : {x}

Yval : {y}

Fi xedval ue: 9

X with 2 decimls

Page 47

GNU Parallel alternatives

Deci mal X {x:.2f}
TenX: ${x*10}
Randonval : {r}

and from this template it generates the file to be used by the job by replacing the replacement strings.

Being a Python module parasweep integrates tighter with Python than GNU parallel. You get the
parameters directly in a Python data structure. With GNU parallel you can use the JSON or CSV
output format to get something similar, but you would have to read the output.

parasweep has a filtering method to ignore parameter combinations you do not need.

Instead of calling the jobs directly, parasweep can use Python's Distributed Resource Management
Application API to make jobs run with different cluster software.

GNU parallel --tmpl supports templates with replacement strings. Such as:

Xval : {x}

Yval : {y}

Fi xedVal ue: 9

x with 2 decinmals

Decimal X: {=x $_=sprintf("%2f",$) =}
TenX: {=x $_=%$_*10 =}

Randonval : {=1 $_=rand() =}

that can be used like:
paral l el --header : --tnpl my.tnpl={#}.t nyprog {#}.t \
: x123:::y123
Filtering is supported as:

parallel --filter '{1} > {2}' echo ::: 1 2 3 ::: 123

https://github.com/eviatarbach/parasweep (Last checked: 2021-01)

DIFFERENCES BETWEEN parallel-bash AND GNU Parallel
Summary (see legend above):

112-----
--M3--M6
-0203-0506-08x 010
El------

parallel-bash is written in pure bash. It is really fast (overhead of ~0.05 ms/job compared to GNU
parallel's 3-10 ms/job). So if your jobs are extremely short lived, and you can live with the quite
limited command, this may be useful.

It works by making a queue for each process. Then the jobs are distributed to the queues in a round
robin fashion. Finally the queues are started in parallel. This works fine, if you are lucky, but if not, all
the long jobs may end up in the same queue, so you may see:

$printf "9\n" 111411141114
time parallel -P4 sleep {}

(7 seconds)

$printf "9\n" 111411141114

Page 48

GNU Parallel alternatives

time ./parallel-bash.bash -p 4 -c sleep {}
(12 seconds)

Because it uses bash lists, the total number of jobs is limited to 167000..265000 depending on your
environment. You get a segmentation fault, when you reach the limit.
Ctrl-C does not stop spawning new jobs. Ctrl-Z does not suspend running jobs.

EXAMPLES FROM parallel-bash
1$ some_input | parallel-bash -p 5 -c echo

1$ sone_input | parallel -j 5 echo

2% parallel-bash -p 5 -c echo < sone_file

2% parallel -j 5 echo < sone_file

3% parallel-bash -p 5 -c echo <<< 'some string'

3% parallel -j 5 -c echo <<< 'sone string'

4% sonething | parallel-bash -p 5 -c echo {} {}

4% sonething | parallel -j 5 echo {} {}
https://reposhub.com/python/command-line-tools/Akianonymus-parallel-bash.html (Last checked:

2021-06)

DIFFERENCES BETWEEN bash-concurrent AND GNU Parallel

bash-concurrent is more an alternative to make than to GNU parallel. Its input is very similar to a
Makefile, where jobs depend on other jobs.

It has a nice progress indicator where you can see which jobs completed successfully, which jobs are
currently running, which jobs failed, and which jobs were skipped due to a depending job failed. The
indicator does not deal well with resizing the window.

Output is cached in tempfiles on disk, but is only shown if there is an error, so it is not meant to be
part of a UNIX pipeline. If bash-concurrent crashes these tempfiles are not removed.

It uses an O(n*n) algorithm, so if you have 1000 independent jobs it takes 22 seconds to start it.
https://github.com/themattrix/bash-concurrent (Last checked: 2021-02)

DIFFERENCES BETWEEN spawntool AND GNU Parallel
Summary (see legend above):

n------

M1----M6
-0203-0506-xx010
El------

spawn reads a full command line from stdin which it executes in parallel.

Page 49

GNU Parallel alternatives

http://code.google.com/p/spawntool/ (Last checked: 2021-07)

DIFFERENCES BETWEEN go-pssh AND GNU Parallel
Summary (see legend above):

ML-----
Ool1------ xx 010
El------
R1R2---R6---

go-pssh does ssh in parallel to multiple machines. It runs the same command on multiple machines
similar to --nonall.

The hostnames must be given as IP-addresses (not as hostnames).

Output is sent to stdout (standard output) if command is successful, and to stderr (standard error) if
the command fails.

EXAMPLES FROM go-pssh
1$ go-pssh -1 <ip> <ip> -u <user> -p <port> -P <passwd> -c "<command>"

1$ parallel -S 'sshpass -p <passwd> ssh -p <port> <user>@i p>' \
--nonal I " <command>"

2% go-pssh scp -f host.txt -u <user> -p <port> -P <password> \
-s /local/file or_directory -d /renote/directory

2$ parallel --nonall --slf host.txt \
--basefile /local/file_ or_directory/./ --wd /renote/directory
--ssh 'sshpass -p <password> ssh -p <port> -I <user>' true
3% go-pssh scp -1 <ip><ip> -u <user> -p <port> -P <password> \

-s /local/file_or_directory -d /renote/directory

3% parallel --nonall -S <ip>, <ip>\
--basefile /local/file or _directory/./ --wd /renote/directory
--ssh 'sshpass -p <password> ssh -p <port> -| <user>' true

https://github.com/xuchenCN/go-pssh (Last checked: 2021-07)

DIFFERENCES BETWEEN go-parallel AND GNU Parallel
Summary (see legend above):

1112----17
--M3--M6
-0203-05--xx-010
El--E4---

go-parallel uses Go templates for replacement strings. Quite similar to the {= perl expr =}
replacement string.

Page 50

GNU Parallel alternatives

EXAMPLES FROM go-parallel

1$ go-parallel -a ./files.txt -t 'cp {{.Input}} {{.Input | dirname |
di rnane} }'

1$ parallel -a ./files.txt cp {} '{= $_= :dirnane(::dirnane($_)) =}
2% go-parallel -a ./files.txt -t "nkdir -p {{.Input}} {{noExt .Ilnput}}’
2% parallel -a ./files.txt echo nkdir -p {} {.}

3% go-parallel -a ./files.txt -t "nmkdir -p {{.Input}} {{.Input | basenane
| noExt}}'

3% parallel -a ./files.txt echo nkdir -p {} {/.}

https://github.com/mylanconnolly/parallel (Last checked: 2021-07)

DIFFERENCES BETWEEN p AND GNU Parallel
Summary (see legend above):

- l4--x

p is a tiny shell script. It can color output with some predefined colors, but is otherwise quite limited.
It maxes out at around 116000 jobs (probably due to limitations in Bash).

EXAMPLES FROM p

Some of the examples from p cannot be implemented 100% by GNU parallel: The coloring is a bit
different, and GNU parallel cannot have --tag for some inputs and not for others.

The coloring done by GNU parallel is not exactly the same as p.

1$ p -bc blue "ping 127.0.0.1" -uc red "ping 192.168.0.1" \
-rc yellow "ping 192.168.1.1" -t exanple "ping exanple.cont

1$ parallel --1b -jO --color --tag ping \
127.0.0.1 192.168.0.1 192.168.1.1 exanpl e.com

28 p "tail -f /var/log/httpd/ access_|log" \
-bc red "tail -f /var/log/httpd/error_Iog"

2% cd /var/log/ httpd;
parallel --1b --color --tag tail -f ::: access_log error_Ilog

3% p tail -f "sonme file" \& p tail -f "other file with space.txt"

3% parallel --lIb tail -f ::: '"some file'" "other file with space.txt"

Page 51

GNU Parallel alternatives

4% p -t projectl "hg pull projectl" -t project2 \
"hg pull project2" -t project3 "hg pull project3"

4% parallel --1b hg pull ::: project{l..3}

https://github.com/rudymatela/evenmoreutils/blob/master/man/p.1.adoc (Last checked: 2022-04)

DIFFERENCES BETWEEN senechal AND GNU Parallel
Summary (see legend above):

M1 - M3 - - M6
01-0304---XxX-

seneschal only starts the first job after reading the last job, and output from the first job is only printed
after the last job finishes.

1 byte of output requites 3.5 bytes of RAM.
This makes it impossible to have a total output bigger than the virtual memory.
Even though output is kept in RAM outputing is quite slow: 30 MB/s.
Output larger than 4 GB causes random problems - it looks like a race condition.
This:
echo 1 | seneschal --prefix='"yes “seq 1000 |head -c 1G >/dev/null
takes 4100(!) CPU seconds to run on a 64C64T server, but only 140 CPU seconds on a 4C8T laptop.
So it looks like seneschal wastes a lot of CPU time coordinating the CPUs.
Compare this to:

echo 1 | tine -v parallel -NO 'yes “seq 1000 | head -c 1G >/dev/null

which takes 3-8 CPU seconds.

EXAMPLES FROM seneschal README.md
1$ echo $REPOS | seneschal --prefix="cd {} & git pull"

If $REPCS is newl i ne separated

1$ echo "$REPCS" | parallel -k "cd {} & & git pull"

I f $REPCS is space separated

1$ echo -n "$REPCS' | parallel -d" ' -k "cd {} & git pull"

COMVANDS=" pwd

sleep 5 & echo boom
echo Howdy

whoam "

2$ echo "$COWWANDS" | seneschal --debug

Page 52

GNU Parallel alternatives

2% echo "$COMVANDS" | parallel -k -v
38 Is -1 | seneschal --prefix="pushd {}; git pull; popd;"

38 Is -1 | parallel -k "pushd {}; git pull; popd;"
O if current dir also contains files:
3% parallel -k "pushd {}; git pull; popd;" ::: */

https://github.com/TheWizardTower/seneschal (Last checked: 2022-06)

DIFFERENCES BETWEEN async AND GNU Parallel
Summary (see legend above):

XXXXXXX

=X X XXX

x 02 03 04 05 06 - x x 010
El--E4---

async works like sem.

EXAMPLES FROM async
1$ S="/tnp/ exanpl e_socket "

async -s="$S" server --start

for i in {1..20}; do

prints conmand out put to stdout

async -s="$S" cnd -- bash -c "sleep 1 & echo test $i"
done

wait until all commands are fini shed
async -s="$S" wait

1$ S="exanple_id"
server not needed

for i in {1..20}; do

prints conmand out put to stdout

sem--bg --id "$S" -j100% "sleep 1 &% echo test $i"
done

wait until all commands are finished
sem--fg --id "$S" --wait

2% # configure the server to run four conmands in parallel
async -s="$S" server -j4

nkdir "/tnp/ex_dir"
for i in {21..40}; do

Page 53

GNU Parallel alternatives

redirects command output to /tnp/ex_dir/file*
async -s="$S" cnd -0 "/tnp/ex_dir/file$i" -- \
bash -c "sleep 1 & echo test $i"
done

async -s="$S" wait

stops server
async -s="$S" server --stop

2% # starting server not needed

nkdir "/tnp/ex_dir"
for i in {21..40}; do
redirects command output to /tnp/ex_dir/file*
sem--bg --id "$S" --results "/tmp/ex_dir/file$i{}" \
"sleep 1 & echo test $i"
done

sem--fg --id "$S" --wait
there is no server to stop

https://github.com/ctbur/async (Last checked: 2023-01)

DIFFERENCES BETWEEN tandem AND GNU Parallel
Summary (see legend above):

---14--X
M1----M6
--03----x--
E1-E3-E5--

tandem runs full commands in parallel. It is made for starting a "server", running a job against the
server, and when the job is done, the server is killed.

More generally: it kills all jobs when the first job completes - similar to --halt now,done=1".

tandem silently discards some output. It is unclear exactly when this happens. It looks like a race
condition, because it varies for each run.

$ tandem "seq 10000" | wc -|
6731 <- This should al ways be 10002

EXAMPLES FROM Demo

tandem \
"php -S Il ocal host:8000" \
"esbuild src/*.ts --bundle --outdir=dist --watch' \
"tailwind -i src/index.css -o dist/index.css --watch'

Enul ate tandeni s behavi our
PARALLEL="--color --Ib --halt now done=1 --tagstring '

Page 54

GNU Parallel alternatives

PARALLEL="$PARALLEL" "' {=s/ .*//; $_.=".".%app{$_}++;=}""""
export PARALLEL

parallel ::: \
"php -S I ocal host: 8000" \
"esbuild src/*.ts --bundle --outdir=dist --watch' \
"tailwind -i src/index.css -0 dist/index.css --watch'

EXAMPLES FROM tandem -h

Emul ate tandem s behavi our

PARALLEL="--color --Ib --halt now done=1 --tagstring '
PARALLEL="$PARALLEL" "' {=s/ .*//; $_.=".".%app{$_}++;=}""""
export PARALLEL

1$ tandem 'sleep 5 & echo "hello"' 'sleep 2 && echo "worl d"'
1$ parallel ::: 'sleep 5 & echo "hello"' 'sleep 2 & echo "world"'

#'-t 0 fails. But '--tineout 0O works'
2% tandem --tineout 0 'sleep 5 & echo "hello"' \
"sleep 2 && echo "world"’

2% parallel --tineout O ::: '"sleep 5 & echo "hello"' \
"sleep 2 & echo "world"’

EXAMPLES FROM tandem's readme.md
Enmul ate tandeni s behavi our
PARALLEL="--color --Ib --halt now done=1 --tagstring '

PARALLEL="$PARALLEL" "' {=s/ .*//; $_.=".".%app{$_}++;=}""""
export PARALLEL

1$ tandem ' next dev' 'nodenon --quiet ./server.js'
1$ parallel ::: 'next dev' 'nodenpn --quiet ./server.js'

2% cat package.json

{
"scripts": {
“dev: php": "...",
"dev:js": "...",
"dev:css": " "
}
}

tandem ' npm dev: php' 'npmdev:js' 'npmdev:css

GNU Paral |l el uses bash functions instead
2$ cat package. sh

dev:php() { ... ;}
dev:js() { ... ; }
devicss() { ... ; }

export -f dev:php dev:js dev:css

Page 55

GNU Parallel alternatives

package. sh
paral l el ::: dev:php dev:js dev:css

3% tandem ' npm dev: *'

3% conpgen -A function | grep “dev: | parallel
For usage in Makefiles, include a copy of GNU Parallel with your source using “parallel --embed". This
has the added benefit of also working if access to the internet is down or restricted.

https://github.com/rosszurowski/tandem (Last checked: 2023-01)

DIFFERENCES BETWEEN rust-parallel(aaronriekenberg) AND GNU Parallel
Summary (see legend above):

11213 ----

0102 03-0506 - x-010
El--E4---

rust-parallel has a goal of only using Rust. It seems it is impossible to call bash functions from the
command line. You would need to put these in a script.

Calling a script that misses the shebang line (#! as first line) fails.

EXAMPLES FROM rust-parallel's README.md

$ cat > /test <<EQL
echo hi

echo there

echo how

echo are

echo you

ECL

1$ cat test | rust-parallel -j5

1$ cat test | parallel -j5

2% cat test | rust-parallel -j1

2% cat test | parallel -j1

3% head -100 /usr/share/dict/words | rust-parallel nd5 -s
3% head -100 /usr/share/dict/words | parallel nd5 -s

4% find . -type f -printO | rust-parallel -0 gzip -f -k
4% find . -type f -printO | parallel -0 gzip -f -k

5% head -100 /usr/share/dict/words |

Page 56

GNU Parallel alternatives
awk '"{printf "nd5 -s %\n", $1}' | rust-parallel

5% head -100 /usr/share/dict/words
awk '{printf "nd5 -s %\n", $1}' | parallel

6% head -100 /usr/share/dict/words | rust-parallel nmd5 -s
grep -i abba

6$ head -100 /usr/share/dict/words | parallel nd5 -s
grep -i abba
https://github.com/aaronriekenberg/rust-parallel (Last checked: 2023-01)

DIFFERENCES BETWEEN parallelium AND GNU Parallel
Summary (see legend above):

2-----

M1 ----M6
01-03----x--
El--E4---

parallelium merges standard output (stdout) and standard error (stderr). The maximal output of a
command is 8192 bytes. Bigger output makes parallelium go into an infinite loop.

In the input file for parallelium you can define a tag, so that you can select to run only these
commands. A bit like a target in a Makefile.

Progress is printed on standard output (stdout) prepended with '# with similar information as GNU
parallel's --bar.

EXAMPLES

$ cat testjobs.txt
#tag common sl eeps cl assA
(sl eep 4.495;echo "job 000")

(sl eep 2.587;echo "job 016")

#tag comon sl eeps cl assB
(sl eep 0.218;echo "job 017")

(sl eep 2.269;echo "job 040")

#tag common sl eeps cl assC
(sl eep 2.586;echo "job 041")

(sleep 1.626;echo "job 099")

#tag | asthal f, sleeps, classB
(sl eep 1.540;echo "job 100")

(sl eep 2.001;echo "job 199")

Page 57

GNU Parallel alternatives

1$ parallelium-f testjobs.txt -1 logdir -t classB,classC

1$ cat testjobs.txt |

parallel --plus --results logdir/testjobs.txt {0#}.output \

‘{=if(/~#tag /) { @ag = split/,|\s+ }

(grep /"~(classB|classC)$/, @ag) or skip =}

https://github.com/beomagi/parallelium (Last checked: 2023-01)

DIFFERENCES BETWEEN forkrun AND GNU Parallel
Summary (see legend above):

-0203-05----010
El--E4---

forkrun blocks if it receives fewer jobs than slots:

echo | forkrun -p 2 echo

or when it gets some specific commands e.g.:

f() { seq "$@ | pv -qL 3; }
seq 10 | forkrun f

It is not clear why.

It is faster than GNU parallel (overhead: 1.2 ms/job vs 3 ms/job), but way slower than parallel-bash

(0.059 ms/job).
Running jobs cannot be stopped by pressing CTRL-C.

-k is supposed to keep the order but fails on the MIX testing example below. If used with -k it caches

output in RAM.

If forkrun is killed, it leaves temporary files in /tmp/.forkrun.* that has to be cleaned up manually.

EXAMPLES
1$ tinme find ./ -type f |
forkrun -1512 -- sha256sum 2>/dev/null | wc -I
1$ tinme find ./ -type f |
parallel -j28 -m-- sha256sum 2>/dev/null | wec -1

2$ tine find ./ -type f |

forkrun -1512 -k -- sha256sum 2>/dev/null | wc -|I
2$ tine find ./ -type f |
parallel -j28 -k -m-- sha256sum 2>/dev/null | wc -|

https://github.com/jkool702/forkrun (Last checked: 2023-02)

DIFFERENCES BETWEEN parallel-sh AND GNU Parallel
Summary (see legend above):

Page 58

GNU Parallel alternatives

111214 ---
M1----M6
0102 03-0506 - - - 010
El--E4---

parallel-sh buffers in RAM. The buffering data takes O(n"1.5) time:

2MB=0.107s 4MB=0.175s 8MB=0.342s 16MB=0.766s 32MB=2.2s 64MB=6.7s 128MB=20s
256MB=64s 512MB=248s 1024MB=998s 2048MB=3756s

It limits the practical usability to jobs outputting < 256 MB. GNU parallel buffers on disk, yet is faster
for jobs with outputs > 16 MB and is only limited by the free space in $TMPDIR.

parallel-sh can kill running jobs if a job fails (Similar to --halt now,fail=1).

EXAMPLES
1$ parallel-sh "sleep 2 & echo first" "sleep 1 & echo second"

1$ parallel ::: "sleep 2 & echo first" "sleep 1 & echo second"

2% cat /tnp/ comands
sleep 2 && echo first
sleep 1 && echo second

2$ parallel-sh -f /tnp/conmands
2% parallel -a /tnmp/commands

3% echo -e "sleep 2 & echo first\nsleep 1 && echo second' |
paral | el -sh

3% echo -e "sleep 2 & echo first\nsleep 1 & echo second' |
paral | el

https://github.com/thyrc/parallel-sh (Last checked: 2023-04)

DIFFERENCES BETWEEN bash-parallel AND GNU Parallel
Summary (see legend above):

2----17
M1 - M3 - M5 M6
-0203--06-08- 010

bash-parallel is not as much a command as it is a shell script that you have to alter. It requires you to
change the shell function process_job that runs the job, and set $MAX_POOL_SIZE to the number of
jobs to run in parallel.

It is half as fast as GNU parallel for short jobs.

Page 59

GNU Parallel alternatives

https://github.com/thilinaba/bash-parallel (Last checked: 2023-05)

DIFFERENCES BETWEEN PaSH AND GNU Parallel
Summary (see legend above): N/A

pash is quite different from GNU parallel. It is not a general parallelizer. It takes a shell script and
analyses it and parallelizes parts of it by replacing the parts with commands that will give the same
result.

This will replace sort with a command that does pretty much the same as parsort --parallel=8
(except somewhat slower):

pa.sh --width 8 -c¢c 'cat bigfile | sort'

However, even a simple change will confuse pash and you will get no parallelization:
pa.sh --width 8 -¢c "nysort() { sort; }; cat bigfile | nysort'
pa.sh --width 8 -c¢c 'cat bigfile | sort | nd5sum

From the source it seems pash only looks at: awk cat col comm cut diff grep head mkfifo mv rm sed
seq sort tail tee tr unig wc xargs

For pipelines where these commands are bottlenecks, it might be worth testing if pash is faster than
GNU parallel.

pash does not respect $TMPDIR but always uses /tmp. If pash dies unexpectantly it does not clean
up.

https://github.com/binpash/pash (Last checked: 2023-05)

DIFFERENCES BETWEEN korovkin-parallel AND GNU Parallel
Summary (see legend above):

1------
M1----M6
--03----xx-
El------
R1----R6xX-

korovkin-parallel prepends all lines with some info.
The output is colored with 6 color combinations, so job 1 and 7 will get the same color.
You can get similar output with:

(echo ...) |
parallel --color -j 10 --1b --tagstring \
"I {#}: {=$_=sprintf("%.03f",::now()-$"T)=} {=$_=hh_mm ss($"T)=}
{4]"
Lines longer than 8192 chars are broken into lines shorter than 8192. korovkin-parallel loses the last
char for lines exactly 8193 chars long.

Short lines from different jobs do not mix, but long lines do:

fun() {
perl -e '$a="'$1' "x1000000; for(1l..'$2') { print $a };';
echo;

Page 60

GNU Parallel alternatives

}

export -f fun
(echo fun a 100;echo fun b 100) | korovkin-parallel | tr -s abcdef
Conpare to:
(echo fun a 100;echo fun b 100) | parallel | tr -s abcdef
There should be only one line of a's and one line of b's.

Just like GNU parallel korovkin-parallel offers a master/slave model, so workers on other servers
can do some of the tasks. But contrary to GNU parallel you must manually start workers on these
servers. The communication is neither authenticated nor encrypted.

It caches output in RAM: a 1GB line uses ~2.5GB RAM
https://github.com/korovkin/parallel (Last checked: 2023-07)

DIFFERENCES BETWEEN xe AND GNU Parallel
Summary (see legend above):

1112-14--17

M1 - M3 M4 - M6

-02 03-05 06 - 08 - 010
El--E4---

xe has a peculiar limitation:

echo /bin/echo | xe {} XK
echo echo | xe /bin/{} fails

EXAMPLES
Compress all .c files in the current directory, using all CPU cores:

1$ xe -a -j0 gzip -- *.c
1$ parallel gzip ::: *.c

Remove all empty files, using Ir(1):

2$ Ir -U -t '"size == 0" | xe -NO rm
28 Ir -U -t 'size == 0" | parallel -Xrm

Convert .mp3 to .ogg, using all CPU cores:

3% xe -a -j0 -s "ffrmpeg -i "${1}" "${1% mp3}.o0gg"' -- *.nmp3

3% parallel ffnpeg -i {} {.}.0gg ::: *.np3

Same, using percent rules:

4% xe -a -j0 -p % np3 ffnpeg -i % np3 % ogg -- *.nmp3

4% parallel --rpl "%s/\.mp3// or skip' ffrnpeg -i % nmp3 %ogg ::: *.nmp3

Page 61

GNU Parallel alternatives

Similar, but hiding output of ffmpeg, instead showing spawned jobs:

5% xe -ap -j0 -vvqg ' % {nda, ogg, opus}' ffnpeg -y -i {} out/% nmp3 -- *

5% parallel -v --rpl '"%s/\.(ma] ogg|opus)// or skip" \
ffmpeg -y -i {} out/% np3 '2>/dev/null" ::: *

5% parallel -v ffrpeg -y -i {} out/{.}.nmp3 '2>/dev/null"' ::: *

https://github.com/leahneukirchen/xe (Last checked: 2023-08)

DIFFERENCES BETWEEN sp AND GNU Parallel
Summary (see legend above):

14 ---
M1 - M3 - - M6
- 02 03 - 05 (06) - X x 010

sp has very few options.
It can either be used like:

sp command {} option :: argl arg2 arg3

which is similar to:

paral l el command {} option ::: argl arg2 arg3

Or:

sp comandl :: "command2 -option" :: "command3 foo bar"

which is similar to:
parallel ::: commandl "comand2 -option" "command3 foo bar"
sp deals badly with too many commands: This causes sp to run out of file handles and gives data
loss.
For each command that fails, sp will print an error message on stderr (standard error).
You cannot used exported shell functions as commands.

EXAMPLES
1$ sp echo {} :: 123

1$ parallel echo {} ::: 12 3
2% sp echo {} {} :: 123

2$ parallel echo {} {} :: 123

Page 62

GNU Parallel alternatives

3% sp echo 1 :: echo 2 :: echo 3

3% parallel ::: "echo 1' 'echo 2' 'echo 3'
4% sp a foo bar :: "b 'baz bar'" c
4% parallel ::: '"a foo bar' "b '"baz bar'" :: c

https://github.com/SergioBenitez/sp (Last checked: 2023-10)

DIFFERENCES BETWEEN repeater AND GNU Parallel
Summary (see legend above):

- 02 03 N/A - 06 - X X 2010
El---E5--

repeater runs the same job repeatedly. In other words: It does not read arguments, thus is it an
alternative for GNU parallel for only quite limited applications.

repeater has an overhead of around 0.23 ms/job. Compared to GNU parallel's 2-3 ms this is fast.
Compared to bash-parallel's 0.05 ms/job it is slow.

Memory use and run time for large output

Output takes O(n”2) time for output of size n. 10 MB takes ~1 second, 30 MB takes ~7 seconds, 100
MB takes ~60 seconds, 300 MB takes ~480 seconds, 1000 GB takes

100 MB of output takes around 1 GB of RAM.

Run tine = 15 sec

Menory use = 20 MB

Qutput = 1 GB per job

\tine -v parallel -j1 seq ::: 120000000 120000000 >/dev/null

Run time = 4.7 sec

Menory use = 95 MB

Qutput = 8 MB per job

\tine -v repeater -w1l -n 2 -reportFile ./run_output seq 1200000
>/ dev/ nul |

Run tine = 42 sec

Menory use = 277 MB

Qutput = 27 MB per job

\tine -v repeater -w1l -n 2 -reportFile ./run_output seq 3600000
>/ dev/ nul |

Run tine = 530 sec

Menory use = 1000 MB

Qutput = 97 MB per job

\tine -v repeater -w 1l -n 2 -reportFile ./run_output seq 12000000
>/ dev/ nul |

Page 63

GNU Parallel alternatives

Run tine = 2h4lm
Menory use = 8.6 GB
Qutput = 1 GB per job

\tine -v repeater -w1l -n 2 -reportFile ./run_output seq 120000000

>/ dev/ nul |

For even just moderate sized outputs GNU parallel will be faster and use less memory.

EXAMPLES

Todo

1% repeater -n 100 -w 10 -reportFile ./run_out put
-out put REPORT_FI LE -progress BOTH curl exanpl e.com

1% seq 100 | parallel --joblog run.log --eta curl exanple.com > out put

2% repeater -n 100 -increment -progress H DDEN -reportFile foo
echo "this is increnent: " INC

2% seq 100 | parallel echo {}

2% seq 100 | parallel echo '{=$%$_ = ++$nyvar =}'

https://github.com/baalimago/repeater (Last checked: 2023-12)

https://github.com/justanhduc/task-spooler
https://manpages.ubuntu.com/manpages/xenial/manl/tsp.1.html
https://www.npmjs.com/package/concurrently
http://code.google.com/p/push/ (cannot compile)
https://github.com/krashanoff/parallel
https://github.com/Nukesor/pueue
https://arxiv.org/pdf/2012.15443.pdf KumQuat
https://github.com/JeiKeiLim/simple_distribute_job
https://github.com/reggi/pkgrun - not obvious how to use
https://github.com/benoror/better-npm-run - not obvious how to use
https://github.com/bahmutov/with-package
https://github.com/flesler/parallel

https://github.com/Julian/Verge
https://vicerveza.homeunix.net/~viric/soft/ts/

https://github.com/chapmanjacobd/que

TESTING OTHER TOOLS
There are certain issues that are very common on parallelizing tools. Here are a few stress tests. Be

warned: If the tool is badly coded it may overload your machine.

MIX: Output mixes

Output from 2 jobs should not mix. If the output is not used, this does not matter; but if the output is
used then it is important that you do not get half a line from one job followed by half a line from

another job.

Page 64

GNU Parallel alternatives

If the tool does not buffer, output will most likely mix now and then.

This test stresses whether output mixes.

#!/ bi n/ bash

paral | el t ool ="parallel -j 30"

cat <<-ECF > myconmand

#!/ bi n/ bash

#1f a, b, ¢, d, e, and f mx: Very bad
perl -e 'print STDOUT "a"x3000_000," "'
perl -e 'print STDERR "b"x3000_000," "'
perl -e 'print STDOUT "c"x3000_000," "'
perl -e 'print STDERR "d"x3000_000," "'
perl -e 'print STDOUT "e"x3000_000," "'
perl -e 'print STDERR "f"x3000_000," "'
echo

echo >&2

EOF

chnod +x nmycommrand

Run 30 jobs in parallel
seq 30

$paral l el tool ./mycommand > >(tr -s abcdef) 2> >(tr -s abcdef

#'ace and 'b d f' should always stay together
and there should only be a single line per job

STDERRMERGE: Stderr is merged with stdout
Output from stdout and stderr should not be merged, but kept separated.

This test shows whether stdout is mixed with stderr.

#!/ bi n/ bash

paral | el t ool ="parallel -jO"
cat <<-ECF > myconmand
#!/ bi n/ bash

st dout
stderr
st dout
stderr

echo
echo
echo
echo
ECF
chnod +x nmycommand

>&2

>&2

Run one job

echo
$paral |l el t ool

cat stdout

cat stderr

./ myconmand > stdout 2> stderr

>&2)

Page 65

GNU Parallel alternatives

RAM: Output limited by RAM

Some tools cache output in RAM. This makes them extremely slow if the output is bigger than
physical memory and crash if the output is bigger than the virtual memory.

#! / bi n/ bash
paral |l el tool ="parallel -jO0"

cat <<'ECF" > nmycommand
#1/ bi n/ bash

Generate 1 GB out put

yes "“perl -e '"print \"c\"x30_000'"" | head -c 1G
EOF

chnod +x nycommand

Run 20 jobs in parallel
Adjust 20 to be > physical RAM and < free space on /tnp
seq 20 | time $paralleltool ./nyconmand | wc -c

DISKFULL: Incomplete data if /tmp runs full

If caching is done on disk, the disk can run full during the run. Not all programs discover this. GNU
Parallel discovers it, if it stays full for at least 2 seconds.

#!/ bi n/ bash
paral | el t ool ="parallel -jO"

This should be a dir with less than 100 GB free space
smal | di sk=/tnp/ shm paral | el

TMPDI R="$smal | di sk"
export TMPDI R

max_out put () {
Force worst case scenari o:
Make GNU Paral l el only check once per second
sl eep 10
Generate 100 GB to fill $TWPDI R
Adjust if /tnp is bigger than 100 GB
yes | head -c 100G >$TMPDI R/ $$
Cenerate 10 MB output that will not be buffered
due to full disk
perl -e "print "X'x10_000 000" | head -c 10M
echo This part is mssing frominconplete output
sleep 2
rm $TMPDI R/ $$
echo Final output

export -f max_out put
seq 10 | $paralleltool max_output | tr -s X

Page 66

GNU Parallel alternatives

CLEANUP: Leaving tmp files at unexpected death

Some tools do not clean up tmp files if they are killed. If the tool buffers on disk, they may not clean
up, if they are killed.

#! / bi n/ bash
paral | el t ool =paral | el

I's /tnp >/tnp/ before
seq 10 | $paralleltool sleep &

pi d=$!

Gve the tool tine to start up

sleep 1

Kill it without giving it a chance to cl eanup
kill -9 $!

Shoul d be enpty: No files should be left behind
diff <(Is /tnp) /tnp/before

SPCCHAR: Dealing badly with special file names.
It is not uncommon for users to create files like:

My brother's 12" *** record (costs $%$9%).]pg

Some tools break on this.

#!/ bi n/ bash
paral | el t ool =paral | el

touch "My brother's 12\" *** record (costs \$\$\$).jpg"
I's My*jpg | $paralleltool Is -I

COMPOSED: Composed commands do not work
Some tools require you to wrap composed commands into bash -c.

echo bar | $paralleltool echo foo';' echo {}

ONEREP: Only one replacement string allowed
Some tools can only insert the argument once.

echo bar | $paralleltool echo {} foo {}

INPUTSIZE: Length of input should not be limited
Some tools limit the length of the input lines artificially with no good reason. GNU parallel does not:

perl -e "print "foo."."x"x100_000 000" | parallel echo {.}

GNU parallel limits the command to run to 128 KB due to execve(l):

perl -e "print "x"x131 000" | parallel echo {} | wc

NUMWORDS: Speed depends on number of words
Some tools become very slow if output lines have many words.

Page 67

GNU Parallel alternatives

#! / bi n/ bash
paral | el t ool =paral | el

cat <<-ECF > myconmand
#1/ bi n/ bash

10 MB of lines with 1000 words
yes "“seq 1000°" | head -c 10M
EOF

chnod +x nycommand

Run 30 jobs in parallel
seq 30 | time $paralleltool -jO ./nyconmand > /dev/null

4GB: Output with aline > 4GB should be OK
#!/ bi n/ bash

paral | el t ool ="parallel -jO"

cat <<-ECF > myconmand
#1/ bi n/ bash

perl -e '\$a="a"x1000_000; for(1..5000) { print \$a }'
EOF
chnod +x nycommand

Run 1 job
seq 1 | $paralleltool ./mycommand | LC ALL=C w

AUTHOR
When using GNU parallel for a publication please cite:

O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login: The USENIX Magazine,
February 2011:42-47.

This helps funding further development; and it won't cost you a cent. If you pay 10000 EUR you
should feel free to use GNU Parallel without citing.

Copyright (C) 2007-10-18 Ole Tange, http://ole.tange.dk
Copyright (C) 2008-2010 Ole Tange, http://ole.tange.dk
Copyright (C) 2010-2024 Ole Tange, http://ole.tange.dk and Free Software Foundation, Inc.

Parts of the manual concerning xargs compatibility is inspired by the manual of xargs from GNU
findutils 4.4.2.

LICENSE

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 3 of the
License, or at your option any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY:; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Page 68

GNU Parallel alternatives

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see <https://www.gnu.org/licenses/>.

Documentation license |
Permission is granted to copy, distribute and/or modify this documentation under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A
copy of the license is included in the file LICENSES/GFDL-1.3-or-later.txt.

Documentation license Il

You are free:

to Share
to copy, distribute and transmit the work

to Remix
to adapt the work

Under the following conditions:

Attribution
You must attribute the work in the manner specified by the author or licensor (but not
in any way that suggests that they endorse you or your use of the work).

Share Alike
If you alter, transform, or build upon this work, you may distribute the resulting work
only under the same, similar or a compatible license.

With the understanding that:

Waiver
Any of the above conditions can be waived if you get permission from the copyright
holder.
Public Domain
Where the work or any of its elements is in the public domain under applicable law,
that status is in no way affected by the license.
Other Rights
In no way are any of the following rights affected by the license:
e® Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;
e The author's moral rights;

o Rights other persons may have either in the work itself or in how the work is
used, such as publicity or privacy rights.

Notice

For any reuse or distribution, you must make clear to others the license terms of this
work.

A copy of the full license is included in the file as LICENCES/CC-BY-SA-4.0.txt

Page 69

GNU Parallel alternatives

DEPENDENCIES

GNU parallel uses Perl, and the Perl modules Getopt::Long, IPC::Open3, Symbol, 10::File, POSIX,
and File::Temp. For remote usage it also uses rsync with ssh.

SEE ALSO
find(1), xargs(1), make(1), pexec(1), ppss(1), xjobs(1), prll(1), dxargs(1), mdm(1)

Page 70

