
GNU Libidn
Internationalized string processing for the GNU system

for version 1.42, 12 January 2024

Simon Josefsson

This manual is last updated 12 January 2024 for version 1.42 of GNU Libidn.

Copyright c© 2002–2024 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 2
1.3 Library Overview . 2
1.4 Supported Platforms . 3
1.5 Getting help . 5
1.6 Commercial Support . 5
1.7 Downloading and Installing . 6

1.7.1 Installing under Windows . 7
1.8 Bug Reports . 7
1.9 Contributing . 8

2 Preparation . 9
2.1 Header . 9
2.2 Initialization . 10
2.3 Version Check . 10
2.4 Building the source . 11
2.5 Autoconf tests . 11
2.6 Memory handling under Windows . 12
2.7 Header file idn-free.h . 12
2.8 Memory de-allocation function . 12

3 Utility Functions . 14
3.1 Header file stringprep.h . 14
3.2 Unicode Encoding Transformation . 14
3.3 Unicode Normalization . 15
3.4 Character Set Conversion . 16

4 Stringprep Functions . 18
4.1 Header file stringprep.h . 18
4.2 Defining A Stringprep Profile . 18
4.3 Control Flags . 18
4.4 Core Functions . 18
4.5 Error Handling . 21
4.6 Stringprep Profile Macros . 21

5 Punycode Functions . 23
5.1 Header file punycode.h . 23
5.2 Unicode Code Point Data Type . 23
5.3 Core Functions . 23
5.4 Error Handling . 25

ii

6 IDNA Functions . 26
6.1 Header file idna.h . 26
6.2 Control Flags . 26
6.3 Prefix String . 26
6.4 Core Functions . 26
6.5 Simplified ToASCII Interface . 28
6.6 Simplified ToUnicode Interface . 29
6.7 Error Handling . 30

7 TLD Functions . 32
7.1 Header file tld.h . 32
7.2 Core Functions . 32
7.3 Utility Functions . 33
7.4 High-Level Wrapper Functions . 34
7.5 Error Handling . 36

8 PR29 Functions . 37
8.1 Header file pr29.h . 37
8.2 Core Functions . 37
8.3 Utility Functions . 38
8.4 Error Handling . 38

9 Examples . 39
9.1 Example 1 . 39
9.2 Example 2 . 40
9.3 Example 3 . 45
9.4 Example 4 . 46
9.5 Example 5 . 47

10 Invoking idn . 51
10.1 Name . 51
10.2 Description . 51
10.3 Options . 51
10.4 Environment Variables . 51
10.5 Examples . 52
10.6 Troubleshooting . 52

11 Emacs API . 54
11.1 Punycode Emacs API . 54
11.2 IDNA Emacs API . 54

iii

12 Java API . 56
12.1 Overview . 56
12.2 Miscellaneous Programs . 56

12.2.1 GenerateRFC3454 . 56
12.2.2 GenerateNFKC . 56
12.2.3 TestIDNA . 57
12.2.4 TestNFKC . 57

12.3 Possible Problems . 57
12.4 A Note on Java and Unicode . 58

13 C# API . 59

14 Acknowledgements . 60

15 History . 61

Appendix A PR29 discussion . 62

Appendix B On Label Separators 65
B.1 Recommended Workaround . 65

Appendix C GNU Free Documentation License . . 66

Function and Variable Index . 74

Concept Index . 75

1

1 Introduction

GNU Libidn is a fully documented implementation of the Stringprep, Punycode and IDNA
specifications. Libidn’s purpose is to encode and decode internationalized domain name
strings. There are native C, C# and Java libraries.

The C library contains a generic Stringprep implementation. Profiles for Nameprep,
iSCSI, SASL, XMPP and Kerberos V5 are included. Punycode and ASCII Compatible
Encoding (ACE) via IDNA are supported. A mechanism to define Top-Level Domain
(TLD) specific validation tables, and to compare strings against those tables, is included.
Default tables for some TLDs are also included.

The Stringprep API consists of two main functions, one for converting data from the
system’s native representation into UTF-8, and one function to perform the Stringprep
processing. Adding a new Stringprep profile for your application within the API is straight-
forward. The Punycode API consists of one encoding function and one decoding function.
The IDNA API consists of the ToASCII and ToUnicode functions, as well as an high-level
interface for converting entire domain names to and from the ACE encoded form. The TLD
API consists of one set of functions to extract the TLD name from a domain string, one
set of functions to locate the proper TLD table to use based on the TLD name, and core
functions to validate a string against a TLD table, and some utility wrappers to perform
all the steps in one call.

The library is used by, e.g., GNU SASL and Shishi to process user names and passwords.
Libidn can be built into GNU Libc to enable a new system-wide getaddrinfo flag for IDN
processing.

Libidn is developed for the GNU/Linux system, but runs on over 20 Unix platforms
(including Solaris, IRIX, AIX, and Tru64) and Windows. The library is written in C and
(parts of) the API is also accessible from C++, Emacs Lisp, Python and Java. A native
Java and C# port is included.

Also included is a command line tool, several self tests, code examples, and more.

1.1 Getting Started

This manual documents the library programming interface. All functions and data types
provided by the library are explained. Included are also examples, and documentation for
the command line tool idn that provide a quick interface to the library. The Emacs Lisp
bindings for the library is also discussed.

The reader is assumed to possess basic familiarity with internationalization concepts and
network programming in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual (see Chapter 9 [Examples], page 39), and then only read up those parts of the
interface which are unclear.

Chapter 1: Introduction 2

1.2 Features

This library might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of a free software
license.

It’s thread-safe
No global state is kept in the library. All functions are re-entrant.

It’s portable
The code is intended to be written in pure ANSI C89. It has been tested on
many Unix like operating systems, and Windows.

It’s modularized
The library is composed of several modules, and the only interaction between
modules is through each modules’ public API. If you only need one piece of
functionality, it is possible to take the files you need and incorporate them into
your own project.

It’s not bloated
The design of the library is based on the smallest API necessary to implement
the basic functionality. It has been carefully extended with a small number of
high-level wrappers to make it comfortable to use the library. However, it does
not implement additional functionality just for the sake of completeness.

It’s documented
Sadly, not all software comes with documentation these days. This one does.

1.3 Library Overview

The following illustration show the components that make up Libidn, and how your applica-
tion relates to the library. In the illustration, various components are shown as boxes. You
see the generic StringPrep component, the various StringPrep profiles including Nameprep,
the Punycode component, the IDNA component, and the TLD component. The arrows
indicate aggregation, e.g., IDNA uses Punycode and Nameprep, and in turn Nameprep

Chapter 1: Introduction 3

uses the generic StringPrep interface. The interfaces to all components are available for
applications, no component within the library is hidden from the application.

NameprepiSCSISASLXMPP

GNU IDN Library

IDNA

Punycode

Application

StringPrep TLD

1.4 Supported Platforms

Libidn has at some point in time been tested on the following platforms. Build reports
for each platforms and Libidn version is available at http://autobuild.josefsson.org/
libidn/.

1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development plat-
form. alphaev67-unknown-linux-gnu, alphaev6-unknown-linux-gnu,
arm-unknown-linux-gnu, armv4l-unknown-linux-gnu, hppa-unknown-linux-gnu,
hppa64-unknown-linux-gnu, i686-pc-linux-gnu, ia64-unknown-linux-gnu,
m68k-unknown-linux-gnu, mips-unknown-linux-gnu, mipsel-unknown-linux-gnu,
powerpc-unknown-linux-gnu, s390-ibm-linux-gnu, sparc-unknown-linux-gnu,
sparc64-unknown-linux-gnu.

2. Debian GNU/Linux 2.1

GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

http://autobuild.josefsson.org/libidn/
http://autobuild.josefsson.org/libidn/

Chapter 1: Introduction 4

3. Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-

linux-gnu.

5. SuSE Linux 7.2a

GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

6. SuSE Linux

GCC 3.2.2 and GNU Make. x86_64-unknown-linux-gnu (AMD64 Opteron
“Melody”).

7. SuSE Enterprise Server 9 on IBM OpenPower 720

GCC 3.3.3 and GNU Make. powerpc64-unknown-linux-gnu.

8. RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-

linux-gnu, ia64-unknown-linux-gnu.

9. RedHat Linux 8.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

10. RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. i686-pc-linux-gnu.

11. Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

12. Mandrake Linux 9.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

13. IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

14. AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

15. Microsoft Windows 2000 (Cygwin)

GCC 3.2, GNU make. i686-pc-cygwin.

16. HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.

17. SUN Solaris 2.7

GCC 3.0.4 and GNU Make. sparc-sun-solaris2.7.

18. SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

19. SUN Solaris 2.9

Sun Forte Developer 7 C compiler and GNU Make. sparc-sun-solaris2.9.

Chapter 1: Introduction 5

20. NetBSD 1.6

GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-

netbsdelf1.6.

21. OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-

openbsd3.1.

22. FreeBSD 4.7 and 4.8

GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, alpha-unknown-

freebsd4.8, i386-unknown-freebsd4.7, i386-unknown-freebsd4.8.

23. MacOS X 10.2 Server Edition

GCC 3.1 and GNU Make. powerpc-apple-darwin6.5.

24. MacOS X 10.4 “Tiger” with Xcode 2.0

GCC 4.0 and GNU Make. powerpc-apple-darwin8.0.

25. Cross compiled to uClinux/uClibc on Motorola Coldfire

GCC 3.4 and GNU Make m68k-uclinux-elf.

26. Cross compiled to ARM using Glibc

GCC 2.95 and GNU Make arm-linux.

27. Cross compiled to Mingw32.

GCC 3.4.4 and GNU Make i586-mingw32msvc.

28. OS/2

GCC.

If you use Libidn on, or port Libidn to, a new platform please report it to the author.

1.5 Getting help

A mailing list where users of Libidn may help each other exists, and you can reach it by
sending e-mail to help-libidn@gnu.org. Archives of the mailing list discussions, and an
interface to manage subscriptions, is available through the World Wide Web at http://

lists.gnu.org/mailman/listinfo/help-libidn.

1.6 Commercial Support

Commercial support is available for users of GNU Libidn. The kind of support that can be
purchased may include:

• Implement new features. Such as country code specific profiling to support a restricted
subset of Unicode.

• Port Libidn to new platforms. This could include porting Libidn to an embedded
platforms that may need memory or size optimization.

• Integrating IDN support in your existing project.

• System design of components related to IDN.

If you are interested, please write to:

Simon Josefsson Datakonsult AB

mailto:help-libidn@gnu.org
http://lists.gnu.org/mailman/listinfo/help-libidn
http://lists.gnu.org/mailman/listinfo/help-libidn

Chapter 1: Introduction 6

Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GNU Libidn and would like to be mentioned
here, contact the author (see Section 1.8 [Bug Reports], page 7).

1.7 Downloading and Installing

The package can be downloaded from several places, including:

ftp://alpha.gnu.org/pub/gnu/libidn/

The latest version is stored in a file, e.g., ‘libidn-1.42.tar.gz’ where the ‘1.42’ value
is the highest version number in the directory.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the INSTALL file
that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q ftp://alpha.gnu.org/pub/gnu/libidn/libidn-1.42.tar.gz

$ tar xfz libidn-1.42.tar.gz

$ cd libidn-1.42/

$./configure

...

$ make

...

$ make install

...

After that Libidn should be properly installed and ready for use.

A few configure options may be relevant, summarized in the table.

--enable-java

Build the Java port into a *.JAR file. See Chapter 12 [Java API], page 56, for
more information.

--disable-tld

Disable the TLD module. This would typically only be useful if you are building
on a memory restricted platforms. See Chapter 7 [TLD Functions], page 32,
for more information.

--enable-csharp[=IMPL]

Build the C# port into a *.DLL file. See Chapter 13 [C# API], page 59, for
more information. Here, IMPL is pnet or mono, indicating whether the PNET
cscc compiler or the Mono mcs compiler should be used, respectively.

--disable-valgrind-tests

Disable running the self-checks under Valgrind (http://valgrind.org/). Nor-
mally Valgrind does not cause problems and can detect some severe memory

ftp://alpha.gnu.org/pub/gnu/libidn/
http://valgrind.org/

Chapter 1: Introduction 7

errors. If you are getting errors from Valgrind that are caused by the compiler
or libc (possibly as a result of special optimization flags), you may use this
option to disable the use of Valgrind.

For the complete list, refer to the output from configure --help.

1.7.1 Installing under Windows

There are two ways to build Libidn on Windows: via MinGW or via Visual Studio.

With MinGW, you can build a Libidn DLL and use it from other applications. After
installing MinGW (http://mingw.org/) follow the generic installation instructions (see
Section 1.7 [Downloading and Installing], page 6). The DLL is installed by default.

For information on how to use the DLL in other applications, see: http://www.mingw.
org/mingwfaq.shtml#faq-msvcdll.

You can build Libidn as a native Visual Studio C++ project. This allows you to build
the code for other platforms that VS supports, such as Windows Mobile. You need Visual
Studio 2005 or later.

First download and unpack the archive as described in the generic installation instruc-
tions (see Section 1.7 [Downloading and Installing], page 6). Don’t run ./configure. In-
stead, start Visual Studio and open the project file windows/libidn.sln inside the Libidn
directory. You should be able to build the project using Build Project.

Output libraries will be written into the windows/lib (or windows/lib/debug for Debug
versions) folder.

When working with Windows you may want to look into the special memory handling
functions that may be needed (see Section 2.6 [Memory handling under Windows], page 12).

1.8 Bug Reports

If you think you have found a bug in Libidn, please investigate it and report it.

• Please make sure that the bug is really in Libidn, and preferably also check that it
hasn’t already been fixed in the latest version.

• You have to send us a test case that makes it possible for us to reproduce the bug.

• You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-libidn@gnu.org’

http://mingw.org/
http://www.mingw.org/mingwfaq.shtml#faq-msvcdll
http://www.mingw.org/mingwfaq.shtml#faq-msvcdll

Chapter 1: Introduction 8

1.9 Contributing

If you want to submit a patch for inclusion – from solve a typo you discovered, up to adding
support for a new feature – you should submit it as a bug report (see Section 1.8 [Bug
Reports], page 7). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:

• Coding Style. Follow the GNU Standards document (see Section “top” in standards).

If you normally code using another coding standard, there is no problem, but you should
use ‘indent’ to reformat the code (see Section “top” in indent) before submitting your
work.

• Use the unified diff format ‘diff -u’.

• Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

• Design with thread safety in mind. Don’t use global variables and the like.

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into GTK-DOC web pages. Don’t forget to update the Texinfo
manual as well.

• Supply a ChangeLog and NEWS entries, where appropriate.

9

2 Preparation

To use ‘Libidn’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libidn’ may be to
look at the examples at the end of this manual (see Chapter 9 [Examples], page 39).

2.1 Header

The library contains a few independent parts, and each part export the interfaces (data
types and functions) in a header file. You must include the appropriate header files in all
programs using the library, either directly or through some other header file, like this:

#include <stringprep.h>

The header files and the functions they define are categorized as follows:

stringprep.h
The low-level stringprep API entry point. For IDN applications, this is usually
invoked via IDNA. Some applications, specifically non-IDN ones, may want to
prepare strings directly though, and should include this header file.

The name space of the stringprep part of Libidn is stringprep* for function
names, Stringprep* for data types and STRINGPREP_* for other symbols. In
addition, _stringprep* is reserved for internal use and should never be used
by applications.

punycode.h
The entry point to Punycode encoding and decoding functions. Normally puny-
code is used via the idna.h interface, but some application may want to perform
raw punycode operations.

The name space of the punycode part of Libidn is punycode_* for function
names, Punycode* for data types and PUNYCODE_* for other symbols. In ad-
dition, _punycode* is reserved for internal use and should never be used by
applications.

idna.h

The entry point to the IDNA functions. This is the normal entry point for
applications that need IDN functionality.

The name space of the IDNA part of Libidn is idna_* for function names,
Idna* for data types and IDNA_* for other symbols. In addition, _idna* is
reserved for internal use and should never be used by applications.

tld.h

The entry point to the TLD functions. Normal applications are not expected
to need this functionality, but it is present for applications that are used by
TLDs to validate customer input.

The name space of the TLD part of Libidn is tld_* for function names, Tld_*
for data types and TLD_* for other symbols. In addition, _tld* is reserved for
internal use and should never be used by applications.

Chapter 2: Preparation 10

pr29.h

The entry point to the PR29 functions. These functions are used to detect
“problem sequences” (see Chapter 8 [PR29 Functions], page 37), mostly for use
in security critical applications.

The name space of the PR29 part of Libidn is pr29_* for function names, Pr29_
* for data types and PR29_* for other symbols. In addition, _pr29* is reserved
for internal use and should never be used by applications.

idn-free.h

The entry point to the Windows memory de-allocation function (see Section 2.6
[Memory handling under Windows], page 12). It contains only one function
idn_free.

All header files defined and use the symbol IDNAPI to decorate the API functions.

2.2 Initialization

Libidn is stateless and does not need any initialization.

2.3 Version Check

It is often desirable to check that the version of ‘Libidn’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

stringprep check version

[Function]const char * stringprep_check_version (const char *
req_version)

req version: Required version number, or NULL.

Check that the version of the library is at minimum the requested one and return the
version string; return NULL if the condition is not satisfied. If a NULL is passed to
this function, no check is done, but the version string is simply returned.

See STRINGPREP_VERSION for a suitable req_version string.

Return value: Version string of run-time library, or NULL if the run-time library does
not meet the required version number.

The normal way to use the function is to put something similar to the following first in
your main:

if (!stringprep_check_version (STRINGPREP_VERSION))

{

printf ("stringprep_check_version() failed:\n"

"Header file incompatible with shared library.\n");

exit(EXIT_FAILURE);

}

Chapter 2: Preparation 11

2.4 Building the source

If you want to compile a source file including e.g. the ‘idna.h’ header file, you must make
sure that the compiler can find it in the directory hierarchy. This is accomplished by adding
the path to the directory in which the header file is located to the compilers include file
search path (via the -I option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libidn’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the --cflags option to pkg-config

libidn. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config libidn --cflags‘

Adding the output of ‘pkg-config libidn --cflags’ to the compilers command line
will ensure that the compiler can find e.g. the idna.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added
to the library search path (via the -L option). For this, the option --libs to pkg-config

libidn can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘libidn’ library. The example shows how to link foo.o

with the ‘libidn’ library to a program foo.

gcc -o foo foo.o ‘pkg-config libidn --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config libidn --cflags --libs‘

2.5 Autoconf tests

If your project uses Autoconf (see Section “top” in autoconf) to check for installed li-
braries, you might find the following snippet illustrative. It add a new configure parameter
--with-libidn, and check for idna.h and ‘-lidn’ (possibly below the directory specified
as the optional argument to --with-libidn), and define the CPP symbol LIBIDN if the
library is found. The default behaviour is to search for the library and enable the function-
ality (that is, define the symbol) when the library is found, but if you wish to make the
default behaviour of your package be that Libidn is not used (even if it is installed on the
system), change ‘libidn=yes’ to ‘libidn=no’ on the third line.

AC_ARG_WITH(libidn, AS_HELP_STRING([--with-libidn=[DIR]],

[Support IDN (needs GNU Libidn)]),

libidn=$withval, libidn=yes)

if test "$libidn" != "no"; then

if test "$libidn" != "yes"; then

LDFLAGS="${LDFLAGS} -L$libidn/lib"

CPPFLAGS="${CPPFLAGS} -I$libidn/include"

fi

AC_CHECK_HEADER(idna.h,

AC_CHECK_LIB(idn, stringprep_check_version,

[libidn=yes LIBS="${LIBS} -lidn"], libidn=no),

Chapter 2: Preparation 12

libidn=no)

fi

if test "$libidn" != "no" ; then

AC_DEFINE(LIBIDN, 1, [Define to 1 if you want IDN support.])

else

AC_MSG_WARN([Libidn not found])

fi

AC_MSG_CHECKING([if Libidn should be used])

AC_MSG_RESULT($libidn)

If you require that your users have installed pkg-config (which I cannot recommend
generally), the above can be done more easily as follows.

AC_ARG_WITH(libidn, AS_HELP_STRING([--with-libidn=[DIR]],

[Support IDN (needs GNU Libidn)]),

libidn=$withval, libidn=yes)

if test "$libidn" != "no" ; then

PKG_CHECK_MODULES(LIBIDN, libidn >= 0.0.0, [libidn=yes], [libidn=no])

if test "$libidn" != "yes" ; then

libidn=no

AC_MSG_WARN([Libidn not found])

else

libidn=yes

AC_DEFINE(LIBIDN, 1, [Define to 1 if you want Libidn.])

fi

fi

AC_MSG_CHECKING([if Libidn should be used])

AC_MSG_RESULT($libidn)

2.6 Memory handling under Windows

Several functions in the library allocates memory. The memory is expected to be de-
allocated using the free function. Under Windows, it is sometimes necessary to de-allocate
memory in the same module that allocated a memory region. The reason is that different
modules use separate heap memory regions. To solve this problem we provide a function to
de-allocate memory inside the library.

Note that we do not recommend using this interface generally if you do not care about
Windows portability.

2.7 Header file idn-free.h

To use the function explained in this chapter, you need to include the file idn-free.h using:

#include <idn-free.h>

2.8 Memory de-allocation function

Chapter 2: Preparation 13

idn free

[Function]void idn_free (void * ptr)
ptr: memory region to deallocate, or NULL .

Deallocates memory region by calling free() . If ptr is NULL no operation is per-
formed.

Normally applications de-allocate strings allocated by libidn by calling free() di-
rectly. Under Windows, different parts of the same application may use different
heap memory, and then it is important to deallocate memory allocated within the
same module that allocated it. This function makes that possible.

14

3 Utility Functions

The rest of this library makes extensive use of Unicode characters. In order to interface
this library with the outside world, your application may need to make various Unicode
transformations.

3.1 Header file stringprep.h

To use the functions explained in this chapter, you need to include the file stringprep.h

using:

#include <stringprep.h>

3.2 Unicode Encoding Transformation

stringprep unichar to utf8

[Function]int stringprep_unichar_to_utf8 (uint32 t c, char * outbuf)
c: a ISO10646 character code

outbuf : output buffer, must have at least 6 bytes of space. If NULL , the length will
be computed and returned and nothing will be written to outbuf .

Converts a single character to UTF-8.

Return value: number of bytes written.

stringprep utf8 to unichar

[Function]uint32_t stringprep_utf8_to_unichar (const char * p)
p: a pointer to Unicode character encoded as UTF-8

Converts a sequence of bytes encoded as UTF-8 to a Unicode character. If p does not
point to a valid UTF-8 encoded character, results are undefined.

Return value: the resulting character. Converts a sequence of bytes encoded as UTF-
8 to a Unicode character. If p does not point to a valid UTF-8 encoded character,
results are undefined.

Return value: the resulting character.

stringprep ucs4 to utf8

[Function]char * stringprep_ucs4_to_utf8 (const uint32 t * str, ssize t
len, size t * items_read, size t * items_written)

str: a UCS-4 encoded string

len: the maximum length of str to use. If len < 0, then the string is terminated with
a 0 character.

items read: location to store number of characters read read, or NULL .

items written: location to store number of bytes written or NULL . The value here
stored does not include the trailing 0 byte.

Convert a string from a 32-bit fixed width representation as UCS-4. to UTF-8. The
result will be terminated with a 0 byte.

Chapter 3: Utility Functions 15

Return value: a pointer to a newly allocated UTF-8 string. This value must be
deallocated by the caller. If an error occurs, NULL will be returned.

stringprep utf8 to ucs4

[Function]uint32_t * stringprep_utf8_to_ucs4 (const char * str, ssize t
len, size t * items_written)

str: a UTF-8 encoded string

len: the maximum length of str to use. If len < 0, then the string is nul-terminated.

items written: location to store the number of characters in the result, or NULL .

Convert a string from UTF-8 to a 32-bit fixed width representation as UCS-4. The
function now performs error checking to verify that the input is valid UTF-8 (before
it was documented to not do error checking).

Return value: a pointer to a newly allocated UCS-4 string. This value must be
deallocated by the caller.

3.3 Unicode Normalization

stringprep ucs4 nfkc normalize

[Function]uint32_t * stringprep_ucs4_nfkc_normalize (const uint32 t *
str, ssize t len)

str: a Unicode string.

len: length of str array, or -1 if str is nul-terminated.

Converts a UCS4 string into canonical form, see stringprep_utf8_nfkc_

normalize() for more information.

Return value: a newly allocated Unicode string, that is the NFKC normalized form
of str .

stringprep utf8 nfkc normalize

[Function]char * stringprep_utf8_nfkc_normalize (const char * str,
ssize t len)

str: a UTF-8 encoded string.

len: length of str , in bytes, or -1 if str is nul-terminated.

Converts a string into canonical form, standardizing such issues as whether a character
with an accent is represented as a base character and combining accent or as a single
precomposed character.

The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that
do not affect the text content, such as the above-mentioned accent representation.
It standardizes the "compatibility" characters in Unicode, such as SUPERSCRIPT
THREE to the standard forms (in this case DIGIT THREE). Formatting information
may be lost but for most text operations such characters should be considered the
same. It returns a result with composed forms rather than a maximally decomposed
form.

Return value: a newly allocated string, that is the NFKC normalized form of str .

Chapter 3: Utility Functions 16

3.4 Character Set Conversion

stringprep locale charset

[Function]const char * stringprep_locale_charset (void)
Enumerated return codes of the TLD checking functions. The value 0 is guaranteed
to always correspond to success.

: Find out current locale charset. The function respect the CHARSET environment
variable, but typically uses nl langinfo(CODESET) when it is supported. It fall back
on "ASCII" if CHARSET isn’t set and nl langinfo isn’t supported or return anything.

Note that this function return the application’s locale’s preferred charset (or thread’s
locale’s preferred charset, if your system support thread-specific locales). It does not
return what the system may be using. Thus, if you receive data from external sources
you cannot in general use this function to guess what charset it is encoded in. Use
stringprep convert from the external representation into the charset returned by this
function, to have data in the locale encoding.

Return value: Return the character set used by the current locale. It will never return
NULL, but use "ASCII" as a fallback.

stringprep convert

[Function]char * stringprep_convert (const char * str, const char *
to_codeset, const char * from_codeset)

str: input zero-terminated string.

to codeset: name of destination character set.

from codeset: name of origin character set, as used by str .

Convert the string from one character set to another using the system’s iconv()

function.

Return value: Returns newly allocated zero-terminated string which is str transcoded
into to codeset.

stringprep locale to utf8

[Function]char * stringprep_locale_to_utf8 (const char * str)
str: input zero terminated string.

Convert string encoded in the locale’s character set into UTF-8 by using stringprep_
convert() .

Return value: Returns newly allocated zero-terminated string which is str transcoded
into UTF-8.

stringprep utf8 to locale

[Function]char * stringprep_utf8_to_locale (const char * str)
str: input zero terminated string.

Convert string encoded in UTF-8 into the locale’s character set by using stringprep_
convert() .

Chapter 3: Utility Functions 17

Return value: Returns newly allocated zero-terminated string which is str transcoded
into the locale’s character set.

18

4 Stringprep Functions

Stringprep describes a framework for preparing Unicode text strings in order to increase the
likelihood that string input and string comparison work in ways that make sense for typical
users throughout the world. The stringprep protocol is useful for protocol identifier values,
company and personal names, internationalized domain names, and other text strings.

4.1 Header file stringprep.h

To use the functions explained in this chapter, you need to include the file stringprep.h

using:

#include <stringprep.h>

4.2 Defining A Stringprep Profile

Further types and structures are defined for applications that want to specify their own
stringprep profile. As these are fairly obscure, and by necessity tied to the implementa-
tion, we do not document them here. Look into the stringprep.h header file, and the
profiles.c source code for the details.

4.3 Control Flags

[Stringprep flags]Stringprep_profile_flags STRINGPREP_NO_NFKC
Disable the NFKC normalization, as well as selecting the non-NFKC case folding
tables. Usually the profile specifies BIDI and NFKC settings, and applications should
not override it unless in special situations.

[Stringprep flags]Stringprep_profile_flags STRINGPREP_NO_BIDI
Disable the BIDI step. Usually the profile specifies BIDI and NFKC settings, and
applications should not override it unless in special situations.

[Stringprep flags]Stringprep_profile_flags STRINGPREP_NO_UNASSIGNED
Make the library return with an error if string contains unassigned characters accord-
ing to profile.

4.4 Core Functions

stringprep 4i

[Function]int stringprep_4i (uint32 t * ucs4, size t * len, size t
maxucs4len, Stringprep profile flags flags, const Stringprep profile *
profile)

ucs4: input/output array with string to prepare.

len: on input, length of input array with Unicode code points, on exit, length of
output array with Unicode code points.

maxucs4len: maximum length of input/output array.

flags: a Stringprep_profile_flags value, or 0.

Chapter 4: Stringprep Functions 19

profile: pointer to Stringprep_profile to use.

Prepare the input UCS-4 string according to the stringprep profile, and write back
the result to the input string.

The input is not required to be zero terminated (ucs4 [len] = 0). The output will
not be zero terminated unless ucs4 [len] = 0. Instead, see stringprep_4zi() if
your input is zero terminated or if you want the output to be.

Since the stringprep operation can expand the string, maxucs4len indicate how large
the buffer holding the string is. This function will not read or write to code points
outside that size.

The flags are one of Stringprep_profile_flags values, or 0.

The profile contain the Stringprep_profile instructions to perform. Your appli-
cation can define new profiles, possibly re-using the generic stringprep tables that
always will be part of the library, or use one of the currently supported profiles.

Return value: Returns STRINGPREP_OK iff successful, or an Stringprep_rc error code.
Prepare the input UCS-4 string according to the stringprep profile, and write back
the result to the input string.

The input is not required to be zero terminated (ucs4 [len] = 0). The output will
not be zero terminated unless ucs4 [len] = 0. Instead, see stringprep_4zi() if
your input is zero terminated or if you want the output to be.

Since the stringprep operation can expand the string, maxucs4len indicate how large
the buffer holding the string is. This function will not read or write to code points
outside that size.

The flags are one of Stringprep_profile_flags values, or 0.

The profile contain the Stringprep_profile instructions to perform. Your appli-
cation can define new profiles, possibly re-using the generic stringprep tables that
always will be part of the library, or use one of the currently supported profiles.

Return value: Returns STRINGPREP_OK iff successful, or an Stringprep_rc error code.

stringprep 4zi

[Function]int stringprep_4zi (uint32 t * ucs4, size t maxucs4len,
Stringprep profile flags flags, const Stringprep profile * profile)

ucs4: input/output array with zero terminated string to prepare.

maxucs4len: maximum length of input/output array.

flags: a Stringprep_profile_flags value, or 0.

profile: pointer to Stringprep_profile to use.

Prepare the input zero terminated UCS-4 string according to the stringprep profile,
and write back the result to the input string.

Since the stringprep operation can expand the string, maxucs4len indicate how large
the buffer holding the string is. This function will not read or write to code points
outside that size.

The flags are one of Stringprep_profile_flags values, or 0.

Chapter 4: Stringprep Functions 20

The profile contain the Stringprep_profile instructions to perform. Your appli-
cation can define new profiles, possibly re-using the generic stringprep tables that
always will be part of the library, or use one of the currently supported profiles.

Return value: Returns STRINGPREP_OK iff successful, or an Stringprep_rc error code.

stringprep

[Function]int stringprep (char * in, size t maxlen, Stringprep profile flags
flags, const Stringprep profile * profile)

in: input/output array with string to prepare.

maxlen: maximum length of input/output array.

flags: a Stringprep_profile_flags value, or 0.

profile: pointer to Stringprep_profile to use.

Prepare the input zero terminated UTF-8 string according to the stringprep profile,
and write back the result to the input string.

Note that you must convert strings entered in the systems locale into UTF-8 before
using this function, see stringprep_locale_to_utf8() .

Since the stringprep operation can expand the string, maxlen indicate how large the
buffer holding the string is. This function will not read or write to characters outside
that size.

The flags are one of Stringprep_profile_flags values, or 0.

The profile contain the Stringprep_profile instructions to perform. Your appli-
cation can define new profiles, possibly re-using the generic stringprep tables that
always will be part of the library, or use one of the currently supported profiles.

Return value: Returns STRINGPREP_OK iff successful, or an error code.

stringprep profile

[Function]int stringprep_profile (const char * in, char ** out, const char *
profile, Stringprep profile flags flags)

in: input array with UTF-8 string to prepare.

out: output variable with pointer to newly allocate string.

profile: name of stringprep profile to use.

flags: a Stringprep_profile_flags value, or 0.

Prepare the input zero terminated UTF-8 string according to the stringprep profile,
and return the result in a newly allocated variable.

Note that you must convert strings entered in the systems locale into UTF-8 before
using this function, see stringprep_locale_to_utf8() .

The output out variable must be deallocated by the caller.

The flags are one of Stringprep_profile_flags values, or 0.

The profile specifies the name of the stringprep profile to use. It must be one of
the internally supported stringprep profiles.

Return value: Returns STRINGPREP_OK iff successful, or an error code.

Chapter 4: Stringprep Functions 21

4.5 Error Handling

stringprep strerror

[Function]const char * stringprep_strerror (Stringprep rc rc)
rc: a Stringprep_rc return code.

Convert a return code integer to a text string. This string can be used to output a
diagnostic message to the user.

STRINGPREP OK: Successful operation. This value is guaranteed to always be zero,
the remaining ones are only guaranteed to hold non-zero values, for logical comparison
purposes.

STRINGPREP CONTAINS UNASSIGNED: String contain unassigned Unicode
code points, which is forbidden by the profile.

STRINGPREP CONTAINS PROHIBITED: String contain code points prohibited
by the profile.

STRINGPREP BIDI BOTH L AND RAL: String contain code points with conflict-
ing bidirection category.

STRINGPREP BIDI LEADTRAIL NOT RAL: Leading and trailing character in
string not of proper bidirectional category.

STRINGPREP BIDI CONTAINS PROHIBITED: Contains prohibited code points
detected by bidirectional code.

STRINGPREP TOO SMALL BUFFER: Buffer handed to function was too small.
This usually indicate a problem in the calling application.

STRINGPREP PROFILE ERROR: The stringprep profile was inconsistent. This
usually indicate an internal error in the library.

STRINGPREP FLAG ERROR: The supplied flag conflicted with profile. This usu-
ally indicate a problem in the calling application.

STRINGPREP UNKNOWN PROFILE: The supplied profile name was not known
to the library.

STRINGPREP ICONV ERROR: Character encoding conversion error.

STRINGPREP NFKC FAILED: The Unicode NFKC operation failed. This usually
indicate an internal error in the library.

STRINGPREP MALLOC ERROR: The malloc() was out of memory. This is usu-
ally a fatal error.

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the return code rc .

4.6 Stringprep Profile Macros

[Function]int stringprep_nameprep_no_unassigned (char * in, int maxlen)
in: input/output array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the nameprep profile. The AllowUnas-
signed flag is false, use stringprep_nameprep for true AllowUnassigned. Returns 0
iff successful, or an error code.

Chapter 4: Stringprep Functions 22

[Function]int stringprep_iscsi (char * in, int maxlen)
in: input/output array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft iSCSI stringprep profile. Re-
turns 0 iff successful, or an error code.

[Function]int stringprep_plain (char * in, int maxlen)
in: input/output array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft SASL ANONYMOUS profile.
Returns 0 iff successful, or an error code.

[Function]int stringprep_xmpp_nodeprep (char * in, int maxlen)
in: input/output array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft XMPP node identifier profile.
Returns 0 iff successful, or an error code.

[Function]int stringprep_xmpp_resourceprep (char * in, int maxlen)
in: input/output array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft XMPP resource identifier
profile. Returns 0 iff successful, or an error code.

23

5 Punycode Functions

Punycode is a simple and efficient transfer encoding syntax designed for use with Interna-
tionalized Domain Names in Applications. It uniquely and reversibly transforms a Unicode
string into an ASCII string. ASCII characters in the Unicode string are represented liter-
ally, and non-ASCII characters are represented by ASCII characters that are allowed in host
name labels (letters, digits, and hyphens). A general algorithm called Bootstring allows a
string of basic code points to uniquely represent any string of code points drawn from a
larger set. Punycode is an instance of Bootstring that uses particular parameter values,
appropriate for IDNA.

5.1 Header file punycode.h

To use the functions explained in this chapter, you need to include the file punycode.h

using:

#include <punycode.h>

5.2 Unicode Code Point Data Type

The punycode function uses a special type to denote Unicode code points. It is guaranteed
to always be a 32 bit unsigned integer.

[Punycode Unicode code point]uint32_t punycode_uint
A unsigned integer that hold Unicode code points.

5.3 Core Functions

Note that the current implementation will fail if the input_length exceed 4294967295
(the size of punycode_uint). This restriction may be removed in the future. Meanwhile
applications are encouraged to not depend on this problem, and use sizeof to initialize
input_length and output_length.

The functions provided are the following two entry points:

punycode encode

[Function]int punycode_encode (size t input_length, const punycode uint []
input, const unsigned char [] case_flags, size t * output_length, char
[] output)

input length: The number of code points in the input array and the number of flags
in the case_flags array.

input: An array of code points. They are presumed to be Unicode code points,
but that is not strictly REQUIRED. The array contains code points, not code units.
UTF-16 uses code units D800 through DFFF to refer to code points 10000..10FFFF.
The code points D800..DFFF do not occur in any valid Unicode string. The code
points that can occur in Unicode strings (0..D7FF and E000..10FFFF) are also called
Unicode scalar values.

case flags: A NULL pointer or an array of boolean values parallel to the input array.
Nonzero (true, flagged) suggests that the corresponding Unicode character be forced

Chapter 5: Punycode Functions 24

to uppercase after being decoded (if possible), and zero (false, unflagged) suggests
that it be forced to lowercase (if possible). ASCII code points (0..7F) are encoded
literally, except that ASCII letters are forced to uppercase or lowercase according to
the corresponding case flags. If case_flags is a NULL pointer then ASCII letters are
left as they are, and other code points are treated as unflagged.

output length: The caller passes in the maximum number of ASCII code points that
it can receive. On successful return it will contain the number of ASCII code points
actually output.

output: An array of ASCII code points. It is *not* null-terminated; it will contain
zeros if and only if the input contains zeros. (Of course the caller can leave room for
a terminator and add one if needed.)

Converts a sequence of code points (presumed to be Unicode code points) to Puny-
code.

Return value: The return value can be any of the Punycode_status values defined
above except PUNYCODE_BAD_INPUT . If not PUNYCODE_SUCCESS , then output_size

and output might contain garbage. Converts a sequence of code points (presumed to
be Unicode code points) to Punycode.

Return value: The return value can be any of the Punycode_status values defined
above except PUNYCODE_BAD_INPUT . If not PUNYCODE_SUCCESS , then output_size

and output might contain garbage.

punycode decode

[Function]int punycode_decode (size t input_length, const char [] input,
size t * output_length, punycode uint [] output, unsigned char []
case_flags)

input length: The number of ASCII code points in the input array.

input: An array of ASCII code points (0..7F).

output length: The caller passes in the maximum number of code points that it can
receive into the output array (which is also the maximum number of flags that it
can receive into the case_flags array, if case_flags is not a NULL pointer). On
successful return it will contain the number of code points actually output (which
is also the number of flags actually output, if case flags is not a null pointer). The
decoder will never need to output more code points than the number of ASCII code
points in the input, because of the way the encoding is defined. The number of code
points output cannot exceed the maximum possible value of a punycode uint, even if
the supplied output_length is greater than that.

output: An array of code points like the input argument of punycode_encode() (see
above).

case flags: A NULL pointer (if the flags are not needed by the caller) or an array of
boolean values parallel to the output array. Nonzero (true, flagged) suggests that the
corresponding Unicode character be forced to uppercase by the caller (if possible),
and zero (false, unflagged) suggests that it be forced to lowercase (if possible). ASCII
code points (0..7F) are output already in the proper case, but their flags will be set
appropriately so that applying the flags would be harmless.

Chapter 5: Punycode Functions 25

Converts Punycode to a sequence of code points (presumed to be Unicode code
points).

Return value: The return value can be any of the Punycode_status values defined
above. If not PUNYCODE_SUCCESS , then output_length , output , and case_flags

might contain garbage.

5.4 Error Handling

punycode strerror

[Function]const char * punycode_strerror (Punycode status rc)
rc: an Punycode_status return code.

Convert a return code integer to a text string. This string can be used to output a
diagnostic message to the user.

PUNYCODE SUCCESS: Successful operation. This value is guaranteed to always
be zero, the remaining ones are only guaranteed to hold non-zero values, for logical
comparison purposes.

PUNYCODE BAD INPUT: Input is invalid.

PUNYCODE BIG OUTPUT: Output would exceed the space provided.

PUNYCODE OVERFLOW: Input needs wider integers to process.

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the return code rc .

26

6 IDNA Functions

Until now, there has been no standard method for domain names to use characters outside
the ASCII repertoire. The IDNA document defines internationalized domain names (IDNs)
and a mechanism called IDNA for handling them in a standard fashion. IDNs use characters
drawn from a large repertoire (Unicode), but IDNA allows the non-ASCII characters to be
represented using only the ASCII characters already allowed in so-called host names today.
This backward-compatible representation is required in existing protocols like DNS, so that
IDNs can be introduced with no changes to the existing infrastructure. IDNA is only meant
for processing domain names, not free text.

6.1 Header file idna.h

To use the functions explained in this chapter, you need to include the file idna.h using:

#include <idna.h>

6.2 Control Flags

The IDNA flags parameter can take on the following values, or a bit-wise inclusive or of
any subset of the parameters:

[Return code]Idna_flags IDNA_ALLOW_UNASSIGNED
Allow unassigned Unicode code points.

[Return code]Idna_flags IDNA_USE_STD3_ASCII_RULES
Check output to make sure it is a STD3 conforming host name.

6.3 Prefix String

[Macro]#define IDNA_ACE_PREFIX
String with the official IDNA prefix, xn--.

6.4 Core Functions

The idea behind the IDNA function names are as follows: the idna_to_ascii_4i and idna_

to_unicode_44i functions are the core IDNA primitives. The 4 indicate that the function
takes UCS-4 strings (i.e., Unicode code points encoded in a 32-bit unsigned integer type) of
the specified length. The i indicate that the data is written “inline” into the buffer. This
means the caller is responsible for allocating (and de-allocating) the string, and providing
the library with the allocated length of the string. The output length is written in the
output length variable. The remaining functions all contain the z indicator, which means
the strings are zero terminated. All output strings are allocated by the library, and must
be de-allocated by the caller. The 4 indicator again means that the string is UCS-4, the
8 means the strings are UTF-8 and the l indicator means the strings are encoded in the
encoding used by the current locale.

The functions provided are the following entry points:

Chapter 6: IDNA Functions 27

idna to ascii 4i

[Function]int idna_to_ascii_4i (const uint32 t * in, size t inlen, char *
out, int flags)

in: input array with unicode code points.

inlen: length of input array with unicode code points.

out: output zero terminated string that must have room for at least 63 characters
plus the terminating zero.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

The ToASCII operation takes a sequence of Unicode code points that make up one
domain label and transforms it into a sequence of code points in the ASCII range
(0..7F). If ToASCII succeeds, the original sequence and the resulting sequence are
equivalent labels.

It is important to note that the ToASCII operation can fail. ToASCII fails if any step
of it fails. If any step of the ToASCII operation fails on any label in a domain name,
that domain name MUST NOT be used as an internationalized domain name. The
method for deadling with this failure is application-specific.

The inputs to ToASCII are a sequence of code points, the AllowUnassigned flag, and
the UseSTD3ASCIIRules flag. The output of ToASCII is either a sequence of ASCII
code points or a failure condition.

ToASCII never alters a sequence of code points that are all in the ASCII range to
begin with (although it could fail). Applying the ToASCII operation multiple times
has exactly the same effect as applying it just once.

Return value: Returns 0 on success, or an Idna_rc error code.

idna to unicode 44i

[Function]int idna_to_unicode_44i (const uint32 t * in, size t inlen,
uint32 t * out, size t * outlen, int flags)

in: input array with unicode code points.

inlen: length of input array with unicode code points.

out: output array with unicode code points.

outlen: on input, maximum size of output array with unicode code points, on exit,
actual size of output array with unicode code points.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

The ToUnicode operation takes a sequence of Unicode code points that make up one
domain label and returns a sequence of Unicode code points. If the input sequence is
a label in ACE form, then the result is an equivalent internationalized label that is
not in ACE form, otherwise the original sequence is returned unaltered.

ToUnicode never fails. If any step fails, then the original input sequence is returned
immediately in that step.

The Punycode decoder can never output more code points than it inputs, but
Nameprep can, and therefore ToUnicode can. Note that the number of octets needed

Chapter 6: IDNA Functions 28

to represent a sequence of code points depends on the particular character encoding
used.

The inputs to ToUnicode are a sequence of code points, the AllowUnassigned flag,
and the UseSTD3ASCIIRules flag. The output of ToUnicode is always a sequence of
Unicode code points.

Return value: Returns Idna_rc error condition, but it must only be used for debug-
ging purposes. The output buffer is always guaranteed to contain the correct data
according to the specification (sans malloc induced errors). NB! This means that you
normally ignore the return code from this function, as checking it means breaking the
standard.

6.5 Simplified ToASCII Interface

idna to ascii 4z

[Function]int idna_to_ascii_4z (const uint32 t * input, char ** output, int
flags)

input: zero terminated input Unicode string.

output: pointer to newly allocated output string.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

Convert UCS-4 domain name to ASCII string. The domain name may contain several
labels, separated by dots. The output buffer must be deallocated by the caller.

Return value: Returns IDNA_SUCCESS on success, or error code.

idna to ascii 8z

[Function]int idna_to_ascii_8z (const char * input, char ** output, int
flags)

input: zero terminated input UTF-8 string.

output: pointer to newly allocated output string.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

Convert UTF-8 domain name to ASCII string. The domain name may contain several
labels, separated by dots. The output buffer must be deallocated by the caller.

Return value: Returns IDNA_SUCCESS on success, or error code.

idna to ascii lz

[Function]int idna_to_ascii_lz (const char * input, char ** output, int
flags)

input: zero terminated input string encoded in the current locale’s character set.

output: pointer to newly allocated output string.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

Chapter 6: IDNA Functions 29

Convert domain name in the locale’s encoding to ASCII string. The domain name
may contain several labels, separated by dots. The output buffer must be deallocated
by the caller.

Return value: Returns IDNA_SUCCESS on success, or error code.

6.6 Simplified ToUnicode Interface

idna to unicode 4z4z

[Function]int idna_to_unicode_4z4z (const uint32 t * input, uint32 t **
output, int flags)

input: zero-terminated Unicode string.

output: pointer to newly allocated output Unicode string.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

Convert possibly ACE encoded domain name in UCS-4 format into a UCS-4 string.
The domain name may contain several labels, separated by dots. The output buffer
must be deallocated by the caller.

Return value: Returns IDNA_SUCCESS on success, or error code.

idna to unicode 8z4z

[Function]int idna_to_unicode_8z4z (const char * input, uint32 t **
output, int flags)

input: zero-terminated UTF-8 string.

output: pointer to newly allocated output Unicode string.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

Convert possibly ACE encoded domain name in UTF-8 format into a UCS-4 string.
The domain name may contain several labels, separated by dots. The output buffer
must be deallocated by the caller.

Return value: Returns IDNA_SUCCESS on success, or error code.

idna to unicode 8z8z

[Function]int idna_to_unicode_8z8z (const char * input, char ** output,
int flags)

input: zero-terminated UTF-8 string.

output: pointer to newly allocated output UTF-8 string.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

Convert possibly ACE encoded domain name in UTF-8 format into a UTF-8 string.
The domain name may contain several labels, separated by dots. The output buffer
must be deallocated by the caller.

Return value: Returns IDNA_SUCCESS on success, or error code.

Chapter 6: IDNA Functions 30

idna to unicode 8zlz

[Function]int idna_to_unicode_8zlz (const char * input, char ** output,
int flags)

input: zero-terminated UTF-8 string.

output: pointer to newly allocated output string encoded in the current locale’s
character set.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

Convert possibly ACE encoded domain name in UTF-8 format into a string encoded
in the current locale’s character set. The domain name may contain several labels,
separated by dots. The output buffer must be deallocated by the caller.

Return value: Returns IDNA_SUCCESS on success, or error code.

idna to unicode lzlz

[Function]int idna_to_unicode_lzlz (const char * input, char ** output,
int flags)

input: zero-terminated string encoded in the current locale’s character set.

output: pointer to newly allocated output string encoded in the current locale’s
character set.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_

ASCII_RULES .

Convert possibly ACE encoded domain name in the locale’s character set into a string
encoded in the current locale’s character set. The domain name may contain several
labels, separated by dots. The output buffer must be deallocated by the caller.

Return value: Returns IDNA_SUCCESS on success, or error code.

6.7 Error Handling

idna strerror

[Function]const char * idna_strerror (Idna rc rc)
rc: an Idna_rc return code.

Convert a return code integer to a text string. This string can be used to output a
diagnostic message to the user.

IDNA SUCCESS: Successful operation. This value is guaranteed to always be zero,
the remaining ones are only guaranteed to hold non-zero values, for logical comparison
purposes.

IDNA STRINGPREP ERROR: Error during string preparation.

IDNA PUNYCODE ERROR: Error during punycode operation.

IDNA CONTAINS NON LDH: For IDNA USE STD3 ASCII RULES, indicate
that the string contains non-LDH ASCII characters.

IDNA CONTAINS MINUS: For IDNA USE STD3 ASCII RULES, indicate that
the string contains a leading or trailing hyphen-minus (U+002D).

Chapter 6: IDNA Functions 31

IDNA INVALID LENGTH: The final output string is not within the (inclusive)
range 1 to 63 characters.

IDNA NO ACE PREFIX: The string does not contain the ACE prefix (for ToUni-
code).

IDNA ROUNDTRIP VERIFY ERROR: The ToASCII operation on output string
does not equal the input.

IDNA CONTAINS ACE PREFIX: The input contains the ACE prefix (for
ToASCII).

IDNA ICONV ERROR: Character encoding conversion error.

IDNA MALLOC ERROR: Could not allocate buffer (this is typically a fatal error).

IDNA DLOPEN ERROR: Could not dlopen the libcidn DSO (only used internally
in libc).

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the return code rc .

32

7 TLD Functions

Organizations that manage some Top Level Domains (TLDs) have published tables with
characters they accept within the domain. The reason may be to reduce complexity that
come from using the full Unicode range, and to protect themselves from future (backwards
incompatible) changes in the IDN or Unicode specifications. Libidn implement an infras-
tructure for defining and checking strings against such tables. Libidn also ship some tables
from TLDs that we have managed to get permission to use them from. Because these tables
are even less static than Unicode or StringPrep tables, it is likely that they will be updated
from time to time (even in backwards incompatible ways). The Libidn interface provide a
“version” field for each TLD table, which can be compared for equality to guarantee the
same operation over time.

From a design point of view, you can regard the TLD tables for IDN as the “localization”
step that come after the “internationalization” step provided by the IETF standards.

The TLD functionality rely on up-to-date tables. The latest version of Libidn aim to
provide these, but tables with unclear copying conditions, or generally experimental ta-
bles, are not included. Some such tables can be found at https://github.com/gnuthor/
tldchk.

7.1 Header file tld.h

To use the functions explained in this chapter, you need to include the file tld.h using:

#include <tld.h>

7.2 Core Functions

tld check 4t

[Function]int tld_check_4t (const uint32 t * in, size t inlen, size t *
errpos, const Tld table * tld)

in: Array of unicode code points to process. Does not need to be zero terminated.

inlen: Number of unicode code points.

errpos: Position of offending character is returned here.

tld: A Tld_table data structure representing the restrictions for which the input
should be tested.

Test each of the code points in in for whether or not they are allowed by the data
structure in tld , return the position of the first character for which this is not the
case in errpos .

Return value: Returns the Tld_rc value TLD_SUCCESS if all code points are valid or
when tld is null, TLD_INVALID if a character is not allowed, or additional error codes
on general failure conditions.

tld check 4tz

[Function]int tld_check_4tz (const uint32 t * in, size t * errpos, const
Tld table * tld)

in: Zero terminated array of unicode code points to process.

https://github.com/gnuthor/tldchk
https://github.com/gnuthor/tldchk

Chapter 7: TLD Functions 33

errpos: Position of offending character is returned here.

tld: A Tld_table data structure representing the restrictions for which the input
should be tested.

Test each of the code points in in for whether or not they are allowed by the data
structure in tld , return the position of the first character for which this is not the
case in errpos .

Return value: Returns the Tld_rc value TLD_SUCCESS if all code points are valid or
when tld is null, TLD_INVALID if a character is not allowed, or additional error codes
on general failure conditions.

7.3 Utility Functions

tld get 4

[Function]int tld_get_4 (const uint32 t * in, size t inlen, char ** out)
in: Array of unicode code points to process. Does not need to be zero terminated.

inlen: Number of unicode code points.

out: Zero terminated ascii result string pointer.

Isolate the top-level domain of in and return it as an ASCII string in out .

Return value: Return TLD_SUCCESS on success, or the corresponding Tld_rc error
code otherwise.

tld get 4z

[Function]int tld_get_4z (const uint32 t * in, char ** out)
in: Zero terminated array of unicode code points to process.

out: Zero terminated ascii result string pointer.

Isolate the top-level domain of in and return it as an ASCII string in out .

Return value: Return TLD_SUCCESS on success, or the corresponding Tld_rc error
code otherwise.

tld get z

[Function]int tld_get_z (const char * in, char ** out)
in: Zero terminated character array to process.

out: Zero terminated ascii result string pointer.

Isolate the top-level domain of in and return it as an ASCII string in out . The input
string in may be UTF-8, ISO-8859-1 or any ASCII compatible character encoding.

Return value: Return TLD_SUCCESS on success, or the corresponding Tld_rc error
code otherwise.

Chapter 7: TLD Functions 34

tld get table

[Function]const Tld_table * tld_get_table (const char * tld, const
Tld table ** tables)

tld: TLD name (e.g. "com") as zero terminated ASCII byte string.

tables: Zero terminated array of Tld_table info-structures for TLDs.

Get the TLD table for a named TLD by searching through the given TLD table array.

Return value: Return structure corresponding to TLD tld by going thru tables , or
return NULL if no such structure is found. Get the TLD table for a named TLD by
searching through the given TLD table array.

Return value: Return structure corresponding to TLD tld by going thru tables , or
return NULL if no such structure is found.

tld default table

[Function]const Tld_table * tld_default_table (const char * tld, const
Tld table ** overrides)

tld: TLD name (e.g. "com") as zero terminated ASCII byte string.

overrides: Additional zero terminated array of Tld_table info-structures for TLDs,
or NULL to only use library default tables.

Get the TLD table for a named TLD, using the internal defaults, possibly overridden
by the (optional) supplied tables.

Return value: Return structure corresponding to TLD tld_str , first looking through
overrides then thru built-in list, or NULL if no such structure found.

7.4 High-Level Wrapper Functions

tld check 4

[Function]int tld_check_4 (const uint32 t * in, size t inlen, size t * errpos,
const Tld table ** overrides)

in: Array of unicode code points to process. Does not need to be zero terminated.

inlen: Number of unicode code points.

errpos: Position of offending character is returned here.

overrides: A Tld_table array of additional domain restriction structures that com-
plement and supersede the built-in information.

Test each of the code points in in for whether or not they are allowed by the informa-
tion in overrides or by the built-in TLD restriction data. When data for the same
TLD is available both internally and in overrides , the information in overrides

takes precedence. If several entries for a specific TLD are found, the first one is used.
If overrides is NULL , only the built-in information is used. The position of the first
offending character is returned in errpos .

Return value: Returns the Tld_rc value TLD_SUCCESS if all code points are valid or
when tld is null, TLD_INVALID if a character is not allowed, or additional error codes
on general failure conditions.

Chapter 7: TLD Functions 35

tld check 4z

[Function]int tld_check_4z (const uint32 t * in, size t * errpos, const
Tld table ** overrides)

in: Zero-terminated array of unicode code points to process.

errpos: Position of offending character is returned here.

overrides: A Tld_table array of additional domain restriction structures that com-
plement and supersede the built-in information.

Test each of the code points in in for whether or not they are allowed by the informa-
tion in overrides or by the built-in TLD restriction data. When data for the same
TLD is available both internally and in overrides , the information in overrides

takes precedence. If several entries for a specific TLD are found, the first one is used.
If overrides is NULL , only the built-in information is used. The position of the first
offending character is returned in errpos .

Return value: Returns the Tld_rc value TLD_SUCCESS if all code points are valid or
when tld is null, TLD_INVALID if a character is not allowed, or additional error codes
on general failure conditions.

tld check 8z

[Function]int tld_check_8z (const char * in, size t * errpos, const Tld table
** overrides)

in: Zero-terminated UTF8 string to process.

errpos: Position of offending character is returned here.

overrides: A Tld_table array of additional domain restriction structures that com-
plement and supersede the built-in information.

Test each of the characters in in for whether or not they are allowed by the information
in overrides or by the built-in TLD restriction data. When data for the same TLD
is available both internally and in overrides , the information in overrides takes
precedence. If several entries for a specific TLD are found, the first one is used. If
overrides is NULL , only the built-in information is used. The position of the first
offending character is returned in errpos . Note that the error position refers to the
decoded character offset rather than the byte position in the string.

Return value: Returns the Tld_rc value TLD_SUCCESS if all characters are valid or
when tld is null, TLD_INVALID if a character is not allowed, or additional error codes
on general failure conditions.

tld check lz

[Function]int tld_check_lz (const char * in, size t * errpos, const Tld table
** overrides)

in: Zero-terminated string in the current locales encoding to process.

errpos: Position of offending character is returned here.

overrides: A Tld_table array of additional domain restriction structures that com-
plement and supersede the built-in information.

Chapter 7: TLD Functions 36

Test each of the characters in in for whether or not they are allowed by the information
in overrides or by the built-in TLD restriction data. When data for the same TLD
is available both internally and in overrides , the information in overrides takes
precedence. If several entries for a specific TLD are found, the first one is used. If
overrides is NULL , only the built-in information is used. The position of the first
offending character is returned in errpos . Note that the error position refers to the
decoded character offset rather than the byte position in the string.

Return value: Returns the Tld_rc value TLD_SUCCESS if all characters are valid or
when tld is null, TLD_INVALID if a character is not allowed, or additional error codes
on general failure conditions.

7.5 Error Handling

tld strerror

[Function]const char * tld_strerror (Tld rc rc)
rc: tld return code

Convert a return code integer to a text string. This string can be used to output a
diagnostic message to the user.

TLD SUCCESS: Successful operation. This value is guaranteed to always be zero, the
remaining ones are only guaranteed to hold non-zero values, for logical comparison
purposes.

TLD INVALID: Invalid character found.

TLD NODATA: No input data was provided.

TLD MALLOC ERROR: Error during memory allocation.

TLD ICONV ERROR: Character encoding conversion error.

TLD NO TLD: No top-level domain found in domain string.

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the return code rc .

37

8 PR29 Functions

A deficiency in the specification of Unicode Normalization Forms has been found. The
consequence is that some strings can be normalized into different strings by different im-
plementations. In other words, two different implementations may return different output
for the same input (because the interpretation of the specification is ambiguous). Further,
an implementation invoked again on the one of the output strings may return a different
string (because one of the interpretation of the ambiguous specification make normalization
non-idempotent). Fortunately, only a select few character sequence exhibit this problem,
and none of them are expected to occur in natural languages (due to different linguistic
uses of the involved characters).

A full discussion of the problem may be found at:

http://www.unicode.org/review/pr-29.html

The PR29 functions below allow you to detect the problem sequence. So when would
you want to use these functions? For most applications, such as those using Nameprep
for IDN, this is likely only to be an interoperability problem. Thus, you may not want to
care about it, as the character sequences will rarely occur naturally. However, if you are
using a profile, such as SASLPrep, to process authentication tokens; authorization tokens;
or passwords, there is a real danger that attackers may try to use the peculiarities in these
strings to attack parts of your system. As only a small number of strings, and no naturally
occurring strings, exhibit this problem, the conservative approach of rejecting the strings is
recommended. If this approach is not used, you should instead verify that all parts of your
system, that process the tokens and passwords, use a NFKC implementation that produce
the same output for the same input.

Technically inclined readers may be interested in knowing more about the implementa-
tion aspects of the PR29 flaw. See Appendix A [PR29 discussion], page 62.

8.1 Header file pr29.h

To use the functions explained in this chapter, you need to include the file pr29.h using:

#include <pr29.h>

8.2 Core Functions

pr29 4

[Function]int pr29_4 (const uint32 t * in, size t len)
in: input array with unicode code points.

len: length of input array with unicode code points.

Check the input to see if it may be normalized into different strings by different NFKC
implementations, due to an anomaly in the NFKC specifications.

Return value: Returns the Pr29_rc value PR29_SUCCESS on success, and PR29_

PROBLEM if the input sequence is a "problem sequence" (i.e., may be normalized into
different strings by different implementations).

http://www.unicode.org/review/pr-29.html

Chapter 8: PR29 Functions 38

8.3 Utility Functions

pr29 4z

[Function]int pr29_4z (const uint32 t * in)
in: zero terminated array of Unicode code points.

Check the input to see if it may be normalized into different strings by different NFKC
implementations, due to an anomaly in the NFKC specifications.

Return value: Returns the Pr29_rc value PR29_SUCCESS on success, and PR29_

PROBLEM if the input sequence is a "problem sequence" (i.e., may be normalized into
different strings by different implementations).

pr29 8z

[Function]int pr29_8z (const char * in)
in: zero terminated input UTF-8 string.

Check the input to see if it may be normalized into different strings by different NFKC
implementations, due to an anomaly in the NFKC specifications.

Return value: Returns the Pr29_rc value PR29_SUCCESS on success, and PR29_

PROBLEM if the input sequence is a "problem sequence" (i.e., may be normalized into
different strings by different implementations), or PR29_STRINGPREP_ERROR if there
was a problem converting the string from UTF-8 to UCS-4.

8.4 Error Handling

pr29 strerror

[Function]const char * pr29_strerror (Pr29 rc rc)
rc: an Pr29_rc return code.

Convert a return code integer to a text string. This string can be used to output a
diagnostic message to the user.

PR29 SUCCESS: Successful operation. This value is guaranteed to always be zero,
the remaining ones are only guaranteed to hold non-zero values, for logical comparison
purposes.

PR29 PROBLEM: A problem sequence was encountered.

PR29 STRINGPREP ERROR: The character set conversion failed (only for pr29_
8z()).

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the return code rc .

39

9 Examples

This chapter contains example code which illustrate how ‘Libidn’ can be used when writing
your own application.

9.1 Example 1

This example demonstrates how the stringprep functions are used.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <locale.h> /* setlocale() */

#include <stringprep.h>

/*

* Compiling using libtool and pkg-config is recommended:

*

* $ libtool cc -o example example.c ‘pkg-config --cflags --libs libidn‘

* $./example

* Input string encoded as ‘ISO-8859-1’: a

* Before locale2utf8 (length 2): aa 0a

* Before stringprep (length 3): c2 aa 0a

* After stringprep (length 2): 61 0a

* $

*

*/

int

main (void)

{

char buf[BUFSIZ];

char *p;

int rc;

size_t i;

setlocale (LC_ALL, "");

printf ("Input string encoded as ‘%s’: ", stringprep_locale_charset ());

fflush (stdout);

if (!fgets (buf, BUFSIZ, stdin))

perror ("fgets");

buf[strlen (buf) - 1] = ’\0’;

printf ("Before locale2utf8 (length %ld): ", (long int) strlen (buf));

for (i = 0; i < strlen (buf); i++)

printf ("%02x ", (unsigned) buf[i] & 0xFF);

printf ("\n");

Chapter 9: Examples 40

p = stringprep_locale_to_utf8 (buf);

if (p)

{

strcpy (buf, p);

free (p);

}

else

printf ("Could not convert string to UTF-8, continuing anyway...\n");

printf ("Before stringprep (length %ld): ", (long int) strlen (buf));

for (i = 0; i < strlen (buf); i++)

printf ("%02x ", (unsigned) buf[i] & 0xFF);

printf ("\n");

rc = stringprep (buf, BUFSIZ, 0, stringprep_nameprep);

if (rc != STRINGPREP_OK)

printf ("Stringprep failed (%d): %s\n", rc, stringprep_strerror (rc));

else

{

printf ("After stringprep (length %ld): ", (long int) strlen (buf));

for (i = 0; i < strlen (buf); i++)

printf ("%02x ", (unsigned) buf[i] & 0xFF);

printf ("\n");

}

return 0;

}

9.2 Example 2

This example demonstrates how the punycode functions are used.

#include <locale.h> /* setlocale() */

/*

* This file is derived from RFC 3492 written by Adam M. Costello.

*

* Disclaimer and license: Regarding this entire document or any

* portion of it (including the pseudocode and C code), the author

* makes no guarantees and is not responsible for any damage resulting

* from its use. The author grants irrevocable permission to anyone

* to use, modify, and distribute it in any way that does not diminish

* the rights of anyone else to use, modify, and distribute it,

* provided that redistributed derivative works do not contain

* misleading author or version information. Derivative works need

* not be licensed under similar terms.

*

Chapter 9: Examples 41

*/

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <punycode.h>

/* For testing, we’ll just set some compile-time limits rather than */

/* use malloc(), and set a compile-time option rather than using a */

/* command-line option. */

enum

{

unicode_max_length = 256,

ace_max_length = 256

};

static void

usage (char **argv)

{

fprintf (stderr,

"\n"

"%s -e reads code points and writes a Punycode string.\n"

"%s -d reads a Punycode string and writes code points.\n"

"\n"

"Input and output are plain text in the native character set.\n"

"Code points are in the form u+hex separated by whitespace.\n"

"Although the specification allows Punycode strings to contain\n"

"any characters from the ASCII repertoire, this test code\n"

"supports only the printable characters, and needs the Punycode\n"

"string to be followed by a newline.\n"

"The case of the u in u+hex is the force-to-uppercase flag.\n",

argv[0], argv[0]);

exit (EXIT_FAILURE);

}

static void

fail (const char *msg)

{

fputs (msg, stderr);

exit (EXIT_FAILURE);

}

static const char too_big[] =

"input or output is too large, recompile with larger limits\n";

Chapter 9: Examples 42

static const char invalid_input[] = "invalid input\n";

static const char overflow[] = "arithmetic overflow\n";

static const char io_error[] = "I/O error\n";

/* The following string is used to convert printable */

/* characters between ASCII and the native charset: */

static const char print_ascii[] = "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" " !\"#$%&’()*+,-./" "0123456789:;<=>?" "\0x40" /* at sign */

"ABCDEFGHIJKLMNO"

"PQRSTUVWXYZ[\\]^_" "‘abcdefghijklmno" "pqrstuvwxyz{|}~\n";

int

main (int argc, char **argv)

{

enum punycode_status status;

int r;

size_t input_length, output_length, j;

unsigned char case_flags[unicode_max_length];

setlocale (LC_ALL, "");

if (argc != 2)

usage (argv);

if (argv[1][0] != ’-’)

usage (argv);

if (argv[1][2] != 0)

usage (argv);

if (argv[1][1] == ’e’)

{

uint32_t input[unicode_max_length];

unsigned long codept;

char output[ace_max_length + 1], uplus[3];

int c;

/* Read the input code points: */

input_length = 0;

for (;;)

{

r = scanf ("%2s%lx", uplus, &codept);

if (ferror (stdin))

fail (io_error);

if (r == EOF || r == 0)

break;

Chapter 9: Examples 43

if (r != 2 || uplus[1] != ’+’ || codept > (uint32_t) - 1)

{

fail (invalid_input);

}

if (input_length == unicode_max_length)

fail (too_big);

if (uplus[0] == ’u’)

case_flags[input_length] = 0;

else if (uplus[0] == ’U’)

case_flags[input_length] = 1;

else

fail (invalid_input);

input[input_length++] = codept;

}

/* Encode: */

output_length = ace_max_length;

status = punycode_encode (input_length, input, case_flags,

&output_length, output);

if (status == punycode_bad_input)

fail (invalid_input);

if (status == punycode_big_output)

fail (too_big);

if (status == punycode_overflow)

fail (overflow);

assert (status == punycode_success);

/* Convert to native charset and output: */

for (j = 0; j < output_length; ++j)

{

c = output[j];

assert (c >= 0 && c <= 127);

if (print_ascii[c] == 0)

fail (invalid_input);

output[j] = print_ascii[c];

}

output[j] = 0;

r = puts (output);

if (r == EOF)

fail (io_error);

return EXIT_SUCCESS;

Chapter 9: Examples 44

}

if (argv[1][1] == ’d’)

{

char input[ace_max_length + 2], *p, *pp;

uint32_t output[unicode_max_length];

/* Read the Punycode input string and convert to ASCII: */

if (!fgets (input, ace_max_length + 2, stdin))

fail (io_error);

if (ferror (stdin))

fail (io_error);

if (feof (stdin))

fail (invalid_input);

input_length = strlen (input) - 1;

if (input[input_length] != ’\n’)

fail (too_big);

input[input_length] = 0;

for (p = input; *p != 0; ++p)

{

pp = strchr (print_ascii, *p);

if (pp == 0)

fail (invalid_input);

*p = pp - print_ascii;

}

/* Decode: */

output_length = unicode_max_length;

status = punycode_decode (input_length, input, &output_length,

output, case_flags);

if (status == punycode_bad_input)

fail (invalid_input);

if (status == punycode_big_output)

fail (too_big);

if (status == punycode_overflow)

fail (overflow);

assert (status == punycode_success);

/* Output the result: */

for (j = 0; j < output_length; ++j)

{

r = printf ("%s+%04lX\n",

case_flags[j] ? "U" : "u", (unsigned long) output[j]);

Chapter 9: Examples 45

if (r < 0)

fail (io_error);

}

return EXIT_SUCCESS;

}

usage (argv);

return EXIT_SUCCESS; /* not reached, but quiets compiler warning */

}

9.3 Example 3

This example demonstrates how the library is used to convert internationalized domain
names into ASCII compatible names.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <locale.h> /* setlocale() */

#include <stringprep.h> /* stringprep_locale_charset() */

#include <idna.h> /* idna_to_ascii_lz() */

/*

* Compiling using libtool and pkg-config is recommended:

*

* $ libtool cc -o example3 example3.c ‘pkg-config --cflags --libs libidn‘

* $./example3

* Input domain encoded as ‘ISO-8859-1’: www.räksmörgåsa.example

* Read string (length 23): 77 77 77 2e 72 e4 6b 73 6d f6 72 67 e5 73 aa 2e 65 78 61 6d 70 6c 65

* ACE label (length 33): ’www.xn--rksmrgsa-0zap8p.example’

* 77 77 77 2e 78 6e 2d 2d 72 6b 73 6d 72 67 73 61 2d 30 7a 61 70 38 70 2e 65 78 61 6d 70 6c 65

* $

*

*/

int

main (void)

{

char buf[BUFSIZ];

char *p;

int rc;

size_t i;

setlocale (LC_ALL, "");

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());

fflush (stdout);

Chapter 9: Examples 46

if (!fgets (buf, BUFSIZ, stdin))

perror ("fgets");

buf[strlen (buf) - 1] = ’\0’;

printf ("Read string (length %ld): ", (long int) strlen (buf));

for (i = 0; i < strlen (buf); i++)

printf ("%02x ", (unsigned) buf[i] & 0xFF);

printf ("\n");

rc = idna_to_ascii_lz (buf, &p, 0);

if (rc != IDNA_SUCCESS)

{

printf ("ToASCII() failed (%d): %s\n", rc, idna_strerror (rc));

return EXIT_FAILURE;

}

printf ("ACE label (length %ld): ’%s’\n", (long int) strlen (p), p);

for (i = 0; i < strlen (p); i++)

printf ("%02x ", (unsigned) p[i] & 0xFF);

printf ("\n");

free (p);

return 0;

}

9.4 Example 4

This example demonstrates how the library is used to convert ASCII compatible names to
internationalized domain names.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <locale.h> /* setlocale() */

#include <stringprep.h> /* stringprep_locale_charset() */

#include <idna.h> /* idna_to_unicode_lzlz() */

/*

* Compiling using libtool and pkg-config is recommended:

*

* $ libtool cc -o example4 example4.c ‘pkg-config --cflags --libs libidn‘

* $./example4

* Input domain encoded as ‘ISO-8859-1’: www.xn--rksmrgsa-0zap8p.example

* Read string (length 33): 77 77 77 2e 78 6e 2d 2d 72 6b 73 6d 72 67 73 61 2d 30 7a 61 70 38 70 2e 65 78 61 6d 70 6c 65

* ACE label (length 23): ’www.räksmörgåsa.example’

* 77 77 77 2e 72 e4 6b 73 6d f6 72 67 e5 73 61 2e 65 78 61 6d 70 6c 65

* $

Chapter 9: Examples 47

*

*/

int

main (void)

{

char buf[BUFSIZ];

char *p;

int rc;

size_t i;

setlocale (LC_ALL, "");

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());

fflush (stdout);

if (!fgets (buf, BUFSIZ, stdin))

perror ("fgets");

buf[strlen (buf) - 1] = ’\0’;

printf ("Read string (length %ld): ", (long int) strlen (buf));

for (i = 0; i < strlen (buf); i++)

printf ("%02x ", (unsigned) buf[i] & 0xFF);

printf ("\n");

rc = idna_to_unicode_lzlz (buf, &p, 0);

if (rc != IDNA_SUCCESS)

{

printf ("ToUnicode() failed (%d): %s\n", rc, idna_strerror (rc));

return EXIT_FAILURE;

}

printf ("ACE label (length %ld): ’%s’\n", (long int) strlen (p), p);

for (i = 0; i < strlen (p); i++)

printf ("%02x ", (unsigned) p[i] & 0xFF);

printf ("\n");

free (p);

return 0;

}

9.5 Example 5

This example demonstrates how the library is used to check a string for invalid characters
within a specific TLD.

#include <stdio.h>

#include <stdlib.h>

Chapter 9: Examples 48

#include <string.h>

/* Get stringprep_locale_charset, etc. */

#include <stringprep.h>

/* Get idna_to_ascii_8z, etc. */

#include <idna.h>

/* Get tld_check_4z. */

#include <tld.h>

/*

* Compiling using libtool and pkg-config is recommended:

*

* $ libtool cc -o example5 example5.c ‘pkg-config --cflags --libs libidn‘

* $./example5

* Input domain encoded as ‘UTF-8’: fooß.no

* Read string (length 8): 66 6f 6f c3 9f 2e 6e 6f

* ToASCII string (length 8): fooss.no

* ToUnicode string: U+0066 U+006f U+006f U+0073 U+0073 U+002e U+006e U+006f

* Domain accepted by TLD check

*

* $./example5

* Input domain encoded as ‘UTF-8’: green.no
* Read string (length 12): 67 72 e2 82 ac e2 82 ac 6e 2e 6e 6f

* ToASCII string (length 16): xn--grn-l50aa.no

* ToUnicode string: U+0067 U+0072 U+20ac U+20ac U+006e U+002e U+006e U+006f

* Domain rejected by TLD check, Unicode position 2

*

*/

int

main (void)

{

char buf[BUFSIZ];

char *p;

uint32_t *r;

int rc;

size_t errpos, i;

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());

fflush (stdout);

if (!fgets (buf, BUFSIZ, stdin))

perror ("fgets");

buf[strlen (buf) - 1] = ’\0’;

printf ("Read string (length %ld): ", (long int) strlen (buf));

Chapter 9: Examples 49

for (i = 0; i < strlen (buf); i++)

printf ("%02x ", (unsigned) buf[i] & 0xFF);

printf ("\n");

p = stringprep_locale_to_utf8 (buf);

if (p)

{

strcpy (buf, p);

free (p);

}

else

printf ("Could not convert string to UTF-8, continuing anyway...\n");

rc = idna_to_ascii_8z (buf, &p, 0);

if (rc != IDNA_SUCCESS)

{

printf ("idna_to_ascii_8z failed (%d): %s\n", rc, idna_strerror (rc));

return 2;

}

printf ("ToASCII string (length %ld): %s\n", (long int) strlen (p), p);

rc = idna_to_unicode_8z4z (p, &r, 0);

free (p);

if (rc != IDNA_SUCCESS)

{

printf ("idna_to_unicode_8z4z failed (%d): %s\n",

rc, idna_strerror (rc));

return 2;

}

printf ("ToUnicode string: ");

for (i = 0; r[i]; i++)

printf ("U+%04x ", r[i]);

printf ("\n");

rc = tld_check_4z (r, &errpos, NULL);

free (r);

if (rc == TLD_INVALID)

{

printf ("Domain rejected by TLD check, Unicode position %ld\n",

(long int) errpos);

return 1;

}

else if (rc != TLD_SUCCESS)

{

printf ("tld_check_4z() failed (%d): %s\n", rc, tld_strerror (rc));

Chapter 9: Examples 50

return 2;

}

printf ("Domain accepted by TLD check\n");

return 0;

}

51

10 Invoking idn

10.1 Name

GNU Libidn (idn) – Internationalized Domain Names command line tool

10.2 Description

idn allows internationalized string preparation (‘stringprep’), encoding and decoding of
punycode data, and IDNA ToASCII/ToUnicode operations to be performed on the com-
mand line.

If strings are specified on the command line, they are used as input and the computed
output is printed to standard output stdout. If no strings are specified on the command
line, the program read data, line by line, from the standard input stdin, and print the
computed output to standard output. What processing is performed (e.g., ToASCII, or
Punycode encode) is indicated by options. If any errors are encountered, the execution of
the applications is aborted.

All strings are expected to be encoded in the preferred charset used by your locale. Use
--debug to find out what this charset is. You can override the charset used by setting
environment variable CHARSET.

To process a string that starts with -, for example -foo, use -- to signal the end of
parameters, as in idn --quiet -a -- -foo.

10.3 Options

idn recognizes these commands:

-h, --help Print help and exit

-V, --version Print version and exit

-s, --stringprep Prepare string according to nameprep profile

-d, --punycode-decode Decode Punycode

-e, --punycode-encode Encode Punycode

-a, --idna-to-ascii Convert to ACE according to IDNA (default mode)

-u, --idna-to-unicode Convert from ACE according to IDNA

--allow-unassigned Toggle IDNA AllowUnassigned flag (default off)

--usestd3asciirules Toggle IDNA UseSTD3ASCIIRules flag (default off)

--no-tld Don’t check string for TLD specific rules

-n, --nfkc Normalize string according to Unicode v3.2 NFKC

-p, --profile=STRING Use specified stringprep profile instead

--debug Print debugging information

--quiet Silent operation

10.4 Environment Variables

The CHARSET environment variable can be used to override what character set to be used
for decoding incoming data (i.e., on the command line or on the standard input stream),

Chapter 10: Invoking idn 52

and to encode data to the standard output. If your system is set up correctly, however, the
application will guess which character set is used automatically. Example usage:

$ CHARSET=ISO-8859-1 idn --punycode-encode

...

10.5 Examples

Standard usage, reading input from standard input. The parameter --quiet disable print-
ing copyright, license and usage instructions.

jas@latte:~$ idn --quiet

räksmörgås.se

xn--rksmrgs-5wao1o.se

jas@latte:~$

Reading input from command line:

jas@latte:~$ idn --quiet räksmörgås.se blåbærgrød.no

xn--rksmrgs-5wao1o.se

xn--blbrgrd-fxak7p.no

jas@latte:~$

Accessing a specific StringPrep profile directly:

jas@latte:~$ idn --quiet --profile=SASLprep --stringprep teßta

teßta

jas@latte:~$

10.6 Troubleshooting

Getting character data encoded right, and making sure Libidn use the same encoding, can
be difficult. The reason for this is that most systems encode character data in more than
one character encoding, i.e., using UTF-8 together with ISO-8859-1 or ISO-2022-JP. This
problem is likely to continue to exist until only one character encoding come out as the
evolutionary winner, or (more likely, at least to some extents) forever.

The first step to troubleshooting character encoding problems with Libidn is to use the
‘--debug’ parameter to find out which character set encoding ‘idn’ believe your locale uses.

jas@latte:~$ idn --debug --quiet ""

system locale uses charset ‘UTF-8’.

jas@latte:~$

If it prints ANSI_X3.4-1968 (i.e., US-ASCII), this indicate you have not configured your
locale properly. To configure the locale, you can, for example, use ‘LANG=sv_SE.UTF-8;
export LANG’ at a /bin/sh prompt, to set up your locale for a Swedish environment using
UTF-8 as the encoding.

Sometimes ‘idn’ appear to be unable to translate from your system locale into UTF-8

(which is used internally), and you get an error like the following:

jas@latte:~$ idn --quiet foo

idn: could not convert from ISO-8859-1 to UTF-8.

jas@latte:~$

Chapter 10: Invoking idn 53

The simplest explanation is that you haven’t installed the ‘iconv’ conversion tools. You
can find it as a standalone library in GNU Libiconv (https://www.gnu.org/software/
libiconv/). On many GNU/Linux systems, this library is part of the system, but you may
have to install additional packages (e.g., ‘glibc-locale’ for Debian) to be able to use it.

Another explanation is that the error is correct and you are feeding ‘idn’ invalid data.
This can happen inadvertently if you are not careful with the character set encoding you use.
For example, if your shell run in a ISO-8859-1 environment, and you invoke ‘idn’ with the
‘CHARSET’ environment variable as follows, you will feed it ISO-8859-1 characters but force
it to believe they are UTF-8. Naturally this will lead to an error, unless the byte sequences
happen to be valid UTF-8. Note that even if you don’t get an error, the output may be
incorrect in this situation, because ISO-8859-1 and UTF-8 does not in general encode the
same characters as the same byte sequences.

jas@latte:~$ idn --quiet --debug ""

system locale uses charset ‘ISO-8859-1’.

jas@latte:~$ CHARSET=UTF-8 idn --quiet --debug räksmörgås

system locale uses charset ‘UTF-8’.

input[0] = U+0072

input[1] = U+4af3

input[2] = U+006d

input[3] = U+1b29e5

input[4] = U+0073

output[0] = U+0078

output[1] = U+006e

output[2] = U+002d

output[3] = U+002d

output[4] = U+0072

output[5] = U+006d

output[6] = U+0073

output[7] = U+002d

output[8] = U+0068

output[9] = U+0069

output[10] = U+0036

output[11] = U+0064

output[12] = U+0035

output[13] = U+0039

output[14] = U+0037

output[15] = U+0035

output[16] = U+0035

output[17] = U+0032

output[18] = U+0061

xn--rms-hi6d597552a

jas@latte:~$

The sense moral here is to forget about ‘CHARSET’ (configure your locales properly in-
stead) unless you know what you are doing, and if you want to use it, do it carefully, after
verifying with ‘--debug’ that you get the desired results.

https://www.gnu.org/software/libiconv/
https://www.gnu.org/software/libiconv/

54

11 Emacs API

Included in Libidn are punycode.el and idna.el that provides an Emacs Lisp API to (a
limited set of) the Libidn API. This section describes the API. Currently the IDNA API
always set the UseSTD3ASCIIRules flag and clear the AllowUnassigned flag, in the future
there may be functionality to specify these flags via the API.

11.1 Punycode Emacs API

[Variable]punycode-program
Name of the GNU Libidn idn application. The default is ‘idn’. This variable can be
customized.

[Variable]punycode-environment
List of environment variable definitions prepended to ‘process-environment’. The
default is ‘("CHARSET=UTF-8")’. This variable can be customized.

[Variable]punycode-encode-parameters
List of parameters passed to punycode-program to invoke punycode encoding
mode. The default is ‘("--quiet" "--punycode-encode")’. This variable can be
customized.

[Variable]punycode-decode-parameters
Parameters passed to punycode-program to invoke punycode decoding mode. The
default is ‘("--quiet" "--punycode-decode")’. This variable can be customized.

[Function]punycode-encode string
Returns a Punycode encoding of the string, after converting the input into UTF-8.

[Function]punycode-decode string
Returns a possibly multibyte string which is the decoding of the string which is a
punycode encoded string.

11.2 IDNA Emacs API

[Variable]idna-program
Name of the GNU Libidn idn application. The default is ‘idn’. This variable can be
customized.

[Variable]idna-environment
List of environment variable definitions prepended to ‘process-environment’. The
default is ‘("CHARSET=UTF-8")’. This variable can be customized.

[Variable]idna-to-ascii-parameters
List of parameters passed to idna-program to invoke IDNA ToASCII mode. The de-
fault is ‘("--quiet" "--idna-to-ascii" "--usestd3asciirules")’. This variable
can be customized.

Chapter 11: Emacs API 55

[Variable]idna-to-unicode-parameters
Parameters passed idna-program to invoke IDNA ToUnicode mode. The default is
‘("--quiet" "--idna-to-unicode" "--usestd3asciirules")’. This variable can
be customized.

[Function]idna-to-ascii string
Returns an ASCII Compatible Encoding (ACE) of the string computed by the IDNA
ToASCII operation on the input string, after converting the input to UTF-8.

[Function]idna-to-unicode string
Returns a possibly multibyte string which is the output of the IDNA ToUnicode
operation computed on the input string.

56

12 Java API

Libidn has been ported to the Java programming language, and as a consequence most of
the API is available to native Java applications. This section contain notes on this support,
complete documentation is pending.

The Java library, if Libidn has been built with Java support (see Section 1.7 [Download-
ing and Installing], page 6), will be placed in java/libidn-1.42.jar. The source code is
below java/ in Maven directory layout, and there is a Maven pom.xml build script as well.
Source code files are in java/src/main/java/gnu/inet/encoding/.

12.1 Overview

This package provides a Java implementation of the Internationalized Domain Names in
Applications (IDNA) standard. It is written entirely in Java and does not require any
additional libraries to be set up.

The gnu.inet.encoding.IDNA class offers two public functions, toASCII and toUnicode
which can be used as follows:

gnu.inet.encoding.IDNA.toASCII("blöds.züg");

gnu.inet.encoding.IDNA.toUnicode("xn--blds-6qa.xn--zg-xka");

12.2 Miscellaneous Programs

The java/src/util/java/ directory contains several programs that are related to the Java
part of GNU Libidn, but that don’t need to be included in the main source tree or the JAR
file.

12.2.1 GenerateRFC3454

This program parses RFC3454 and creates the RFC3454.java program that is required
during the StringPrep phase.

The RFC can be found at various locations, for example at http://www.ietf.org/rfc/
rfc3454.txt.

Invoke the program as follows:

$ java GenerateRFC3454

Creating RFC3454.java... Ok.

12.2.2 GenerateNFKC

The GenerateNFKC program parses the Unicode character database file and generates
all the tables required for NFKC. This program requires the two files UnicodeData.txt
and CompositionExclusions.txt of version 3.2 of the Unicode files. Note that RFC3454
(Stringprep) defines that Unicode version 3.2 is to be used, not the latest version.

The Unicode data files can be found at http://www.unicode.org/Public/.

Invoke the program as follows:

$ java GenerateNFKC

Creating CombiningClass.java... Ok.

Creating DecompositionKeys.java... Ok.

http://www.ietf.org/rfc/rfc3454.txt
http://www.ietf.org/rfc/rfc3454.txt
http://www.unicode.org/Public/

Chapter 12: Java API 57

Creating DecompositionMappings.java... Ok.

Creating Composition.java... Ok.

12.2.3 TestIDNA

The TestIDNA program allows to test the IDNA implementation manually or against Simon
Josefsson’s test vectors.

The test vectors can be found at the Libidn homepage, https://www.gnu.org/

software/libidn/.

To test the transformation manually, use:

$ java -cp .:/usr/share/java/libidn.jar TestIDNA -a <string to test>

Input: <string to test>

Output: <toASCII(string to test)>

$ java -cp .:/usr/share/java/libidn.jar TestIDNA -u <string to test>

Input: <string to test>

Output: <toUnicode(string to test)>

To test against draft-josefsson-idn-test-vectors.html, use:

$ java -cp .:/usr/share/java/libidn/libidn.jar TestIDNA -t

No errors detected!

12.2.4 TestNFKC

The TestNFKC program allows to test the NFKC implementation manually or against the
NormalizationTest.txt file from the Unicode data files.

To test the normalization manually, use:

$ java -cp .:/usr/share/java/libidn.jar TestNFKC <string to test>

Input: <string to test>

Output: <nfkc version of the string to test>

To test against NormalizationTest.txt:

$ java -cp .:/usr/share/java/libidn.jar TestNFKC

No errors detected!

12.3 Possible Problems

Beware of Bugs: This Java API needs a lot more testing, especially with "exotic" character
sets. While it works for me, it may not work for you.

Encoding of your Java sources: If you are using non-ASCII characters in your Java source
code, make sure javac compiles your programs with the correct encoding. If necessary specify
the encoding using the -encoding parameter.

Java Unicode handling: Java 1.4 only handles 16-bit Unicode code points (i.e. characters
in the Basic Multilingual Plane), this implementation therefore ignores all references to so-
called Supplementary Characters (U+10000 to U+10FFFF). Starting from Java 1.5, these
characters will also be supported by Java, but this will require changes to this library. See
also the next section.

https://www.gnu.org/software/libidn/
https://www.gnu.org/software/libidn/

Chapter 12: Java API 58

12.4 A Note on Java and Unicode

This library uses Java’s built-in ’char’ datatype. Up to Java 1.4, this datatype only supports
16-bit Unicode code points, also called the Basic Multilingual Plane. For this reason,
this library doesn’t work for Supplementary Characters (i.e. characters from U+10000 to
U+10FFFF). All references to such characters are silently ignored.

Starting from Java 1.5, also Supplementary Characters will be supported. However, this
will require changes in the present version of the library. Java 1.5 is currently in beta status.

For more information refer to the documentation of java.lang.Character in the JDK API.

59

13 C# API

The Libidn library has been ported to the C# language. The port reside in the top-level
csharp/ directory. Currently, no further documentation about the implementation or the
API is available. However, the C# port was based on the Java port, and the API is exactly
the same as in the Java version. The help files for the Java API may thus be useful.

60

14 Acknowledgements

The punycode implementation was taken from the IETF IDN Punycode specification, by
Adam M. Costello. The TLD code was contributed by Thomas Jacob. The Java imple-
mentation was contributed by Oliver Hitz. The C# implementation was contributed by
Alexander Gnauck. The Unicode tables were provided by Unicode, Inc. Some functions for
dealing with Unicode (see nfkc.c and toutf8.c) were borrowed from GLib, downloaded from
http://www.gtk.org/. The manual borrowed text from Libgcrypt by Werner Koch.

Inspiration for many things that, consciously or not, have gone into this package is due
to a number of free software package that the author has been exposed to. The author
wishes to acknowledge the free software community in general, for giving an example on
what role software development can play in the modern society.

Several people reported bugs, sent patches or suggested improvements, see the file
THANKS in the top-level directory of the source code.

http://www.gtk.org/

61

15 History

The complete history of user visible changes is stored in the file NEWS in the top-level
directory of the source code tree. The complete history of modifications to each file is stored
in the file ChangeLog in the same directory. This section contain a condensed version of
that information, in the form of “milestones” for the project.

Stringprep implementation.
Version 0.0.0 released on 2002-11-05.

IDNA and Punycode implementations, part of the GNU project.
Version 0.1.0 released on 2003-01-05.

Uses official IDNA ACE prefix xn--.
Version 0.1.7 released on 2003-02-12.

Command line interface.
Version 0.1.11 released on 2003-02-26.

GNU Libc add-on proposed.
Version 0.1.12 released on 2003-03-06.

Interoperability testing during IDNConnect.
Version 0.3.1 released on 2003-10-02.

TLD restriction testing.
Version 0.4.0 released on 2004-02-28.

GNU Libc add-on integrated.
Version 0.4.1 released on 2004-03-08.

Native Java implementation.
Version 0.4.2-0.4.9 released between 2004-03-20 and 2004-06-11.

PR-29 functions for “problem sequences”.
Version 0.5.0 released on 2004-06-26.

Many small portability fixes and wider use.
Version 0.5.1 through 0.5.20, released between 2004-07-09 and 2005-10-23.

Native C# implementation.
Version 0.6.0 released on 2005-12-03.

Windows support through cross-compilation.
Version 0.6.1 released on 2006-01-20.

Library declared stable by releasing v1.0.
Version 1.0 released on 2007-07-31.

62

Appendix A PR29 discussion

If you wish to experiment with a modified Unicode NFKC implementation according to the
PR29 proposal, you may find the following bug report useful. However, I have not verified
that the suggested modifications are correct. For reference, I’m including my response to
the report as well.

From: Rick McGowan <rick@unicode.org>

Subject: Possible bug and status of PR 29 change(s)

To: bug-libidn@gnu.org

Date: Wed, 27 Oct 2004 14:49:17 -0700

Hello. On behalf of the Unicode Consortium editorial committee, I would

like to find out more information about the PR 29 fixes, if any, and

functions in Libidn. Your implementation was listed in the text of PR29 as

needing investigation, so I am following up on several implementations.

The UTC has accepted the proposed fix to D2 as outlined in PR29, and a new

draft of UAX #15 has been issued.

I have looked at Libidn 0.5.8 (today), and there may still be a possible

bug in NFKC.java and nfkc.c.

--

1. In NFKC.java, this line in canonicalOrdering():

if (i > 0 && (last_cc == 0 || last_cc != cc)) {

should perhaps be changed to:

if (i > 0 && (last_cc == 0 || last_cc < cc)) {

but I’m not sure of the sense of this comparison.

--

2. In nfkc.c, function _g_utf8_normalize_wc() has this code:

if (i > 0 &&

(last_cc == 0 || last_cc != cc) &&

combine (wc_buffer[last_start], wc_buffer[i],

&wc_buffer[last_start]))

{

This appears to have the same bug as the current Python implementation (in

Python 2.3.4). The code should be checking, as per new rule D2 UAX #15

update, that the next combining character is the same or HIGHER than the

Appendix A: PR29 discussion 63

current one. It now checks to see if it’s non-zero and not equal.

The above line(s) should perhaps be changed to:

if (i > 0 &&

(last_cc == 0 || last_cc < cc) &&

combine (wc_buffer[last_start], wc_buffer[i],

&wc_buffer[last_start]))

{

but I’m not sure of the sense of the comparison (< or > or <=?) here.

In the text of PR29, I will be marking Libidn as "needs change" and adding

the version number that I checked. If any further change is made, please

let me know the release version, and I’ll update again.

Regards,

Rick McGowan

From: Simon Josefsson <jas@extundo.com>

Subject: Re: Possible bug and status of PR 29 change(s)

To: Rick McGowan <rick@unicode.org>

Cc: bug-libidn@gnu.org

Date: Thu, 28 Oct 2004 09:47:47 +0200

Rick McGowan <rick@unicode.org> writes:

> Hello. On behalf of the Unicode Consortium editorial committee, I would

> like to find out more information about the PR 29 fixes, if any, and

> functions in Libidn. Your implementation was listed in the text of PR29 as

> needing investigation, so I am following up on several implementations.

>

> The UTC has accepted the proposed fix to D2 as outlined in PR29, and a new

> draft of UAX #15 has been issued.

>

> I have looked at Libidn 0.5.8 (today), and there may still be a possible

> bug in NFKC.java and nfkc.c.

Hello Rick.

I believe the current behavior is intentional. Libidn do not aim to

implement latest-and-greatest NFKC, it aim to implement the NFKC

functionality required for StringPrep and IDN. As you may know,

StringPrep/IDN reference Unicode 3.2.0, and explicitly says any later

changes (which I consider PR29 as) do not apply.

In fact, I believe that would I incorporate the changes suggested in

Appendix A: PR29 discussion 64

PR29, I would in fact be violating the IDN specifications.

Thanks for looking into the code and finding the place where the

change could be made. I’ll see if I can mention this in the manual

somewhere, for technically interested readers.

Regards,

Simon

65

Appendix B On Label Separators

Some strings contains characters whose NFKC normalized form contain the ASCII dot
(0x2E, “.”). Examples of these characters are U+2024 (ONE DOT LEADER) and U+248C
(DIGIT FIVE FULL STOP). The strings have the interesting property that their IDNA
ToASCII output will contain embedded dots. For example:

ToASCII (hi U+248C com) = hi5.com

ToASCII (räksmörgås U+2024 com) = xn--rksmrgs.com-l8as9u

This demonstrate the two general cases: The first where the ASCII dot is part of an
output that do not begin with the IDN prefix xn--. The second example illustrate when
the dot is part of IDN prefixed with xn--.

The input strings are, from the DNS point of view, a single label. The IDNA algorithm
translate one label at a time. Thus, the output is expected to be only one label. What
is important here is to make sure the DNS resolver receives the correct query. The DNS
protocol does not use the dot to delimit labels on the wire, rather it uses length-value
pairs. Thus the correct query would be for {7}hi5.com and {22}xn--rksmrgs.com-l8as9u

respectively.

Some implementations1 have decided that these inputs strings are potentially confusing
for the user. The string hi U+248C com looks like hi5.com on systems that support Unicode
properly. These implementations do not follow RFC 3490. They yield:

ToASCII (hi U+248C com) = hi5.com

ToASCII (räksmörgås U+2024 com) = xn--rksmrgs-5wao1o.com

The DNS query they perform are {3}hi5{3}com and {18}xn--rksmrgs-5wao1o{3}com

respectively. Arguably, this leads to a better user experience, and suggests that the IDNA
specification is sub-optimal in this area.

B.1 Recommended Workaround

It has been suggested to normalize the entire input string using NFKC before passing it to
IDNA ToASCII. You may use stringprep_utf8_nfkc_normalize or stringprep_ucs4_

nfkc_normalize. This appears to lead to similar behaviour as IE/Firefox, which would
avoid the problem, but this needs to be confirmed. Feel free to discuss the issue with us.

Alternative workarounds are being considered. Eventually Libidn may implement a new
flag to the idna_* functions that implements a recommended way to work around this
problem.

1 Notably Microsoft’s Internet Explorer and Mozilla’s Firefox, but not Apple’s Safari.

66

Appendix C GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

Appendix C: GNU Free Documentation License 67

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: GNU Free Documentation License 68

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix C: GNU Free Documentation License 69

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: GNU Free Documentation License 70

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: GNU Free Documentation License 71

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix C: GNU Free Documentation License 72

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/

Appendix C: GNU Free Documentation License 73

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

74

Function and Variable Index

I

idn_free . 13

idna-to-ascii . 55

idna-to-unicode . 55

idna_strerror . 30

idna_to_ascii_4i . 27

idna_to_ascii_4z . 28

idna_to_ascii_8z . 28

idna_to_ascii_lz . 28

idna_to_unicode_44i . 27

idna_to_unicode_4z4z . 29

idna_to_unicode_8z4z . 29

idna_to_unicode_8z8z . 29

idna_to_unicode_8zlz . 30

idna_to_unicode_lzlz . 30

P

pr29_4 . 37

pr29_4z . 38

pr29_8z . 38

pr29_strerror . 38

punycode-decode . 54

punycode-encode . 54

punycode_decode . 24

punycode_encode . 23

punycode_strerror . 25

S
stringprep . 20
stringprep_4i . 18
stringprep_4zi . 19
stringprep_check_version . 10
stringprep_convert . 16
stringprep_iscsi . 22
stringprep_locale_charset 16
stringprep_locale_to_utf8 16
stringprep_nameprep_no_unassigned 21
stringprep_plain . 22
stringprep_profile . 20
stringprep_strerror . 21
stringprep_ucs4_nfkc_normalize 15
stringprep_ucs4_to_utf8 . 14
stringprep_unichar_to_utf8 14
stringprep_utf8_nfkc_normalize 15
stringprep_utf8_to_locale 16
stringprep_utf8_to_ucs4 . 15
stringprep_utf8_to_unichar 14
stringprep_xmpp_nodeprep . 22
stringprep_xmpp_resourceprep 22

T
tld_check_4 . 34
tld_check_4t . 32
tld_check_4tz . 32
tld_check_4z . 35
tld_check_8z . 35
tld_check_lz . 35
tld_default_table . 34
tld_get_4 . 33
tld_get_4z . 33
tld_get_table . 34
tld_get_z . 33
tld_strerror . 36

75

Concept Index

A
AIX . 4
ARM . 5
Autoconf tests . 11

C
command line . 51
Compiling your application . 11
Configure tests . 11
Contributing . 8

D
de-allocation . 12
Debian . 3
Download . 6

E
Examples . 39

F
free . 12
FreeBSD . 5

H
Hacking . 8
heap memory . 12
HP-UX . 4

I
IBM . 5
idn . 51
IDNA Functions . 26
Installation . 6
invoking idn . 51
IRIX . 4

M
MacOS X . 5
Mandrake . 4
Memory handling . 12
Microsoft . 5
mingw32 . 5
Motorola Coldfire . 5

N
NetBSD . 5

O
OpenBSD . 5
OpenPower 720 . 4
OS/2 . 5

P
PR29 Functions . 37
Punycode Functions . 23

R
RedHat . 4
RedHat Advanced Server . 4
Reporting Bugs . 7

S
Solaris . 4
Stringprep Functions . 18
SuSE . 4
SuSE Linux . 4

T
TLD Functions . 32
Tru64 . 4

U
uClibc . 5
uClinux . 5
Utility Functions . 14

W
Windows . 4, 5

	1 Introduction
	Getting Started
	Features
	Library Overview
	Supported Platforms
	Getting help
	Commercial Support
	Downloading and Installing
	Installing under Windows

	Bug Reports
	Contributing

	2 Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests
	Memory handling under Windows
	Header file idn-free.h
	Memory de-allocation function

	3 Utility Functions
	Header file stringprep.h
	Unicode Encoding Transformation
	Unicode Normalization
	Character Set Conversion

	4 Stringprep Functions
	Header file stringprep.h
	Defining A Stringprep Profile
	Control Flags
	Core Functions
	Error Handling
	Stringprep Profile Macros

	5 Punycode Functions
	Header file punycode.h
	Unicode Code Point Data Type
	Core Functions
	Error Handling

	6 IDNA Functions
	Header file idna.h
	Control Flags
	Prefix String
	Core Functions
	Simplified ToASCII Interface
	Simplified ToUnicode Interface
	Error Handling

	7 TLD Functions
	Header file tld.h
	Core Functions
	Utility Functions
	High-Level Wrapper Functions
	Error Handling

	8 PR29 Functions
	Header file pr29.h
	Core Functions
	Utility Functions
	Error Handling

	9 Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	10 Invoking idn
	Name
	Description
	Options
	Environment Variables
	Examples
	Troubleshooting

	11 Emacs API
	Punycode Emacs API
	IDNA Emacs API

	12 Java API
	Overview
	Miscellaneous Programs
	GenerateRFC3454
	GenerateNFKC
	TestIDNA
	TestNFKC

	Possible Problems
	A Note on Java and Unicode

	13 C# API
	14 Acknowledgements
	15 History
	A PR29 discussion
	B On Label Separators
	Recommended Workaround

	C GNU Free Documentation License
	Function and Variable Index
	Concept Index

