Tutorial 0: GNU MCSim Introductory

Nan-Hung Hsieh
April 18, 2019

Outline

1. GNU MCSim
2. MCSim-related publication
3. MCSim under R

4. MCSim-related R package
5. Workflow

2/ 67

What is GNU MCSim?

3/ 67

What is GNU MCSim?

GNU MCSim is a simulation and statistical inference tool for algebraic or
differential equation systems. Other programs, such as GNU Octave, have been
created to the same end. Still, most available tools are not optimal for
performing computer intensive and sophisticated Monte Carlo analyses.

GNU MCSim was created specifically to this end:
to perform Monte Carlo analyses in an optimized, and easy to maintain
environment.

https://www.gnu.org/software/mcsim/mcsim.html

4 | 67

https://www.gnu.org/software/mcsim/mcsim.html

GNU MCSim Project

e The project started by Don Maszle and Frederic Y. Bois in UC Berkeley, 1991.

e First public release in 1993 (straight simulations with Monte Carlo modeling).

e Discussions with Stuart Beal at UCSF School of Pharmacy, led the team to investigate
the use of Markov chain Monte Carlo techniques for PBPK models' calibration.

e The corresponding code was developed by Maszle, during a project in collaboration with
Andrew Gelman, then professor at UC Berkeley Statistics Department.

e Additional code written by Ken Revzan allowed the definition and Bayesian calibration
of hierarchical statistical models.

o Atthe time of these developments (around 1996) those capabilities were unique for a
freely distributed, easily accessible, efficient and quite versatile software.

source

5/ 67

https://en.wikipedia.org/wiki/Fr%C3%A9d%C3%A9ric_Y._Bois
https://en.wikipedia.org/wiki/Andrew_Gelman
https://en.wikipedia.org/wiki/MCSim

GNU MCSim Project

Published to Journal of Statistical Software in 1997
(version 4.2.0)

https://www.jstatsoft.org/article/view/v002i09

Authors: Frederic Y. Bois, Don R. Maszle
Title: MCSim: A Monte Carlo Simulation Program
Abstract: MCSim consists of two pieces, a model generator and a simulation engine. The model generator, mod, was created to facilitate the model

maintenance and simulation definition, while keeping execution time fast. Other programs have been created to the same end, the Matlab family
of graphical interactive programs being some of the more general and easy to use. Still, many available tools are not optimal for performing time
and computer intensive Monte Carlo analysis. MCSim was created specifically to this end: to perform Monte Carlo analysis in a highly optimized,
and easy to maintain environment.

Page views:: 7512. Submitted: 1997-03-07. Published: 1997-11-03.

6/ 67

https://www.jstatsoft.org/article/view/v002i09

Version history

February 19th, 2019 - Release of GNU MCSim version 6.1.0.

Version 6.1.0 offers an automatic setting of the inverse-temperature scale in

simulated tempering MCMC. This greatly facilitates the uses of this powerful
algorithm (convergence is reached faster, only one chain needs to be run if

Inverse-temperature zero is in the scale, Bayes factors can be calculated for
model choice).

6.01 (05 May 2018)

6.0.0 (24 February 2018)

5.6.6 (21 January 2017)

5.6.5 (27 February 2016)

5.6.4 (30 January 2016)

5.6.3 (1)anuary 2016)

5.6.2 (24 December 2015)
5.6.1 (21 December 2015)
5.6.0 (16 December 2015)
5.5.0 (17 March 2013)

54.0 (18 January 2011)

5.31 (3 March 2009)

5.3.0 (12 January 2009)

5.2 beta (29 January 2008)

51 beta (18 September 2006)
5.0.0 (4 January 2005)

4.2.0 (15 October 2001)

41.0 (1 August 1997)

4.0.0 (24 March 1997) 7/ 67

Types of Simulation

Simple simulation
e Straight simulations (set parameter values and initial conditions).

Used to: Model testing when building the model (e.g., mass balance)

Monte Carlo simulations

e Perform repeated (stochastic) simulations across a randomly sampled region of the model
parameter space.

Used to: Check possible simulation (under given parameter distributions) results before model
calibration
SetPoints simulation

e Solves the model for a series of specified parameter sets. You can create these parameter sets
yourself or use the output of a previous Monte Carlo or MCMC simulation.

Used to: Posterior analysis, Local/global sensitivity analysis

8/ 67

Types of Simulation

Markov-chain Monte Carlo (MCMC) simulation

e Performs a series of simulations along a Markov chain in the model parameter space.

e They can be used to obtain the Bayesian posterior distribution of the model
parameters, given a statistical model, prior parameter distributions and data for which
a likelihood function can be computed.

e GNU MCSim can handle hierarchical statistical models as well.

11— - — Posterior = Prior x Likelihood

;

0.1

(- . A
Population @\ C?

z x =\
=
{ \w

E ¢

200 400 600 800 1000 W
Iteration Y

A

y

4

0.01

Prior

0.001

Source Individuals

9/ 67

http://sbml.org/images/1/17/StatMeeting_F_Bois.pdf

Bayesian statistics is a powerful tool, Because...

It gives us the opportunity to understand and quantify the
"uncertainty" and "variability" from individuals to

population through data and model

« Surveys are systematically non-
representative of the population.
So what we do is we adjust for
known differences between
sample and population. »

ANDREW GELMAN

Dfajt]al
Fr@meld|
8y (@) DataCamp

Source

10 / 67

https://www.datacamp.com/community/blog/election-forecasting-polling

--- Application ---

If you have known "parameters"

If you have known "data"

--- Calibration ---
/67

Types of Simulation

"Optimal Design" procedure

Optimizes the number and location of observation times for experimental conditions, in
order to minimize the variance of a parameter or an output you specify, given a structural
model, a statistical model, and prior distributions for their parameters

Systems Biology Markup Language (SBML)

GNU MCSim can read SBML models, which provides a standard for representing biochemical
pathway models. It can code for models of metabolism, cell-signaling, transcription, etc.
SBML is maintained since the mid-2000 by an international community of software
developers and users.

12 | 67

What GNU MCSim can do in toxicology?

13/ 67

Exchange of ideas between statistics and toxicology

From Statistics to Toxicology

e Bayesian inference for combining prior and data

e Hierarchical models for population variation

From Toxicology to Statistics

e Models for constrained parameters
e Hierarchical prior distributions

e New ideas in understanding and checking models

source

14 | 67

http://www.stat.columbia.edu/~gelman/presentations/toxtalk.pdf

What we need?

1. Physiological pharmacokinetic model
2. Hierarchical population model

3. Prior information

4. Experimental data

5. Bayesian inference

6. Computation

7. Model checking

15 | 67

Related publication

Chiu and Bois (2006) - Revisiting the population toxicokinetics of tetrachloroethylene

Hack et al. (2006) - Bayesian population analysis of a harmonized physiologically based
pharmacokinetic model of trichloroethylene and its metabolites

Uncertainty in Uncertainty in
Population Mean Population Variance

Animal Bioassay

An animal bioassay is
conducted yielding doses and
responses.

The animal PBPK model is run to
compute the target tissue doses
corresponding to the administered
doses.

Population Distribution

The tissue dose-response is modeled to

Dose-
Tissue Response
Dose
compute the effective tissue dose

corresponding to a specified level of
risk of response (e.g., LED or BMDL)
Effective Experimental and
Tissue Dose - S
e PRPK f E Maodel Error

coampare
> Yy \ “=—+ Data,,
, compare
i * Datag,
The human PBPK model is used to
"! ACH I‘illlj

back-calculate the external dose in W * Datag,

mg/kg/day that gives the effective
target tissue dose in humans

Human Equivalent S5i = Subjecti
Dose (mg/kg/day) Y., = Prediction for subject i
i =1,23,..,n0 16 / 67

https://link.springer.com/article/10.1007/s00204-006-0061-9
https://www.sciencedirect.com/science/article/pii/S027323000600095X

Related publication

Chiu and Bois (2007) - An approximate method for population toxicokinetic analysis with
aggregated data

e Applied Hierarchical Bayesian approach to estimate inter-individual variability

-

Integration

of data

\\
\\\
W ¥ K
Ei. L= B\ J; y;

17 | 67

https://link.springer.com/article/10.1198/108571107X229340

Related publication

Chiu et al. (2009) - Characterizing uncertainty and population variability in the toxicokinetics
of trichloroethylene and metabolites in mice, rats, and humans using an updated database,
physiologically based pharmacokinetic (PBPK) model, and Bayesian approach

Chiu and Ginsberg (2011) - Development and evaluation of a harmonized physiologically

based pharmacokinetic (PBPK) model for perchloroethylene toxicokinetics in mice, rats, and

humans
Mouse Rat Human

@@ @@

Group i I Individual i 7
4N . . g
roup i
O, 5 4 ()
- Study k %
1
Population V Population V P(IquIation V

Prg Pry Pry

18 | 67

https://www.sciencedirect.com/science/article/pii/S0041008X09003238
https://www.sciencedirect.com/science/article/pii/S0041008X11001141

Related publication

e Characterizing PBPK parameters from individuals to population
 Evaluating population variability and parameter uncertainty

e Cross-species comparisons of metabolism in risk assessment

MCMC outputs

1
1
! I
! |
\ | Posterior '
| :
: \:\A Posterior population
| !)
1
i | Posterior X2 |
! / Posterior population
1
|
: : .
| . 7,
| 1
1 ! ;
| 1
| 1
1
1
1
|
1
1

prediction
Yii

Posterior group-

specific > Posterior group-specific
9; prediction
Yii
Qi E; i
Chiu et al. 2009. Experiment j
https://doi.org/10.1016/j.taap.2009.07.032 G“?U_p/ .
Individual i

19 | 67

https://doi.org/10.1016/j.taap.2009.07.032

Related publication from our group

Inter-strain & inter-individual variability

Chiu et al. (2014) - Physiologically-Based Pharmacokinetic (PBPK) Modeling of Inter-strain
Variability in Trichloroethylene Metabolism in the Mouse

Interstudy variability Interstrain variability
(BBC3F1 strain) (Bradford et al. 2011)
AL e R 3 0 Areo - Aree -
_ N — N
Prg Pry Pru Pryy individual or strain*

Human Mouse
inter-individual variability inter-strain variability

. \ / TCE oxidized by 1.11 1.05

5 P450 (1.05,1.22) (1.01,1.27)
@l Total TCA 2.09 1.77
b e produced (1.81, 2.51) (1.36, 2.99)
£ fw\ifaed f TCE conj. with 6.61 7.12
v (3.95, 11.17) (3.43,20.7)
E:(rl;?rl]'i;]lem or Vi *Median and 95% confidence interval j
. 77
Study p Estimates of mouse population variability from multi-strain
E 7 experiments are consistent with estimates of human population
Pr,, [{Fopulation @ | variability from controlled human exposure studies.

source
20 / 67

https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.1307623?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
https://www.toxicology.org/groups/ss/ophss/docs/OPHSS_Webinar_ZeiseChiu_30Oct2014.pdf

Related publication

Dalaijamts et al. (2018) - Incorporation of the glutathione conjugation pathway in an
updated physiologically-based pharmacokinetic model for perchloroethylene in mice

Luo et al. (2018) - Comparative analysis of metabolism of trichloroethylene and
tetrachloroethylene among mouse tissues and strains

Luo et al. (Accepted) - Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk
Assessment A Case Study of Population-based Analysis of Toxicokinetics and Kidney
Toxicodynamics of Tetrachloroethylene

K ot TCA (5.8%)
et/ece Elimination A —_— B
o Kerea (21.0%) TCA
v CA — Elimination § /.// E (6@/ 47.4%
TCA 8 (\/\\ 23% 8 /\
LS : Ko reon 8 \\ R PCE (93.5%) N P26%
. - Ol e s N
;ggi 3;); 1 85 Kesh —— Elimination GSH conjugates GSH conjugates
_ TCA (3.5%) (0.0133%) (0.19%)
TCOH
T/DCVG - (12.2%) 78 > 6% 2
3 ptall o70% 3 6%
o < m
TCE: 0.29 = - 21% R <__
PCE: 18.8 lKCVS R TCE (34.3%) . R pCE (93.2%) S 480%
T/DCVC bio | Uni.dentiﬁed. GSH conjugates GSH conjugates
i reactive species TCA (7.1%) __— (0.0133%) (0.25%)
TCE: 1.65

. 0,
l Kyac PCE: 25.4 (31.2%)

NAcT/DCVC

TCA
9.4%)

(//0)/

<

\\ 46.7%

GSH conjugates GSH conjugates
(0.0103%) (0.30%)

NZW/LacJ
NZWi/LacJ

2.4%
PCE (90.3%)

21/ 67

https://www.sciencedirect.com/science/article/pii/S0041008X18302436
https://www.sciencedirect.com/science/article/pii/S0300483X18301781

Related publication

U.S. Food and Drug Administration. Enhancing the reliability, efficiency, and usability of
Bayesian population PBPK modeling - Create, implement, and evaluate a robust Global
Sensitivity Analysis algorithm to reduce PBPK model parameter dimensionality.

Hsieh et al. (2018) - Applying a Global Sensitivity Analysis Workflow to Improve the
Computational Efficiencies in Physiologically-Based Pharmacokinetic Modeling

Bois et al. (Submitted) - Well tempered MCMC simulations for population pharmacokinetic
models

e Based on the latest version 6.1.0

22 [67

https://www.frontiersin.org/articles/10.3389/fphar.2018.00588/full

Inter & Intra- variability modeling

Inter-individual variability model Inter- & intra-individual variability model

Q ¢ ééé

- /\ | ix./Q/\

2ij

source 23/ 67

https://link.springer.com/protocol/10.1007/978-1-62703-059-5_25

Why we use GNU MCSim with R(Studio)?

24 | 67

Advantages in MCSim and R

"Free and Open Source Software" under GNU General Public License

e The freedom to run the program as you wish, for any purpose (freedom 0).

e The freedom to study how the program works, and change it so it does your
computing as you wish (freedom 1). Access to the source code is a
precondition for this.

« The freedom to redistribute copies so you can help others (freedom 2).

e The freedom to distribute copies of your modified versions to others
(freedom 3). By doing this you can give the whole community a chance to
benefit from your changes. Access to the source code is a precondition for
this.

Free as in Freedom

25 [67

Advantages in MCSim and R

GNU MCSim R
Simulation package, which allows you to: Programming language that allows you to:
e design and run simulation models e conduct statistical analysis
(using algebraic or differential (summarization, estimation)
equations)

e visualize simulation results
e perform Monte Carlo stochastic

simulations e use various packages to analyze

results (e.g., CODA, BOA, rstan)
e do Bayesian inference through Markov

Chain Monte Carlo simulations » perform sensitivity analysis (e,

sensitivity, p|<sensi)
e has faster computing speed than other
simulation software/packages (e.g,,
Asclx, Berkeley Madonna, RStan)

e access community support (e.g., Stack
Overflow, R User groups)

26 | 67

Advantages in MCSim and R

"Parallel computing"

Serial Approach
ARE You
SURE THIS 15
How WE GET
DATA INTO ' Start
THE ClLoub?
Forke=1:M
Evaluate model
L
Stop

Parallel Approach

Start

/;/\L\-L

Evaluate Evaluate MATLAB... Evaluate Evaluate
model model _workers... model model

T e —

Stop

- Run multiple MCMC chains with multiple CPUs

- High performance (cloud) computing

source

27 | 67

http://lcolladotor.github.io/2016/03/07/BiocParallel/#

Population pharmacokinetic reanalysis of a Diazepam PBPK model: a
comparison of Stan and GNU MCSim

Periklis Tsiros, Frederic Y. Bois, Aristides Dokoumetzidis, Georgia Tsiliki, Haralambos Sarimveis

e The aim of this study is to benchmark two Bayesian software tools, namely Stan and GNU MCSim, that use
different Markov chain Monte Carlo (MCMC) methods for the estimation of physiologically based
pharmacokinetic (PBPK) model parameters.

e The software tools were applied and compared on the problem of updating the parameters of a Diazepam
PBPK model, using time-concentration human data. Both tools produced very good fits at the individual and
population levels, despite the fact that GNU MCSim is not able to consider multivariate distributions.

e Stan outperformed GNU MCSim in sampling efficiency, due to its almost uncorrelated sampling.

e However, GNU MCSim exhibited much faster convergence and performed better in terms of effective samples
produced per unit of time.

Journal of Pharmacokinetics and Pharmacodynamics; https://doi.org/10:1007/s10928-019-09630-x

Original Paper; First Online: 04 April 2019

Table 3
Comparison of computational efficiency between Stan and GNU MCSim

Random-walk Metropolis Hamiltonian Monte Carlo

»* Platform Time (s) N Ng/s Nefr,.,, Negr,,, /s
.Y :
o // o Stan multivariate 4850 19,926 4.11 16,240 3.35
7 T4 s Stan univariate 4800 19,935 4.15 15,109 3.15

GNU MCSim 160 2533 15.8 1221 7.63

M I 28 | 67

https://doi.org/10.1007/s10928-019-09630-x

MCSim-related R packages

httk: R Package for High-Throughput Toxicokinetics

Robert G. Pearce, R. Woodrow Setzer, Cory L. Strope, Nisha S. Sipes, John F. Wambaugh

MCSim (Bois and Maszle 1997) was used for converting the model equations into

C code, which is used with deSolve (Soetaert et al. 2016) in solving each system
of equations.

Journal of Statistical Software; http://dx.doi.org/10.18637/jss.v079.i04

GNU MCSim model code = C code =» deSolve = Prediction

A. B. C. Lung Tissue

Lung Blood Qcmdm' R
k
Gut Lumen gutabs K
zutabs
Gut Blood |+ Q
1 Koutabs Gut Blood _|«—£4—
5 y - al Liver Tissue ng -§ Liver Tissue ng‘ E
imary Compartmen stabolis - b~
meta po Ll Liver Blood j —] Liver Blood %
|—ancr + ng Qliver E Clipetabolism Qjiver s
1 g :
Rest of Body Rest of Body
Cl\\cll-aurrcd + Qgt’r Q f Q.
& Body Blood |« Body Blood fost
Qll\cr + qul
Kidney Tissue
Qpidne
L Kidney Blood Kidney

Qi o 29 | 67

http://dx.doi.org/10.18637/jss.v079.i04

MCSim-related R packages

pksensi: R Package for Global Sensitivity Analysis in Pharmacokinetic Modeling
Nan-Hung Hsieh, Brad Reisfeld, Weihsueh A. Chiu

pksensi implements the global sensitivity analysis workflow to investigate the
parameter uncertainty and sensitivity in pharmacokinetic (PK) models, especially
the physiologically based pharmacokinetic (PBPK) model with multivariate
outputs. The package also provides some functions to check the convergence
and sensitivity of model parameters.

CRAN '1.0.1 - 2019-01-29

Two types of model solver

solve_fun()

GNU MCSim model code = C code = deSolve = Prediction

solve_mcsim()

GNU MCSim model code = Prediction

Note: solve mcsim() Is faster than solve_fun() 30 / 67

https://cran.r-project.org/package=pksensi

Disadvantages in MCSim and R

Difficult learning curve (command line interface-based)
Requires coding/programming skill
Requires installation of extra program or package
Requires "debugging"

STEP BY STEP DEBUGGING

STEP MANY STEPS LATER
OVER | AM GOING
! STEPOVER TO KILL

= STEP INTO 9o0!

= STEP OVER
?JTEOP SHOULD HAVE STOPPED \

\\~/ STEP OVER ~
i e o ?

, S

s & \\i‘); i ’_,' \
STEP ' b
OVER Lo =

A

(M\ONKEQUSER . coM
31/ 67

Run GNU MCSim in Windows

GNU MCSim 1s a simulation package, written in C, which can run
under different platforms (GNU/Linux, MacOS, and Windows).

However, the basic tools in the Windows system are not available
to build and run GNU MCSim. It needs a bit more extra steps to

Install and execute it.

Therefore...

L
P
Windﬂ

Al_inux
! Mac oS

32/ 67

Run GNU MCSim in Windows

o Prof. Weihsueh Chiu proposed a practical method using minGW to install
it (https://www.gnu.org/software/mcsim/mcsim_with_minGW.pdf).

e Dr. Frederic Bois also provide an alternative method to compile and run
GNU MCSim through Rtools. This concept called "MCSim under R".

e Dr. Nan-Hung Hsieh developed an installation function in R package
pksensi (https://cran.r-project.org/web/packages/pksensi/index.html) to
help users easily install GNU MCSim through this function across
platforms.

Here, we proposed an additional idea to run GNU MCSim in RStudio, the
integrated development environment (IDE) for R user. This project aims to
help beginner write and run GNU MCSim's model code in RStudio IDE.

33/ 67

https://www.gnu.org/software/mcsim/mcsim_with_minGW.pdf
https://cran.r-project.org/web/packages/pksensi/index.html

GNU MCSIim under R

An open R project that aims to help beginner (especially Windows user) run GNU MCSim in
RStudio IDE. All resources are stored in GitHub repo (https://github.com/nanhung/MCSim_under_R).

@ & GitHub, Inc. (US) https://github.com/nanhung/MCSim_under_R e @ f} D Search i [/

Pull requests Issues Marketplace Explore

nanhung / MCSim_under_R @Unwatch> 1 HSr | 0 YFok 0
¢» Code Issues O Pull requests 0 Projects 0 Wiki Insights Settings
Run GNU MCsim (sandbox) under R Edit

gnu-mesim Manage topics

D 38 commits ¥ 1 branch 5 0 releases A2 1 contributor
I
Branch: master ~ New pull request Create new file | Upload files = Find File Clone or download ~
: nanhung update Clone with SSH @ Use HTTPS
) L Use an 55H key and passphrase from account.
B MCSim update to version 6.1.0
git@github.com:nanhung/MCSim_under_R.g @-
B doc update
B examples More documentation
Open in Desktop Download ZIP
W input More documentation
[E) .gitignore add flowchart 5 hours ago
[E] MCSim_under_R.Rproj Rproj 9 months ago
[E] README.md More documentation 7 days ago
[E] function.R More documentation 7 days ago
[E5 README.md ra

34 [67

https://github.com/nanhung/MCSim_under_R

RStudio

Free and open-source integrated development environment
Powerful and user friendly programming interface

Designed to make it easy to write scripts

Easy to view and interact with the objects

R project with version control (e.g., git)

Support cloud computing https://rstudio.cloud/

Studio

35/ 67

https://rstudio.cloud/

o < B0 (G] & rstudio.cloud ¢ (4] th (]

eStudio Cloud ®© Your Workspace / MCSim under R g © Nan-Hung Hsieh
Spaces File Edit Code View Plots Session Build Debug Profile Tools Help
o - 5 - - Addins ~ R3.5.2 ~
Your Workspace
Console Terminal Jobs @ Environment History Connections Git -
+ New Space /cloud/project/MCSim_under_R/ <9 || 7 Import Dataset - 5{’ List - ‘J -
unger certain conditlons; See the UNU GeneralL PubL1C License. .
7} Global Environment ~
* Using ‘modeling/linear.model.R' model in file "linear.model.R.c" crea Data
Learn ted by ./MCSim/mod.exe v6.1.0 @ out 11 obs. of 2 variables
. : . Functions
@ Guide Reading experiment 1. clear function () =
I What's N Doing analysis - 1 normal experiment makemcs im function (model) =)
. BI85 NS 1 makemod function ())
i Wrote output file "sim.out" mcsim function (model, input) [F
O Primers Done i i I
. mcsim_report function O [
. . . . plotmcsim function (filename, sim =1, ...) L
O Cheat Sheets > out <- mcsim("linear.model.R", "linear.in.R™)
Files Plots Packages Help Viewer |
&) Feedback and Questions @ P Zoom | -ZExport - © Y % - | &
MCSim v6.1.0
Info Copyright (c) 1993-2019 Free Software Foundation, Inc.
[E] Terms and Conditions MCSim comes with ABSOLUTELY NO WARRANTY;
This is free software, and you are welcome to redistribute it 8 -
under certain conditions; see the GNU General Public License.
'|||' System Status 5 ©
o
* Using “modeling/linear.model.R' model in file "linear.model.R.c" crea - o
ted by ./MCSim/mod.exe v6.1.0 & o
=
Reading experiment 1. °
n -
Doing analysis - 1 normal experiment
1 o -~
Wrote output file "sim.out" O
[I 1 | | I
Done.
0 2 4 6 8 10
> plotCout$Time, out$y)
> abline(1,2) out$Time
>

8o b/

GIt

- Manage your code (model, input, R script)
- Transfer your file (through GitHub or GitLab)

- Collaboration work

THIS1S GIT. IT TRACKS COLLABORATIVE. WORK WOUW’;T IT BE NEAT IF YOO

ON PROJECTS THROUGH A BEAUTIFUL COULD QUICKSAVE TOUR
LIFE, JUST LIKE IN

DISTRIBUTED GRAPH THEORY TREE MODEL. VIDEOGAMES? THAT WAY IF THAT'S FUCKING STUPID. H E H u
YOU DO SOMETHING DUMB,

COOL. HOU DO WeUSE. IT? YOU CAN JUST RESTART AND SAYE GAME

NO IDEA. JUST MEMORIZE. THESE. SHELL TR AGA @ LORD GRME

COMMANDS AND TYPE THEM TO SYNC UR / a OPTIONS
IF YOL GET ERRORS, SAVE YOUR WORK QUIT
ELSEWHERE, DELETE THE PROJECT,

AND DOWNLOAD A FRESH COPY.

\ WOULDN'T IT BE NEAT IF WE 2
HAHA YEAH! THAT'D BE
COULD FEED FISH GOLD DUST AWESOME!

AND THEY POOP OUT

JEWEL.LERT?/

\
% il il

Cyanide and Happiness © Explosm.net

https://xkcd.com/1597/

37/ 67

https://xkcd.com/1597/

How to use GNU MCSim with R(Studio)?

38/ 67

Overview

The GNU MCSim consists in two pieces, a model generator and a simulation engine:

The model generator, "mod"

e Created to facilitate structural model definition and maintenance, while keeping
execution time short. You can code your model using a simplified syntax and use mod
to translate it to C (model.c).

The simulation engine, "sim"

e A set of routines which are linked to your model during compilation to produce
executable program (mcsim.model.exe). After that, you can run simulations of your
model under a variety of conditions, specify an associated statistical model, and
perform simulations.

39/ 67

Workflow (GNU MCSim under R)

The source code of GNU MCSim are put into "mod" and "sim" folders. In addition, we need
two types of files a "model-file" (model structure and default parameter values) and an
"input-file" (run specific parameter values/distributions and/or observation data)

The workflow include three steps:
1. Making GNU MCSim program
Use the files in "mod" folder to
o build MCSim program named mod.exe (This only needs to be done once)
2. Build model program
Use the files in "sim" folder to
o build model program (*.exe) with (1) mod.exe and (2) "model-file"
3. Run simulation

o Use model program and "input-file" to run simulation and generate result.
40 [67

Overall Workflow

2.
Build model

3.

Input & simulation

Source code

Model file
(pbpk.model.R)

Input file
(pbpk.mcmc.in.R)

Machine code

Model program

: (mcsim.pbpk.model.R.exe)
R> makemcsim(“pbpk.model.R"”)

R> mcsim(“pbpk.model.R”, “pbpk.mcmc.in.R")

Output value

Output file

(sim.out)

41 | 67

Syntax of the model description file

Model description file (this is a comment)

<Global variable specifications>

States = {
<state variables for the model, such as quantity>
}
Outputs = {
<output variables, such as concentration>
}
Inputs = {
<lnput variables, such as exposure dose>
}

Initialize {
<Equations for initializing or scaling model parameters>

}
Dynamics {
<Equations for computing derivatives of the state variables>

}
CalcOutputs {
<Equations for computing output variables>

}

End. # mandatory ending keyword
42 | 67

Example of model description file

Unit (V_: liter; A_: mg; k_: /hr)

States = {A_central, A_periph}
Inputs = {Dose}
Outputs = {C central}

Structural model parameters

k 12 = 1.02;
k 21 = 0.15;
k_ 10 = 0.18;

V_central = 58.2;

Measurement error
Ve C central = 1;

Initalization
Initialize {
A_central = Dose;

I

Dynamics
Dynamics {
Central compartment quantity
dt(A_central) = k 21 * A _periph - k_12 = A _central - k_10 * A _central;
Peripheral compartment quantity
dt(A_periph) = k_12 * A _central - k 21 = A periph;
}

CalcOutputs {
C_central = A_central / V_central ;

Fnd. 43 | 67

General syntax

Variable assignments

<variable-name> = <constant-value-or-expression> ;

Colon conditional assignments

<variable-name> = (<test> ? <value-if-true> : <value-if-false>);

For example

Adjusted _param = (Input_var > 0.0 ? Param = 1.1 : Param);

Some other assignments can be found in GNU MCSim's user manual 5.31

4t | 67

https://www.gnu.org/software/mcsim/mcsim.html#Syntax-of-mod-files

Comments on style

For your model file to be readable and understandable.

o All variable names begin with a capital letter followed by meaningful lower case
subscripts.

e Where two subscripts are necessary, they can be separated by an underscore, such as in
PC_fat.

e Where there is only one subscript an underscore can still be used to increase
readability as in Q_fat.

e Where two words are used in combination to name one item, they can be separated
visually by capitalizing each word, as in Bodywt .

Some other contents can be found in GNU MCSim's user manual 5.3.11

45 | 67

https://www.gnu.org/software/mcsim/mcsim.html#Syntax-of-mod-files

Comments on style (R)

Using = instead of <- for assignment

Good
X &« 5 Using = instead of <- for assignment

-
Bad ‘
X =5

Without spacing

Good
average <« mean(feet / 12 + inches, na.rm = TRUE)

Bad
average<mean(feet/12+inches,na.rm=TRUE) , We*don't do that here

Put more than one statement (command) per line

Good
X < 1
X & x +1

Bad
X & 1; x & x + 1

“Good coding style is like using correct punctuation.
You can manage without it, but it sure makes things easier to read.”
— Hadley Wickham, Chief Scientist @RStudio

source 1| source 2

46 | 67

http://adv-r.had.co.nz/Style.html
https://irudnyts.github.io/r-coding-style-guide/

Syntax of (simulation) input-file

For the basic simulation

Input-file (text after # are comments)
<Global assignments and specifications>
Simulation {

<Specifications for first simulation>

}

Simulation {
<Specifications for second simulation>

}

Unlimited number of simulation specifications
End. # Mandatory End keyword. Everything after this line 1s 1gnored

47 | 67

Syntax of (simulation) input-file

For MCMC simulation

Input-file
<Global assignments and specifications>
Level {

Up to 10 levels of hilerarchy

Simulation {
<Specifications and data for first simulation>

}

Simulation {
<Specifications and data for second simulation>

}

Unlimited number of simulation specifications
} # end Level
End. # Mandatory keyword.

McMc() specification

48 | 67

https://www.gnu.org/software/mcsim/mcsim.html#MCMC_0028_0029-specification

Example of (simulation) input-file

File name: dogoxin.in.R
./mcsim.digoxin dogoxin.in.R

Simulation {

Dose = 509;

Print (C_central, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 23);
t
End.

Here is the simulation output:

mcsim(model = "digoxin.model.R", input = "digoxin.in.R")

HHt Time C_central
#H 1 0.5 4.910300
H 2 1.0 2.933400
#H 3 2.0 1.383300
H 4 3.0 0.960978
#H 5 4.0 0.837285
HH 6 5.0 0.792841
7 6.0 0.769599
H 8 7.0 0.752196
#H 9 8.0 0.736565
H 10 23.0 0.543027

49 | 67

Example of (simulation) input-file

File name: dogoxin.mcmc.1in.R
./mcsim.digoxin dogoxin.mcmc.in.R

MCMC("sim.out","", # name of output and restart file
" # name of data file
2000,0, # iterations, simTypeFlag,
10,2000, # printing frequency, iters to print
10101010); # random seed (default)

Level { # top level
Distrib(k_12, LogUniform, 0.01, 10);
Distrib(k_21, LogUniform, 0.01, 10);
Distrib(k_10, LogUniform, 0.01, 10);
Distrib(V_central, TruncNormal, 50, 5, 40, 60);
Distrib(Ve_C_central, LogUniform, 0.01, 0.5); # 10% to 70% residual error

Likelihood(C_central , Normal, Prediction(C_central) , Ve C_central);

Simulation {

Dose = 509;

Print (C_central, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 23);

Data (C_central, 4.6244, 2.7654, 1.3224, 0.9563, 0.8843, 0.8648, 0.8363, 0.7478, 0.7232, 0.5655)
}

End.

50 / 67

out ¢ mcsim(model = "digoxin.model.R", input = "digoxin.mcmc.in.R")

#H x Create

head(out)

o Ul B W N

TEEEEEEEEERERE

o Ul B W N

-322

iter

0
10
20
30
40
50

IR oo o)

"chk.out'

k_12.1.
.512176
.663034
.432514
.527456
.052430

0.744651
LnData
.241700 -3

-5.697733 -
-8.420752 -
-6.748264 -
-4.156501 -
-3.172368

tail(out)

196
197
198
199
200
201

196
197
198
199
200
201

TEEEEEEEEERERE

iter
1950
1960
1970
1980
1990
2000

k_
1.
.08333
.08763
.08763
.09268
1.

1
1
1
1

12.1.
08731

09235

k
1
1
0.
0
0

0.

from the last iteration.

21.1.

.591910
.053850

157149

.141271
.394778

499311

LnPosterior
30.
13.
13.
13.
10.
-9.

748900
435570
662630
444140
923180
702279

k_21.1.
.182626
171446
.171331
.172720
.176052
.172909

LnData LnPosterior
19.32131
21.13345
20.37592
18.81788
20.96801
20.56532

15

17.
16.
15.
17.
16.

.80971
56590
54985
50176
44300
78199

k_10.1. V_central.1. Ve_C_central.1.
.578250
.920288
.831279
.772024
.772024
.772024

47.
53
55
59.
51.
49.

3817

.8313
L2544

0265
4652
3481

0.
.455026
.329552
L471704
443793
.405070

© 0 0o o o

197833

k_10.1. V_central.1. Ve_C_central.1.

.197338
.184968
.170108
.183829
.183829
.183829

59.
59.

59

59.
59.
59.

1769
6128
.8496
0764
4927
3599

0.
.0277980
.0355800
.0262816
.0270974
.0375671

© 0 o o o

0271477

LnPrior

-8.
=¥
=5
-6.
-6.
-6.

=8¢

=g

=8¢
=8¢

507159
737837

.241873

695875
766683
529911

LnPrior
.511598
567542
.826062
.316123
525014
783332

51/ 67

Distribution functions

e InvGamma (inverse gamma distribution), needs two strictly positive real parameters: the shape and the scale.

e LogNormal, takes two reals numbers as parameters: the geometric mean (exponential of the mean in log-
space) and the geometric standard deviation (exponential, strictly superior to 1, of the standard deviation in
log-space).

e LogUniform with two shape parameters: the minimum and the maximum of the sampling range (real
numbers) in natural space.

e Normal takes two reals numbers as parameters: the mean and the standard deviation, the latter being strictly
positive.

e Normal_v is also the normal distribution with the variance instead of the standard deviation as second
parameter.

e TruncNormal (truncated normal distribution), takes four real parameters: the mean, the standard deviation
(strictly positive), the minimum and the maximum.

e StudentT, requires three parameters: its number of degrees of freedom (an integer), its mean, and its
standard deviation.

e TruncLogNormal (truncated lognormal distribution), uses four real numbers: the geometric mean and
geometric standard deviation (strictly superior to 1)

e LogNormal_y, is the lognormal distribution with the variance (in log space!) instead of the standard deviation
as second parameter.

More functions in GNU MCSim User’'s Manual

52 | 67

https://www.gnu.org/software/mcsim/mcsim.html#Distrib_0028_0029-specification

Input functions

These functions can use to different exposure types

- PerDose(): # specifies a periodic input of constant

PerDose(<magnitude>, <period>, <initial-time>, <exposure-time>);

- PerkExp(): # specifies a periodic exponential input.

PerExp(<magnitude>, <period>, <initial-time>, <decay-constant>);

PerTransit(): models a delayed input mechanism

PerTransit(<magnitude>, <period>, <initial-time-in-period>,
<decay-constant>, <number-of-input-compartments>);

NDoses(): specifies a number of stepwise inputs of variable magnitude and their starting times

NDoses(<n>, <list-of-magnitudes>, <list-of-initial-times>);

Spikes(): specifies a number of instantaneous inputs of variable magnitude and their exact times of occurrence.

Spikes(<n>, <list-of-magnitudes>, <list-of-times>);

53 / 67

Main functions

Here are the R functions that can help you run GNU MCSim more easily. All R functions are
defined in function.R Iin MCSim folder.

makemcsim(model, deSolve = F)

e Preprocessing and compiling the model-file to the executable file as makemcsim in GNU
MCSim. The model assignment is a string giving the name of the model-file (e.g,,
"pbpk.model.R"). The deSolve assignment is a logical factor to use deSolve package as

an ODE solver.
mcsim(model, input)

e Using the compiled program with the input-file to run the simulation. The input
assignment is a string giving the name of the input-file (e.g,, "pbpk.in.R")

e This function can also automatically compile the model, if you forgot to use
makemcsim() to create model program.

54 | 67

Example of using deSolve

deSolve MCSim

library(deSolve) mcsim("digoxin.model.R", "digoxin.in.R")
model <« "digoxin.model.R"
makemcsim(model = model, deSolve = T)

o _ HHt Time C_central

parms ¢« initParms() # Define parameter'valge o1 0.5 4.910300

newPa?m§ < c(parms, Dose = 509) # Deflﬁe 1nput' ' o 0.0 2 .CERN

Y.e— initStates(parms = newParms) # Initial condition w3 5.0 1.383300

times « c(0, 9.5, 1, 2, 3,"4, ?, ?, 7, 8, 23) w4 4 3.0 0.960978

out ¢« ode(Y, times, func = "derivs", parms = parms, H S 4.0 0.837285

dilname = model, # 6 5.0 0.792841

initfunc = "1n1tmod ,"nout = 1, 7 6.0 0.769599

outnames = "C_central") w5 7.0 0.752196

out ## 9 8.0 0.736565

#H 10 23.0 0.543027
HH time A_central A_periph C_central
#H 1 0.0 509.00000 0.0000 8.7457045
#H 2 0.5 285.78053 188.5568 4.9103185
#H 3 1.0 170.72485 283.6368 2.9334166
#H 4 2.0 80.50653 352.9739 1.3832736
#H 5 3.0 55.92820 365.7309 0.9609657
#H 6 4.0 48.72975 363.6315 0.8372809
7 5.0 46.14326 357.7117 0.7928394
#H 8 6.0 44.79060 350.8890 0.7695980
#H 9 7.0 43.77781 343.9332 0.7521961
#H 10 8.0 42.86809 337.0456 0.7365651
#H 11 23.0 31.60418 248.5552 0.5430271

55/ 67

Other functions

These functions are used to perform basic setting.

set_PATH(PATH)

e Detecting, checking, and setting the C compiler in your computer. This process will automatically
execute. The default PATH setting is "c:/Rtools/mingw_32/bin" .

makemod()
e Creating MCSim program mod.exe .
clear()

e Removing all executable and output files with extension .exe, .out,and .perks in the working
directory. This function is used to ensure that all simulation process can be reproduced without
misusing the old version of the file with the same file name. This function will not remove

mod.exe .

report()

e Reporting the system setting.

56 / 67

Example: linear modeling

model-file

File name: linear.model.R
Outputs = {y}

Model Parameters
A = 0; # Default value of intercept
B = 1; # Default value of slope

Statistical parameter
SD_true = 0;

CalcOutputs {

y = A+ B * t + NormalRandom(0®,SD_true);

}

End.

input-file

File name: linear.in.R

$./mcsim.linear.model.R.exe linear.in.

Simulation { # 1 simple simulation

A = 1; # given value of intercept
B = 2; # given value of slope
SD_true = 2; # given SD of noise

PrintStep (y, 0, 10, 1);
}

END.

57 | 67

Example: linear modeling

A simple way to store the results in the output variable and check it,

out ¢« mcsim(model = "linear.model.R", input = "linear.in.R")
out

H Time y
1 0 -0.415609
H 2 1 -1.430340
H 3 2 4.144040
H 4 3 7.535080
#H 5 4 9.,517630
#H 6 5 10.871900
w7 6 13.735700
#H 8 7 13.075000
#H 9 8 16.095100
#H 10 9 16.816300
11 10 21.300200

58 / 67

Example: linear modeling

If you forgot to assign a variable to store your output, you can use read.delim() to read the
output file as,

out ¢« read.delim(file = "sim.out", skip = 1)
out

—
'_In
=]
D

y
-0.415609

-1.430340
4.144040
7.535080
9.517630

10.871900

13.735700

13.075000

16.095100

16.816300

21.300200

O 0 N O U1 &~ W N B
O 0 N O Ul &~ W N - O

THEEFEEEHEEREH

=
=
=
(©]

Question: why skip = 1?

60 / 67

Example: linear modeling

Visualization the simulation result by R base plot and ggplot

plot(x=out$Time, y=out$y) library(ggplot2)
ggplot(out, aes(x=Time, y=y)) +
geom_point() +

abline(a=1, b=2)
geom_abline(intercept = 1, slope = 2)

outfy

outiTime
0.0 5 5.0 7.5 100
Time

61/ 67

Additional R packages for analysis

data.table - Fast reading of large output file, especially from MCMC with long iterations and
high dimensional parameter space.

tidyverse - Powerful data science toolbox that can use to manipulate (dplyr) and plot
(ggplot) the simulation result.

sensitivity - A collection of functions for factor screening, global sensitivity analysis and
reliability sensitivity analysis.

pksensi - Applying the global sensitivity analysis (eFAST) workflow to investigate the
parameter uncertainty and sensitivity in pharmacokinetic (PK) models.

bayesplot - Plotting functions for posterior analysis.

rstan - Diagnose the simulation result from MCMC.

Quick 1nstallation

pkgs <« c("bayesplot", "data.table", "pksensi", "rstan", "sensitivity", "tidyverse")
install.packages(pkgs)

62 | 67

https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/tidyverse/index.html
https://cran.r-project.org/web/packages/sensitivity/index.html
https://cran.r-project.org/web/packages/pksensi/index.html
https://cran.r-project.org/web/packages/bayesplot/index.html
https://cran.r-project.org/web/packages/rstan/index.html

Tips of MCSim under R(Studio

Code edit

Generally, the GNU MCSim used .model and .in as the extension to name the model- and
input-file. However, RStudio doesn't support the syntax highlight for these extensions. You
can add .R as the extension for these files to help you edit your model or input in RStudio
with syntax highlighting. Also, it can help you format your code in the code bracket.

1) C/MinGW/msys/1.0/home/nhsieh/MCSim_under_R - master - RStudio [= M@][] | @ C/MinGW/msys/1.0/home/nhsieh/MCSim_under_R - master - RStudio EiEE]
File Edit Code View Plots Session Build Debug Profile Tools Help file Edt Code View Plots Session Build Debug Profile Tools Help
O - O = = - - Addins =] MCSim_under R ~ [N T 5 - - Addins ~ %) MCSim_under R ~
@] digoxin.model R =) | digoxin.model =
SeurceonSave | O . “Run | »% | P Source 7 wQ
1+ #- 1 oo
2 # 2 # digoxin.model
3~ # 3 Hooo o
4 4
5 #Va 5 # Variables
@ 6 States = {A_central, A_periph}; 6 States = {A_central, A periph};
7 Tnputs = {Dose}; 7 Inputs = {Dose};
& Outputs = {C_central}; 8 Outputs = {C_central};
9 9
1@ # Structural model parameters 10 # Structural model parameters
11 k.12 = ; 11 k_12 = 1.82;
12 k.21 = ; 12 k21 = 8.15;
13 k. 10 = 5 13 k_10 = ©.18;
14 V_central = H 14 V_central = 58.2;
15 15
16 16 # Measurement error
17 17 Ve_C_central = 1;
18 18
19 # Init tion 19 # Initalization
20 - Initialize {A_central = Dose; 20 Initialize {A_central = Dose;
21} 21 3
22 22
23 # Dynamics 23 # Dynamics
24~ Dynamics { 24 Dynamics {
25 # Central compartment quantity 25 # Central compartment quantity
26 k_21 * A_periph - k_12 * A_central - k_1@ * A_central; 26 dt(A_central) = k_21 * A_periph - k_12 * A_central - k_1@ * A_central;
27 # Pe partment quantity 27 # Peripheral compartment quantity
28 dt(A_periph) = k_ 12 * A_central - k_21 * A_periph; 28 dt(A_periph) = k_12 * A_central - k_21 * A_periph;
29 # Concent on 29 # Concentration
30 C_central = A_central / V_central; 30 C_central = A_central / V_central;
L 31
32 32
33 - CalcOutputs { 33 CalcOutputs {
34 C_central = (C_central < ? : C_central) ; 34 C_central = (C_central < 1.8e-15 ? 1.@e-15 : C_central) ;
35 3 ELI
36 36
37 End. 37 End.
38 38
6:22 (Untitled) 3 R Script 3 71 Text File 5 63 / 6

Tips for MCSim under R(Studio)

Example & input

Some example R scripts will put into the example folder. To run GNU MCSim in model
simulation, we need to have two types of file (1) model and (2) input files. The syntax of the
model description file can find in GNU MCSim User's Manual. All example model and input
files are located in the modeling folder.

[*] You don't need to move your model- or input-file to modeling folder, manually.
Just run mcsim(model-file, input-file) after you finish your code, then they will be moved to modeling folder.

— MCS1m
— doc
— examples

— modeling

— linear

linear.

— linear.

simple.
— simple.

R

— test _script.R

— digoxin.mcmc.1in.R
digoxin.model.R
— Llinear.

in.R
mcmc.1n.R

.model.R
in.R

model.R 64 / 67

https://www.gnu.org/software/mcsim/mcsim.html

Following courses

o Tutorial 1: Walk-through of working models (4/25)
e Tutorial 2: MC simulation and sensitivity analysis (5/16)

e Tutorial 3: Bayesian MCMC calibration (5/23)

It's your turn to run it!

66 / 67

Take away

« Bayesian statistics is a powerful tool in toxicology
e GNU MCSim & R are powerful tool in statistical computing and modeling

e We provide an alternative way to run GNU MCSim in RStudio that aim to
help user learn and familiar with GNU MCSim workflow

Meet problem? Please submit it to

e MCSim under R GitHub issues https://github.com/nanhung/MCSim_under_R/issues
e My email: nhsieh@cvm.tamu.edu

Slide at: bit.ly/190418_mcsim € don’y

67 | 67

https://github.com/nanhung/MCSim_under_R/issues
https://nanhung.rbind.io/slide/190418_tutorial.html

