
GNU G-Golf
Edition 0.8.0-rc-4, revision 1, for use with GNU G-Golf 0.8.0-rc-4

The GNU G-Golf Developpers

This manual documents GNU G-Golf version 0.8.0-rc-4.

Copyright (C) 2016 - 2024 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License.”

i

Table of Contents

Preface . 1
Contributors to this Manual . 1
Join the GNU Project . 1
The G-Golf License . 1

I. Introduction . 1
About G-Golf . 1
Obtaining and installing G-Golf . 3
Contact Information . 5
Reporting Bugs . 6

II. Using G-Golf . 6
Before you start . 6

Naming Conventions . 6
GOOPS Notes and Conventions . 9
Configuring Guile for G-Golf . 10
Customizing G-Golf . 11
SXML Support - Emacs users . 12

Getting Started with G-Golf . 12
Hello World! . 13
Selective Import . 15
Scripting . 16
Building Applications . 20
G-Golf on Mobile Devices . 20

Working with GNOME . 20
Import . 20
Events . 21
GObject . 28

G-Golf Valley . 32
Cache Park . 32
Customization Square . 33
VFunc Alley . 39
Utils Arcade . 43

III. G-Golf Core Reference . 44
Overview . 44

Structure and Naming Conventions . 44
Glib . 45

Version Information (1) . 45
Memory Allocation . 46
The Main Event Loop . 46
IO Channels . 50

ii

Miscellaneous Utility Functions . 51
UNIX-specific utilities and integration . 53
Doubly-Linked Lists . 53
Singly-Linked Lists . 55
Byte Arrays . 56
Quarks . 56

GObject . 57
Type Information . 57
GObject . 62
Enumeration and Flag Types . 65
Boxed Types . 65
Generic Values . 66
Parameters and Values . 67
GParamSpec . 75
Closures . 78
Signals . 80

GObject Introspection . 84
Repository . 84
Typelib . 86
Common Types . 87
Version Information (2) . 89
Base Info . 89
Callable Info . 92
Function Info . 94
Signal Info . 97
VFunc Info . 97
Registered Type Info . 99
Enum Info . 100
Struct Info . 102
Union Info . 104
Object Info . 105
Interface Info . 110
Arg Info . 114
Constant Info . 117
Field Info . 118
Property Info . 119
Type Info . 120
FFI Interface . 122
Utilities . 123

Support . 127
Module . 127
Goops . 128
Enum . 129
Flags . 131
Struct . 132
Union . 134
Utilities . 136

iii

G-Golf High Level API . 139
Closure . 139
Function . 141
Import . 147
Utilities . 151

Appendix A GNU Free Documentation
License . 151

Concept Index . 160

Procedure Index . 161

Variable Index . 167

Type Index . 168

List of Examples . 169

I. Introduction 1

Preface

This manual describes how to use G-Golf. It relates particularly to G-Golf version 0.8.0-rc-4.

Contributors to this Manual

Like G-Golf itself, the G-Golf reference manual is a living entity. Right now, the contributor
to this manual is:

• David Pirotte

who is also the author and maintainer of G-Golf.

You are most welcome to join and help. Visit G-Golf’s web site at http://www.gnu.org/software/g-golf/
to find out how to get involved.

Join the GNU Project

G-Golf (http://www.gnu.org/software/g-golf/) is part of the GNU Operating System,
developed by the GNU Project (http://www.gnu.org/).

If you are the author of an awesome program and want to join us in writing
Free (libre) Software, please consider making it an official GNU program and
become a GNU Maintainer. You can find instructions on how to do this here
(https://www.gnu.org/help/evaluation.html).

You don’t have a program to contribute? Look at all the other ways you may help
(https://www.gnu.org/help/help.html).

To learn more about Free (libre) Software, you can read and please share this page
(https://gnu.org/philosophy/free-sw.html).

The G-Golf License

GNU G-Golf is Free Software. GNU G-Golf is copyrighted, not public domain, and there
are restrictions on its distribution or redistribution:

• GNU G-Golf and supporting files are published under the terms of the GNU Lesser
General Public License version 3 or later. See the file LICENSE.

• This manual is published under the terms of the GNU Free Documentation License
(see Appendix A [GNU Free Documentation License], page 151).

You must be aware there is no warranty whatsoever for GNU G-Golf. This is described in
full in the license.

I. Introduction

About G-Golf

G-Golf
GNOME: (Guile Object Library for).

http://www.gnu.org/software/g-golf/
http://www.gnu.org/software/g-golf/
http://www.gnu.org/
https://www.gnu.org/help/evaluation.html
https://www.gnu.org/help/evaluation.html
https://www.gnu.org/help/help.html
https://www.gnu.org/help/help.html
https://gnu.org/philosophy/free-sw.html
https://gnu.org/philosophy/free-sw.html

I. Introduction 2

Description

G-Golf is a Guile1 Object Library for GNOME (https://www.gnome.org/).

G-Golf is a tool to develop fast and feature-rich graphical applications, with a clean
and recognizable look and feel. Here is an overview of the GNOME platform libraries
(https://developer.gnome.org/documentation/introduction/overview/libraries.html),
accessible using G-Golf.

In particular, libadwaita (https://gnome.pages.gitlab.gnome.org/libadwaita/doc/main/)
provides a number of widgets that change their layout based on the available space. This
can be used to make applications adapt their UI between desktop and mobile devices. The
GNOME Web (https://wiki.gnome.org/Apps/Web) (best known through its code name,
Epiphany, is a good example of such an adaptive UI.

G-Golf uses Glib (https://developer.gnome.org/glib/stable/), GObject
(https://developer.gnome.org/gobject/stable/) and GObject Introspec-
tion (https://gi.readthedocs.io/en/latest). As it imports a Typelib
(https://gi.readthedocs.io/en/latest) (a GObject introspectable library),
G-Golf defines GObject classes as GOOPS2 classes. GObject methods are defined and
added to their corresponding generic function. Simple functions are defined as scheme
procedures.

Here is an example, an excerpt taken from the peg-solitaire game, that shows the imple-
mentation, for the peg-solitaire game, of the GtkApplication activate signal callback in
G-Golf:

(define (activate app)

(let ((window (make <gtk-application-window>

#:title "Peg Solitaire"

#:default-width 420

#:default-height 420

#:application app))

(header-bar (make <gtk-header-bar>))

(restart (make <gtk-button>

#:icon-name "view-refresh-symbolic")))

(connect restart

'clicked

(lambda (bt)

(restart-game window)))

(set-titlebar window header-bar)

(pack-start header-bar restart)

(create-board window)

(show window)))

1 GNU Guile (http://www.gnu.org/software/guile)
an interpreter and compiler for the Scheme (http://schemers.org) programming language.

2 The Guile Object Oriented System, See Section “GOOPS” in The GNU Guile Reference Manual

https://www.gnome.org/
https://developer.gnome.org/documentation/introduction/overview/libraries.html
https://developer.gnome.org/documentation/introduction/overview/libraries.html
https://gnome.pages.gitlab.gnome.org/libadwaita/doc/main/
https://wiki.gnome.org/Apps/Web
https://developer.gnome.org/glib/stable/
https://developer.gnome.org/gobject/stable/
https://developer.gnome.org/gobject/stable/
https://gi.readthedocs.io/en/latest
https://gi.readthedocs.io/en/latest
https://gi.readthedocs.io/en/latest
https://gi.readthedocs.io/en/latest
http://www.gnu.org/software/guile
http://schemers.org

I. Introduction 3

G-Golf comes with some examples, listed on the learn page (https://www.gnu.org/software/g-golf/learn.html)
of the G-Golf web site. Each example comes with a screenshot and has
a link that points to its source code, in the G-Golf sources repository
(http://git.savannah.gnu.org/cgit/g-golf.git).

Savannah

GNUG-Golf also has a project page on Savannah (https://savannah.gnu.org/projects/g-golf).

Obtaining and installing G-Golf

G-Golf can be obtained from the following archive site http://ftp.gnu.org/gnu/g-golf/.
The file will be named g-golf-version.tar.gz. The current version is 0.8.0-rc-4, so the file you
should grab is:

http://ftp.gnu.org/gnu/g-golf/g-golf-0.8.0-rc-4.tar.gz

Dependencies

* Main Dependencies

G-Golf needs the following software to run:

• Autoconf ≥ 2.69

• Automake ≥ 1.14

• Makeinfo ≥ 6.6

• Guile (http://www.gnu.org/software/guile) 2.0 (≥ 2.0.14), 2.2 or 3.0 (≥ 3.0.7)

• Glib-2.0 (https://developer.gnome.org/glib/stable/) ≥ 2.73.0

• Gobject-2.0 (https://developer.gnome.org/gobject/stable/) ≥ 2.73.0

• GObject-Introspection-1.0 (https://developer.gnome.org/stable/gi) ≥ 1.72.0

* Test-Suite Dependencies

G-Golf currently needs the following additional software to run its test-suite:

• Guile-Lib (http://www.nongnu.org/guile-lib) ≥ 0.2.5

• Gtk-3.0 (https://developer.gnome.org/gtk3/stable) ≥ 3.10.0

* Examples Dependencies

– Gtk-4.0 examples –

G-Golf currently needs the following additional software to run its Gtk-4.0 examples:

• Gtk-4.0 (https://docs.gtk.org/gtk4/index.html) ≥ 4.10.0

• Guile-Cairo (http://www.nongnu.org/guile-cairo) > 1.11.2

G-Golf actually requires a patched version of guile-cairo that contains the following
new interface (which is not in guile-cairo 1.11.2): cairo-pointer->context.

– Adwaita examples –

G-Golf currently needs the following additional software to run its Adw-1 examples:

• Adw-1 (https://gnome.pages.gitlab.gnome.org/libadwaita/doc/1-latest/) ≥
1.5.0

https://www.gnu.org/software/g-golf/learn.html
http://git.savannah.gnu.org/cgit/g-golf.git
http://git.savannah.gnu.org/cgit/g-golf.git
https://savannah.gnu.org/projects/g-golf
http://ftp.gnu.org/gnu/g-golf/
http://ftp.gnu.org/gnu/g-golf/g-golf-0.8.0-rc-4.tar.gz
http://www.gnu.org/software/guile
https://developer.gnome.org/glib/stable/
https://developer.gnome.org/gobject/stable/
https://developer.gnome.org/stable/gi
http://www.nongnu.org/guile-lib
https://developer.gnome.org/gtk3/stable
https://docs.gtk.org/gtk4/index.html
http://www.nongnu.org/guile-cairo
https://gnome.pages.gitlab.gnome.org/libadwaita/doc/1-latest/

I. Introduction 4

Install from the tarball

Assuming you have satisfied the dependencies, open a terminal and proceed with the fol-
lowing steps:

cd <download-path>

tar zxf g-golf-0.8.0-rc-4.tar.gz

cd g-golf-0.8.0-rc-4

./configure [--prefix=/your/prefix] [--with-guile-site]

make

make install

Happy G-Golf (http://www.gnu.org/software/g-golf/)!

Install from the source

G-Golf (http://www.gnu.org/software/g-golf/) uses Git (https://git-scm.com/)
for revision control, hosted on Savannah (https://savannah.gnu.org/projects/g-golf),
you may browse the sources repository here (http://git.savannah.gnu.org/cgit/g-golf.git).

There are currently 2 [important] branches: master and devel. G-Golf
(http://www.gnu.org/software/g-golf/) stable branch is master, developments
occur on the devel branch.

So, to grab, compile and install from the source, open a terminal and:

git clone git://git.savannah.gnu.org/g-golf.git

cd g-golf

./autogen.sh

./configure [--prefix=/your/prefix] [--with-guile-site]

make

make install

The above steps ensure you’re using G-Golf (http://www.gnu.org/software/g-golf/)
bleeding edge stable version. If you wish to participate to developments, checkout the
devel branch:

git checkout devel

Happy hacking!

Notes:

1. The default and --prefix installation locations for source modules and compiled files
(in the absence of --with-guile-site) are:

$(datadir)/g-golf

$(libdir)/g-golf/guile/$(GUILE_EFFECTIVE_VERSION)/site-ccache

If you pass --with-guile-site, these locations become:

Guile global site directory

Guile site-ccache directory

2. The configure step reports these locations as the content of the sitedir and
siteccachedir variables.

After installation, you may consult these variables using pkg-config:

http://www.gnu.org/software/g-golf/
http://www.gnu.org/software/g-golf/
https://git-scm.com/
https://savannah.gnu.org/projects/g-golf
http://git.savannah.gnu.org/cgit/g-golf.git
http://www.gnu.org/software/g-golf/
http://www.gnu.org/software/g-golf/
http://www.gnu.org/software/g-golf/

I. Introduction 5

pkg-config g-golf-1.0 --variable=sitedir

pkg-config g-golf-1.0 --variable=siteccachedir

3. Unless you have used --with-guile-site, or unless these locations are already
’known’ by Guile, you will need to define or augment your GUILE_LOAD_PATH and
GUILE_COMPILED_PATH environment variables accordingly (or %load-path and
%load-compiled-path at run time if you prefer3 (See Environment Variables
(https://www.gnu.org/software/guile/manual/guile.html#Environment-Variables)
and Load Path (https://www.gnu.org/software/guile/manual/guile.html#Load-Paths)
in the Guile Reference Manual).

4. G-Golf also installs its libg-golf.* library files, in $(libdir). The configure step
reports its location as the content of the libdir variable, which depends on on the
content of the prefix and exec_prefix variables (also reported).

After installation, you may consult these variables using pkg-config:

pkg-config g-golf-1.0 --variable=prefix

pkg-config g-golf-1.0 --variable=exec_prefix

pkg-config g-golf-1.0 --variable=libdir

5. Unless the $(libdir) location is already ’known’ by your system, you will need - to
either define or augment your $LD_LIBRARY_PATH environment variable, or alter the
/etc/ld.so.conf (or add a file in /etc/ld.so.conf.d) and run (as root) ldconfig,
so that G-Golf finds its libg-golf.* library files4.

6. To install G-Golf, you must have write permissions to the default or $(prefix) di-
rectory and its subdirs, as well as to both Guile’s site and site-ccache directories if
--with-guile-site was passed.

7. Like for any other GNU Tool Chain compatible software, you may install the documen-
tation locally using make install-info, make install-html and/or make install-

pdf.

8. G-Golf comes with a test-suite, which we recommend you to run (especially before
[Reporting Bugs], page 6):

make check

9. To try/run an uninstalled version of G-Golf, use the pre-inst-env script:

./pre-inst-env your-program [arg1 arg2 ...]

Contact Information

Mailing list

G-Golf uses Guile’s mailing lists:

• guile-user@gnu.org is for general user help and discussion.

3 In this case, you may as well decide to either alter your $HOME/.guile personal file, or, if you are working
in a mult-user environmet, you may also opt for a global configuration. In this case, the file must be
named init.scm and placed it here (evaluate the following expression in a terminal): guile -c "(display

(%global-site-dir))(newline)".
4 Contact your administrator if you opt for the second solution but don’t have write priviledges on your

system.

https://www.gnu.org/software/guile/manual/guile.html#Environment-Variables
https://www.gnu.org/software/guile/manual/guile.html#Environment-Variables
https://www.gnu.org/software/guile/manual/guile.html#Load-Paths
mailto:guile-user@gnu.org

II. Using G-Golf 6

• guile-devel@gnu.org is used to discuss most aspects of G-Golf, including development
and enhancement requests.

Please use ‘G-Golf - ’ to preceed the subject line of G-Golf related emails, thanks!

You can (un)subscribe to the one or both of these mailing lists by following instructions on
their respective list information page (https://lists.gnu.org/mailman/listinfo/).

IRC

Most of the time you can find me on irc, channel #guile, #guix and #scheme on
irc.libera.chat, #clutter and #introspection on irc.gnome.org, under the nickname daviid.

Reporting Bugs

G-Golf uses a bug control and manipulation mailserver. You may send your bugs report
here:

• bug-g-golf@gnu.org

You can (un)subscribe to the bugs report list by following instructions on the list informa-
tion page (https://lists.gnu.org/mailman/listinfo/bug-g-golf).

Further information and a list of available commands are available here
(https://debbugs.gnu.org/server-control.html).

II. Using G-Golf

Before you start

Naming Conventions

G-Golf is, or at least tries to be, consistent in the way ‘things’ are being named, whether the
functionality being ‘exposed’ is from an imported GNOME library or is part of a G-Golf’s
core reference module.

GNOME Libraries

When G-Golf imports a GNOME library, its classes, properties, methods, functions, types
and constant are renamed, which is achieved by calling [g-name->class-name], page 137, and
[g-name->name], page 137, appropriately.

As described in their respective documentation entry, as well as in the [Customizing G-Golf],
page 11, section, G-Golf offers a way to either ignore or partially customize the renaming
process.

Classes

GNOME libraries classes are imported as GOOPS classes (the Guile Object Oriented Sys-
tem, see Section “GOOPS” in The GNU Guile Reference Manual), and their respective
name is given by the result of calling [g-name->class-name], page 137, for example:

GtkWindow ⇒ <gtk-window>

mailto:guile-devel@gnu.org
https://lists.gnu.org/mailman/listinfo/
mailto:bug-g-golf@gnu.org
https://lists.gnu.org/mailman/listinfo/bug-g-golf
https://lists.gnu.org/mailman/listinfo/bug-g-golf
https://debbugs.gnu.org/server-control.html
https://debbugs.gnu.org/server-control.html

II. Using G-Golf 7

ClutterActor ⇒ <clutter-actor>

WebKitWebView ⇒ <webkit-web-view>5

...

Properties

GNOME libraries class properties are imported as GOOPS class slots, and their respective
name is given by calling [g-name->name], page 137. Each property slot defines an init-

keyword and an accessor, following G-Golf’s accessors naming conventions (See [GOOPS
Notes and Conventions], page 9).

As an example, the <gtk-label> class has a label slot, with the #:label init-keyword and
!label accessor.

Methods

GNOME libraries methods are imported as GOOPS methods, the name of which is obtained
by calling [g-name->name], page 137.

Unless otherwise specified (see [Customization Square], page 33, - GI Method Short Name
Skip), as it imports a GI typelib, G-Golf creates a method short name for each imported
method, obtained by dropping the container name (and its trailing hyphen) from the GI
typelib method long name.

For example, the <gtk-label> class, which defines a gtk-label-get-text method, would
also define, using G-Golf’s default settings, an get-text method.

Functions

GNOME libraries functions are imported as procedures, renamed by calling
[g-name->name], page 137. For example:

gtk_window_new ⇒ gtk-window-new

clutter_actor_new ⇒ clutter-actor-new

...

Enums, Flags and Boxed types

GNOME libraries enums, flags and boxed types are renamed by calling [g-name->name],
page 137, (and cached, See [Cache Park], page 32, section).

Enum and flag type members are renamed by calling [g-name->name], page 137. To illus-
trate, here is an example:

,use (g-golf)

(gi-import-by-name "Gtk" "WindowPosition")

⇒ $2 = #<<gi-enum> 5618c7a18090>

(describe $2)

a #<<gi-enum> 5618c7a18090> is an instance of class <gi-enum>

a Slots are:

a enum-set = ((none . 0) (center . 1) (mouse . 2) (center-always . 3) (center-on-parent . 4))

5 By default, G-Golf sets
WebKit as a renaming exception token, otherwise, the class name
would be <web-kit-web-view>.

II. Using G-Golf 8

a g-type = 94664428197600

a g-name = "GtkWindowPosition"

a name = gtk-window-position

G-Golf Core Reference

Procedures and Variables

G-Golf procedure names that bind a Glib, GObject or GObject Introspection functions
(always) use the ‘original’ name, except that every _ (underscore) occurrence is replaced
by a - (hyphens). For example:

g_main_loop_new

⇒ [g-main-loop-new], page 47

g_irepository_get_loaded_namespaces

⇒ [g-irepository-get-loaded-namespaces], page 85

G-Golf also comes with its own set of procedures, syntax and variables, aimed
at not just reading a typelib, but making its functionality available from Guile
(http://www.gnu.org/software/guile). Naming those, whenever possible, is done
following the ‘traditional way’ scheme name its procedures, syntax and variables. For
example:

• procedure names that start with call-with-input-, call-with-output- followed by
a Glib, GObject. Gdk or GI type, such as:

[call-with-input-typelib], page 87

• syntax names that start as with- followed by a Glib, GObject, Gdk or GI type, such
as:

[with-gerror], page 125

When an ‘obvious’ name can’t be find ‘on its own’, or to avoid possible conflict outside
G-Golf6, then the name starts using a g- prefix (when the procedure context is GNOME
in general) or gi- prefix (when the procedure context is GI more specifically), and equally
for variables, using %g- or %gi-.

Types and Values

G-Golf variables that bind Glib, GObject and GI types and values use the same convention
as for procedures, except that they always start with % and their original type names
are transformed by the same rules that those applied when calling [g-studly-caps-expand],
page 136.

For example, from the GIBaseInfo section:

GIInfoType

⇒ [%gi-info-type], page 92

6 As an example, it would not be a good idea to use (the name) import for the G-Golf procedure that reads
and build the interface for a GIR library, since it is an R6RS reserved word.

http://www.gnu.org/software/guile
http://www.gnu.org/software/guile

II. Using G-Golf 9

GOOPS Notes and Conventions

G-Golf extensively uses GOOPS, the Guile Object Oriented System (see Section “GOOPS”
in The GNU Guile Reference Manual), in a way that is largely inspired by Guile-Gnome
(https://www.gnu.org/software/guile-gnome).

Here are some notes and the GOOPS conventions used by G-Golf.

Slots are not Immutable

Except for virtual slots, there is currently no way to effectively prohibit (block) a user to mu-
tate a goops class instance (one can always use slot-set! instance slot-name value)7.

However, you will find a few places in this manual using phrase excerpts like ‘instances of

this <class> are immutable’, or ‘this <slot> is immutable’. In these contexts, what is
actually meant is that these (insances or slots) are not meant to be mutated. Doing so is
not only at your own risks, but likely to cause a crash.

Merging Generics

In G-Golf, generic functions are always merged (see Section “Merging Generics” in The
GNU Guile Reference Manual).

Users are (highly) recommended to do the same, in their repl, application/library modules
and script(s). In its modules - those that import (oop goops) - G-Golf uses the following
duplicate binding handler set:

#:duplicates (merge-generics

replace

warn-override-core

warn

last)

In a repl or in scripts, these maybe set - after importing (oop goops) - by calling default-

duplicate-binding-handler:

(use-modules (oop goops))

(default-duplicate-binding-handler

'(merge-generics replace warn-override-core warn last))

G-Golf regular users should consider adding the above lines to their $HOME/.guile or,
when working in a multi-user environmet, should consider adding those lines the file named
init.scm in the so-called Guile global site directory8, here (evaluate the following expression
in a terminal): guile -c "(display (%global-site-dir))(newline)".

Accessors Naming Convention

In G-Golf, all slots define an accessor (and no getter, no setter), the name of which is the
slot-name prefixed using !. For example:

7 Actually, to be complete, there is a way, which is to define the slot using #:class <read-only-slot>, but (a)
it is undocumented and (b), it requires the use use of libguile to initialize the slot value, something that I don’t
wan’t to do in G-Golf. If you are interested by this (undocumented) feature for your own project though,
I suggest you look for some exmples in the Guile-Gnome (https://www.gnu.org/software/guile-gnome),
source tree, where it is extensively used.

8 You need write privileges to add or modify this file, contact your system administrator if you’re not in charge
of the system you are working on.

https://www.gnu.org/software/guile-gnome
https://www.gnu.org/software/guile-gnome
https://www.gnu.org/software/guile-gnome

II. Using G-Golf 10

(define-class <gtype-class> (<class>)

(info #:accessor !info

#:init-keyword #:info)

...)

The principal reasons are (not in any particular order):

• It is a good idea, we think, to be able to visually (and somehow immediately) spot and
distinct accessors from the rest of the scheme code your are looking at or working on.

• Accessors are exported, and with this convention, we almost certainly avoid all ‘name
clashes’ with user namespaces, that otherwise would be extremelly frequent9.

• Users quite often want or even need to cash slot values in a closure. By using this !
prefixing convention, we leave users with the (quite usefull) possibility to name their
local variables using the respective slot names.

• Accessors may always be used to mutate a slot value (except for virtual slots, for which
you can ‘block’ that feature), like in (set! (!name an-actor) "Mike"). In scheme,
it is a tradition to signal mutability by postfixing the procedure name using the !

character.

• Accessors are not procedures though, there are methods, and to effectively mutate a
slot value, one must use set!. Therefore, prefixing makes sence (and preserves the first
reason announced here, where posfixing would break it).

• We should also add that we are well aware that Java also prefixes its accessors, using a
. as its prefix character, but GOOPS is radically different from Java in its design, and
therefore, we really wanted another character.

Configuring Guile for G-Golf

The following description and content is shared and identical to the ‘Merging Generics’
heading of the previous section.

It is repeated it here, under its own section entry, so that it appears in the table of content
and grab all users attention - those who do not follow our recommendation may void their
warranty or poison their cat.

Merging Generics

In G-Golf, generic functions are always merged (see Section “Merging Generics” in The
GNU Guile Reference Manual).

Users are (highly) recommended to do the same, in their repl, application/library modules
and script(s). In its modules - those that import (oop goops) - G-Golf uses the following
duplicate binding handler set:

#:duplicates (merge-generics

replace

warn-override-core

warn

last)

9 Slot names tends to be extremelly common, like name, color, . . . and naming their respective accessor
using the slot name would very likely provoque numerous name clashes with user variables, procedures and
methods names.

II. Using G-Golf 11

In a repl or in scripts, these maybe set - after importing (oop goops) - by calling default-

duplicate-binding-handler:

(use-modules (oop goops))

(default-duplicate-binding-handler

'(merge-generics replace warn-override-core warn last))

G-Golf regular users should consider adding the above lines to their $HOME/.guile or,
when working in a multi-user environmet, should consider adding those lines the file named
init.scm in the so-called Guile global site directory10, here (evaluate the following expres-
sion in a terminal): guile -c "(display (%global-site-dir))(newline)".

Customizing G-Golf

G-Golf offers a series of customization interfaces for the following domains: (•) Name Trans-
formation - how things are being named as they are being imported;(•) Strip Boolean Result
- should G-Golf elude (some) function and method call returned value when it is #t and
raise an exception if the returned value is #f; (•) Method Short Name - should G-Golf create
them or not; (•) Syntax Name Protect - how G-Golf should address syntax name ‘clash’
against method short name.

Name Transformation

When G-Golf imports a GNOME library, its classes, properties, methods, functions, types
and constants are renamed (See [Naming Conventions], page 6), mainly to (a) avoid ‘Camel
Case (https://en.wikipedia.org/wiki/Camel_case)’, (b) surround class names by ‘<’
‘>’ and (c) replace ‘_’ (underscore) occurrences using the ‘-’ (hyphen) character instead.

G-Golf offers - through a series of interfaces to get, check, add, remove and reset two
(distinct) associative lists - a way to either ignore or partially customize the renaming
process.

See [Customization Square], page 33, - GI Name Transformation.

Strip Boolean Result

Some GI typelib functions and methods that (1) have at least one 'inout or 'out argu-
ment(s) and (2) return either #t or #f, solely to indicate that the function or method call
was successful or not.

G-Golf offers - through a series of interfaces to get, check, add, remove and reset a list of
such function or methods names - to instead elude the function or method returned value
when it is #t and raise an exception if the returned value is #f.

See [Customization Square], page 33, - GI Strip Boolean Result.

Method Short Name

By default, as it imports a GI typelib, G-Golf creates a method short name for each imported
method, obtained by dropping the container name (and its trailing hyphen) from the GI
typelib method full/long name.

10 You need write privileges to add or modify this file, contact your system administrator if you’re not in charge
of the system you are working on.

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

II. Using G-Golf 12

Users may change this default and skip the method short name creation step, either indi-
vidually or for all GI imported methods.

See [Customization Square], page 33, - GI Method Short Name Skip.

Syntax Name Protect

When G-Golf creates a method short name, obtained by dropping the container name (and
its trailing hyphen) from the GI typelib method full/long name, it may lead to a ‘name
clash’, with an already defined procedure or syntax.

Both type of ‘name clash’ need to be addressed, which G-Golf does, automatically, but
special care must be taken when that happens against a syntax name, a process that you
may custom to your own taste.

See [Customization Square], page 33, - GI Syntax Name Protect.

SXML Support - Emacs users

G-Golf offers two files to support editing and maintaining GtkWidget template and Gtk-
Builder ui (xml) files as sxml files instead. Currently, these files are in the examples/adw-
1/adw1-demo/ui directory.

sxml-ui.el

Emacs users should import this file in their .emacs file.

This is an attempt to provide both indentation and font-lock support, so ui files editing
becomes a more pleasant experience. It is a first draft and definitely an experimental
attempt. Better then nothing (much better imo), but suggestions to improve this first and
quite ’naive’ draft would be welcome.

Makefile

Offered as an example of the simplest possible way to convert all *.scm files of a directory
to their corresponding *.ui files.

Getting Started with G-Golf

G-Golf will let you import and work with any GObject-Introspectable GNOME library11.
Since we need to make a choice among so many, to guide new comers and get them started
with G-Golf, let’s pick-up Gtk (https://docs.gtk.org/gtk4/index.html), and show how
to Create interfaces that users just love (https://gtk.org/).

Please note that in the entire course of the G-Golf manual, unless otherwise specified, ex-
amples are based on and use Gtk-4.0 (https://docs.gtk.org/gtk4/index.html), Gdk-4.0
(https://docs.gtk.org/gdk4/index.html) and Gsk-4.0 (https://docs.gtk.org/gsk4/index.html)
- which is new and only available with Gtk-4.0.

G-Golf itself perfectly works and support Gtk-3.0 (https://developer.gnome.org/gtk3/stable)
and Gdk-3.0 (https://developer.gnome.org/gdk3/stable).

We shall complete this brief introduction mentioning that the GNOME team wrote a guide
to help Migrating from GTK 3.x to GTK 4 (https://developer.gnome.org/gtk4/stable/gtk-migrating-3-to-4.html).

11 In its compiled form, a GObject-Introspectable GNOME library is called a Typelib
(https://gi.readthedocs.io/en/latest) - a binary, readonly, memory-mappable database
containing reflective information about a GObject library.

https://docs.gtk.org/gtk4/index.html
https://gtk.org/
https://docs.gtk.org/gtk4/index.html
https://docs.gtk.org/gdk4/index.html
https://docs.gtk.org/gdk4/index.html
https://docs.gtk.org/gsk4/index.html
https://developer.gnome.org/gtk3/stable
https://developer.gnome.org/gdk3/stable
https://developer.gnome.org/gtk4/stable/gtk-migrating-3-to-4.html
https://gi.readthedocs.io/en/latest
https://gi.readthedocs.io/en/latest

II. Using G-Golf 13

Hello World!

Following the tradition, let’s first see how the often seen ‘Hello World!’ familiar, minimal,
friendly greeting program looks like in G-Golf:

;; Load Gtk

(use-modules (g-golf))

(gi-import "Gtk")

;; When the application is launched..

(define (activate app)

;; - Create a new window and a new button

(let ((window (make <gtk-application-window>

#:title "Hello"

#:application app))

(button (make <gtk-button>

#:label "Hello, World!")))

;; - Which closes the window when clicked

(connect button

'clicked

(lambda (b)

(close window)))

(set-child window button)

(show window)))

;; Create a new application

(let ((app (make <gtk-application>

#:application-id "org.example.GtkApplication")))

(connect app 'activate activate)

;; Run the application

(run app 0 '()))

Providing you successfully installed G-Golf, you may run the above code in a Guile REPL
(Read Evaluate Print Loop)12, which as described in its comments, starts the application,
resulting in opening a (small) window named ‘Hello’, with one button named ‘Hello,
World!’, that will close the window when clicked.

Example 1

Wonderful! But you probably rightfully think that it was a bit slow. This is not because
G-Golf nor Guile are slow, but because the Gtk namespace is absolutely huge, and although
we only use a few components, we asked to import the all namespace. We will see how to
only selectively import the namespace components we need in the next section, but let’s
first try the following, (a) close the window and (b) re-evaluate the last expression:

(let ((app (make <gtk-application>

#:application-id "com.example.GtkApplication")))

12 If you haven’t done so, please read the [Configuring Guile for G-Golf], page 10, Merging Generics and
configure your repl as proposed, before to run the example.

II. Using G-Golf 14

(connect app 'activate activate)

(run app 0 '()))

Great! Now, the application was launched instantaneously. Since everything it needs was
already imported, the time it takes to execute the code is nearly identical to the time it
would take to execute the same code from C - if you accurately measure the execution time
in both situation, you would see a difference in the results, but small enough that it is safe
to declare it imperceptible.

It would be beyond the scope of this introduction to describe the <gtk-

application> / g-application-run instance creation and run mechanism in
detail, for this, please consult and carefully read their respective entries in
the Gtk (https://docs.gtk.org/gtk4/class.Application.html) and Gio
(https://developer.gnome.org/gio/stable/GApplication.html) reference manuals.

The GNOME team also maintains a wiki called HowDoI (https://wiki.gnome.org/HowDoI),
and two pages are dedicated to this subject: HowDoI GtkApplication
(https://wiki.gnome.org/HowDoI/GtkApplication) and HowDoI GtkApplica-
tion/CommandLine (https://wiki.gnome.org/HowDoI/GtkApplication/CommandLine).

This said, let’s just make a few hopefully usefull comments to newcomers:

• as you can see, we do not need to call gtk-init, it is done automatically (more on
this in the GtkApplication (https://docs.gtk.org/gtk4/class.Application.html)
section of the Gtk Reference Manual);

• the #:application-id init-keyworkd is optional, although recommended, and when
passed, the application ID must be valid (more on this below).

Is your application ID valid?

The set of rules that apply and determine if an Application Identifier is valid is fully de-
scribed in the Gio Reference Manual, here (https://developer.gnome.org/gio/stable/GApplication.html#g-application-id-is-valid).

In G-Golf, you may check if your application ID is valid by calling g-application-id-is-

valid13, for example:

(g-application-id-is-valid "com.example.GtkApplication")

⇒ #t

(g-application-id-is-valid "RedBear")

⇒ #f

If you pass an invalid application ID to a <gtk-application> instance creation, you’ll be
noted with a message similar to this:

(process:30818): GLib-GIO-CRITICAL **: 21:58:52.700: g application set application id:
assertion ’application id == NULL || g application id is valid (application id)’
failed

Great, but could we speed things up a little?

13 After you at least import either directly (gi-import-by-name "Gio" "Application"), or (gi-import-by-

name "Gtk" "Application"), which triggers the appropriate Gio imports, as described in the next section

https://docs.gtk.org/gtk4/class.Application.html
https://developer.gnome.org/gio/stable/GApplication.html
https://developer.gnome.org/gio/stable/GApplication.html
https://wiki.gnome.org/HowDoI
https://wiki.gnome.org/HowDoI/GtkApplication
https://wiki.gnome.org/HowDoI/GtkApplication
https://wiki.gnome.org/HowDoI/GtkApplication/CommandLine
https://wiki.gnome.org/HowDoI/GtkApplication/CommandLine
https://docs.gtk.org/gtk4/class.Application.html
https://developer.gnome.org/gio/stable/GApplication.html#g-application-id-is-valid

II. Using G-Golf 15

Yes we can! In the next section, as promised above, we will walk you through [Selective
Import], page 15, used to reduce the time G-Golf has to spend importing the typelib(s)
that your application requires.

Selective Import

To selectively import namespace components, use [gi-import-by-name], page 21, which takes
two arguments, a namespace and a (component) name. Let’s try on our minimal ‘Hello
World!’ example and see how it goes. All we need to do, is to substitute the (gi-import

"Gtk") call by the following expression:

(for-each (lambda (name)

(gi-import-by-name "Gtk" name))

'("Application"

"ApplicationWindow"

"Button"))

With this change, everything else kept equal, if you (quit and) restart Guile, evaluate
the updated ‘Hello World!’ example code, you will notice how the elapse time before the
application window appears is now substantially reduced, compared to the version that
imports the all Gtk namespace. Substantially reduced but . . . not instantaneous: well, that
is expected!

Although we only import a few Gtk namespace components, three GObject classes in this
example, G-Golf will import those classes, their interface(s) if any, methods, enums, flags
... and do the same for their parent class, recursively. For those three classes only, G-Golf
actually has to import (and dynamically define) tens of classes, interfaces, enums, flags . . .
as well as hundreds of methods and procedures.

G-Golf will also import classes, interfaces and their dependencies (enums, flags . . . recur-
sively as well . . .) from other namespace if necessary. We already have an illustration of
this, both with the original example and the change we just made: although we do not
explicitly import the GApplication class from the Gio namespace, G-Golf did that for us,
and so we may call run - which is the short method name for g-application-run - as if
we did manually import it.

Both the namespace and name arguments are case sensitive. The name argument is used
to retrieve the typelib [Base Info], page 89, that holds the metadata of the introspectable
library element it represents. Although there are a some exceptions, it is generally derived
from and obtained by dropping the namespace prefix (without its version number if any)
out of the original name. Here are a few more examples, organized by namespace:

Gtk GtkWindow -> Window
gtk init -> init
gtk main -> main
gtk main quit -> main quit
. . .

WebKit2 WebKitWebView -> WebView
WebKitLoadEvent -> LoadEvent
. . .

...

II. Using G-Golf 16

Cool, selective import, but what about scripting?

Right! The ’Hello World!’ example we have presented so far can only be run interactively.

In the next section, we will see how we may turn it - and any other example or application
- so it can be run as a script.

Scripting

A Guile script is simply a file of Scheme code with some ‘extra information at the

beginning’ which tells the OS (operating system) how to invoke Guile, and then tells
Guile how to handle the Scheme code.

Invoking Guile

It would be beyond the scope of this manual to expose the numerous ways one can define
and invoke a Guile script, for a complete description of the subject, see Section “Guile
Scripting” in The GNU Guile Reference Manual.

In G-Golf, both provided examples and in this manual, we use the so called ‘for maximum

portability’ scripting technique, which is to invoke the shell to execute guile with specified
command line arguments.

Here is what we do:

#! /bin/sh

-*- mode: scheme; coding: utf-8 -*-

exec guile -e main -s "$0" "$@"

!#

In the above, the first line is to specify which shell will be used to interpret the (OS part of
the) ‘extra information at the beginning’ of the script.

The second line is optional (and a comment from a shell point of view), that we use it to
inform emacs (should you use emacs to edit the file) that despite the ‘extra information

at the beginning’ (and the possible lack of filename extension in the script name), it should
use the scheme mode as the script editing buffer mode.

The third line tells the shell to execute guile, with the following arguments:

-e main after reading the script, apply main to command line arguments

-s "$0" load the source code from "$0" (which by shell rules, is bound to the
fullname of the script itself)

"$@"

the command line arguments

Note that the top level script lines may contain other declaration(s), like environment
variable definitions. Suppose you would like to be warned if your script uses
any deprecated guile functionality. In this case, you add the following export

GUILE_WARN_DEPRECATED="detailed" declaration, before the exec guile ... call, like
this:

#! /bin/sh

-*- mode: scheme; coding: utf-8 -*-

export GUILE_WARN_DEPRECATED="detailed"

II. Using G-Golf 17

exec guile -e main -s "$0" "$@"

!#

Extra Guile information

Within the context of a G-Golf script, two other things must be taken care of - in addition
to the (use-modules (g-golf)) step - so that the script runs fine: (1) set-up Guile so that
generic functions are merged; (2) import (all) typelib element(s) at expand load eval time.

In a repl or in scripts, (1) is achieved by importing the (oop goops) module and calling
default-duplicate-binding-handler14.

In Guile, (2) is achieved by calling the eval-when syntax15.

Now, bear with us :), since (2) will define generic functions and/or add methods to existing
generic functions, we must make sure the (1) not only preceeds (2), but also happens at
expand load eval time.

With all the above in mind, here is how the extra Guile information looks like, for our
‘Hello World!’ script example:

(eval-when (expand load eval)

(use-modules (oop goops))

(default-duplicate-binding-handler

'(merge-generics replace warn-override-core warn last))

(use-modules (g-golf))

(for-each (lambda (name)

(gi-import-by-name "Gtk" name))

'("Application"

"ApplicationWindow"

"Button")))

A Hello World! script

Let’s put all this together, and while doing this, enhance a little our original example.

Here is what we propose to do: (a) add a GtkLabel, (b) use a GtkBox and see how to
declare its margins and orientation, (c) specify a default width and height for our application
window, and (d) see how we can tell the label to horizontally and vertically expand, so it
occupies the extra vertical space, while keeping the button to its minimal vertical size.

Joining (1), (2) and the small enhancement, our ‘Hello World!’ script now looks like this:

#! /bin/sh

-*- mode: scheme; coding: utf-8 -*-

exec guile -e main -s "$0" "$@"

!#

14 As seen in [Configuring Guile for G-Golf], page 10, (and in [GOOPS Notes and Conventions], page 9, -
’Merging Generics’).

15 See Section “Eval-when” in The GNU Guile Reference Manual for a complete description.

II. Using G-Golf 18

(eval-when (expand load eval)

(use-modules (oop goops))

(default-duplicate-binding-handler

'(merge-generics replace warn-override-core warn last))

(use-modules (g-golf))

(for-each (lambda (name)

(gi-import-by-name "Gtk" name))

'("Application"

"ApplicationWindow"

"Box"

"Label"

"Button")))

(define (activate app)

(let ((window (make <gtk-application-window>

#:title "Hello"

#:default-width 320

#:default-height 240

#:application app))

(box (make <gtk-box>

#:margin-top 6

#:margin-start 12

#:margin-bottom 6

#:margin-end 6

#:orientation 'vertical))

(label (make <gtk-label>

#:label "Hello, World!"

#:hexpand #t

#:vexpand #t))

(button (make <gtk-button>

#:label "Close")))

(connect button

'clicked

(lambda (b)

(close window)))

(set-child window box)

(append box label)

(append box button)

(show window)))

II. Using G-Golf 19

(define (main args)

(let ((app (make <gtk-application>

#:application-id "org.gtk.example")))

(connect app 'activate activate)

(let ((status (run app 0 '())))

(exit status))))

If you save the above in a file, say hello-world, then chmod a+x hello-world and launch
the script, ./hello-world, here is what you’ll get on the screen:

Example 2

A last few comments

We need to make a last few comments, that also applies and will be further addressed in
the next section.

Desktop Entry

If you are running a GNOME desktop, you probably noticed that in the GNOME menu bar,
the application menu entry for our ‘Hello World!’ script is org.gtk.example (not Hello).
This is because we’re missing a Desktop Entry. We will see how to create and install a
Desktop Entry in the next section.

Command Line Arguments

As described in the first part of this section, we use the so called ‘for maximum portability’
scripting technique, and more precisely, the following incantation:

exec guile -e main -s "$0" "$@"

In the above, the last argument refers to the the command line arguments. It is actually
optional, but when used, they are passed to the main (entry point) script procedure.

However, as you may have noticed, we do not pass those (if any) to the Gtk application,
which we launch using (run app 0 '()).

This is intentional: (a) we (want to) always use the same incantation to invoke Guile - and
sometimes. may quiclky hack something using additional debug args on the scheme side
only . . . ; (b) you may only pass those arguments to the Gtk application if you have defined
the signal callback(s) to handle them.

If you pass the command line arguments to a Gtk application that does not define the
appropriate signal callback procedure to handle them, you’ll get an error message in the
terminal (and the application won’t be launched).

To illustrate, let’s change the g-application-run call of our script, so it becomes (run

app (length args) args), then try to launch it, passing a few (fake) arguments, here is
what happens:

./hello-world 1 2 3

a (hello-world:216198): GLib-GIO-CRITICAL **: 22:26:41.135: This application can not open files.

And as mentioned above, the application is not launched.

II. Using G-Golf 20

Although scripts may (also) accept and pass command line argument(s) to the Gtk appli-
cation or dialog they define, we will see how to handle those in the next section, [Building
Applications], page 20.

Building Applications

G-Golf on Mobile Devices

Working with GNOME

Working with GNOME exposes, grouped by theme, the user interfaces to import and work
with GObject-Introspectable GNOME libraries.

Please note that within the scope of the G-Golf manual in general, in the sections presented
here in particular, we simply (as in merely and in the simplest possible way) exposes the
scheme representation and G-Golf interfaces of the elements that are being addressed. For a
deep(er) understanding of the original concepts, components and interfaces, you must refer
to the upstream library documentation itself.

This is particularly true for the GLib Object System related sections. For a thorough
understanding of the GLib Object System - its background, design goals, dynamic
type system, base class instantiation, memory management, properties, closures and
signals messaging system - please consult the GObject - Type System Concepts
(https://docs.gtk.org/gobject/concepts.html) of the GObject reference manual.

Import

G-Golf Import interfaces.
Importing GNOME libraries.

Procedures

[gi-import], page 20

[gi-import-by-name], page 21

Description

The G-Golf GIR namespace (Typelib) import interfaces.

Procedures

[Procedure]gi-import namespace [#:version #f]
Returns nothing.

Imports the namespace GIR Typelib and exports its interface. For example:

,use (g-golf

(gi-import "Clutter")

The namespace is a case sensitive string. It is an error to call this procedure using
an invalid namespace.

The optional #:version keyword argument may be used to require a specific names-
pace version, otherwise, the latest will be used.

https://docs.gtk.org/gobject/concepts.html
https://docs.gtk.org/gobject/concepts.html

II. Using G-Golf 21

This procedure is certainly one of the first thing you will want to try and use, but it
has a cost: you will not ‘feel it’ if the number of objects in namespace is relatively
small, but importing the "Gtk" namespace, on a laptop equiped with a i5-2450M
CPU 2.50GHz × 4 and 6GB of memory takes nearly 2 seconds.

So, either early in the development cycle, or when your application is more stable, at
your best convenience, you may consider making a series of selective import instead,
see [gi-import-by-name], page 21, here below.

[Procedure]gi-import-by-name namespace name [#:version #f]
[#:with-method #t]

Returns the object or constant returned by [gi-import-info], page 148, called upon
the GIBaseInfo info named name in namespace.

Obtains and imports the GIBaseInfo info named name in namespace. The names-
pace and name arguments are case sensitive. It is an error to call this procedure using
an invalid namespace or name.

The optional #:version keyword argument may be used to require a specific names-
pace version, otherwise, the latest will be used.

The optional keyword #:with-method argument - which is #t by default - is passed
to the gi-import-enum, gi-import-flags and gi-import-struct. When #:with-
method is #f, then the enum, flags or struct info will be imported without their
respective methods. This is likely to only be the case if/when you intend to selectively
import an enum, flags or struct from GLib or GObject, which is what G-Golf itself
does, for example, in the top level (g-golf) module:

(gi-import-by-name "GLib" "IOChannel" #:with-method #f)

Events

G-Golf Events interfaces.
Handling events from the window system.

Special Note

Most of the numerous, important and sometimes radical changes in be-
tween Gtk-3.0 (https://developer.gnome.org/gtk3/stable)/Gdk-3.0
(https://developer.gnome.org/gdk3/stable) and Gtk-4.0 (https://docs.gtk.org/gtk4/index.html)/Gdk-4.0
(https://docs.gtk.org/gdk4/index.html)/Gsk-4.0 (https://docs.gtk.org/gsk4/index.html)
have had no impact on G-Golf. And by most, we actually mean all but one: the GdkEvent
and its API.

For this reason, this section is split/organized in two subheading, namely ‘In Gdk-3.0’ and
‘In Gdk-4.0’, how creative :), that expose their respective G-Golf interfaces.

In Gdk-3.0

In Gdk-3.0 (https://developer.gnome.org/gdk3/stable), a GdkEvent contains a union
of all of the event types. Data fields may be accessed either directly, direct access to Gd-
kEvent structs, or using accessors (but not all data fields have an accessor).

https://developer.gnome.org/gtk3/stable
https://developer.gnome.org/gdk3/stable
https://developer.gnome.org/gdk3/stable
https://docs.gtk.org/gtk4/index.html
https://docs.gtk.org/gdk4/index.html
https://docs.gtk.org/gdk4/index.html
https://docs.gtk.org/gsk4/index.html
https://developer.gnome.org/gdk3/stable

II. Using G-Golf 22

In G-Golf however GdkEvent is a class, with an event slot - holding a pointer the Gdk event
- all other slots are virtual and define an accessor, which is the only way users may retrieve
data fields.

When G-Golf detects it is leading with GdkEvent from Gdk-3.0, while dynamically im-
plementing the above, in addition, when applicable, it will also add some of the upstream
GdkEvent accessor name to the GI Strip Boolean Result list. This is further detailed below,
at the end of the section.

Class

[<gdk-event>], page 22

Accessors

[!event], page 25

[!axis], page 26

[!button], page 26

[!click-count], page 26

[!coords], page 26

[!device], page 26

[!device-tool], page 26

[!event-sequence], page 26

[!event-type], page 26

[!keycode], page 26

[!keyval], page 26

[!pointer-emulated], page 26

[!root-coords], page 26

[!scancode], page 26

[!screen], page 26

[!scroll-deltas], page 26

[!scroll-direction], page 26

[!seat], page 26

[!source-device], page 26

[!state], page 26

[!time], page 26

[!window], page 26

[!keyname], page 26

[!x], page 27

[!y], page 27

[!root-x], page 27

[!root-y], page 27

Class

[Class]<gdk-event>
It is an instance of <class>.

Superclasses are:

<object>

II. Using G-Golf 23

Class Precedence List:

<gdk-event>

<object>

<top>

Direct slots are:

event

#:accessor !event
#:init-keyword #:event

A pointer to a GdkEvent.

axis

#:accessor !axis
#:allocation #:virtual

button

#:accessor !button
#:allocation #:virtual

click-count

#:accessor !click-count
#:allocation #:virtual

coords

#:accessor !coords
#:allocation #:virtual

device

#:accessor !device
#:allocation #:virtual

device-tool

#:accessor !device-tool
#:allocation #:virtual

event-sequence

#:accessor !event-sequence
#:allocation #:virtual

II. Using G-Golf 24

event-type

#:accessor !event-type
#:allocation #:virtual

keycode

#:accessor !keycode
#:allocation #:virtual

keyval

#:accessor !keyval
#:allocation #:virtual

pointer-emulated

#:accessor !pointer-emulated
#:allocation #:virtual

root-coords

#:accessor !root-coords
#:allocation #:virtual

scancode

#:accessor !scancode
#:allocation #:virtual

screen

#:accessor !screen
#:allocation #:virtual

scroll-deltas

#:accessor !scroll-deltas
#:allocation #:virtual

scroll-direction

#:accessor !scroll-direction
#:allocation #:virtual

seat

#:accessor !seat

II. Using G-Golf 25

#:allocation #:virtual

source-device

#:accessor !source-device
#:allocation #:virtual

state

#:accessor !state
#:allocation #:virtual

time

#:accessor !time
#:allocation #:virtual

window

#:accessor !window
#:allocation #:virtual

keyname

#:accessor !keyname
#:allocation #:virtual

x

#:accessor !x
#:allocation #:virtual

y

#:accessor !y
#:allocation #:virtual

root-x

#:accessor !root-x
#:allocation #:virtual

root-y

#:accessor !root-y
#:allocation #:virtual

[Accessor]!event (inst <gdk-event>)
Returns the content of the event slot for inst, a pointer to a GdkEvent.

II. Using G-Golf 26

[Accessor]!axis (inst <gdk-event>)
[Accessor]!button (inst <gdk-event>)
[Accessor]!click-count (inst <gdk-event>)
[Accessor]!coords (inst <gdk-event>)
[Accessor]!device (inst <gdk-event>)
[Accessor]!device-tool (inst <gdk-event>)
[Accessor]!event-sequence (inst <gdk-event>)
[Accessor]!event-type (inst <gdk-event>)
[Accessor]!keycode (inst <gdk-event>)
[Accessor]!keyval (inst <gdk-event>)
[Accessor]!pointer-emulated (inst <gdk-event>)
[Accessor]!root-coords (inst <gdk-event>)
[Accessor]!scancode (inst <gdk-event>)
[Accessor]!screen (inst <gdk-event>)
[Accessor]!scroll-deltas (inst <gdk-event>)
[Accessor]!scroll-direction (inst <gdk-event>)
[Accessor]!seat (inst <gdk-event>)
[Accessor]!source-device (inst <gdk-event>)
[Accessor]!state (inst <gdk-event>)
[Accessor]!time (inst <gdk-event>)
[Accessor]!window (inst <gdk-event>)

Respectively returns the scheme representation of the content of the inst event (struct)
element - refered to by its name. It is an error to call an accessor on a inst for which
the event (struct) does not deliver the element.

Internally, each of the above <gdk-event> accessor calls the corresponding GdkEvent

accessor, passing the content of the event slot. For example, lets see what hap-
pens when a user performs a left button (single) click upon a widget that tracks the
'button-press-event signal callback:

(!button inst)

7→ (gdk-event-get-button (!event inst))

⇒ 1

(!click-count inst)

7→ (gdk-event-get-click-count (!event inst))

⇒ 1

Please refer to the Gdk Events (https://developer.gnome.org/gdk3/stable/gdk3-Events.html)
documentation for a description of the event (struct) element accessor returned
value.

To complete the above listed <gdk-event> virtual slots and accessors automatically pro-
vided by introspecting GdkEvent, G-Golf also defines a few additional rather convinient
virtual slots and accessors:

[Accessor]!keyname (inst <gdk-event>)
Returns the key (symbol) name that was pressed or released.

https://developer.gnome.org/gdk3/stable/gdk3-Events.html

II. Using G-Golf 27

Note that there is actually no such element in any (gdk) event. This accessor calls
gdk-keyval-name on the keyval of the event). Here is what happens if a user press
the ’a’ keyboard key in a widget that tracks the 'key-press-event signal callback:

(!keyname inst)

7→ (gdk-keyval-name (!keyval inst))

7→ (gdk-keyval-name (gdk-event-get-keyval inst))

⇒ a

[Accessor]!x (inst <gdk-event>)
[Accessor]!y (inst <gdk-event>)
[Accessor]!root-x (inst <gdk-event>)
[Accessor]!root-y (inst <gdk-event>)

Respectively returns the x, y, root-x and root-y coordinate for inst.

The result is simply obtained by destructuring and selecting one of the [!coords],
page 26, and [!root-coords], page 26, list values, respectively.

Strip Boolean Result

If you are not (yet) familiar with the concept we are dealing with here, make sure you visit
and read the [Customization Square], page 33, - GI Strip Boolean Result section of the
manual.

When G-Golf detects it is leading with GdkEvent from Gdk-3.0, while dynamically imple-
menting the [<gdk-event>], page 22, class and its accessors, it will add the following names
to the GI Strip Boolean Result list:

gdk-event-get-axis

gdk-event-get-button

gdk-event-get-click-count

gdk-event-get-coords

gdk-event-get-keycode

gdk-event-get-keyval

gdk-event-get-root-coords

gdk-event-get-scroll-deltas

gdk-event-get-scroll-direction

gdk-event-get-state

In Gdk-4.0

In Gdk-4.0 (https://docs.gtk.org/gdk4/index.html), GdkEvent is a class16. GdkEvent
structs are opaque and immutable. Direct access to GdkEvent structs is no longer possible
in GTK 4. All event fields have accessors.

In G-Golf - as in Gdk-4.0 GdkEvent is a class - no special treatment is performed anymore.
In particular, no virtual slot is defined and users must access the GdkEvent structs data
fields using the accesors provided by Gdk-4.0.

16 From a GI point of view - internally, it is a C struct.

https://docs.gtk.org/gdk4/index.html

II. Using G-Golf 28

GObject

G-Golf GObject interfaces.
The G-Golf integration with the GLib Object System.

Special Note

For completion, this section exposes the definition of the classes and metaclasses involved
in the G-Golf integration of the GLib Object System. From a (strict) user point of view
however, these are actually G-Golf internals and, unless you are interested of course, might
be ignored.

What you actually really need to know, as a G-Golf user, is mostly (a) the upstream
reference manual of the GNOME library(ies) you intend to use, (b) how to program in
Guile Scheme of course, and (c) the basics of the Guile Object Oriented System.

It doesn’t hurt if you are, or if you are willing to become one, but we would like to emphasize
that you do not need to be a Guile Object Oriented System expert to use G-Golf. What
you need to know, with that respect, is somehow largely covered by the [Getting Started
with G-Golf], page 12, sections, the description of this (and related) sections and in the
examples that come with G-Golf.

Classes

[<gobject>], page 29

[<ginterface>], page 29

[<gobject-class>], page 30

[<gtype-class>], page 30

[<gtype-instance>], page 31

Procedures, Accessors and Methods

[gobject-class?], page 32

[!info], page 31

[!derived], page 31

[!namespace], page 31

[!g-type], page 31

[!g-name (2)], page 31

[!g-class], page 31

[!g-inst], page 31

[unref], page 31

Description

GObject17 is the GLib Object System.

The GLib Object System (https://developer.gnome.org/gobject/stable/)
- a C based object-oriented framework and APIs - is composed of three prin-

17 The name GObject, depending on the context, can actually be used and refer to the GLib
Object System (https://developer.gnome.org/gobject/stable/) language system as a
all, or be used and refer to the fundamental type implementation, the base object type
(https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html), upon which
GNOME libraries object hierarchies are based.

https://developer.gnome.org/gobject/stable/
https://developer.gnome.org/gobject/stable/
https://developer.gnome.org/gobject/stable/
https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html
https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html

II. Using G-Golf 29

cipal elements: (1) GType18, the lower-level GLib Dynamic Type System
(https://developer.gnome.org/gobject/stable/chapter-gtype.html), (2) GObject,
the base object type (https://developer.gnome.org/gobject/stable/chapter-gobject.html)
and (3) the GObject closures and signals messaging system (https://developer.gnome.org/gobject/stable/chapter-signal.html).

All the GNOME libraries that use the GLib type system inherit from GObject
(https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html),
the base object type, which provides methods for object construction and destruction,
property access methods, and signal support.

G-Golf uses GOOPS19 and defines the [<gobject>], page 29, class, from which all imported
GNOME libraries inherit, as their class hierarchy is being built in Guile Scheme.

Classes

[Class]<gobject>
The base class of the GLib Object System.

It is an instance of [<gobject-class>], page 30.

Superclasses are:

<gtype-instance>

Class Precedence List:

<gobject>

<gtype-instance>

<object>

<top>

(No direct slot)

[Class]<ginterface>
The base class for GLib’s interface types. Not derivable in Scheme.

It is an instance of [<gobject-class>], page 30.

Superclasses are:

<gtype-instance>

Class Precedence List:

<ginterface>

<gtype-instance>

<object>

<top>

(No direct slot)

18 The name GType, depending on the context, can actually be used and refer to the The GLib Dynamic Type
System (https://developer.gnome.org/gobject/stable/chapter-gtype.html), or be used and refer to
the type it denotes, a unique ID (Identifier) - an unsigned-long to be precise.

19 The Guile Object Oriented System (see Section “GOOPS” in The GNU Guile Reference Manual). If you
haven’t done so already, please make sure you read both the [Naming Conventions], page 6, and [GOOPS
Notes and Conventions], page 9, sections.

https://developer.gnome.org/gobject/stable/chapter-gtype.html
https://developer.gnome.org/gobject/stable/chapter-gtype.html
https://developer.gnome.org/gobject/stable/chapter-gobject.html
https://developer.gnome.org/gobject/stable/chapter-signal.html
https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html
https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html
https://developer.gnome.org/gobject/stable/chapter-gtype.html
https://developer.gnome.org/gobject/stable/chapter-gtype.html

II. Using G-Golf 30

[Class]<gobject-class>
The metaclass of the [<gobject>], page 29, and [<ginterface>], page 29, classes.

It is an instance of <class>.

Superclasses are:

<gtype-class>

Class Precedence List:

<gobject-class>

<gtype-class>

<class>

<object>

<top>

(No direct slot)

[Class]<gtype-class>
The metaclass of all GType classes. Ensures that GType classes have an info slot,
holding a pointer to either a GIObjectInfo or a GIInterfaceInfo.

It is an instance of <class>.

Superclasses are:

<class>

Class Precedence List:

<gtype-class>

<class>

<object>

<top>

Direct slots are:

info #:accessor !info
#:init-keyword #:info

derived #:accessor !derived
#:init-keyword #:derived
#:init-value #f

A class is derived when it is user defined (not imported), and inherit
a [<gobject>], page 29, subclass.

namespace

#:accessor !namespace

g-type #:accessor !g-type

II. Using G-Golf 31

g-name #:accessor !g-name

g-class #:accessor !g-class

The #:info #:init-keyword is mandatory, other slots are initialized automatically. All
slots are immutable (to be precise, they are not meant to be mutated, see [GOOPS
Notes and Conventions], page 9, ’Slots are not Immutable’).

[Accessor]!info (inst <gtype-class>)
[Accessor]!derived (inst <gtype-class>)
[Accessor]!namespace (inst <gtype-class>)
[Accessor]!g-type (inst <gtype-class>)
[Accessor]!g-name (inst <gtype-class>)
[Accessor]!g-class (inst <gtype-class>)

Returns the content of their respective slot for inst.

[Class]<gtype-instance>
The root class of all instantiable GType classes. Adds a slot, g-inst, to instances,
which holds a pointer to the C value.

It is an instance of [<gtype-class>], page 30.

Superclasses are:

<object>

Class Precedence List:

<gtype-instance>

<object>

<top>

Direct slots are:

g-inst #:accessor !g-inst

The g-inst slot is initialized automatically and immutable (to be precise, it is not
meant to be mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not
Immutable’).

[Accessor]!g-inst (inst <gtype-instance>)
Returns the content of the g-inst slot for instance.

[Method]unref (inst <gtype-instance>)
Returns nothing.

This method calls [g-object-unref], page 64, on the g-inst of instance.

When the reference count for the g-inst reaches 0 (zero), it sets the g-inst slot
value for instance to #f and removes instance from the %g-inst-cache.

II. Using G-Golf 32

Note that it used to be mandatory to call this method upon unreachable instances,
so that their memory could be freed by the next gc (garbage collector) occurrence,
but this is not the case anymore, as auto gc of unreachable <gobject> instances is a
now feature [since August 2021].

Procedures

[Procedure]gobject-class? val
Returns #t if val is a class and if [<gobject>], page 29, is a member of its class
precedence list. Otherwise, it returns #f.

G-Golf Valley

Cache Park

Cache Park - Accessing G-Golf caches.

Procedures

[gi-cache-show], page 32

[gi-cache-ref], page 32

Variables

[%gi-cache], page 33

Description

G-Golf has and uses a cache ‘mechanism’ - actually several, but only one is (partially)
exposed to users (and with reserves, see below), also referred to as G-Golf main cache - not
only for internal needs, but also to avoid reconstructing things ‘on-the-fly’ unnecessarily,
such as already imported [<gi-enum>], page 130, [<gi-flags>], page 131, and [<gi-struct>],
page 132, instances.

G-Golf main cache exposed functionality is ‘access only’ - users should not (never) at-
tempt to change its content - and its design is not (yet) ‘set in stone’, so interfaces here
exposed, may (have to be) change(d).

So, keeping the above reserves in mind, G-Golf main cache current data structure is com-
posed of two nested association lists, to which we refer using m-key (main key) and s-key
(secondary key).

Procedures

[Procedure]gi-cache-show [m-key #f]
Returns nothing.

Displays the content of G-Golf main cache. If m-key (main key) is #f (the default),
it displays the list of the main keys present in the cache. Otherwise, it retrieves the
content of the main cache for m-key and displays its content if any, or -- is empty

-- if none.

[Procedure]gi-cache-ref m-key s-key
Returns a [%gi-cache], page 33, entry or #f.

II. Using G-Golf 33

Obtains and returns the [%gi-cache], page 33, entry for m-key and s-key, or #f if none
is found.

Remember that you may (always) view the list of main and secondary key names
(which is ‘dynamic’, depending on what you have imported) by calling [gi-cache-
show], page 32, (without or with an m-key arg appropriately), but as a user, the two
most important m-key are 'enum and 'flags, so you may check their member names,
or bind their instance locally.

Main key names are given by G-Golf. Secondary key names are always the result of
calling [g-name->name], page 137, upon the ‘object’ original name.

For example, let’s import, then retreive and visualize the content of the
GtkPositionType (enum) type:

,use (g-golf)

(gi-import-by-name "Gtk" "PositionType")

⇒ $2 = #<<gi-enum> 7ff938938b40>

(gi-cache-ref 'enum 'gtk-position-type)

⇒ $3 = #<<gi-enum> 7ff938938b40>

(describe $3)

a #<<gi-enum> 7ff938938b40> is an instance of class <gi-enum>

a Slots are:

a enum-set = ((left . 0) (right . 1) (top . 2) (bottom . 3))

a g-type = 94673466933568

a g-name = "GtkPositionType"

a name = gtk-position-type

Variables

[Variable]%gi-cache
Holds a reference the the G-Golf main cache, which as said earlier, currently is com-
posed of two nested association lists.

Customization Square

Customization Square - G-Golf customization functionality.

II. Using G-Golf 34

Procedures and Syntax

[g-name-transform-exception], page 35

[g-name-transform-exception?], page 35

[g-name-transform-exception-add], page 35

[g-name-transform-exception-remove], page 35

[g-name-transform-exception-reset], page 35

[g-studly-caps-expand-token-exception], page 35

[g-studly-caps-expand-token-exception?], page 36

[g-studly-caps-expand-token-exception-add], page 36

[g-studly-caps-expand-token-exception-remove], page 36

[g-studly-caps-expand-token-exception-reset], page 36

[gi-strip-boolean-result], page 37

[gi-strip-boolean-result?], page 37

[gi-strip-boolean-result-add], page 37

[gi-strip-boolean-result-remove], page 37

[gi-strip-boolean-result-reset], page 37

[gi-method-short-name-skip], page 38

[gi-method-short-name-skip?], page 38

[gi-method-short-name-skip-all], page 38

[gi-method-short-name-skip-add], page 38

[gi-method-short-name-skip-remove], page 38

[gi-method-short-name-skip-reset], page 38

[syntax-name-protect-prefix], page 39

[syntax-name-protect-prefix-set], page 39

[syntax-name-protect-prefix-reset], page 39

[syntax-name-protect-postfix], page 39

[syntax-name-protect-postfix-set], page 39

[syntax-name-protect-postfix-reset], page 39

[syntax-name-protect-renamer], page 39

[syntax-name-protect-renamer-set], page 39

[syntax-name-protect-renamer-reset], page 39

[syntax-name-protect-reset], page 39

Description

Welcome to the G-Golf Customization Square.

This section is organized per customization theme: (-) GI Name Transformation; (-) GI
Strip Boolean Result ; (-) GI Method Short Name Skip and (-) GI Syntax Name Protect.

GI Name Transformation

In this corner of the square, we expose how you may customize G-Golf with respect to GI
Name Transformation that occurs when importing GNOME libraries.

When G-Golf imports a GNOME library, its classes, properties, methods, functions, types
and constants are renamed (See [Naming Conventions], page 6), mainly to (a) avoid ‘Camel
Case (https://en.wikipedia.org/wiki/Camel_case)’, (b) surround class names by ‘<’
‘>’ and (c) replace ‘_’ (underscore) occurrences using the ‘-’ (hyphen) character.

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

II. Using G-Golf 35

As the context of name transformation is GNOME in general, as opposed to GI more
specifically, (all) procedures involved are named using a g- prefix.

Here is a summary of how the name transformation happens:

• Class names are obtained by calling [g-name->class-name], page 137, which calls [g-
name->name], page 137;

• [g-name->name], page 137, first calls [g-name-transform-exception?], page 35, and re-
turns its value if it found one, otherwise, it calls [g-studly-caps-expand], page 136;

• [g-studly-caps-expand], page 136, which does the core of the job, uses [g-studly-caps-
expand-token-exception?], page 36, to specially treat its listed token exceptions.

[Procedure]g-name-transform-exception
Returns an alist.

Obtains and returns the list of GI name transform exception (key . value) pairs.
Both key and value are strings.

The GI name transform exception alist is never empty, as it is initialized and always
kept to at least contain the '("GObject" . "gobject") pair20.

As a consequence [<gobject>], page 29, (as opposed to <g-object> is the G-Golf class
name for the base class of the GLib Object System.

This only affects the class name though - any procedure or method name that comes
from the "GObject" namespace is transformed using the g-object prefix, as the
upstream library prefix is g_object.

[Procedure]g-name-transform-exception? key
Returns #t if key is a key member of the GI name transform exception alist. Other-
wise, it returns #f.

[Procedure]g-name-transform-exception-add key value
[Procedure]g-name-transform-exception-remove key

Returns nothing.

Add (remove) a (key . value) pair to (from) the GI name transform exception alist.

[Procedure]g-name-transform-exception-reset
Returns nothing.

This procedure resets the GI name transform exception alist to its default value -
which is to contain the single '("GObject" . "gobject") pair.

[Procedure]g-studly-caps-expand-token-exception
Returns an alist.

20 This is the only name for which G-Golf maintains compatibility with Guile-GNOME (which has a long list
of exceptions)..

II. Using G-Golf 36

Obtains and returns the list of GI studly caps expand token exception (key . value)

pairs. Both key and value are strings.

The GI studly caps expand token exception alist is never empty, as it is initialized
and always kept to at least contain the '("WebKit" . "webkit") pair.

[Procedure]g-studly-caps-expand-token-exception? key
Returns #t if key is a key member of the GI studly caps expand token exception alist.
Otherwise, it returns #f.

[Procedure]g-studly-caps-expand-token-exception-add key value
[Procedure]g-studly-caps-expand-token-exception-remove key

Returns nothing.

Add (remove) a (key . value) pair to (from) the GI studly caps expand token exception
alist.

[Procedure]g-studly-caps-expand-token-exception-reset
Returns nothing.

This procedure resets the GI studly caps expand token exception alist to its default
value - which is to contain the single '("WebKit" . "webkit") pair.

GI Strip Boolean Result

In this corner of the square, we expose how you may customize G-Golf with respect to GI
Strip Boolean Result, which addresses the problem of typelib functions and methods that
(1) have at least one 'inout or 'out argument(s) and (2) return either #t or #f, solely to
indicate that the function or method call was successful or not.

The default G-Golf behavior, when there is at least one 'inout or 'out argument(s), is to
return multiple values. The first returned value is the function or method result, followed
by the 'inout and 'out values, in order of appearance in the function or method call.

G-Golf also offers - through a series of interfaces to get, check, add, remove and reset a list
of such function or methods names - to instead elude the function or method returned value
when it is #t and raise an exception if the returned value is #f.

Here is a concrete example, for the "Clutter" namespace and the clutter-color-from-

string procedure:

,use (g-golf)

(gi-import "Clutter")

(clutter-color-from-string "Blue")

⇒ $2 = #t

⇒ $3 = (0 0 255 255)

And call it with an undefined color name:

(clutter-color-from-string "Bluee")

⇒ $4 = #f

⇒ $5 = (0 0 0 0)

II. Using G-Golf 37

Now, let’s add clutter-color-from-string to the list of GI funtions and methods for
which we wish to elude the result of the call from the returned value(s), then experiment
the above calls and see how G-Golf changed the way it handles the results:

(gi-strip-boolean-result-add clutter-color-from-string)

(clutter-color-from-string "Blue")

⇒ $7 = (0 0 255 255)

As expected, if we call it with an undefined color name, it will raise an exception21

(clutter-color-from-string "Bluee")

a ice-9/boot-9.scm:1686:16: In procedure raise-exception:

a clutter-color-from-string " failed."

a
a Entering a new prompt. Type `,bt' for a backtrace or `,q' to continue.

G-Golf default is that the list of GI funtions and methods for which to elude the result of
the call from the returned value(s) is empty. It is a user responsibility to fill it appropriately,
for each namespace they are importing.

[Procedure]gi-strip-boolean-result
Returns a (possibly empty) list of (symbol) name(s).

Obtains and returns the list of GI funtions and methods for which G-Golf will elude
the result of the call from the returned value(s).

[Procedure]gi-strip-boolean-result? name
Returns #t if name is a member of the list of GI funtions and methods for which G-
Golf will elude the result of the call from the returned value(s). Otherwise, it returns
#f.

[Syntax]gi-strip-boolean-result-add name . . .
[Syntax]gi-strip-boolean-result-remove name . . .

Add (remove) the names to (from) the list of GI funtions and methods for which
G-Golf will elude the result of the call from the returned value(s).

[Procedure]gi-strip-boolean-result-reset
Resets the list of GI funtions and methods for which G-Golf will elude the result of
the call from the returned value(s) to the empty list.

GI Method Short Name Skip

In this corner of the square, we expose how you may customize G-Golf with respect to GI
Method Short Name, more specifically, whether you wish to skip the method short name
creation, and doing so individually or for all GI imported methods.

By default, as it imports a GI typelib, G-Golf creates a method short name for each imported
method, obtained by dropping the container name (and its trailing hyphen) from the GI
typelib method full/long name.

21 Note that the raised exception message and formatting depends on the version of guile you are using. Fwiw,
this example was produced using GNU Guile 3.0.8.

II. Using G-Golf 38

For example, the <gtk-label> class, which defines the gtk-label-get-textmethod, would
also define, using G-Golf’s default settings, the get-text method. To be more precise, G-
Golf would create (if it does not exist) or reuse (if it exists) the get-text generic function,
make and add a method with its specializer(s), in this case <gtk-label>.

Now, let’s add gtk-label-get-text to the list of the GI methods for which we wish to skip
the short name creation step. In this case, as G-Golf imports the GtkLabel class, it would
only create the gtk-label-get-text method, but not the get-text method anymore.

[Procedure]gi-method-short-name-skip
Returns a (possibly empty) list of (symbol) name(s).

Obtains and returns the list of GI method long name for which G-Golf will skip the
method short name creation step.

[Procedure]gi-method-short-name-skip? name
Returns #t if name is a member of the list of GI method long name for which G-Golf
will skip the method short name creation step. Otherwise, it returns #f.

[Procedure]gi-method-short-name-skip-all
Returns nothing.

Sets the GI method short name skip creation step to 'all.

[Syntax]gi-method-short-name-skip-add name . . .
[Syntax]gi-method-short-name-skip-remove name . . .

Add (remove) the names to (from) the list of GI method long name for which G-Golf
will skip the method short name creation step.

[Procedure]gi-method-short-name-skip-reset
Resets the list of GI method long name for which G-Golf will skip the method short
name creation step to the empty list.

GI Syntax Name Protect

In this corner of the square, we expose how you may customize G-Golf with respect to GI
Syntax Name Protect.

When G-Golf creates a method short name, obtained by dropping the container name (and
its trailing hyphen) from the GI typelib method full/long name, it may lead to a ‘name
clash’, with an already defined procedure or syntax.

GI methods are added to their respective generic function, which is created if it does not
already exist. When a generic function is created, G-Golf checks if the name is used, and
when it is bound to a procedure, the procedure is ‘captured’ into an unspecialized method,
which is added to the newly created generic function.

However, when the name is used but its variable value is a syntax, the above can’t be done
and the name must be ‘protected’, which is what [syntax-name->method-name], page 138,
does22, using a renamer, or by adding a prefix, a postfix or both to its (symbol) name
argument.

22 Users should normally not call this procedure - except for testing purposes, if/when they customize its
default settings - it is appropriately and automatically called by G-Golf when importing a GI typelib.

II. Using G-Golf 39

G-Golf defines the following interfaces to get, set and reset the syntax name protect prefix,
postfix and renamer, of which at least one must be set.

[Procedure]syntax-name-protect-prefix
[Procedure]syntax-name-protect-prefix-set prefix
[Procedure]syntax-name-protect-prefix-reset

Respectively get, set and reset the syntax name protect prefix. Its default value is
#f.

[Procedure]syntax-name-protect-postfix
[Procedure]syntax-name-protect-postfix-set postfix
[Procedure]syntax-name-protect-postfix-reset

Respectively get, set and reset the syntax name protect postfix. Its default value is
'_ (the symbol).

[Procedure]syntax-name-protect-renamer
[Procedure]syntax-name-protect-renamer-set renamer
[Procedure]syntax-name-protect-renamer-reset

Respectively get, set and reset the syntax name protect renamer. Its default value is
'_ (the symbol).

The syntax name protect renamer, unless set to #f, must be a procedure that takes a
(symbol) name as its single argument, and return a ‘none clashing’ (symbol) name.

[Procedure]syntax-name-protect-reset
This procedure will conveniently reset all three syntax name protect prefix, postfix
and renamer to their default value, which are:

[syntax-name-
protect-prefix],
page 39,

#f

[syntax-name-
protect-postfix],
page 39,

'_ (the symbol)

[syntax-name-
protect-renamer],
page 39,

#f

VFunc Alley

VFunc Alley - VFunc G-Golf support.

Special Notes

For completion, this section exposes the definition of the [<vfunc>], page 41, class and
[vfunc], page 42, syntax, involved in the G-Golf integration of the (GLib Object System)
VFunc. From a (strict) user point of view however, these are actually G-Golf internals and,
unless you are interested of course, might be ignored.

In the GObject documentation, the terminology (mostly) used is virtual public|private

method or simply virtual method. In the GI (GObject Introspection) documentation how-

II. Using G-Golf 40

ever, the structure representing a virtual method is named a GIVFuncInfo and the descrip-
tion says it represents a virtual function. The GI core functionality also uses the vfunc or
vfunc-info prefix, infix or postfix terms, depending on the context.

Class

[<vfunc>], page 41

Syntaxes and Accessors

[define-vfunc], page 41

[vfunc], page 42

[!specializer], page 42

[!name_______], page 42

[!g-name_______], page 42

[!long-name-prefix], page 42

[!gf-long-name?], page 42

[!info__], page 42

[!callback], page 42

Special Form

[next-vfunc], page 42

Description

Welcome to the VFunc G-Golf Alley.

Let’s first recap :-) GObject (the GLib Object System) offers different ways to define object
and interface methods and extend them, well introduced and described in the GObject
Tutorial (https://docs.gtk.org/gobject/tutorial.html):

• non-virtual public methods

• virtual public methods

• virtual private methods

• non-virtual private methods

Of those four, virtual public methods and virtual private methods maybe overridden,
through the use of a mechanism that involves the creation of a C closure and the setting of
its pointer in the corresponding GObject or Interface class struct.

In G-Golf, this is implemented by the [define-vfunc], page 41, syntax, which must be used
to define a VFunc (virtual method). From a user perspective, define-vfunc is very much like
define-method (See Section “Methods and Generic Functions” in The GNU Guile Reference
Manual).

Here is an example, which defines a GObject subclass that inherits the GdkPaintable in-
terface, then overrides the get flags VFunc, one of its numerous virtual methods:

(define-class <solitaire-peg> (<gobject> <gdk-paintable>)

(i #:accessor !i #:init-keyword #:i)

(j #:accessor !j #:init-keyword #:j))

https://docs.gtk.org/gobject/tutorial.html
https://docs.gtk.org/gobject/tutorial.html

II. Using G-Golf 41

(define-vfunc (get-flags-vfunc (self <solitaire-peg>))

'(size contents))

The only difference, from a user point of view and as you can see in the example above, is
that define-vfunc imposes one (or two, depending on the context) additional constraint(s)
to the VFunc name, fully described in the [define-vfunc], page 41, definition.

Class

[Class]<vfunc>
The base class of all virtual method.

It is an instance of <class>.

Superclasses are:

<method>

Class Precedence List:

<vfunc>

<method>

<object>

<top>

Direct slots are:

specializer

#:accessor !specializer

name #:accessor !name

g-name #:accessor !g-name

long-name-preifx

#:accessor !long-name-preofx

gf-long-name?

#:accessor !gf-long-name?

info #:accessor !info

callback #:accessor !callback

All direct slots are initialized automatically and immutable (to be precise, they are
not meant to be mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are
not Immutable’).

Syntaxes and Accessors

[Syntax]define-vfunc (generic parameter . . .) body . . .
Defines a vfunc (a specialized method) for the generic function generic with parame-
ters parameters and body body

II. Using G-Golf 42

generic is a generic function, and the following constraints apply to the generic func-
tion name:

• the generic function name is valid if it is the scheme representation of a VFunc
(name) that exists for at least one of the instance specializer superclasses, followed
by the -vfunc postfix23.

• if more then one instance specializer superclasses has a VFunc name, then the
scheme name must be a so-called long name24, followed by the -vfunc postfix25.

If generic is a variable which is not yet bound to a generic function object, the
expansion of define-vfunc will include a call to define-generic.

Each parameter must be either a symbol or a two-element list (symbol class). The
symbols refer to variables in the body forms that will be bound to the parameters
supplied by the caller when calling this method. The classes, if present, specify the
possible combinations of parameters to which this method can be applied.

body . . . are the bodies of the vfunc definition.

[Syntax]vfunc (parameter . . .) body . . .
Makes a vfunc (a specialized method) whose specializers are defined by the classes
in parameters and whose procedure definition is constructed from the parameter
symbols and body forms.

The parameter and body parameters should be as for [define-vfunc], page 41.

[Accessor]!specializer inst
[Accessor]!name inst
[Accessor]!g-name inst
[Accessor]!long-name-prefix inst
[Accessor]!gf-long-name? inst
[Accessor]!info inst
[Accessor]!callback inst

Returns the content of their respective slot for inst (a <vfunc> instance).

23 This is because most of the cases, in the upstream lib, the VFunc is a virtual public method, that is, both a
method and a VFunc exist that use the same name. When that happens, the upstream lib method normally
has the same arity and definition (spec), and it ’just’ calls the VFunc - however, it is (unfortunately) not
guaranteed to always be the case, hence all GI lang bindings impose a specific VFunc naming convention.
Pygobject for example imposes to use a do- prefix. In G-Golf, we opted for a -vfunc postfix.

24 It must be prefixed using the scheme representation name of the GObject or Interface that owns the Vfunc,
followed by - (hyphen), i.e. gdk-paintable-get-flags-vfunc is the valid define-vfunc long name for the get flags
virtual method of the GdkPaintable interface.

25 Otherwise, it would be impossible to deternine which iface or gobject class struct the *-vfunc user code is
meant to override. Consider (define-class <foo> (<gobject> <bar> <baz>)), with both <bar> and <baz> defining
a get flags VFunc: in this context (define-vfunc (get-flags-vfunc (self <foo>))...) is an invalid definition, as
it is not possible for G-Golf to deternine if it is the <bar> or the <baz> iface class struct VFunc that must
be overridden. In such cases, the user must pass a method long name, i.e. (define-vfunc (bar-get-flags-vfunc
(self <foo>)) ...) or (define-vfunc (baz-get-flags-vfunc (self <foo>)) ...).

II. Using G-Golf 43

Next-vfunc

In G-Golf, from a user perspective, the next-vfunc concept and mechanism is to the GObject
virtual method system what the next-method concept and mechanism is to the GOOPS
(compute applicable) method system.

If a vfunc refers to ‘next-vfunc’ in its body, that vfunc will call the corresponding
‘immediate parent’ virtual function. The exact ‘next-vfunc’ implementation is only
known at runtime, as it is a function of the vfunc specializer argument.

G-Golf implements ‘next-vfunc’ by binding it as a closure variable. An effective virtual
method is bound to a specific ‘next-vfunc’ by the internal %next-vfunc-proc, which
returns the new closure.

Let’s look at an excerpt form the animated-paintable.scm example, which specializes the
GObject finalize virtual method, and as the GNOME team would say, needs to ‘chain-up’:

(define-vfunc (finalize-vfunc (self <nuclear-animation>))

(g-source-remove (!source-id self))

;; This vfunc must 'chain-up' - call the <nuclear-animation> parent

;; finalize virtual method.

(next-vfunc))

Utils Arcade

Utils Arcade. G-Golf utilities.

Syntax

[scm->g-type], page 43

[allocate-c-struct], page 43

Description

Welcome to the G-Golf Utils Arcade.

Syntax

[Procedure]scm->g-type value
Returns a GType.

Obtains and returns the GType for value, which may be a number (then assumed
to be a valid GType), a string, a symbol (a [%g-type-fundamental-types], page 61,
member) or a <gobject-class>.

[Syntax]allocate-c-struct name . fields
Returns a (or more) pointer(s).

This syntax takes the name of a GI upstream library C struct26 and returns a pointer
to a newly - scheme allocated, zero initialized - memory block.

When fields is not null?, it returns additional value(s), one for each specified field
name, a pointer to the field in the C struct.

26 More specifically, an unquoted scheme representation name of a GI upstream library C struct.

III. G-Golf Core Reference 44

Here is an example, an excerpt form the peg-solitaire.scm example, distributed with
G-Golf. The example shows how to obtain a pointer to newly allocated block for a
GskRoundedRect, as well as a pointer to its bounds field:

(receive (outline outline:bounds)

(allocate-c-struct gsk-rounded-rect bounds)

...

(push-rounded-clip snapshot outline)

(append-color snapshot

'(0.61 0.1 0.47 1.0)

outline:bounds)

...)

III. G-Golf Core Reference

Overview

Structure and Naming Conventions

G-Golf Core Reference modules and documentation structure and naming conventions are
based, whenever it is possible, on the structure and naming conventions of the corresponding
GNOME library.

To illustrate, let’s look at a few GLib, GObject and GObject Introspection sections and
corresponding G-Golf sections and modules naming examples:

Glib

Memory Allocation

(https://developer.gnome.org/glib/stable/glib-Memory-Allocation.html)

[Memory Allocation], page 46,
(g-golf glib mem-alloc)

The Main Event Loop

(https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html)

[The Main Event Loop], page 46,
(g-golf glib main-event-loop)

...

GObject

Type Information

(https://developer.gnome.org/gobject/stable/gobject-Type-Information.html)

[Type Information], page 57,
(g-golf gobject type-info)

GObject

(https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html)

[GObject], page 62,
(g-golf gobject gobject)

https://developer.gnome.org/glib/stable/glib-Memory-Allocation.html
https://developer.gnome.org/glib/stable/glib-Memory-Allocation.html
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html
https://developer.gnome.org/gobject/stable/gobject-Type-Information.html
https://developer.gnome.org/gobject/stable/gobject-Type-Information.html
https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html
https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html

III. G-Golf Core Reference 45

Enumeration and Flag Types

(https://developer.gnome.org/gobject/stable/gobject-Enumeration-and-Flag-Types.html)

[Enumeration and Flag Types], page 65,
(g-golf gobject enum-flags)

...

GObject Introspection

GIRepository (https://developer.gnome.org/gi/stable/GIRepository.html)

[Repository], page 84,
(g-golf gi repository)

common types

(https://developer.gnome.org/gi/stable/gi-common-types.html)

[Common Types], page 87,
(g-golf gi common-types)

GIBaseInfo (https://developer.gnome.org/gi/stable/gi-GIBaseInfo.html)

[Base Info], page 89,
(g-golf gi base-info)

...

Support to the G-Golf Core Reference modules themselves, or additional functionality to
G-Golf as a all, is organized and located in other (none GNOME library based) modules,
such as (g-golf support ...), g-golf override ...) . . .

Glib

G-Golf Glib modules are defined in the glib subdirectory, such as (g-golf glib main-

event-loop).

Where you may load these modules individually, the easiest way to use G-Golf Glib is to
import its main module, which imports and re-exports the public interface of (oop goops),
(system foreign), all G-Golf support and G-Golf Glib modules:

(use-modules (g-golf glib))

G-Golf Glib low level API modules correspond to a Glib section, though they might be
some exception in the future.

Version Information (1)

G-Golf Glib Version Information low level API.
Version Information — variables and functions to check the GLib version.

Procedures

[glib-get-major-version], page 46

[glib-get-minor-version], page 46

[glib-get-micro-version], page 46

Description

GLib version information variables and functions.

https://developer.gnome.org/gobject/stable/gobject-Enumeration-and-Flag-Types.html
https://developer.gnome.org/gobject/stable/gobject-Enumeration-and-Flag-Types.html
https://developer.gnome.org/gi/stable/GIRepository.html
https://developer.gnome.org/gi/stable/gi-common-types.html
https://developer.gnome.org/gi/stable/gi-common-types.html
https://developer.gnome.org/gi/stable/gi-GIBaseInfo.html

III. G-Golf Core Reference 46

Procedures

[Procedure]glib-get-major-version
[Procedure]glib-get-minor-version
[Procedure]glib-get-micro-version

Returns an integer.

Obtains and returns the GLib runtime library major, minor and micro version num-
ber.

Memory Allocation

G-Golf Glib Memory Allocation low level API.
Memory Allocation — general memory-handling

Procedures

[g-malloc], page 46

[g-malloc0], page 46

[g-free], page 46

[g-memdup], page 46

Description

These functions provide support for allocating and freeing memory.

Please read the Memory Allocation (https://developer.gnome.org/glib/stable/glib-Memory-Allocation.html)
section from the Glib reference manual for a complete description.

Procedures

[Procedure]g-malloc n-bytes
[Procedure]g-malloc0 n-bytes

Returns a pointer to the allocated memory, or #f.

Allocates n-bytes of memory. If n-bytes is 0 it returns #f. When using g-malloc0,
the allocated memory is initialized to 0.

[Procedure]g-free mem
Returns nothing.

Frees the memory pointed to by mem.

[Procedure]g-memdup mem n-bytes
Returns a pointer to the allocated memory, or #f.

Allocates n-bytes of memory and copies n-bytes into it from mem. If mem is the
%null-pointer or n-bytes is 0 it returns #f.

The Main Event Loop

G-Golf Glib Main Event Loop low level API.
The Main Event Loop — manages all available sources of events

https://developer.gnome.org/glib/stable/glib-Memory-Allocation.html

III. G-Golf Core Reference 47

Procedures

[g-main-loop-new], page 47

[g-main-loop-run], page 48

[g-main-loop-ref], page 47

[g-main-loop-unref], page 48

[g-main-loop-quit], page 48

[g-main-context-new], page 48

[g-main-context-default], page 48

[g-timeout-source-new], page 48

[g-timeout-source-new-seconds], page 48

[g-idle-source-new], page 48

[g-source-ref-count], page 49

[g-source-ref], page 49

[g-source-unref], page 49

[g-source-free], page 49

[g-source-attach], page 49

[g-source-destroy], page 49

[g-source-is-destroyed?], page 49

[g-source-set-priority], page 49

[g-source-get-priority], page 50

[g-source-remove], page 50

Description

The main event loop manages all the available sources of events for GLib and GTK+ appli-
cations. These events can come from any number of different types of sources such as file
descriptors (plain files, pipes or sockets) and timeouts. New types of event sources can also
be added using g-source-attach.

Please read The Main Event Loop (https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html)
section from the Glib reference manual for a complete description.

Procedures

Note: in this section, the loop, context and source arguments are [must be] pointers to a
GMainLoop, a GMainContext and a GSource respectively.

[Procedure]g-main-loop-new [context #f] [is-running? #f]
Returns a pointer to a new GMainLoop.

Creates a new GMainLoop structure.

The context must be a pointer to a GMainContext of #f, in which case the default
context is used. When is-running? is #t, it indicates that the loop is running. This
is not very important since calling g-main-loop-run will set this to #t anyway.

[Procedure]g-main-loop-ref loop
Returns loop.

Increases the loop reference count by one.

https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html

III. G-Golf Core Reference 48

[Procedure]g-main-loop-unref loop
Returns nothing.

Decreases the loop reference count by one. If the result is zero, free the loop and free
all associated memory.

[Procedure]g-main-loop-run loop
Returns nothing.

Runs a main loop until [g-main-loop-quit], page 48, is called on the loop. If this is
called for the thread of the loop’s GMainContext, it will process events from the loop,
otherwise it will simply wait.

[Procedure]g-main-loop-quit loop
Returns nothing.

Stops a GMainLoop from running. Any calls to [g-main-loop-run], page 48, for the
loop will return.

Note that sources that have already been dispatched when g-main-loop-quit is
called will still be executed.

[Procedure]g-main-context-new
Returns a pointer.

Creates and returns a (pointer to a) new GMainContext structure.

[Procedure]g-main-context-default
Returns a pointer.

Returns the global default main context. This is the main context used for main loop
functions when a main loop is not explicitly specified, and corresponds to the ‘main’
main loop.

[Procedure]g-timeout-source-new interval
Returns a pointer.

Creates and returns (a pointer to) a new (timeout) GSource.

The source will not initially be associated with any GMainContext and must be added
to one with [g-source-attach], page 49, before it will be executed.

The timeout interval is in milliseconds.

[Procedure]g-timeout-source-new-seconds interval
Returns a pointer.

Creates and returns (a pointer to) a new (timeout) GSource.

The source will not initially be associated with any GMainContext and must be added
to one with [g-source-attach], page 49, before it will be executed.

The timeout interval is in seconds.

[Procedure]g-idle-source-new
Returns a pointer.

Creates and returns (a pointer to) a new (idle) GSource.

III. G-Golf Core Reference 49

The source will not initially be associated with any GMainContext and must be added
to one with [g-source-attach], page 49, before it will be executed. Note that the default
priority for idle sources is 200, as compared to other sources which have a default
priority of 300.

[Procedure]g-source-ref-count source
Returns an integer.

Obtains and returns the reference count of source.

[Procedure]g-source-ref source
Returns source.

Increases the source reference count by one.

[Procedure]g-source-unref source
Returns nothing.

Decreases the source reference count by one. If the resulting reference count is zero
the source and associated memory will be destroyed.

[Procedure]g-source-free source
Returns nothing.

Calls [g-source-destroy], page 49, and decrements the reference count of source to 0
(so source will be destroyed and freed).

[Procedure]g-source-attach source context
Returns an integer.

Adds source to context so that it will be executed within that context.

Returns the ID (greater than 0) for the source within the context.

Remove it by calling [g-source-destroy], page 49.

[Procedure]g-source-destroy source
Returns nothing.

Removes source from its GMainContext, if any, and mark it as destroyed. The source
cannot be subsequently added to another context. It is safe to call this on sources
which have already been removed from their context.

This does not unref source: if you still hold a reference, use g-source-unref to drop it.

[Procedure]g-source-is-destroyed? source
Returns #t if source has been destroyed. Otherwise, it returns #f.

Once a source is destroyed it cannot be un-destroyed.

[Procedure]g-source-set-priority source priority
Returns nothing.

Sets the source priority. While the main loop is being run, a source will be dispatched
if it is ready to be dispatched and no sources at a higher (numerically smaller) priority
are ready to be dispatched.

III. G-Golf Core Reference 50

A child source always has the same priority as its parent. It is not permitted to
change the priority of a source once it has been added as a child of another source.

[Procedure]g-source-get-priority source priority
Returns an integer.

Obtains and returns the source priority.

[Procedure]g-source-remove id
Returns #t.

Removes the source with the given id from the default main context. You must use
[g-source-destroy], page 49, for sources added to a non-default main context.

It is an error to attempt to remove a non-existent source.

Source IDs can be reissued after a source has been destroyed. This could lead to the
removal operation being performed against the wrong source, unless you are cautious.

For historical reasons, this procedure always returns #t.

IO Channels

G-Golf Glib IO Channels low level API.
IO Channels — portable support for using files, pipes and sockets

Procedures

[g-io-channel-unix-new], page 50

[g-io-channel-ref], page 51

[g-io-channel-unref], page 51

[g-io-create-watch], page 51

Types and Values

[%g-io-condition], page 51

Description

The GIOChannel data type aims to provide a portable method for using file descriptors,
pipes, and sockets, and integrating them into the main event loop. Currently, full support
is available on UNIX platforms, support for Windows is only partially complete.

Please read the IO Channels (https://developer.gnome.org/glib/stable/glib-IO-Channels.html)
section from the Glib reference manual for a complete description.

Procedures

Note: in this section, the fd, channel and condition arguments are [must be] respectively
an integer (a ‘valid’ file descriptor), a pointer to a GIOChannel and a list of one or more
[%g-io-condition], page 51, flags.

[Procedure]g-io-channel-unix-new fd
Returns a pointer.

Creates and returns a pointer to a new GIOChannel for fd (file descriptor). On UNIX
systems this works for plain files, pipes, and sockets.

https://developer.gnome.org/glib/stable/glib-IO-Channels.html

III. G-Golf Core Reference 51

The newly created GIOChannel has a reference count of 1.

The default encoding for GIOChannel is UTF-8. If your application is reading output
from a command using via pipe, you may need to set the encoding to the encoding
of the current locale (FIXME - still missing a binding to g io channel set encoding).

[Procedure]g-io-channel-ref channel
Returns channel.

Increments the channel reference count.

[Procedure]g-io-channel-unref channel
Returns nothing.

Decrements the channel reference count.

[Procedure]g-io-create-watch channel condition
Returns a pointer.

Creates and returns a pointer to a GSource that’s dispatched when condition is met
for the given channel. For example, if condition is '(in), the source will be dispatched
when there’s data available for reading.

Types and Values

[Instance Variable of <gi-flag>]%g-io-condition
An instance of <gi-flag>, who’s members are the scheme representation of the
GIOCondition flags:

g-name: GIOCondition
name: gio-condition
enum-set :

in There is data to read.

out Data can be written (without blocking).

pri There is urgent data to read.

err Error condition.

hup Hung up (the connection has been broken, usually for pipes
and sockets).

nval Invalid request. The file descriptor is not open.

Miscellaneous Utility Functions

G-Golf Glib Miscellaneous Utility Functions low level API.
Miscellaneous Utility Functions - a selection of portable utility functions

Procedures

[g-get-prgname], page 52

[g-set-prgname], page 52

[g-get-system-data-dirs], page 52

[g-get-system-config-dirs], page 52

[g-get-os-info], page 53

III. G-Golf Core Reference 52

Description

These are portable utility functions.

Procedures

[Procedure]g-get-prgname
Returns the name of the program, or #f if it has not been set yet.

Obtains and returns the name of the program. This name should not be localized, in
contrast to g-get-application-name.

If you are using GApplication, the program name is set in g-application-run.

[Procedure]g-set-prgname name
Returns nothing.

Sets the name of the program to name. This name should not be localized, in contrast
to g-set-application-name.

If you are using GApplication, the program name is set in g-application-run.

Note that for thread-safety reasons this function can only be called once.

[Procedure]g-get-system-data-dirs
Returns an ordered list of base directories in which to access system-wide application
data.

On UNIX platforms this is determined using the mechanisms described in the XDG
Base Directory Specification (http://www.freedesktop.org/Standards/basedir-spec).
In this case the list of directories retrieved will be XDG_DATA_DIRS.

On Windows it follows XDG Base Directory Specification if XDG DATA DIRS
is defined. If XDG DATA DIRS is undefined, the first elements in the list
are the Application Data and Documents folders for All Users. (These can be
determined only on Windows 2000 or later and are not present in the list on other
Windows versions.) See documentation for CSIDL COMMON APPDATA and
CSIDL COMMON DOCUMENTS.

Then follows the "share" subfolder in the installation folder for the package containing
the DLL that calls this function, if it can be determined.

Finally the list contains the "share" subfolder in the installation folder for GLib, and
in the installation folder for the package the application’s .exe file belongs to.

The installation folders above are determined by looking up the folder where the
module (DLL or EXE) in question is located. If the folder’s name is "bin", its parent
is used, otherwise the folder itself.

Note that on Windows the returned list can vary depending on where this function
is called.

[Procedure]g-get-system-config-dirs
Returns an ordered list of base directories in which to access system-wide configuration
information.

http://www.freedesktop.org/Standards/basedir-spec
http://www.freedesktop.org/Standards/basedir-spec

III. G-Golf Core Reference 53

On UNIX platforms this is determined using the mechanisms described in the XDG
Base Directory Specification (http://www.freedesktop.org/Standards/basedir-spec).
In this case the list of directories retrieved will be XDG_CONFIG_DIRS.

On Windows it follows XDG Base Directory Specification if XDG CONFIG DIRS is
defined. If XDG CONFIG DIRS is undefined, the directory that contains application
data for all users is used instead. A typical path is C:\Documents and Settings\All
Users\Application Data. This folder is used for application data that is not user
specific. For example, an application can store a spell-check dictionary, a database of
clip art, or a log file in the CSIDL COMMON APPDATA folder. This information
will not roam and is available to anyone using the computer.

[Procedure]g-get-os-info key-name
Returns a string or #f.

Obtains and returns information about the operating system.

On Linux this comes from the /etc/os-release file. On other systems, it may come
from a variety of sources. You can pass any UTF-8 string key name.

The associated value for the requested key-name is returned or #f if this information
is not provided.

UNIX-specific utilities and integration

G-Golf Glib UNIX-specific utilities and integration low level API.
UNIX-specific utilities and integration — pipes, signal handling.

Procedures

[g-unix-fd-source-new], page 53

Description

Most of GLib is intended to be portable; in contrast, this set of functions is designed for
programs which explicitly target UNIX, or are using it to build higher level abstractions
which would be conditionally compiled if the platform matches G OS UNIX.

Procedures

Note: in this section, the fd and condition arguments are [must be] respectively an integer
(a ‘valid’ file descriptor) and a list of one or more [%g-io-condition], page 51, flags.

[Procedure]g-unix-fd-source-new fd condition
Returns a pointer.

Creates and returns a pointer to a new GSource to watch for a particular IO condition
on fd.

The source will never close the file descriptor, you must do it yourself.

Doubly-Linked Lists

G-Golf Glib Doubly-Linked Lists low level API.
Doubly-Linked Lists — linked lists that can be iterated over in both directions

http://www.freedesktop.org/Standards/basedir-spec
http://www.freedesktop.org/Standards/basedir-spec

III. G-Golf Core Reference 54

Procedures

[g-list-data], page 54

[g-list-next], page 54

[g-list-prev], page 54

[g-list-free], page 54

[g-list-length], page 54

[g-list-nth-data], page 54

Description

The GList structure and its associated functions provide a standard doubly-linked list data
structure.

Each element in the list contains a piece of data, together with pointers which link to the
previous and next elements in the list. Using these pointers it is possible to move through
the list in both directions (unlike the singly-linked GSList, which only allows movement
through the list in the forward direction).

Please read the Doubly-Linked-Lists (https://developer.gnome.org/glib/stable/glib-Doubly-Linked-Lists.html)
section from the Glib reference manual for a complete description.

Procedures

[Procedure]g-list-data g-list
Returns a pointer.

Obtains and returns a pointer to the data in g-list, or any integer value, in which
case, it is the responsibility of the caller to apply the appropriate type conversion
procedure.

[Procedure]g-list-next g-list
Returns a pointer or #f.

Obtains and returns the next element in g-list, or #f if there are no more elements.

[Procedure]g-list-prev g-list
Returns a pointer or #f.

Obtains and returns the previous element in g-list, or #f if there are no previous
element.

[Procedure]g-list-free g-list
Returns nothing.

Frees all of the memory used by g-list.

[Procedure]g-list-length g-list
Returns an integer.

Obtains and returns the number of elements in g-list. This function iterates over the
whole list to count its elements.

[Procedure]g-list-nth-data g-list n
Returns a pointer or #f.

https://developer.gnome.org/glib/stable/glib-Doubly-Linked-Lists.html

III. G-Golf Core Reference 55

Obtains and returns a pointer to the data of the n-th element of g-list. This iterates
over the list until it reaches the n-th position. If n is off the end of g-list, it returns
#f.

Singly-Linked Lists

G-Golf Glib Singly-Linked Lists low level API.
Singly-Linked Lists — Linked lists that can be iterated over in one direction

Procedures

[g-slist-data], page 55

[g-slist-next], page 55

[g-slist-append], page 55

[g-slist-prepend], page 56

[g-slist-free], page 56

[g-slist-length], page 56

[g-slist-nth-data], page 56

Description

The GSList structure and its associated functions provide a standard singly-linked list data
structure.

Each element in the list contains a piece of data, together with a pointer which links to the
next element in the list. Using this pointer it is possible to move through the list in one
direction only (unlike the [Doubly-Linked Lists], page 53, which allow movement in both
directions).

Please read the Singly-Linked-Lists (https://developer.gnome.org/glib/stable/glib-Singly-Linked-Lists.html)
section from the Glib reference manual for a complete description.

Procedures

[Procedure]g-slist-data g-slist
Returns a pointer.

Obtains and returns a pointer to the data in g-slist, or any integer value, in which
case, it is the responsibility of the caller to apply the appropriate type conversion
procedure.

[Procedure]g-slist-next g-slist
Returns a pointer or #f.

Obtains and returns the next element in g-slist, or #f if there are no more elements.

[Procedure]g-slist-append g-slist data
Returns a pointer.

Adds data - which is (must be) a pointer - to the end of g-slist and returns a pointer
to the (possibly new) start of the list (so make sure you store the new value).

Note that [g-slist-append], page 55, has to traverse the entire list to find the end,
which is inefficient when adding multiple elements. A common idiom to avoid the

https://developer.gnome.org/glib/stable/glib-Singly-Linked-Lists.html

III. G-Golf Core Reference 56

inefficiency is to prepend the elements and reverse the list when all elements have
been added.

[Procedure]g-slist-prepend g-slist data
Returns a pointer.

Adds data - which is (must be) a pointer - to the start of g-slist and returns a pointer
to the (possibly new) start of the list (so make sure you store the new value).

[Procedure]g-slist-free g-slist
Returns nothing.

Frees all of the memory used by g-slist.

[Procedure]g-slist-length g-slist
Returns an integer.

Obtains and returns the number of elements in g-slist. This function iterates over the
whole list to count its elements.

[Procedure]g-slist-nth-data g-slist n
Returns a pointer or #f.

Obtains and returns a pointer to the data of the n-th element of g-slist. This iterates
over the list until it reaches the n-th position. If n is off the end of g-slist, it returns
#f.

Byte Arrays

G-Golf Glib Byte Arrays low level API.
Byte Arrays — Arrays of bytes.

Procedures

[g-bytes-new], page 56

Description

FIXME

Procedures

[Procedure]g-bytes-new data size
Returns a pointer.

Create a new GBytes27 from data.

data is copied. If size is 0, data may be NULL.

Quarks

G-Golf Glib Quarks low level API.
Quarks — a 2-way association between a string and a unique integer identifier.

27 A simple refcounted data type representing an immutable sequence of zero or more bytes from an unspecified
origin.

III. G-Golf Core Reference 57

Procedures

[g-quark-from-string], page 57

[g-quark-to-string], page 57

Description

Quarks are associations between strings and integer identifiers. Given either the string or
the GQuark identifier it is possible to retrieve the other.

Procedures

[Procedure]g-quark-from-string str
Returns an integer.

Obtains and returns the GQuark identifying the string given by str. If the string does
not currently have an associated GQuark, a new GQuark is created, using a copy of
the string.

[Procedure]g-quark-to-string g-quark
Returns a string.

Obtains and returns the string associated with the GQuark given by g-quark.

GObject

G-Golf GObject modules are defined in the gobject subdirectory, such as (g-golf gobject

enum-flags).

Where you may load these modules individually, the easiest way to use G-Golf is to import
its main module, which imports and re-exports the public interface of (oop goops), (system
foreign), all G-Golf support and G-Golf GObject modules:

(use-modules (g-golf gobject))

G-Golf GObject low level API modules correspond to a GObject section, though they might
be some exception in the future.

Type Information

G-Golf GObject Type Information low level API.
Type Information — The GLib Runtime type identification and management system

III. G-Golf Core Reference 58

Procedures

[g-type->symbol], page 58

[symbol->g-type], page 58

[g-type-from-class], page 59

[g-type-name], page 59

[g-type-from-name], page 59

[g-type-parent], page 59

[g-type-is-a], page 59

[g-type-class-ref], page 59

[g-type-class-peek], page 59

[g-type-class-unref], page 59

[g-type-class-peek-parent], page 60

[g-type-interface-peek], page 60

[g-type-interfaces], page 60

[g-type-query], page 60

[g-type-register-static-simple], page 60

[g-type-add-interface-static], page 60

[g-type-fundamental], page 60

[g-type-ensure], page 60

Types and Values

[%g-type-fundamental-flags], page 61

[%g-type-fundamental-types], page 61

Object Hierarchy

gpointer
+— GType

Description

The GType API is the foundation of the GObject system. It provides the facilities for
registering and managing all fundamental data types, user-defined object and interface
types.

Please read the Type Information (https://developer.gnome.org/gobject/stable/gobject-Type-Information.html)
section from the GObject reference manual for a complete description.

Procedures

[Procedure]g-type->symbol g-type
Returns a symbol.

Get the symbol that correspond to the type ID g-type. Note that this function (like
all other GType API) cannot cope with invalid type IDs. It accepts validly registered
type ID, but randomized type IDs should not be passed in and will most likely lead
to a crash.

[Procedure]symbol->g-type symbol
Returns a type ID.

https://developer.gnome.org/gobject/stable/gobject-Type-Information.html

III. G-Golf Core Reference 59

Get the type ID for symbol. Note that this function (like all other GType API) cannot
cope with invalid type ID symbols. It accepts validly registered type ID symbol, but
randomized type IDs should not be passed in and will most likely lead to a crash.

[Procedure]g-type-from-class g-class
Returns a GType.

Obtains and returns the GType for g-class (a pointer to a valid GTypeClass struc-
ture).

[Procedure]g-type-name g-type
Returns a string.

Get the unique name that is assigned to g-type, a type ID. Note that this function
(like all other GType API) cannot cope with invalid type IDs. It accepts validly
registered type ID, but randomized type IDs should not be passed in and will most
likely lead to a crash.

[Procedure]g-type-from-name name
Returns a type ID or #f.

Obtains and returns the type ID for the given type name, or #f if no type has been
registered under this name (this is the preferred method to find out by name whether
a specific type has been registered yet).

[Procedure]g-type-parent g-type
Returns a GType.

Returns the direct parent type for g-type. If g-type has no parent, i.e. is a funda-
mental type, 0 is returned.

[Procedure]g-type-is-a g-type is-a-g-type
Returns #t if g-type is a is-a-g-type.

If is-a-g-type is a derivable type, check whether g-type is a descendant of is-a-g-type.
If is-a-g-type is an interface, check whether g-type conforms to it.

[Procedure]g-type-class-ref g-type
Returns a pointer.

Obtains and returns a pointer to the GTypeClass structure for g-type (a GObject class
GType). The reference count of the class is incremented, and the class is ‘created’
(instanciated) if/when it doesn’t exist already.

[Procedure]g-type-class-peek g-type
Returns a pointer.

Obtains and returns a pointer to the GTypeClass structure for g-type (a GObject
class GType). The reference count of the class isn’t incremented. As a consequence,
this function may return #f - if the class of the type passed in does not currently exist
(hasn’t been referenced before).

[Procedure]g-type-class-unref g-class
Returns nothing.

III. G-Golf Core Reference 60

Decrements the reference count for g-class (a pointer to a GTypeClass structure).
Once the last reference count of a class has been released, it may be finalized by the
type system. Attempting to further dereference a finalized class is invalid.

[Procedure]g-type-class-peek-parent g-class
Returns a pointer or #f.

Obtains and returns a pointer to the class structure of the immediate parent type for
g-class (a pointer to a GTypeClass structure). If no immediate parent type exists, it
returns #f.

[Procedure]g-type-interface-peek g-class iface-type
Returns a pointer of #f.

Obtains and returns the (a pointer to) GTypeInterface structure for iface-type if
implemented by g-class, Otherwise. it returs #f.

[Procedure]g-type-interfaces g-type
Returns a (possibily empty) list.

Obtains and returns the (possibily empty) list of the interface IDs (g-type) that g-type
conforms to.

[Procedure]g-type-query g-type
Returns a list.

Obtains and returns the (g-type type-name class-size instance-size) list for
g-type.

[Procedure]g-type-register-static-simple parent-type type-name class-size
class-init-func instance-size instance-init-func flags

Returns a new type ID.

Registers type-name as the name of a new static type derived from parent-type. The
value of flags determines the nature (e.g. abstract or not) of the type. It works by
filling a GTypeInfo struct and calling g_type_register_static.

[Procedure]g-type-add-interface-static g-type iface-type iface-info
Returns nothing.

Adds iface-type to the static g-type. The information contained in the
GInterfaceInfo structure pointed to by iface-info is used to manage the
relationship.

If iface-info is #f, a new GInterfaceInfo structure is made, with iface-init-func

and iface-finalize-func set to no-op procedures, and iface-data set to the %null-
pointer (this is only meant to be used for testing and debugging purposes).

[Procedure]g-type-fundamental g-type
Returns a type ID.

Extracts the fundamental type ID portion for g-type.

[Procedure]g-type-ensure g-type
Returns nothing.

III. G-Golf Core Reference 61

Ensures that the indicated g-type has been registered with the type system, and that
its _class_init method has been run.

Types and Values

[Instance Variable of <gi-enum>]%g-type-fundamental-flags
Bit masks used to check or determine specific characteristics of a fundamental type.

An instance of <gi-enum>, who’s members are the scheme representation of the
GTypeFundamentalFlags:

g-name: GTypeFundamentalFlags
name: g-type-fundamental-flags
enum-set :

classed Indicates a classed type

instantiable

Indicates an instantiable type (implies classed)

derivable

Indicates a flat derivable type

deep-derivable

Indicates a deep derivable type (implies derivable)

[Instance Variable of <gi-enum>]%g-type-fundamental-types
An instance of <gi-enum>, who’s members are the scheme representation of the GType
obtained from the fundamentl types defined using G_TYPE_MAKE_FUNDAMENTAL, which
starts with G_TYPE_INVALID and ends with G_TYPE_OBJECT.

g-name: #f28

name: g-type-fundamental-types
enum-set :

invalid An invalid GType used as error return value in some functions
which return a GType.

none A fundamental type which is used as a replacement for the
C void return type.

interface

The fundamental type from which all interfaces are derived.

char The fundamental type corresponding to gchar. It is uncondi-
tionally an 8-bit signed integer. This may or may not be the
same type a the C type "gchar".

uchar The fundamental type corresponding to guchar.

28 There is no corresponding enum in GOject. These fundamental types (in GObject) are defined using a macro,
G_TYPE_MAKE_FUNDAMENTAL, that applies bitwise arithmetic shift given by G_TYPE_FUNDAMENTAL_SHIFT (which
we also have to apply, to get to the type ID for the fundamental number x).

III. G-Golf Core Reference 62

boolean The fundamental type corresponding to gboolean.

int The fundamental type corresponding to gint.

uint The fundamental type corresponding to guint.

long The fundamental type corresponding to glong.

ulong The fundamental type corresponding to gulong.

int64 The fundamental type corresponding to gint64.

uint64 The fundamental type corresponding to guint64.

enum The fundamental type from which all enumeration types are
derived.

flags The fundamental type from which all flags types are derived.

float The fundamental type corresponding to gfloat.

double The fundamental type corresponding to gdouble.

string The fundamental type corresponding to nul-terminated C
strings.

pointer The fundamental type corresponding to gpointer.

boxed The fundamental type from which all boxed types are derived.

param The fundamental type from which all [GParamSpec], page 75,
types are derived.

object The fundamental type for [GObject], page 62.

GObject

G-Golf GObject low level API.
GObject — The base object type

Procedures

[g-object-class-install-property], page 63

[g-object-class-find-property], page 63

[g-object-class-list-properties], page 63

[g-object-new], page 63

[g-object-new-with-properties], page 64

[g-object-ref], page 64

[g-object-unref], page 64

[g-object-ref-sink], page 64

[g-object-ref-count], page 64

[g-object-is-floating], page 64

[g-object-add-toggle-ref], page 64

[g-object-remove-toggle-ref], page 65

[g-object-type], page 65

[g-object-type-name], page 65

[g-object-get-property], page 65

[g-object-set-property], page 65

III. G-Golf Core Reference 63

Object Hierarchy

GObject
+— GBinding
+— GInitiallyUnowned
+— GTypeModule

Description

GObject is the fundamental type providing the common attributes and methods for all
object types in GTK+, Pango and other libraries based on GObject. The GObject class
provides methods for object construction and destruction, property access methods, and
signal support.

Please read the GObject (https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html)
section from the GObject reference manual for a complete description.

Procedures

Note: in this section, unless otherwise specified, the object argument is [must be] a pointer
to a GObject (instance).

[Procedure]g-object-class-install-property g-class p-id p-spec
Returns nothing.

Installs a new property.

The arguments are g-class a (pointer to a) GObjectClass), p-id the id for the new
property, and p-spec the (a pointer to the) GParamSpec for the new property.

All properties should be installed during the class initializer. It is possible to in-
stall properties after that, but doing so is not recommend, and specifically, is not
guaranteed to be thread-safe vs. use of properties on the same type on other threads.

Note that it is possible to redefine a property in a derived class, by installing a
property with the same name. This can be useful at times, e.g. to change the range
of allowed values or the default value.

[Procedure]g-object-class-find-property g-class name
Returns a pointer or #f.

Obtains and returns (a pointer to) the GParamSpec for name, or #f if g-class (a pointer
to a GObjectClass) doesn’t have a property of that name.

[Procedure]g-object-class-list-properties g-class
Returns two values.

Obtains and returns (1) the (possibly empty) list of GParamSpec pointers for g-class
and (2) its length (the number of properties for g-class).

[Procedure]g-object-new gtype
Returns a pointer.

Creates and returns a (pointer to) a new instance of a GObject subtype gtype. All
properties are set to there default values.

https://developer.gnome.org/gobject/stable/gobject-The-Base-Object-Type.html

III. G-Golf Core Reference 64

[Procedure]g-object-new-with-properties gtype n-prop names g-values
Returns a pointer.

Creates and returns a (pointer to) a new instance of a GObject subtype gtype. The
other arguments are n-prop the number of properties, names a pointer to an array of
pointers to strings with the names of each property to be set and values an array of
GValue containing the values of each property to be set.

Properties that are not explicitly specified are set to there default values.

[Procedure]g-object-ref object
Returns a pointer.

Increases the reference count of object.

[Procedure]g-object-unref object
Returns nothing.

Decreases the reference count of object. When its reference count drops to 0, the
object is finalized (i.e. its memory is freed).

If the pointer to the GObject may be reused in future (for example, if it is an instance
variable of another object), it is recommended to clear the pointer to NULL rather
than retain a dangling pointer to a potentially invalid GObject instance. Use g-

clear-object for this.

[Procedure]g-object-ref-sink object
Returns a pointer.

If object has a floating reference, then this call ‘assumes ownership’ of the floating
reference, converting it to a normal reference by clearing the floating flag while leaving
the reference count unchanged.

If object is not floating, then this call adds a new normal reference increasing the
reference count by one.

[Procedure]g-object-ref-count object
Returns an integer.

Obtains and returns the (public GObject struct field) ref_count value for object.

[Procedure]g-object-is-floating object
Returns #t if object has a floating reference, otherwise it returns #f.

[Procedure]g-object-add-toggle-ref object notify data
Returns nothing.

Increases the reference count of object by one and sets a callback, notify, to be called
when all other references to object are dropped, or when this is already the last
reference to object and another reference is established.

Please refer to the GObject g object add toggle ref (https://docs.gtk.org/gobject/method.Object.add_toggle_ref.html)
documentation for a complete description.

Multiple toggle references may be added to the same gobject, however if there are
multiple toggle references to an object, none of them will ever be notified until all but
one are removed.

https://docs.gtk.org/gobject/method.Object.add_toggle_ref.html

III. G-Golf Core Reference 65

object is (a pointer to) a GObject, notify is a function to call when this reference
is the last reference to the object, or is no longer the last reference, and data is (a
pointer to) the data to pass to notify. The data argument can be #f.

[Procedure]g-object-remove-toggle-ref object notify data
Returns nothing.

Removes a reference added with [g-object-add-toggle-ref], page 64. The reference
count of object is decreased by one.

object is (a pointer to) a GObject, notify is a function to call when this reference
is the last reference to the object, or is no longer the last reference, and data is (a
pointer to) the data to pass to notify. The data argument can be #f.

[Procedure]g-object-type object
Returns the GType (the type id) for object.

[Procedure]g-object-type-name object
Returns the GType name for object.

[Procedure]g-object-get-property object property [g-type #f]
Returns the property value for object.

The property argument is (must be) a pointer to a valid GIPropertyInfo (property
must point to one of the properties infos of the class of object). The g-type argument
must be a valid GType value. If #f, which is the default, [gi-property-g-type], page 120,
is called.

[Procedure]g-object-set-property object property value [g-type #f]
Returns value.

Sets the object property to value. The property argument is (must be) a pointer to
a valid GIPropertyInfo (property must point to one of the properties infos of the
class of object). The g-type argument must be a valid GType value. If #f, which is
the default, [gi-property-g-type], page 120, is called.

Enumeration and Flag Types

G-Golf GObject Enumeration and Flag Types low level API.
Enumeration and Flag Types — Enumeration and flags types.

Description

The GLib type system provides fundamental types for enumeration and flags types. (Flags
types are like enumerations, but allow their values to be combined by bitwise or). A
registered enumeration or flags type associates a name and a nickname with each allowed
value. When an enumeration or flags type is registered with the GLib type system, it can
be used as value type for object properties.

Boxed Types

G-Golf GObject Boxed Types low level API.
Boxed Types — A mechanism to wrap opaque C structures registered by the type system.

III. G-Golf Core Reference 66

Procedures

[g-boxed-free], page 66

[g-strv-get-type], page 66

Description

GBoxed is a generic wrapper mechanism for arbitrary C structures. The only thing the type
system needs to know about the structures is how to copy them (a GBoxedCopyFunc) and
how to free them (a GBoxedFreeFunc) — beyond that they are treated as opaque chunks
of memory.

Please read the Boxed Types (https://developer.gnome.org/gobject/stable/gobject-Boxed-Types.html)
section from the GObject reference manual for a complete description.

Procedures

[Procedure]g-boxed-free g-type pointer
Returns nothing.

Frees the boxed structure at pointer, which is of type g-type.

[Procedure]g-strv-get-type
Returns a GType.

Registers (unless already registered) the GStrv GLib type in GObject and returns its
GType, the GType for a boxed type holding a NULL-terminated array of strings. This
procedure must have been called at least once before (g-type-from-name "GStrv")

calls may be honoured.

Generic Values

G-Golf GObject Generic Values low level API.
Generic values — A polymorphic type that can hold values of any other type.

Procedures

[g-value-size], page 67

[g-value-new], page 67

[g-value-init], page 67

[g-value-unset], page 67

Object Hierarchy

GBoxed
+— GValue

Description

The GValue structure is basically a variable container that consists of a type identifier and a
specific value of that type. The type identifier within a GValue structure always determines
the type of the associated value. To create a undefined GValue structure, simply call [g-
value-new], page 67, which create a zero-filled GValue structure. To create and initialize
a GValue, use the [g-value-init], page 67, procedure. A GValue cannot be used until it is

https://developer.gnome.org/gobject/stable/gobject-Boxed-Types.html

III. G-Golf Core Reference 67

initialized. The basic type operations (such as freeing and copying) are determined by the
GTypeValueTable associated with the type ID stored in the GValue.

Please read the Generic Values (https://developer.gnome.org/gobject/stable/gobject-Generic-Values.html)
section from the GObject reference manual for a complete description.

Procedures

[Procedure]g-value-size
Returns an integer.

Obtains and returns the size of a GValue.

[Procedure]g-value-new
Returns a pointer to a GValue.

Creates and returns (a pointer to) an empty (uninitialized) GValue.

[Procedure]g-value-init g-type
Returns a pointer to a GValue.

Creates and initializes a GValue with the default value for g-type, which can either
be an integer - a GType static or dynamic value, or a symbol - a member of the
[%g-type-fundamental-types], page 61.

[Procedure]g-value-unset g-value
Returns nothing.

Clears the current value in g-value (if any) and ‘unsets’ the type. This releases all
resources associated with g-value. An unset GValue is the same as an uninitialized
(zero-filled) GValue structure.

Parameters and Values

G-Golf GObject Parameters and Values low level API.
Parameters and Values — Standard Parameter and Value Types

https://developer.gnome.org/gobject/stable/gobject-Generic-Values.html

III. G-Golf Core Reference 68

Procedures and Methods

[g-value-type], page 69

[g-value-type-tag], page 69

[g-value-type-name], page 69

[g-value-ref], page 69

[g-value-set!], page 70

[g-param-spec-boolean], page 70

[g-value-get-boolean], page 70

[g-value-set-boolean], page 70

[g-param-spec-int], page 70

[g-value-get-int], page 70

[g-value-set-int], page 70

[g-param-spec-uint], page 71

[g-value-get-uint], page 71

[g-value-set-uint], page 71

[g-param-spec-float], page 71

[g-value-get-float], page 71

[g-value-set-float], page 71

[g-param-spec-double], page 71

[g-value-get-double], page 71

[g-value-set-double], page 72

[g-param-spec-enum], page 72

[g-value-get-enum], page 72

[g-value-set-enum], page 72

[g-param-spec-flags], page 72

[g-value-get-flags], page 72

[g-value-set-flags], page 72

[g-param-spec-string], page 72

[g-value-get-string], page 73

[g-value-set-string], page 73

[g-param-spec-param], page 73

[g-value-get-param], page 73

[g-value-set-param], page 73

[g-param-spec-boxed], page 73

[g-value-get-boxed], page 73

[g-value-set-boxed], page 74

[g-value-get-pointer], page 74

[g-value-set-pointer], page 74

[g-param-spec-object], page 74

[g-value-get-object], page 74

[g-value-set-object], page 74

[g-value-get-variant], page 74

III. G-Golf Core Reference 69

Types and Values

[g-type-param-boolean], page 74

[g-type-param-char], page 74

[g-type-param-uchar], page 74

[g-type-param-int], page 74

[g-type-param-uint], page 74

[g-type-param-long], page 74

[g-type-param-ulong], page 74

[g-type-param-int64], page 74

[g-type-param-uint64], page 74

[g-type-param-float], page 74

[g-type-param-double], page 74

[g-type-param-enum], page 74

[g-type-param-flags], page 74

[g-type-param-string], page 74

[g-type-param-param], page 74

[g-type-param-boxed], page 74

[g-type-param-pointer], page 74

[g-type-param-object], page 74

[g-type-param-unichar], page 74

[g-type-param-override], page 74

[g-type-param-gtype], page 74

[g-type-param-variant], page 74

Description

GValue provides an abstract container structure which can be copied, transformed and
compared while holding a value of any (derived) type, which is registered as a GType
with a GTypeValueTable in its GTypeInfo structure. Parameter specifications for most
value types can be created as GParamSpec derived instances, to implement e.g. GObject

properties which operate on GValue containers.

Parameter names need to start with a letter (a-z or A-Z). Subsequent characters can be
letters, numbers or a ’-’. All other characters are replaced by a ’-’ during construction.

Procedures and Methods

Note: in this section, the g-value argument is [must be] a pointer to a GValue.

[Procedure]g-value-type g-value
[Procedure]g-value-type-tag g-value
[Procedure]g-value-type-name g-value

Returns an integer, a symbol or a string, respectively.

Obtains and returns the GType, the GType tag (see [%g-type-fundamental-types],
page 61) or the GType name (see [g-type-name], page 59, for g-value, respectively.

[Procedure]g-value-ref g-value
Returns the content of g-value.

III. G-Golf Core Reference 70

Obtains and returns the content of g-value. Supported GType (their scheme repre-
sentaion) for g-value are: boolean, uint, int, float, double, enum, flags, string,
boxed, pointer, object, interface.

[Procedure]g-value-set! g-value value
Returns nothing.

Sets the content of g-value to value. Supported GType (their scheme representaion)
for g-value are: boolean, uint, int, float, double, enum, flags, string, boxed,
pointer, object, interface.

Note that this procedure cannot cope with invalid values (the type of value must
correspond to the GType for g-value, otherwise it will most likely lead to a crash.

[Procedure]g-param-spec-boolean name nick blurb default flags
Returns a pointer.

Creates and returns a pointer to a new GParamSpecBoolean instance specifying a
G_TYPE_BOOLEAN property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, default the default value and flags the flags - for the property specified.

[Procedure]g-value-get-boolean g-value
Returns #t or #f.

Obtains the content of g-value and returns #f if it is 0, otherwise it returns #t.

[Procedure]g-value-set-boolean g-value val
Returns nothing.

Sets the content of g-value to 0 if val is #f, otherwise sets the content to 1.

[Procedure]g-param-spec-int name nick blurb minimum maximum default
flags

Returns a pointer.

Creates and returns a pointer to a new GParamSpecInt instance specifying a G_TYPE_
INT property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, minimum the minimum value, maximum the maximum value, default
the default value and flags the flags - for the property specified.

[Procedure]g-value-get-int g-value
Returns a integer.

Obtains and returns the content of g-value.

[Procedure]g-value-set-int g-value int
Returns nothing.

Sets the content of g-value to int.

III. G-Golf Core Reference 71

[Procedure]g-param-spec-uint name nick blurb minimum maximum default
flags

Returns a pointer.

Creates and returns a pointer to a new GParamSpecUInt instance specifying a G_

TYPE_UINT property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, minimum the minimum value, maximum the maximum value, default
the default value and flags the flags - for the property specified.

[Procedure]g-value-get-uint g-value
Returns an unsigned integer.

Obtains and returns the content of g-value.

[Procedure]g-value-set-uint g-value uint
Returns nothing.

Sets the content of g-value to uint.

[Procedure]g-param-spec-float name nick blurb minimum maximum default
flags

Returns a pointer.

Creates and returns a pointer to a new GParamSpecFloat instance specifying a G_

TYPE_FLOAT property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, minimum the minimum value, maximum the maximum value, default
the default value and flags the flags - for the property specified.

[Procedure]g-value-get-float g-value
Returns a float.

Obtains and returns the content of g-value.

[Procedure]g-value-set-float g-value float
Returns nothing.

Sets the content of g-value to float.

[Procedure]g-param-spec-double name nick blurb minimum maximum default
flags

Returns a pointer.

Creates and returns a pointer to a new GParamSpecDouble instance specifying a G_

TYPE_DOUBLE property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, minimum the minimum value, maximum the maximum value, default
the default value and flags the flags - for the property specified.

[Procedure]g-value-get-double g-value
Returns a double.

Obtains and returns the content of g-value.

III. G-Golf Core Reference 72

[Procedure]g-value-set-double g-value double
Returns nothing.

Sets the content of g-value to double.

[Procedure]g-param-spec-enum name nick blurb type default flags
Returns a pointer.

Creates and returns a pointer to a new GParamSpecEnum instance specifying a G_

TYPE_ENUM property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, type a <gi-enum> instance, default the default value and flags the
flags - for the property specified.

[Procedure]g-value-get-enum g-value
Returns a symbol.

Obtains and returns the (registered) enum type info symbol for g-value.

[Method]g-value-set-enum g-value (id <integer>)
[Method]g-value-set-enum g-value (sym <symbol>)

Returns nothing.

Sets the content of g-value to id, or to the id corresponding to sym respectively. The
id or the sym must be valid (as in being a valid member of the (registered) enum type
info for g-value), otherwise an exception is raised.

[Procedure]g-param-spec-flags name nick blurb type default flags
Returns a pointer.

Creates and returns a pointer to a new GParamSpecFlags instance specifying a G_

TYPE_FLAGS property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, type a <gi-flags> instance, default the default value and flags the
flags - for the property specified.

[Procedure]g-value-get-flags g-value
Returns a list.

Obtains and returns the (registered) list of flags for g-value.

[Method]g-value-set-flags g-value (val <integer>)
[Method]g-value-set-flags g-value (flags <list>)

Returns nothing.

Sets the content of g-value to val, or to the value given by calling [flags->integer],
page 132, upon the list of flags, respectively. The val or the flags must be valid (as
in being a valid member of the (registered) gi-flags type for g-value), otherwise an
exception is raised.

[Procedure]g-param-spec-string name nick blurb default flags
Returns a pointer.

III. G-Golf Core Reference 73

Creates and returns a pointer to a new GParamSpecString instance specifying a G_

TYPE_STRING property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, default the default value and flags the flags - for the property specified.

[Procedure]g-value-get-string g-value
Returns a string or #f.

Obtains and returns the content of g-value, a string or #f if the g-value content is the
%null-pointer.

[Procedure]g-value-set-string g-value str
Returns nothing.

Sets the content of g-value to str.

[Procedure]g-param-spec-param name nick blurb type flags
Returns a pointer.

Creates and returns a pointer to a new GParamSpecParam instance specifying a G_

TYPE_PARAM property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, type a GType derived from G_TYPE_PARAM and flags the flags - for the
property specified.

[Procedure]g-value-get-param g-value
Returns a (pointer to) GParamSpec or #f.

Obtains and returns the content of g-value, a (pointer to) GParamSpec or #f if the
g-value content is the %null-pointer.

[Procedure]g-value-set-param g-value param
Returns nothing.

Sets the content of g-value to param.

[Procedure]g-param-spec-boxed name nick blurb type flags
Returns a pointer.

Creates and returns a pointer to a new GParamSpecBoxed instance specifying a G_

TYPE_BOXED derived property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, type a GType derived from G_TYPE_BOXED and flags the flags - for the
property specified.

[Procedure]g-value-get-boxed g-value
Returns either a list of values, or a pointer.

Obtains and returns the content of g-value. If the boxed type [!is-opaque?], page 133,
or [!is-semi-opaque?], page 134, it ‘blindingly’ returns the boxed instance g-value
pointer. Otherwise, the boxed instance is ‘decoded’, and a list of its field values is
returned.

III. G-Golf Core Reference 74

[Procedure]g-value-set-boxed g-value boxed
Returns nothing.

Sets the content of g-value to boxed. If the boxed type [!is-opaque?], page 133,
or [!is-semi-opaque?], page 134, then boxed is (supposed to be) a pointer, used to
‘blindingly’ set g-value. Otherwise, the boxed instance is (supposed to be) a list of
values, that are ‘encoded’, and its (newly created) pointer is used to set g-value.

[Procedure]g-value-get-pointer g-value
Returns a pointer.

Obtains and returns the content of g-value.

[Procedure]g-value-set-pointer g-value pointer
Returns nothing.

Sets the content of g-value to pointer.

[Procedure]g-param-spec-object name nick blurb type flags
Returns a pointer.

Creates and returns a pointer to a new GParamSpecBoxed instance specifying a G_

TYPE_OBJECT derived property.

The name is the canonical name of the property specified, nick its nick name, blurb
its description, type a <gobject> derived type of this property and flags the flags -
for the property specified.

[Procedure]g-value-get-object g-value
Returns a pointer.

Obtains and returns the content of g-value.

[Procedure]g-value-set-object g-value object
Returns nothing.

Sets the content of g-value to object (a pointer to a GObject instance) and increases
the object reference count.

[Procedure]g-value-get-variant g-value
Returns a pointer or #f.

Obtains and returns content of a variant g-value, or #f (may be NULL).

Types and Values

Note: in GObject, G TYPE PARAM BOOLEAN, G TYPE PARAM CHAR, etc., are
defined as macros. In G-Golf, we define a procedure for each of those types, which binds
a libg-golf function which merely invoques the macro, the expansion of which returns the
corresponding (dynamic - runtime) GType value.

[Procedure]g-type-param-boolean
[Procedure]g-type-param-char
[Procedure]g-type-param-uchar
[Procedure]g-type-param-int

III. G-Golf Core Reference 75

[Procedure]g-type-param-uint
[Procedure]g-type-param-long
[Procedure]g-type-param-ulong
[Procedure]g-type-param-int64
[Procedure]g-type-param-uint64
[Procedure]g-type-param-float
[Procedure]g-type-param-double
[Procedure]g-type-param-enum
[Procedure]g-type-param-flags
[Procedure]g-type-param-string
[Procedure]g-type-param-param
[Procedure]g-type-param-boxed
[Procedure]g-type-param-pointer
[Procedure]g-type-param-object
[Procedure]g-type-param-unichar
[Procedure]g-type-param-override
[Procedure]g-type-param-gtype
[Procedure]g-type-param-variant

Returns a GType.

Obtains and returns the GType of GParamSpecBoolean, GParamSpecChar, etc.

GParamSpec

G-Golf GObject GParamSpec low level API.
GParamSpec — Metadata for parameter specifications.

Procedures

[gi-g-param-spec-show], page 75

[g-param-spec-type], page 76

[g-param-spec-type-name], page 76

[g-param-spec-get-default-value], page 76

[g-param-spec-get-name], page 76

[g-param-spec-get-nick], page 76

[g-param-spec-get-blurb], page 76

[g-param-spec-get-flags], page 77

Types and Values

[%g-param-flags], page 77

Description

GParamSpec is an object structure that encapsulates the metadata required to specify pa-
rameters, such as e.g. GObject properties.

Procedures

Note: in this section, the p-spec argument is [must be] a pointer to a GParamSpec.

[Procedure]gi-g-param-spec-show p-spec
Returns nothing.

III. G-Golf Core Reference 76

Obtains and displays the following informations about the interface pointed to by
p-spec:

,use (g-golf)

(g-irepository-require "Gtk" #:version "4.0")

⇒ $2 = #<pointer 0x55ae43d74a60>

(gi-import-by-name "Gtk" "Label")

⇒ $3 = #<<gobject-class> <gtk-label> 7f1a75436a50>

(!g-class <gtk-label>)

⇒ $4 = #<pointer 0x55ae43deb0c0>

(g-object-class-find-property $4 "css-classes")

⇒ $5 = #<pointer 0x55ae43d9d510>

(gi-g-param-spec-show $5)

a
a #<pointer 0x55ae43d9d510> is a (pointer to a) GParamSpec:

a
a name: "css-classes"

a nick: "CSS Style Classes"

a blurb: "List of CSS classes"

a g-type: 94206951022032

a g-type-name: "GStrv"

a type-name: g-strv

a
Note that the last item, type-name: g-strv is not part of the GParamSpec structure.
It is obtained (and used by G-Golf internally by calling ([g-name->name], page 137,

g-type-name).

[Procedure]g-param-spec-type p-spec
[Procedure]g-param-spec-type-name p-spec

Returns an integer or a (symbol) name, respectively.

Obtains and returns the GType or the GType (symbol) name for p-spec, respectively.

[Procedure]g-param-spec-get-default-value p-spec
Returns a pointer.

Obtains and returns the p-spec default value as pointer to a GValue, which will remain
valid for the life of p-spec and must not be modified.

[Procedure]g-param-spec-get-name p-spec
[Procedure]g-param-spec-get-nick p-spec
[Procedure]g-param-spec-get-blurb p-spec

Returns a string.

Obtains and returns the name, nickname or short description for p-spec, respectively.

III. G-Golf Core Reference 77

[Procedure]g-param-spec-get-flags p-spec
Returns a (possibly empty) list.

Obtains and returns a list of the combination of [%g-param-flags], page 77, that
applies to p-spec.

Types and Values

[Instance Variable of <gi-enum>]%g-param-flags
An instance of <gi-enum>, who’s members are the scheme representation of the
GParamFlags:

type-name: GParamFlags
name: g-param-flags
enum-set :

readable the parameter is readable

writable the parameter is writable

readwrite

alas for readable writable

construct

the parameter will be set upon object construction

construct-only

the parameter can only be set upon object construction

lax-validation

upon parameter conversion, strict validation is not required

static-name

the string used as name when constructing the parameter is
guaranteed to remain valid and unmodified for the lifetime
of the parameter. Since 2.8

private internal

static-nick

the string used as nick when constructing the parameter is
guaranteed to remain valid and unmmodified for the lifetime
of the parameter. Since 2.8

static-blurb

the string used as blurb when constructing the parameter is
guaranteed to remain valid and unmodified for the lifetime
of the parameter. Since 2.8

explicit-notify

calls to g_object_set_property for this property will not
automatically result in a ‘notify’ signal being emitted: the
implementation must call g_object_notify themselves in
case the property actually changes. Since: 2.42

III. G-Golf Core Reference 78

deprecated

the parameter is deprecated and will be removed in a future
version. A warning will be generated if it is used while run-
ning with G_ENABLE_DIAGNOSTIC=1. Since 2.26

Closures

G-Golf GObject Closures low level API.

Closures - Functions as first-class objects

Procedures

[g-closure-size], page 78

[g-closure-ref-count], page 79

[g-closure-ref], page 79

[g-closure-sink], page 79

[g-closure-unref], page 79

[g-closure-free], page 79

[g-closure-invoke], page 79

[g-closure-add-invalidate-notifier], page 79

[g-closure-new-simple], page 80

[g-closure-set-marshal], page 80

[g-source-set-closure], page 80

Object Hierarchy

GBoxed
+— GClosure

Description

A GClosure represents a callback supplied by the programmer. It will generally comprise
a function of some kind and a marshaller used to call it. It is the responsibility of the
marshaller to convert the arguments for the invocation from GValues into a suitable form,
perform the callback on the converted arguments, and transform the return value back into
a GValue.

Please read the Closures (https://developer.gnome.org/gobject/stable/gobject-Closures.html)
section from the GObject reference manual for a complete description.

Procedures

Note: in this section, the closure, marshal, source and function arguments are [must be]
pointers to a GClosure, a GSource, a GClosureMarshal and a GClosureNotify respectively.

[Procedure]g-closure-size
Returns an integer.

Obtains and returns the size (the number of bytes) that a GClosure occupies in
memory.

https://developer.gnome.org/gobject/stable/gobject-Closures.html

III. G-Golf Core Reference 79

[Procedure]g-closure-ref-count closure
Returns an integer.

Obtains and returns the reference count of closure.

[Procedure]g-closure-ref closure
Returns a pointer.

Increments the reference count of closure, to force it staying alive while the caller
holds a pointer to it.

[Procedure]g-closure-sink closure
Returns nothing.

Takes over the initial ownership of closure. Each closure is initially created in a
‘floating’ state, which means that the initial reference count is not owned by any
caller. [g-closure-sink], page 79, checks to see if the object is still floating, and if
so, unsets the floating state and decreases the reference count. If the closure is not
floating, [g-closure-sink], page 79, does nothing.

Because [g-closure-sink], page 79, may decrement the reference count of closure (if it
hasn’t been called on closure yet) just like [g-closure-unref], page 79, [g-closure-ref],
page 79, should be called prior to this function.

[Procedure]g-closure-unref closure
Returns nothing.

Decrements the reference count of closure after it was previously incremented by the
same caller. If no other callers are using closureclosure, then it will be destroyed and
freed.

[Procedure]g-closure-free closure
Returns nothing.

Decrements the reference count of closure to 0 (so closure will be destroyed and freed).

[Procedure]g-closure-invoke closure return-value n-param param-vals
invocation-hit

Returns nothing.

Invokes the closure, i.e. executes the callback represented by the closure.

The arguments are closure (a pointer to a GClosure), return-value (a pointer to a
GValue), n-param (the length of the param-vals array), param-vals (a pointer to an
array of GValue) and invocation-hint (a context dependent invocation hint).

[Procedure]g-closure-add-invalidate-notifier closure data function
Returns nothing.

Registers an invalidation notifier which will be called when the closure is invalidated
with g-closure-invalidate. Invalidation notifiers are invoked before finalization
notifiers, in an unspecified order.

The data argumet is (must be) a pointer to the notifier data (or #f).

III. G-Golf Core Reference 80

[Procedure]g-closure-new-simple size data
Returns a pointer.

Allocates a structure of the given size and initializes the initial part as a GClosure.
The data (if any) are used to iitialize the data fields of the newly allocated GClosure.

The returned value is a floating reference (a pointer) to a new GClosure.

[Procedure]g-closure-set-marshal closure marshal
Returns nothing.

Sets the closure marshaller to marshal.

[Procedure]g-source-set-closure source closure
Returns nothing.

Set the source callback to closure.

If the source is not one of the standard GLib types, the closure_callback and
closure_marshal fields of the GSourceFuncs structure must have been filled in with
pointers to appropriate functions.

Signals

G-Golf GObject Signals low level API.
Signals — A means for customization of object behaviour and a general purpose notification
mechanism

Procedures

[g-signal-newv], page 81

[g-signal-query], page 81

[g-signal-lookup], page 82

[g-signal-list-ids], page 82

[g-signal-emitv], page 82

[g-signal-connect-closure-by-id], page 82

[g-signal-handler-disconnect], page 83

[g-signal-parse-name], page 83

Types and Values

[%g-signal-flags], page 83

Description

The basic concept of the signal system is that of the emission of a signal. Signals are
introduced per-type and are identified through strings. Signals introduced for a parent
type are available in derived types as well, so basically they are a per-type facility that is
inherited.

Please read the Signals (https://developer.gnome.org/gobject/stable/gobject-Signals.html)
section from the GObject reference manual for a complete description.

https://developer.gnome.org/gobject/stable/gobject-Signals.html

III. G-Golf Core Reference 81

Procedures

[Procedure]g-signal-newv name iface-type flags class-closure accumulator
accu-data c-marshaller return-type n-param param-types

Returns the signal id.

Creates a new signal. The arguments are:

name The name for the signal.

iface-type The type this signal pertains to. It will also pertain to types which
are derived from this type.

flags A list of [%g-signal-flags], page 83, specifying detail of when the
default handler is to be invoked. It should at least specify run-

first or run-last.

class-closure
The closure to invoke on signal emission, may be #f.

accumulator
The accumulator for this signal; may be #f.

accu-data User data for the accumulator.

c-marshaller
The function to translate arrays of parameter values to signal emis-
sions into C language callback invocations or #f.

return-type
The GType of the signal returned value. The caller may obtain
the GType, given a scheme object (or 'none for a signal without a
return value), by calling [scm->g-type], page 43.

n-param The length of param-types.

param-types
An list of types, one for each parameter (may be '() if n-param is
zero).

[Procedure]g-signal-query id
Returns a list.

Obtains and returns a list composed of the signal id, name, interface-type29, flags,
return-type, number of arguments and their types. For example30:

,use (g-golf)

(gi-import "Clutter")

(make <clutter-actor>)

⇒ $2 = #<<clutter-actor> 565218c88a80>

29 Within this context, the interface-type is the GType of the GObject subclass the signal is ‘attached to’ -
knowing that signals are inhereted.

30 At least one GObject subclass instance must have been created prior to attempt to query any of its class
signal(s).

III. G-Golf Core Reference 82

(!g-type (class-of $2))

⇒ $3 = 94910597864000

(g-signal-list-ids $3)

⇒ $4 = (5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)

(g-signal-query 20)

⇒ $5 = (20 "enter-event" 94910597864000 (run-last) boolean 1 (boxed))

As you may have noticed, the signal query argument(s) list does not include the
instance (and its type) upon which the signal is called, but both at C level and within
the context of GClosure, callbacks must assume that the instance upon which a signal
is called is always the first argument of the callback.

[Procedure]g-signal-lookup name g-type
Returns an integer.

Obtains and returns the signal’s identifying integer, given the name of the signal and
the object g-type it connects to. If a signal identifier can’t be find for the given name
and g-type, an exception is raised.

[Procedure]g-signal-list-ids g-type
Returns a list of integers.

Obtains and returns the list of signal’s identifying integers for g-type (Note that at
least one g-type instance must have been created prior to attempt to list or query
signal’s identifying integers for a given g-type).

[Procedure]g-signal-emitv params id detail return-value
Returns nothing.

Emits a signal. Signal emission is done synchronously. The method will only return
control after all handlers are called or signal emission was stopped.

Note that [g-signal-emitv], page 82, doesn’t change return-value if no handlers are
connected.

The params points to the argument list for the signal emission. The first element
in the array is a GValue for the instance the signal is being emitted on. The rest
are any arguments to be passed to the signal. The id is the signal id, detail the
detail (a g-quark and return-value the location to store the return value of the signal
emission (it must be provided if the specified signal returns a value, but may be
ignored otherwise).

[Procedure]g-signal-connect-closure-by-id instance id detail closure after
Returns the handler ID (always greater than 0 for successful connections).

Connects a closure to a signal for a particular object.

If closure is a floating reference (see [g-closure-sink], page 79), this function takes
ownership of closure.

III. G-Golf Core Reference 83

The instance is the instance to connect to, the id the id of the signal, detail the detail
(a g-quark). closure the closure to connect, after (a boolean) whether the handler
should be called before or after the default handler of the signal.

[Procedure]g-signal-handler-disconnect instance handler-id
Returns nothing.

Disconnects a handler from an instance so it will not be called during any future or
currently ongoing emissions of the signal it has been connected to. The handler-id
becomes invalid and may be reused.

The handler-id has to be a valid signal handler id, connected to a signal of instance .

[Procedure]g-signal-parse-name detailed-signal g-type [force-detail-quark #t]
Returns two integer values.

Obtains and returns the signal-id and a detail corresponding to detailed-signal for
g-type. The detailed-signal can be passed as a symbol or a string. When force-detail-
quark is #t it forces the creation of a GQuark for the detail.

If the signal name could not successfully be parsed, it raises an exception.

Types and Values

[Instance Variable of <gi-enum>]%g-signal-flags
The signal flags are used to specify a signal’s behaviour, the overall signal description
outlines how especially the RUN flags control the stages of a signal emission.

An instance of <gi-enum>, who’s members are the scheme representation of the
GSignalFlags:

g-name: GSignalFlags
name: g-signal-flags
enum-set :

run-first

Invoke the object method handler in the first emission stage.

run-last Invoke the object method handler in the third emission stage.

run-cleanup

Invoke the object method handler in the last emission stage.

no-recurse

Signals being emitted for an object while currently being in
emission for this very object will not be emitted recursively,
but instead cause the first emission to be restarted.

detailed This signal supports "::detail" appendices to the signal name
upon handler connections and emissions.

action Action signals are signals that may freely be emitted on alive
objects from user code via g-signal-emit and friends, with-
out the need of being embedded into extra code that per-
forms pre or post emission adjustments on the object. They

III. G-Golf Core Reference 84

can also be thought of as object methods which can be called
generically by third-party code.

no-hooks No emissions hooks are supported for this signal.

must-collect

Varargs signal emission will always collect the arguments,
even if there are no signal handlers connected. Since 2.30.

deprecated

The signal is deprecated and will be removed in a future
version. A warning will be generated if it is connected while
running with G_ENABLE_DIAGNOSTIC=1. Since 2.32.

GObject Introspection

G-Golf GObject Introspection modules are defined in the gi subdirectory, such as (g-golf
gi repository).

Where you may load these modules individually, the easiest way to use G-Golf GObject
Introspection is to import the g-golf module, which imports and re-exports the public
interface of all modules used and defined by G-Golf (for a complete list, visit its source
definition):

(use-modules (g-golf))

Most G-Golf GObject Introspection modules correspond to a GObject Intropection (man-
ual) section, but there are some exceptions, such as init and utils . . .

Repository

G-Golf Introspection Repository low level API.
GIRepository — GObject Introspection repository manager.

Procedures

[g-irepository-get-default], page 85

[g-irepository-get-dependencies], page 85

[g-irepository-get-loaded-namespaces], page 85

[g-irepository-get-n-infos], page 85

[g-irepository-get-info], page 85

[g-irepository-enumerate-versions], page 85

[g-irepository-get-typelib-path], page 85

[g-irepository-require], page 86

[g-irepository-get-c-prefix], page 86

[g-irepository-get-shared-library], page 86

[g-irepository-get-version], page 86

[g-irepository-find-by-gtype], page 86

[g-irepository-find-by-name], page 86

Description

GIRepository is used to manage repositories of namespaces. Namespaces are represented
on disk by type libraries (.typelib files).

III. G-Golf Core Reference 85

Object Hierarchy

GObject
| GIRepository

Procedures

Note: in this section, when the #:repository optional keyword argument is passed, it is
[must be] a pointer to a GIRepository. Its default value is #f, the scheme representation
for NULL, meaning the singleton process-global default GIRepository (see [g-irepository-
get-default], page 85).

[Procedure]g-irepository-get-default
Returns a pointer to the singleton process-global default GIRepository.

GObject Introspection does not currently support multiple repositories in a particu-
lar process, but this procedure is provided in the unlikely eventuality that it would
become possible.

All G-Golf low level API procedures on GIRepository also accept an optional#:repos-
itory keyword argument which defaults to #f, meaning this singleton process-global
default GIRepository.

[Procedure]g-irepository-get-dependencies namespace [#:repository #f]
Returns a list of all (transitive) versioned dependencies for namespace. Returned
string are of the form namespace-version.

Note: The namespace must have already been loaded using a procedure such as
g-irepository-require before calling this procedure.

[Procedure]g-irepository-get-loaded-namespaces [#:repository #f]
Return the list of currently loaded namespaces.

[Procedure]g-irepository-get-n-infos namespace [#:repository #f]
Returns the number of metadata entries in namespace. The namespace must have
already been loaded before calling this procedure.

[Procedure]g-irepository-get-info namespace index [#:repository #f]
Returns a pointer to a particular metadata entry in the given namespace.

The namespace must have already been loaded before calling this procedure. See
g-irepository-get-n-infos to find the maximum number of entries.

index is a 0-based offset into namespace for entry.

[Procedure]g-irepository-enumerate-versions namespace [#:repository #f]
Returns a (possibly empty) list.

Obtains and returns an unordered (possibly empty) list of versions (either currently
loaded or available) for namespace in repository.

[Procedure]g-irepository-get-typelib-path namespace [#:repository #f]
Returns the full path to the .typelib file namespace was loaded from, if loaded. If
namespace is not loaded or does not exist, it will return #f. If the typelib for names-
pace was included in a shared library, it returns the special string "<builtin>".

III. G-Golf Core Reference 86

[Procedure]g-irepository-require namespace [#:version #f] [#:repository
#f]

Returns a pointer a GITypelib structure, if the Typelib file for namespace exists.
Otherwise, it raises an error.

Force the namespace to be loaded if it isn’t already. If namespace is not loaded,
this procedure will search for a ".typelib" file using the repository search path. In
addition, a version version of namespace may be specified. If version is not specified,
the latest will be used.

[Procedure]g-irepository-get-c-prefix namespace [#:repository #f]
Returns the "C prefix", or the C level namespace associated with the given intro-
spection namespace. Each C symbol starts with this prefix, as well each GType in the
library.

Note: The namespace must have already been loaded using a procedure such as
g-irepository-require before calling this procedure.

[Procedure]g-irepository-get-shared-library namespace [#:repository #f]
Returns a list of paths to the shared C libraries associated with the given namespace.
There may be no shared library path associated, in which case this procedure will
return an empty list.

[Procedure]g-irepository-get-version namespace [#:repository #f]
Returns the loaded version associated with the given namespace.

Note: The namespace must have already been loaded using a procedure such as
g-irepository-require before calling this procedure.

[Procedure]g-irepository-find-by-gtype gtype [#:repository #f]
Returns a pointer to a GIBaseInfo representing metadata about gtype, or #f.

Searches all loaded namespaces for a particular GType. Note that in order to locate
the metadata, the namespace corresponding to the type must first have been loaded.
There is currently no mechanism for determining the namespace which corresponds
to an arbitrary GType - thus, this procedure will operate most reliably when you know
the GType to originate from be from a loaded namespace.

[Procedure]g-irepository-find-by-name namespace name [#:repository #f]
Returns a pointer to a GIBaseInfo representing metadata about type, or #f.

Searches for a particular entry in namespace. Before calling this function for a partic-
ular namespace, you must call g-irepository-require once to load the namespace,
or otherwise ensure the namespace has already been loaded.

Typelib

G-Golf Typelib low level API.
GITypelib — Layout and accessors for typelib.

III. G-Golf Core Reference 87

Procedures

[g-golf-typelib-new], page 87

[call-with-input-typelib], page 87

[g-typelib-new-from-memory], page 87

[g-typelib-free], page 87

[g-typelib-get-namespace], page 87

Description

TODO.

Procedures

Note: in this section, the typelib argument is [must be] a pointer to a GITypelib.

[Procedure]g-golf-typelib-new file
Returns a pointer to a new GITypelib.

file must be a valid typelib filename.

This procedure actually sets things up and calls [g-typelib-new-from-memory],
page 87.

[Procedure]call-with-input-typelib file proc
Returns the value(s) returned by proc.

file must be a valid typelib filename. Makes a new GITypelib by calling (g-golf-

typelib-new file) and calls (proc typelib) with the resulting GITypelib.

When proc returns, the GITypelib is free’d by calling g-typelib-free. Otherwise
the [Glib - C] memory chunk might not be free’d automatically, though the scheme
pointer returned by g-golf-typelib-new will be garbage collected in the usual way
if not otherwise referenced.

[Procedure]g-typelib-new-from-memory pointer size gerror
Returns a pointer to a new GITypelib.

pointer must be the address of a memory chunk containing the typelib, size is the
number of bytes of the memory chunk containing the typelib, and gerror a pointer to
a GError.

Creates a new GITypelib from a memory location. The memory block pointed to by
typelib will be automatically g_free()d when the repository is destroyed.

[Procedure]g-typelib-free typelib
Returns nothing.

Free a GITypelib.

[Procedure]g-typelib-get-namespace typelib
Returns the namespace of typelib.

Common Types

G-Golf Common Types low level API.
common types - TODO

III. G-Golf Core Reference 88

Procedures

[g-type-tag-to-string], page 88

Types and Values

[%gi-type-tag], page 88

[%gi-array-type], page 89

Procedures

[Procedure]g-type-tag-to-string type-tag
Returns a string or #f.

Obtains the string representation for type-tag or #f if it does not exist (note that in
this case, the upstream function returns "unknown").

type-tag can either be an id or a symbol, a member of the enum-set of [%gi-type-tag],
page 88.

Types and Values

[Instance Variable of <gi-enum>]%gi-type-tag
An instance of <gi-enum>, who’s members are the type tag of a GITypeInfo:

g-name: GITypeTag
name: gi-type-tag
enum-set :

void
boolean
int8
uint8
int16
uint16
int32
uint32
int64
uint64
float
double
gtype
utf8
filename
array
interface
glist
gslist
ghash
error
unichar

III. G-Golf Core Reference 89

[Instance Variable of <gi-enum>]%gi-array-type
An instance of <gi-enum>, who’s members are the type of array in a GITypeInfo:

g-name: GIArrayType
name: gi-array-type
enum-set :

c
array
ptr-array
byte-array

Version Information (2)

G-Golf GIRepository Version Informatrion low level API.
Version Information - Procedures to check the GIRepository version.

Procedures

[gi-version], page 89

[gi-effective-version], page 89

[gi-major-version], page 89

[gi-minor-version], page 89

[gi-micro-version], page 89

[gi-check-version], page 89

Description

Procedures to check the GIRepository version.

Procedures

[Procedure]gi-version
[Procedure]gi-effective-version
[Procedure]gi-major-version [as-integer? #f]
[Procedure]gi-minor-version [as-integer? #f]
[Procedure]gi-micro-version [as-integer? #f]

Returns a string describing GIRepository full version number, effective version num-
ber, major, minor or micro version number, respectively.

The last three procedures will return the major, minor or micro version number as
an integer if the optional as-integer? argument is #t.

[Procedure]gi-check-version major minor micro
Returns #t if the GIRepository version is the same as or newer than the major minor
micro passed-in version.

Base Info

G-Golf Base Info low level API.
GIBaseInfo — Base struct for all GITypelib structs.

III. G-Golf Core Reference 90

Procedures

[g-base-info-ref], page 90

[g-base-info-unref], page 91

[g-base-info-equal], page 91

[g-base-info-get-type], page 91

[g-base-info-get-typelib], page 91

[g-base-info-get-namespace], page 91

[g-base-info-get-name], page 91

[g-base-info-get-attribute], page 91

[g-base-info-iterate-attributes], page 91

[g-base-info-get-container], page 91

[g-base-info-is-deprecated], page 91

Types and Values

[%gi-info-type], page 92

Struct Hierarchy

GIBaseInfo
+— GIArgInfo
+— GICallableInfo
+— GIConstantInfo
+— GIFieldInfo
+— GIPropertyInfo
+— GIRegisteredTypeInfo
+— GITypeInfo

Description

GIBaseInfo is the common base struct of all other *Info structs accessible through the
GIRepository API.

Most GIRepository APIs returning a GIBaseInfo is actually creating a new struct, in
other words, [g-base-info-unref], page 91, has to be called when done accessing the data.
GIBaseInfos are normally accessed by calling either [g-irepository-find-by-name], page 86,
[g-irepository-find-by-gtype], page 86, or [g-irepository-get-info], page 85.

Example: Getting the Button of the Gtk typelib

,use (g-golf gi)

(g-irepository-require "Gtk")

(g-irepository-find-by-name "Gtk" "Button")

⇒ $4 = #<pointer 0x20e0000>

... use button info ...

(g-base-info-unref $4)

Procedures

Note: in this section, the info, info1 and info2 arguments are [must be] pointers to a
GIBaseInfo.

III. G-Golf Core Reference 91

[Procedure]g-base-info-ref info
Returns the same info.

Increases the reference count of info.

[Procedure]g-base-info-unref info
Returns nothing.

Decreases the reference count of info. When its reference count drops to 0, the info
is freed.

[Procedure]g-base-info-equal info1 info2
Returns #t if and only if info1 equals info2.

Compares two GIBaseInfo.

Using pointer comparison is not practical since many functions return different in-
stances of GIBaseInfo that refers to the same part of the typelib: use this procedure
instead to do GIBaseInfo comparisons.

[Procedure]g-base-info-get-type info
Returns the info type of info.

[Procedure]g-base-info-get-typelib info
Returns a pointer to the GITypelib the info belongs to.

[Procedure]g-base-info-get-namespace info
Returns the namespace of info

[Procedure]g-base-info-get-name info
Returns the name of info or #f if it lacks a name.

What the name represents depends on the GIInfoType of the info. For instance for
GIFunctionInfo it is the name of the function.

[Procedure]g-base-info-get-attribute info name
Returns the value of the attribute or #f if not such attribute exists.

[Procedure]g-base-info-iterate-attributes info proc
Returns nothing.

Iterate and calls proc over all attributes associated with this node. proc must be a
procedure of two arguments, the name and the value of the attribute.

[Procedure]g-base-info-get-container info
Returns a pointer to a GIBaseInfo.

The container is the parent GIBaseInfo. For instance, the parent of a
GIFunctionInfo is an GIObjectInfo or GIInterfaceInfo.

[Procedure]g-base-info-is-deprecated info
Returns #t if deprecated.

Obtain whether info represents a metadata which is deprecated or not.

III. G-Golf Core Reference 92

Types and Values

[Instance Variable of <gi-enum>]%gi-info-type
An instance of <gi-enum>, who’s members are the scheme representation of the type
of a GIBaseInfo struct:

g-name: GIInfoType
name: gi-info-type
enum-set :

invalid
function
callback
struct
boxed
enum
flags
object
interface
constant
error-domain
union
value
signal
vfunc
property
field
arg
type
unresolved

Callable Info

G-Golf Callable Info low level API.
GICallableInfo — Struct representing a callable.

Procedures

[g-callable-info-can-throw-gerror], page 93

[g-callable-info-get-n-args], page 93

[g-callable-info-get-arg], page 93

[g-callable-info-get-caller-owns], page 93

[g-callable-info-get-instance-ownership-transfer], page 93

[g-callable-info-get-return-type], page 93

[g-callable-info-invoke], page 93

[g-callable-info-is-method], page 94

[g-callable-info-may-return-null], page 94

[g-callable-info-create-closure], page 94

III. G-Golf Core Reference 93

Struct Hierarchy

GIBaseInfoInfo
+— GICallableInfo

+— GIFunctionInfo
+— GICallbackInfo
+— GISignalInfo
+— GIVFuncInfo

Description

GICallableInfo represents an entity which is callable. Examples of callable are: functions
(GIFunctionInfo), virtual functions, (GIVFuncInfo), callbacks (GICallbackInfo).

A callable has a list of arguments (GIArgInfo), a return type, direction and a flag which
decides if it returns null.

Procedures

Note: in this section, the info argument is [must be] a pointer to a GICallableInfo.

[Procedure]g-callable-info-can-throw-gerror info
Returns #t if the callable info can throw a GError, otherwise it returns #f.

[Procedure]g-callable-info-get-n-args info
Returns the number of arguments this info expects.

Obtain the number of arguments (both IN and OUT) for this info.

[Procedure]g-callable-info-get-arg info n
Returns a pointer to the nth GIArgInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-callable-info-get-caller-owns info
Returns a GITransfer enumerated value.

See whether the caller owns the return value of this callable. See [%gi-transfer],
page 117, for the list of possible values.

[Procedure]g-callable-info-get-instance-ownership-transfer info
Returns a GITransfer enumerated value.

Obtains the ownership transfer for the instance argument. See [%gi-transfer],
page 117, for the list of possible values.

[Procedure]g-callable-info-get-return-type info
Returns a pointer to the GITypeInfo.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-callable-info-invoke info function in-args n-in out-args n-out
r-val is-method throws g-error

Returns #t if the function has been invoked, #f if an error occured.

III. G-Golf Core Reference 94

Invokes the function described in info with the given arguments. Note that inout
parameters must appear in both argument lists. The arguments are:

info a pointer to a GIFunctionInfo describing the function to invoke.

function a pointer to the function to invoke.

in-args a pointer to an array of GIArguments, one for each in and inout

parameter of info. If there are no in parameter, in-args must be
the %null-pointer.

n-in the length of the in-args array.

out-args a pointer to an array of GIArguments, one for each out and inout

parameter of info. If there are no out parameter, out-args must be
the %null-pointer.

n-out the length of the out-args array.

r-val a pointer to a GIArguments, the return location for the return value
of the function. If the function returns void, r-val must be the
%null-pointer.

is-method

is the callable info is a method.

throws can the callable throw a GError.

g-error a pointer to a newly allocated (and ‘empty’) GError (the recom-
mended way for procedure calls that need such a pointer is to
‘surround’ the call using [with-gerror], page 125).

[Procedure]g-callable-info-is-method info
Returns #t if the callable info is a method, otherwise it return #f.

Determines if the callable info is a method. For GIVFuncInfo and GISignalInfo,
this is always true. Otherwise, this looks at the GI_FUNCTION_IS_METHOD flag on the
GIFunctionInfo.

Concretely, this function returns whether [g-callable-info-get-n-args], page 93,
matches the number of arguments in the raw C method. For methods, there is one
more C argument than is exposed by introspection: the ‘self’ or ‘this’ object.

[Procedure]g-callable-info-may-return-null info
Returns #t if the callable info could return NULL.

See if a callable could return NULL.

[Procedure]g-callable-info-create-closure info ffi-cif ffi-closure-callback
user-data

Returns the ffi-closure or #f on error.

The return value should be freed by calling g-callable-info-destroy-closure.

Function Info

G-Golf Function Info low level API.
GIFunctionInfo — Struct representing a function.

III. G-Golf Core Reference 95

Procedures

[gi-function-info-is-method?], page 95

[g-function-info-get-flags], page 95

[g-function-info-get-property], page 95

[g-function-info-get-symbol], page 95

[g-function-info-get-vfunc], page 96

[g-function-info-invoke], page 96

Types and Values

[%g-function-info-flags], page 96

Struct Hierarchy

GIBaseInfoInfo
+— GICallableInfo

+— GIFunctionInfo
+— GISignalInfo
+— GIVFuncInfo

Description

GIFunctionInfo represents a function, method or constructor. To find out what kind of
entity a GIFunctionInfo represents, call [g-function-info-get-flags], page 95.

See also [Callable Info], page 92, for information on how to retreive arguments and other
metadata.

Procedures

Note: in this section, the info argument is [must be] a pointer to a GIFunctionInfo.

[Procedure]gi-function-info-is-method? info [flags #f]
Returns #t if info is a method, that is if is-method is a member of the info flags.
Otherwise, it returns #f.

The optional flags argument, if passed, must be the list of the function info flags as
returned by [g-function-info-get-flags], page 95.

[Procedure]g-function-info-get-flags info
Returns a list of [%g-function-info-flags], page 96.

Obtain the GIFunctionInfoFlags for info.

[Procedure]g-function-info-get-property info
Returns a pointer or #f.

Obtains the GIPropertyInfo associated with info. Only GIFunctionInfo with the
flag is-getter or is-setter have a property set. For other cases, #f will be returned.

The GIPropertyInfomust be freed by calling [g-base-info-unref], page 91, when done.

[Procedure]g-function-info-get-symbol info
Returns a string.

III. G-Golf Core Reference 96

Obtain the ‘symbol’ of the function31.

[Procedure]g-function-info-get-vfunc info
Returns a pointer or #f.

Obtains the GIVFuncInfo associated with info. Only GIFunctionInfo with the flag
wraps-vfunc has its virtual function set. For other cases, #f will be returned.

The GIVFuncInfo must be freed by calling [g-base-info-unref], page 91, when done.

[Procedure]g-function-info-invoke info in-args n-in out-args n-out r-val
g-error

Returns #t if the function has been invoked, #f if an error occured.

Invokes the function described in info with the given arguments. Note that inout
parameters must appear in both argument lists. The arguments are:

info a pointer to a GIFunctionInfo describing the function to invoke.

in-args a pointer to an array of GIArguments, one for each in and inout

parameter of info. If there are no in parameter, in-args must be
the %null-pointer.

n-in the length of the in-args array.

out-args a pointer to an array of GIArguments, one for each out and inout

parameter of info. If there are no out parameter, out-args must be
the %null-pointer.

n-out the length of the out-args array.

r-val a pointer to a GIArguments, the return location for the return value
of the function. If the function returns void, r-val must be the
%null-pointer.

g-error a pointer to a newly allocated (and ‘empty’) GError (the recom-
mended way for procedure calls that need such a pointer is to
‘surround’ the call using [with-gerror], page 125).

Types and Values

[Instance Variable of <gi-flags>]%g-function-info-flags
An instance of [<gi-flags>], page 131, who’s members are the scheme representation
of the GIFunctionInfoFlags:

g-name: GIFunctionInfoFlags
name: gi-function-info-flags
enum-set :

is-method

Is a method.

31 As you have noticed already, since g-function-info-get-symbol returns a string, in the Glib, GObject and
GObject Instrospection worlds, symbol has a different meaning then in the Lisp/Scheme worlds. However,
since the procedure is part of the G-Golf low-level API, we decided to keep its name as close as the original
name as possible, which in Glib terms is the name of the exported function, ‘suitable to be used as an

argument to g_module_symbol()’

III. G-Golf Core Reference 97

is-constructor

Is a constructor.

is-getter

Is a getter of a GIPropertyInfo.

is-setter

Is a setter of a GIPropertyInfo.

wraps-vfunc

Represent a virtul function.

throws The function may throw an error.

Signal Info

G-Golf Signal Info low level API.
GISignalInfo — Struct representing a signal.

Procedures

[g-signal-info-get-flags], page 97

Description

GISignalInfo represents a signal. It’s a sub-struct of GICallableInfo and contains a set
of flags and a class closure.

See also [Callable Info], page 92, for information on how to retreive arguments and other
metadata from the signal.

Struct Hierarchy

GIBaseInfoInfo
+— GICallableInfo

+— GIFunctionInfo
+— GISignalInfo
+— GIVFuncInfo

Procedures

Note: in this section, the info argument is [must be] a pointer to a GISignalInfo.

[Procedure]g-signal-info-get-flags info
Returns a list of [%g-signal-flags], page 83.

Obtain the flags for this signal info. See [%g-signal-flags], page 83, for more informa-
tion about posible flag values.

VFunc Info

G-Golf VFunc Info low level API.
GIVFuncInfo — Struct representing a virtual function

III. G-Golf Core Reference 98

Procedures

[g-vfunc-info-get-flags], page 98

[g-vfunc-info-get-offset], page 98

[g-vfunc-info-get-signal], page 98

[g-vfunc-info-get-invoker], page 98

Types and Values

[%gi-vfunc-info-flags], page 98

Description

GIVFuncInfo represents a virtual function.

A virtual function is a callable object that belongs to either a [Object Info], page 105, or a
[Interface Info], page 110.

Procedures

Note: in this section, the info argument is [must be] a pointer to a GIVFuncInfo.

[Procedure]g-vfunc-info-get-flags info
Returns a (possibly empty) list.

Obtains and returns the flags for the virtual function info. See [%gi-vfunc-info-flags],
page 98, for the possible flag values.

[Procedure]g-vfunc-info-get-offset info
Returns an offset or #f.

Obtains and returns the offset of the virtual function in the class struct. The value
#f indicates that the offset is unknown.

[Procedure]g-vfunc-info-get-signal info
Returns a pointer or #f.

Obtains and returns a signal (a pointer to a [Signal Info], page 97) for the virtual
function if one is set. The signal comes from the object or interface to which this
virtual function belongs.

[Procedure]g-vfunc-info-get-invoker info
Returns a pointer or #f.

If this virtual function has an associated invoker method, this procedure will return
it (a pointer to a [Function Info], page 94). An invoker method is a C entry point.

Not all virtuals will have invokers.

The GIFunctionInfo, if one was returned, must be freed by calling [g-base-info-unref],
page 91,

Types and Values

[Instance Variable of <gi-flags>]%gi-vfunc-info-flags
An instance of [<gi-flags>], page 131, who’s members are the scheme representation
of the flags of a GIVFuncInfo:

III. G-Golf Core Reference 99

g-name: GIVFuncInfoFlags
name: gi-vfunc-info-flags
enum-set :

must-chain-up

must-override

must-not-override

throws

Registered Type Info

G-Golf Registered Type Info low level API.
GIRegisteredTypeInfo — Struct representing a struct with a GType.

Procedures

[gi-registered-type-info-name], page 99

[g-registered-type-info-get-type-name], page 100

[g-registered-type-info-get-type-init], page 100

[g-registered-type-info-get-g-type], page 100

Struct Hierarchy

GIBaseInfo
+—-GIRegisteredTypeInfo

+—-GIEnumInfo
+—-GIInterfaceInfo
+—-GIObjectInfo
+—-GIStructInfo
+—-GIUnionInfo

Description

GIRegisteredTypeInfo represents an entity with a GType associated. Could be either a
GIEnumInfo, GIInterfaceInfo, GIObjectInfo, GIStructInfo or a GIUnionInfo.

A registered type info struct has a name and a type function.

Procedures

Note: in this section, the info argument is [must be] a pointer to a GIRegisteredTypeInfo.

[Procedure]gi-registered-type-info-name info
Returns a type name.

Some registered type are not ‘registered’, and calling [g-registered-type-info-get-
type-name], page 100, returns #f32.

Even though they are ‘unnamed’, some are present in their typelib, like "GLib"

"SpawnFlags", or "GObject" "ParamFlags", and may be imported - sometimes man-
ually, sometimes automatically.

32 Another symptom for those is that if if you call ([g-type-name], page 59, g-type), it returns "void".

III. G-Golf Core Reference 100

In G-Golf, imported GIRegisteredTypeInfo must have a unique name, since it is
used as the secondary key in its cache ‘mechanism’ (See [Cache Park], page 32).

Obtains and returns a unique name for info. If [g-registered-type-info-get-type-name],
page 100, returns a name, that name is returned. Otherwise, it returns a name
composed of the namespace and name for info.

Here is an example, to illustrate:

(g-irepository-find-by-name "GObject" "ParamFlags")

⇒ $2 = #<pointer 0x5654c59ee4f0>

(g-registered-type-info-get-type-name $2)

⇒ $3 = #f

(gi-registered-type-info-name $2)

⇒ $4 = "GObjectParamFlags"

(g-name->name $4)

⇒ $5 = g-object-param-flags

[Procedure]g-registered-type-info-get-type-name info
Returns the type name.

Obtain the type name of the struct within the GObject type system. This name can
be passed to g type from name to get a GType.

[Procedure]g-registered-type-info-get-type-init info
Returns the name of the type init function.

Obtain the type init function for info. The type init function is the function which
will register the GType within the GObject type system. Usually this is not called by
langauge bindings or applications.

[Procedure]g-registered-type-info-get-g-type info
Returns the GType for info.

Obtain the GType for this registered type or G_TYPE_NONE which has a special meaning.
It means that either there is no type information associated with this info or that the
shared library which provides the type init function for this info cannot be called.

Enum Info

G-Golf Enum Info low level API.
GIEnumInfo — Structs representing an enumeration and its values.

III. G-Golf Core Reference 101

Procedures

[gi-enum-import], page 101

[gi-enum-value-values], page 101

[g-enum-info-get-n-values], page 101

[g-enum-info-get-value], page 101

[g-enum-info-get-n-methods], page 102

[g-enum-info-get-method], page 102

[g-value-info-get-value], page 102

Struct Hierarchy

GIBaseInfo
+— GIRegisteredTypeInfo

+— GIEnumInfo

Description

GIEnumInfo represents an argument. An argument is always part of a GICallableInfo.

Procedures

Note: in this section, unless otherwise specified, the info argument is [must be] a pointer to
a GIEumInfo.

[Procedure]gi-enum-import info
Returns a <gi-enum> instance.

Obtains the values this enumeration contains, then makes and returns a <gi-enum>

instance.

[Procedure]gi-enum-value-values info
Returns an alist.

Obtains and returns the list pairs (symbol . id) the enum GI definition pointed
by info contains. If you think the name is strange, compare it with, for example
[gi-struct-field-types], page 103: just like a GIStructInfo holds a list of pointers to
GIFieldInfo from which we get the (field) type, aGIEnumInfo holds a list of pointers
to GIValueInfo from which we get the (enum) value - which in the GI world is a
name (a string) that we transform, in the scheme world, to a symbol.

[Procedure]g-enum-info-get-n-values info
Returns the number of values.

Obtains the number of values this enumeration contains.

[Procedure]g-enum-info-get-value info index
Returns a pointer to a GIValueInfo or #f if type tag is wrong.

Obtains a value for this enumeration. The GIValueInfo must be free’d using g-base-
info-unref when done.

index is a 0-based offset into info for a value.

III. G-Golf Core Reference 102

[Procedure]g-enum-info-get-n-methods info
Returns the number of methods.

Obtains the number of methods this enumeration has.

[Procedure]g-enum-info-get-method info index
Returns a pointer to a GIFunctionInfo or #f if type tag is wrong.

Obtains a method for this enumeration. The GIFunctionInfo must be free’d using
g-base-info-unref when done.

index is a 0-based offset into info for a method.

[Procedure]g-value-info-get-value info
Returns the enumeration value.

Obtains a value of the GIValueInfo.

info is [must be] a pointer to a GIValueInfo.

Struct Info

G-Golf Struct Info low level API.
GIStructInfo — Structs representing a C structure.

Procedures

[gi-struct-import], page 102

[gi-struct-field-desc], page 103

[gi-struct-field-types], page 103

[g-struct-info-get-alignment], page 103

[g-struct-info-get-size], page 103

[g-struct-info-is-gtype-struct], page 103

[g-struct-info-is-foreign], page 103

[g-struct-info-get-n-fields], page 103

[g-struct-info-get-field], page 103

[g-struct-info-get-n-methods], page 103

[g-struct-info-get-method], page 104

Struct Hierarchy

GIBaseInfo
+— GIRegisteredTypeInfo

+— GIStructInfo

Description

GIStructInfo represents a generic C strucuture type.

A structure has methods and fields.

Procedures

Note: in this section, unless otherwise specified, the info argument is [must be] a pointer to
a GIStructInfo.

III. G-Golf Core Reference 103

[Procedure]gi-struct-import info
Returns a <gi-struct> instance.

Obtains the list of (field) types the C struct GI definition pointed by info contains,
then makes and returns a <gi-struct> instance.

[Procedure]gi-struct-field-desc info
Returns a list.

Obtains and returns the list of (field) descriptions for info. A field description is a
list: (name type-tag offset flags).

[Procedure]gi-struct-field-types info
Returns a list.

Obtains and returns the list of (field) types the C struct GI definition pointed by info
contains.

[Procedure]g-struct-info-get-alignment info
Returns an integer.

Obtains and returns the required alignment for info.

[Procedure]g-struct-info-get-size info
Returns an integer.

Obtains and returns the total size of the structure specified info.

[Procedure]g-struct-info-is-gtype-struct info
Returns #t or #f.

Return true if the structure specified by info represents the "class structure" for some
GObject or GInterface.

[Procedure]g-struct-info-is-foreign info
Returns #t or #f.

FIXME. No upstream documentation, though the procedure works.

[Procedure]g-struct-info-get-n-fields info
Returns an integer.

Obtains the number of fields for info.

[Procedure]g-struct-info-get-field info n
Returns a pointer.

Obtains and returns the info type information (a pointer to a GIFieldInfo) for the
field at the specified n index.

The GIFieldInfo must be freed by calling [g-base-info-unref], page 91, when done.

[Procedure]g-struct-info-get-n-methods info
Returns an integer.

Obtains the number of methods for info.

III. G-Golf Core Reference 104

[Procedure]g-struct-info-get-method info n
Returns a pointer.

Obtains and returns the info type information (a pointer to a GIFunctionInfo) for
the method at the specified n index.

The GIFunctionInfomust be freed by calling [g-base-info-unref], page 91, when done.

Union Info

G-Golf Union Info low level API.
GIUnionInfo — Struct representing a C union.

Procedures

[g-union-info-get-n-fields], page 104

[g-union-info-get-field], page 104

[g-union-info-get-n-methods], page 105

[g-union-info-get-method], page 105

[g-union-info-is-discriminated?], page 105

[g-union-info-get-discriminator-offset], page 105

[g-union-info-get-discriminator-type], page 105

[g-union-info-get-discriminator], page 105

[g-union-info-get-size], page 105

[g-union-info-get-alignment], page 105

Description

GIUnionInfo represents a union type.

A union has methods and fields. Unions can optionally have a discriminator, which is a
field deciding what type of real union fields is valid for specified instance.

Struct Hierarchy

GIBaseInfo
+— GIRegisteredTypeInfo

+— GIUnionInfo

Procedures

Note: in this section, unless otherwise specified, the info argument is [must be] a pointer to
a GIUnionInfo.

[Procedure]g-union-info-get-n-fields info
Returns an integer.

Obtains and returns the number of fields the info union has.

[Procedure]g-union-info-get-field info n
Returns a pointer.

Obtains and returns a pointer to the GIFieldInfo for info, given its n. The
GIFieldInfo must be free’d by calling [g-base-info-unref], page 91, when done.

III. G-Golf Core Reference 105

[Procedure]g-union-info-get-n-methods info
Returns an integer.

Obtains and returns the number of methods the info union has.

[Procedure]g-union-info-get-method info n
Returns a pointer.

Obtains and returns a pointer to the GIFunctionInfo for info, given its n, which
must be free’d by calling [g-base-info-unref], page 91, when done.

[Procedure]g-union-info-is-discriminated? info
Returns #t if info contains a discriminator field, otherwise it returns #f.

[Procedure]g-union-info-get-discriminator-offset info
Returns an integer.

Obtains and returns the offset of the discriminator field for info.

[Procedure]g-union-info-get-discriminator-type info
Returns a pointer.

Obtains and returns a pointer to the GITypeInfo for info, which must be free’d by
calling [g-base-info-unref], page 91, when done.

[Procedure]g-union-info-get-discriminator info n
Returns a pointer.

Obtains and returns a pointer to the GIConstantInfo assigned for the info n-th union
field - i.e. the n-th union field is the active one if discriminator contains this constant
(value) - which must be free’d by calling [g-base-info-unref], page 91, when done.

[Procedure]g-union-info-get-size info
Returns an integer.

Obtains and returns the total size of the union specified by info.

[Procedure]g-union-info-get-alignment info
Returns an integer.

Obtains and returns the required alignment for info.

Object Info

G-Golf Object Info low level API.
GIObjectInfo — Structs representing a GObject.

III. G-Golf Core Reference 106

Procedures

[gi-object-show], page 107

[gi-object-property-names], page 107

[gi-object-method-names], page 108

[gi-object-method-find-by-name], page 108

[g-object-info-get-abstract], page 108

[g-object-info-get-parent], page 108

[g-object-info-get-type-name], page 108

[g-object-info-get-type-init], page 108

[g-object-info-get-n-constants], page 108

[g-object-info-get-constant], page 108

[g-object-info-get-n-fields], page 108

[g-object-info-get-field], page 108

[g-object-info-get-n-interfaces], page 109

[g-object-info-get-interface], page 109

[g-object-info-get-n-methods], page 109

[g-object-info-get-method], page 109

[g-object-info-find-method], page 109

[g-object-info-get-n-properties], page 109

[g-object-info-get-property], page 109

[g-object-info-get-n-signals], page 109

[g-object-info-get-signal], page 109

[g-object-info-find-signal], page 109

[g-object-info-get-n-vfuncs], page 109

[g-object-info-get-vfunc], page 110

[g-object-info-get-class-struct], page 110

[g-object-info-get-set-value-function], page 110

[g-object-info-get-set-value-function-pointer], page 110

[g-object-info-get-get-value-function], page 110

[g-object-info-get-get-value-function-pointer], page 110

Struct Hierarchy

GIBaseInfo
+— GIRegisteredTypeInfo

+— GIObjectInfo

Description

GIObjectInfo represents a classed type.

Classed types in GType inherit from GTypeInstance (https://docs.gtk.org/gobject/classes_hierarchy.html).
The most common type is GObject. This doesn’t represent a specific instance of a
GObject, instead this represent the object type (eg class).

A GIObjectInfo has methods, fields, properties, signals, interfaces, constants and virtual
functions.

https://docs.gtk.org/gobject/classes_hierarchy.html

III. G-Golf Core Reference 107

Procedures

Note: in this section, unless otherwise specified, the info argument is [must be] a pointer to
a GIObjectInfo.

[Procedure]gi-object-show info
Returns nothing.

Obtains and displays the following informations about the object (and its parent)
pointed to by info:

,use (g-golf)

(g-irepository-require "Clutter")

⇒ $2 = #<pointer 0x56396a4f9f80>

(g-irepository-find-by-name "Clutter" "Actor")

⇒ $3 = #<pointer 0x56396a4fdc00>

(gi-object-show $3)

a
a #<pointer 0x56396a4fdc00> is a (pointer to a) GIObjectInfo:

a
a Parent:

a namespace: "GObject"

a name: "InitiallyUnowned"

a g-type: 94804596757600

a g-type-name: "GInitiallyUnowned"

a
a Object:

a namespace: "Clutter"

a name: "Actor"

a g-type: 94804596864480

a g-type-name: "ClutterActor"

a abstract: #f

a n-constants: 0

a n-fields: 4

a n-interfaces: 4

a n-methods: 238

a n-properties: 82

a n-signals: 26

a n-vfuncts: 35

[Procedure]gi-object-property-names info
Returns a (possibly empty) list.

Obtains and returns the (possibly empty) list of the (untranslated) GI property names
for info (see [g-name->name], page 137, to obtain their scheme representation).

III. G-Golf Core Reference 108

[Procedure]gi-object-method-names info
Returns a (possibly empty) list.

Obtains and returns the (possibly empty) list of pairs of the (untranslated) GI method
names for info (see [g-name->name], page 137, to obtain their scheme representation).

Each pair is composed of the info [g-function-info-get-symbol], page 95, and [g-base-
info-get-name], page 91, names.

[Procedure]gi-object-method-find-by-name info name
Returns a pointer or #f.

Obtains and returns a pointer to the method GIFunctionInfo contained in info, for
which [g-function-info-get-symbol], page 95, is string=? to name. If there is such
method, it returns #f.

[Procedure]g-object-info-get-abstract info
Returns #t if the info object type is abstract.

Obtain if the object type is an abstract type, eg if it cannot be instantiated.

[Procedure]g-object-info-get-parent info
Returns a pointer or #f.

Obtains and returns a pointer to the info’s parent GIObjectInfo, or #f if info has
no parent.

[Procedure]g-object-info-get-type-name info
Returns the name of the object type for info.

Obtain the name of the object class/type for info.

[Procedure]g-object-info-get-type-init info
Returns a function name (a string).

Obtain the function name which when called will return the GType function for which
this object type is registered.

[Procedure]g-object-info-get-n-constants info
Returns the number of constants for info.

Obtain the number of constants that this object type has.

[Procedure]g-object-info-get-constant info n
Returns a pointer to the nth GIConstantInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-get-n-fields info
Returns the number of fields for info.

Obtain the number of fields that this object type has.

[Procedure]g-object-info-get-field info n
Returns a pointer to the nth GIFieldInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

III. G-Golf Core Reference 109

[Procedure]g-object-info-get-n-interfaces info
Returns the number of interfaces for info.

Obtain the number of interfaces that this object type has.

[Procedure]g-object-info-get-interface info n
Returns a pointer to the nth GIInterfaceInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-get-n-methods info
Returns the number of methods for info.

Obtain the number of methods that this object type has.

[Procedure]g-object-info-get-method info n
Returns a pointer to the nth GIFunctionInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-find-method info name
Returns a pointer to a GIFunctionInfo or #f if there is no method available with
that name.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-get-n-properties info
Returns the number of properties for info.

Obtain the number of properties that this object type has.

[Procedure]g-object-info-get-property info n
Returns a pointer to the nth GIPropertyInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-get-n-signals info
Returns the number of signals for info.

Obtain the number of signals that this object type has.

[Procedure]g-object-info-get-signal info n
Returns a pointer to the nth GISignalInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-find-signal info name
Returns a pointer to a GISignalInfo or #f if there is no signal available with that
name.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-get-n-vfuncs info
Returns the number of vfuncs for info.

Obtain the number of vfuncs that this object type has.

III. G-Golf Core Reference 110

[Procedure]g-object-info-get-vfunc info n
Returns a pointer to the nth GIVfuncInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-get-class-struct info
Returns a pointer to the nth GIStructInfo of info, or #f.

Every GObject has two structures: an instance structure and a class structure. This
function returns a pointer to the info class structure.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-object-info-get-set-value-function info
Returns a string.

Obtain the symbol name (within the GI context, a symbol name is a string) of the
function that should be called to set a GValue giving an object instance pointer of
this object type.

[Procedure]g-object-info-get-set-value-function-pointer info
Returns a pointer.

Obtain a pointer to a function which can be used to set a GValue giving an object
instance pointer of this object type. This takes derivation into account and will
reversely traverse the base classes of this type, starting at the top type.

[Procedure]g-object-info-get-get-value-function info
Returns a string.

Obtain the symbol name (within the GI context, a symbol name is a string) of the
function that should be called to get a GValue instance pointer of this object type
giving an object instance pointer of this object type.

[Procedure]g-object-info-get-get-value-function-pointer info
Returns a pointer.

Obtain a pointer to a function which can be used to get a GValue instance pointer
giving an object instance pointer of this object type. This takes derivation into
account and will reversely traverse the base classes of this type, starting at the top
type.

Interface Info

G-Golf Interface Info low level API.
GIInterfaceInfo — Structs representing a GInterface.

III. G-Golf Core Reference 111

Procedures

[gi-interface-import], page 111

[gi-interface-show], page 111

[g-interface-info-get-n-prerequisites], page 113

[g-interface-info-get-prerequisite], page 113

[g-interface-info-get-n-properties], page 113

[g-interface-info-get-property], page 113

[g-interface-info-get-n-methods], page 113

[g-interface-info-get-method], page 113

[g-interface-info-find-method], page 113

[g-interface-info-get-n-signals], page 113

[g-interface-info-get-signal], page 113

[g-interface-info-find-signal], page 113

[g-interface-info-get-n-vfuncs], page 114

[g-interface-info-get-vfunc], page 114

[g-interface-info-find-vfunc], page 114

[g-interface-info-get-n-constants], page 114

[g-interface-info-get-constant], page 114

[g-interface-info-get-iface-struct], page 114

Description

GIInterfaceInfo represents a GInterface (https://developer.gnome.org/gobject/stable/GTypeModule.html).

A GInterface has methods, properties, signals, constants, virtual functions and prerequisites.

Struct Hierarchy

GIBaseInfo
+— GIRegisteredTypeInfo

+— GIInterfaceInfo

Procedures

Note: in this section, unless otherwise specified, the info argument is [must be] a pointer to
a GIInterfaceInfo.

[Procedure]gi-interface-import info
Returns a list.

In the current version of G-Golf, interfaces are ‘opaques’. Returns a list composed
of the ’interface (type-tag) symbol, the interface (scheme and symbol) name, g-name,
g-type and #t (a boolean that means the type is confirmed). Here is an example:

(interface gtk-orientable "GtkOrientable" 94578771473520 #t)

[Procedure]gi-interface-show info
Returns nothing.

Obtains and displays the following informations about the interface pointed to by
info:

,use (g-golf)

https://developer.gnome.org/gobject/stable/GTypeModule.html

III. G-Golf Core Reference 112

(g-irepository-require "Gdk" #:version "4.0")

⇒ $2 = #<pointer 0x55649014c780>

(g-irepository-find-by-name "Gdk" "Paintable")

⇒ $3 = #<pointer 0x5564901531e0>

(gi-interface-show $3)

a #<pointer 0x5564901531e0> is a (pointer to a) GIInterfaceInfo:

a
a namespace: "Gdk"

a name: "Paintable"

a g-type: 93947637686432

a g-type-name: "GdkPaintable"

a n-prerequisites: 0

a n-properties: 0

a n-methods: 10

a n-signals: 2

a n-vfuncts: 6

a n-constants: 0

a iface-struct: #<pointer 0x5571e38ec190>

a iface-struct-name: "PaintableInterface"

a
a Methods:

a
a 0. #f

a gdk-paintable-new-empty

a
a 1. compute-concrete-size

a gdk-paintable-compute-concrete-size

a
a 2. get-current-image

a gdk-paintable-get-current-image

a
a 3. get-flags

a gdk-paintable-get-flags

a ...

a
a VFuncs:

a
a 0. get-current-image

a
a 1. get-flags

a
a 2. get-intrinsic-aspect-ratio

a
a 3. get-intrinsic-height

a

III. G-Golf Core Reference 113

a 4. get-intrinsic-width

a
a 5. snapshot

[Procedure]g-interface-info-get-n-prerequisites info
Returns the number of prerequisites for info.

Obtain the number of prerequisites for this interface type. A prerequisites is an-
other interface that needs to be implemented for interface, similar to a base class for
GObjects.

[Procedure]g-interface-info-get-prerequisite info n
Returns a pointer to the nth prerequisite for info.

The prerequisite as a GIBaseInfo. It must be freed by calling [g-base-info-unref],
page 91, when done accessing the data.

[Procedure]g-interface-info-get-n-properties info
Returns the number of properties for info.

Obtain the number of properties that this interface type has.

[Procedure]g-interface-info-get-property info n
Returns a pointer to the nth GIPropertyInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-interface-info-get-n-methods info
Returns the number of methods for info.

Obtain the number of methods that this interface type has.

[Procedure]g-interface-info-get-method info n
Returns a pointer to the nth GIFunctionInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-interface-info-find-method info name
Returns a pointer to a GIFunctionInfo or #f if there is no method available with
that name.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-interface-info-get-n-signals info
Returns the number of signals for info.

Obtain the number of signals that this interface type has.

[Procedure]g-interface-info-get-signal info n
Returns a pointer to the nth GISignalInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-interface-info-find-signal info name
Returns a pointer to a GISignalInfo or #f if there is no signal available with that
name.

III. G-Golf Core Reference 114

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-interface-info-get-n-vfuncs info
Returns the number of vfuncs for info.

Obtain the number of vfuncs that this interface type has.

[Procedure]g-interface-info-get-vfunc info n
Returns a pointer to the nth GIVfuncInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-interface-info-find-vfunc info name
Returns a pointer to a GIFunctionInfo or #f if there is no signal available with that
name.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-interface-info-get-n-constants info
Returns the number of constants for info.

Obtain the number of constants that this interface type has.

[Procedure]g-interface-info-get-constant info n
Returns a pointer to the nth GIConstantInfo of info.

It must be freed by calling [g-base-info-unref], page 91, when done accessing the data.

[Procedure]g-interface-info-get-iface-struct info
Returns a pointer to a GIStructInfo for info, or #f.

Obtains and returns the layout C structure associated with info. It must be freed by
calling [g-base-info-unref], page 91, when done accessing the data.

Arg Info

G-Golf Arg Info low level API.
GIArgInfo — Struct representing an argument.

Procedures

[g-arg-info-get-closure], page 115

[g-arg-info-get-destroy], page 115

[g-arg-info-get-direction], page 115

[g-arg-info-get-ownership-transfer], page 115

[g-arg-info-get-scope], page 115

[g-arg-info-get-type], page 115

[g-arg-info-may-be-null], page 116

[g-arg-info-is-caller-allocates], page 116

[g-arg-info-is-optional], page 116

[g-arg-info-is-return-value], page 116

[g-arg-info-is-skip], page 116

III. G-Golf Core Reference 115

Types and Values

[%gi-direction], page 116

[%gi-scope-type], page 116

[%gi-transfer], page 117

Struct Hierarchy

GIBaseInfo
+— GIArgInfo

Description

GIArgInfo represents an argument. An argument is always part of a GICallableInfo.

Procedures

Note: in this section, the info argument is [must be] a pointer to a GIArgInfo.

[Procedure]g-arg-info-get-closure info
Returns the index of the user data argument or -1 if there is none.

Obtains the index of the user data argument. This is only valid for arguments which
are callbacks.

[Procedure]g-arg-info-get-destroy info
Returns the index of the GDestroyNotify argument or -1 if there is none.

Obtains the index of the GDestroyNotify argument. This is only valid for arguments
which are callbacks.

[Procedure]g-arg-info-get-direction info
Returns a symbol.

Obtains and returns the [%gi-direction], page 116, of the argument.

[Procedure]g-arg-info-get-ownership-transfer info
Returns a symbol.

Obtains and returns the [%gi-transfer], page 117, for this argument.

[Procedure]g-arg-info-get-scope info
Returns a symbol.

Obtains and returns the [%gi-scope-type], page 116, for this argument. The scope
type explains how a callback is going to be invoked, most importantly when the
resources required to invoke it can be freed.

[Procedure]g-arg-info-get-type info
Returns a pointer.

Obtains the GITypeInfo holding the type information for info. Free it using [g-base-
info-unref], page 91, when done.

III. G-Golf Core Reference 116

[Procedure]g-arg-info-may-be-null info
Returns #t or #f.

Obtains if the type of the argument includes the possibility of NULL. For ’in’ values
this means that NULL is a valid value. For ’out’ values, this means that NULL may be
returned.

[Procedure]g-arg-info-is-caller-allocates info
Returns #t or #f.

Obtain if the argument is a pointer to a struct or object that will receive an output of
a function. The default assumption for out arguments which have allocation is that
the callee allocates; if this is TRUE, then the caller must allocate.

[Procedure]g-arg-info-is-optional info
Returns #t or #f.

Obtains if the argument is optional. For ’out’ arguments this means that you can
pass NULL in order to ignore the result.

[Procedure]g-arg-info-is-return-value info
Returns #t or #f.

Obtains if the argument is a retur value. It can either be a parameter or a return
value.

[Procedure]g-arg-info-is-skip info
Returns #t or #f.

Obtains if an argument is only useful in C.

Types and Values

[Instance Variable of <gi-enum>]%gi-direction
An instance of <gi-enum>, who’s members are the scheme representation of the di-
rection of a GIArgInfo:

g-name: GIDirection
name: gi-direction
enum-set :

in in argument.

out out argument.

inout in and out argument.

[Instance Variable of <gi-enum>]%gi-scope-type
An instance of <gi-enum>, who’s members are the scheme representation of the scope
of a GIArgInfo. Scope type of a GIArgInfo representing callback, determines how
the callback is invoked and is used to decide when the invoke structs can be freed.

g-name: GIScopeType
name: gi-scope-type
enum-set :

invalid The argument is not of callback type.

III. G-Golf Core Reference 117

call The callback and associated user data is only used during the
call to this function.

async The callback and associated user data is only used until the
callback is invoked, and the callback. is invoked always ex-
actly once.

notified The callback and and associated user data is used until the
caller is notfied via the destroy notify.

[Instance Variable of <gi-enum>]%gi-transfer
The transfer is the exchange of data between two parts, from the callee to the caller.
The callee is either a function/method/signal or an object/interface where a property
is defined. The caller is the side accessing a property or calling a function. GITransfer
specifies who’s responsible for freeing the resources after the ownership transfer is
complete. In case of a containing type such as a list, an array or a hash table the
container itself is specified differently from the items within the container itself. Each
container is freed differently, check the documentation for the types themselves for
information on how to free them.

An instance of <gi-enum>, who’s members are the scheme representation of the
GITransfer:

g-name: GITransfer
name: gi-transfer
enum-set :

nothing transfer nothing from the callee (function or the type instance
the property belongs to) to the caller. The callee retains the
ownership of the transfer and the caller doesn’t need to do
anything to free up the resources of this transfer

container

transfer the container (list, array, hash table) from the callee
to the caller. The callee retains the ownership of the individ-
ual items in the container and the caller has to free up the
container resources g_list_free, g_hash_table_destroy,
. . . of this transfer

everything

transfer everything, eg the container and its contents from the
callee to the caller. This is the case when the callee creates
a copy of all the data it returns. The caller is responsible for
cleaning up the container and item resources of this transfer

Constant Info

G-Golf Constant Info low level API.
GIConstantInfo — Struct representing a constant.

III. G-Golf Core Reference 118

Procedures

[g-constant-info-free-value], page 118

[g-constant-info-get-type], page 118

[g-constant-info-get-value], page 118

Struct Hierarchy

GIBaseInfo
+— GIConstantInfo

Description

GIConstantInfo represents a constant. A constant has a type associated which can be
obtained by calling [g-constant-info-get-type], page 118, and a value, which can be obtained
by calling [g-constant-info-get-value], page 118.

Procedures

Note: in this section, the info and value arguments are [must be] pointers to a
GIConstantInfo and a GIArgument, respectively.

[Procedure]g-constant-info-free-value info value
Returns nothing.

Frees the value returned from [g-constant-info-get-value], page 118.

[Procedure]g-constant-info-get-type info
Returns a pointer.

Obtains and returns a pointer to the GITypeInfo for info. Free it using [g-base-info-
unref], page 91, when done.

[Procedure]g-constant-info-get-value info value
Returns an integer (the size of a constant).

Obtains the value associated with info and store it in the value parameter, which
must be allocated before passing it.

The size of the constant value stored in argument will be returned. Free the value
argument with [g-constant-info-free-value], page 118.

Field Info

G-Golf Field Info low level API.
GIFieldInfo — Struct representing a struct or union field.

Procedures

[g-field-info-get-flags], page 119

[g-field-info-get-offset], page 119

[g-field-info-get-type], page 119

III. G-Golf Core Reference 119

Struct Hierarchy

GIBaseInfo
+— GIFieldInfo

Description

A GIFieldInfo struct represents a field of a struct (see [Struct Info], page 102), union (see
GIUnionInfo) or an object (see [Object Info], page 105). The GIFieldInfo is fetched by
calling [g-struct-info-get-field], page 103, g-union-info-get-field or [g-object-info-get-
field], page 108. A field has a size, type and a struct offset asssociated and a set of flags,
which are currently readable or writable.

Procedures

Note: in this section, unless otherwise specified, the info argument is [must be] a pointer to
a GIFieldInfo.

[Procedure]g-field-info-get-flags info
Returns a (possibly empty) list.

Obtains and returns the flags for info, which currently are readable or writable.

[Procedure]g-field-info-get-offset info
Returns an unsigned integer.

Obtains and returns the offset in bytes for info, the field member, this is relative to
the beginning of the struct or union.

[Procedure]g-field-info-get-type info
Returns a pointer.

Obtains and returns the GITypeInfo for info.

The GITypeInfo must be freed by calling [g-base-info-unref], page 91, when done.

Property Info

G-Golf Property Info low level API.
GIPropertyInfo — Struct representing a property.

Procedures

[gi-property-g-type], page 120

[g-property-info-get-flags], page 120

[g-property-info-get-ownership-transfer], page 120

[g-property-info-get-type], page 120

Struct Hierarchy

GIBaseInfoInfo
+— GIPropertyInfo

Description

GIPropertyInfo represents a property. A property belongs to either a GIObjectInfo or a
GIInterfaceInfo.

III. G-Golf Core Reference 120

Procedures

Note: in this section, the info argument is [must be] a pointer to a GIPropertyInfo.

[Procedure]gi-property-g-type info
Returns an integer.

Obtains and returns the GType value of the property.

[Procedure]g-property-info-get-flags info
Returns a list of [%g-param-flags], page 77.

Obtain the flags for this property info. See [GParamSpec], page 75, for the list of
possible flag values.

[Procedure]g-property-info-get-ownership-transfer info
Returns the ownership transfer for this property.

Obtain the ownership transfer for this property. See [%gi-transfer], page 117, for more
information about transfer values.

[Procedure]g-property-info-get-type info
Returns a pointer to a GITypeInfo.

Obtain the type information for this property. The GITypeInfo must be free’d using
g-base-info-unref when done.

Type Info

G-Golf Type Info low level API.
GITypeInfo — Struct representing a type.

Procedures

[g-info-type-to-string], page 121

[g-type-info-is-pointer], page 121

[g-type-info-get-tag], page 121

[g-type-info-get-param-type], page 121

[g-type-info-get-interface], page 121

[g-type-info-get-array-length], page 121

[g-type-info-get-array-fixed-size], page 121

[g-type-info-is-zero-terminated], page 122

[g-type-info-get-array-type], page 122

Struct Hierarchy

GIBaseInfoInfo
+— GITypeInfo

Description

GITypeInfo represents a type. You can retrieve a type info from an argument (see [Arg Info],
page 114), a functions return value (see [Function Info], page 94), a field (see GIFieldInfo),
a property (see [Property Info], page 119), a constant (see GIConstantInfo) or for a union
discriminator (see GIUnionInfo).

III. G-Golf Core Reference 121

A type can either be a of a basic type which is a standard C primitive type or an interface
type. For interface types you need to call g-type-info-get-interface to get a reference
to the base info for that interface.

Procedures

Note: in this section, the info argument is [must be] a pointer to a GITypeInfo.

[Procedure]g-info-type-to-string info-type
Returns a string or #f.

Obtains the string representation for info-type or #f if it does not exists.

info-type can either be a symbol or an id, a member of the enum-set of [%gi-info-
type], page 92, (otherwise, #f is returned).

[Procedure]g-type-info-is-pointer info
Returns #t or #f.

Obtains if the info type is passed as a reference.

Note that the types of out and inout parameters (see [%gi-direction], page 116) will
only be pointers if the underlying type being transferred is a pointer (i.e. only if the
type of the C function’s formal parameter is a pointer to a pointer).

[Procedure]g-type-info-get-tag info
Returns a symbol.

Obtains the type tag for info (see [%gi-type-tag], page 88, for the list of type tags).

[Procedure]g-type-info-get-param-type info n
Returns a pointer or #f.

Obtains the parameter type n (the index of the parameter). When there is no such n
parameter, the procedure returns #f.

[Procedure]g-type-info-get-interface info
Returns a pointer or #f.

For interface types (see [%gi-type-tag], page 88) such as GObjects and boxed values,
this procedure returns a (pointer to a) GIBaseInfo, holding full information about
the referenced type. You can then inspect the type of the returned GIBaseInfo to
further query whether it is a concrete GObject, a GInterface, a structure, etc. using
[g-base-info-get-type], page 91.

[Procedure]g-type-info-get-array-length info
Returns an interger.

Obtain the array length of the type. The type tag must be a array (see [%gi-type-tag],
page 88), or -1 will returned.

[Procedure]g-type-info-get-array-fixed-size info
Returns an interger.

Obtain the fixed array syze of the type. The type tag must be a array (see [%gi-
type-tag], page 88), or -1 will returned.

III. G-Golf Core Reference 122

[Procedure]g-type-info-is-zero-terminated info
Returns #t or #f.

Obtains if the last element of the array is NULL. The type tag must be a array (see
[%gi-type-tag], page 88), or #f will returned.

[Procedure]g-type-info-get-array-type info
Returns a symbol or #f.

Obtain the array type for this type (see [%gi-array-type], page 89). If the type tag of
this type is not array, #f will be returned.

FFI Interface

G-Golf FFI Interface low level API.
girffi — TODO.

Procedures

[gi-type-tag-get-ffi-type], page 122

[g-type-info-get-ffi-type], page 122

[gi-type-info-extract-ffi-return-value], page 122

[gi-type-tag-extract-ffi-return-value], page 123

[g-callable-info-prepare-closure], page 123

Description

TODO.

Procedures

[Procedure]gi-type-tag-get-ffi-type type-tag is-pointer?
Returns a (pointer to) ffi-type corresponding to the platform default C ABI for
type-tag and is-pointer?.

The info argument is (must be) a valid [%gi-type-tag], page 88, otherwise an exception
is raised.

The is-pointer? argument, #t or #f, to indicate whether or not this is a pointer type.

[Procedure]g-type-info-get-ffi-type info
Returns an (pointer to) ffi-type corresponding to the platform default C ABI for
info.

The info argument is [must be] a pointer to a GITypeInfo.

[Procedure]gi-type-info-extract-ffi-return-value type-info ffi-value
gi-argument

Returns nothing.

Extract the correct bits from ffi-value into gi-argument.

The type-info is the GITypeInfo of ffi-value. The ffi-value is a pointer to a
GIFFIReturnValue union containing the value from the ffi_call(). The
gi-argument is a pointer to an allocated GIArgument.

III. G-Golf Core Reference 123

[Procedure]gi-type-tag-extract-ffi-return-value return-tag
interface-type ffi-value gi-argument

Returns nothing.

Extract the correct bits from ffi-value into gi-argument.

The return-tag is the [%gi-type-tag], page 88, of ffi-value. The interface-type is
the [%gi-info-type], page 92, of the underlying interface. The ffi-value is a pointer
to a GIFFIReturnValue union containing the value from the ffi_call(). The gi-
argument is a pointer to an allocated GIArgument.

The interface-type argument only applies if return-tag is 'interface, otherwise it is
ignored.

[Procedure]g-callable-info-prepare-closure info ffi-cif ffi-closure-callback
user-data

Returns the native address of the closure or #f on error.

The procedure has been deprecated since version 1.72 and should

not be used in newly-written code. Use

[g-callable-info-create-closure], page 94, instead.

The return value should be freed by calling g-callable-info-free-closure.

Utilities

G-Golf GObject Introspetion Utilities low level API.

III. G-Golf Core Reference 124

Procedures and Syntax

[gi-pointer-new], page 124

[gi-pointer-inc], page 124

[gi-attribute-iter-new], page 124

[with-gerror], page 125

[gi->scm], page 125

[gi-boolean->scm], page 125

[gi-string->scm], page 125

[gi-n-string->scm], page 125

[gi-strings->scm], page 126

[gi-csv-string->scm], page 126

[gi-pointer->scm], page 125

[gi-n-pointer->scm], page 125

[gi-pointers->scm], page 126

[gi-n-gtype->scm], page 125

[gi-glist->scm], page 126

[gi-gslist->scm], page 126

[scm->gi], page 126

[scm->gi-boolean], page 126

[scm->gi-string], page 126

[scm->gi-n-string], page 127

[scm->gi-strings], page 127

[scm->gi-pointer], page 126

[scm->gi-n-pointer], page 127

[scm->gi-pointers], page 127

[scm->gi-n-gtype], page 127

[scm->gi-gslist], page 127

Types and Values

[%gi-pointer-size], page 127

Description

G-Golf GObject Introspection utilities low level API.

Procedures and Syntax

[Procedure]gi-pointer-new
Returns a newly allocated (Glib) pointer.

[Procedure]gi-pointer-inc pointer [#:offset %gi-pointer-size]
Returns a foreign pointer object pointing to the address of pointer increased by offset.

[Procedure]gi-attribute-iter-new
Returns a pointer.

Creates and returns a foreign pointer to a C struct for a GIAttributeIter (a C struct
containg four pointers, initialized to %null-pointer).

III. G-Golf Core Reference 125

[Syntax]with-gerror var body
Returns the result of the execution of body, or raises an exception.

var must be an identifier. Evaluate body in a lexical environment where var is bound
to a pointer to a newly allocated (and ‘empty’) GError. var will always be freed. If
no exception is raised, the result of the execution of body is returned.

[Procedure]gi->scm value type [cmpl #f]
Returns the scheme representation of value.

The type, a symbol name (also called a type tag or just a tag in the GI terminology)
supported values are:

'boolean Calls [gi-boolean->scm], page 125.

'string

'pointer Calls [gi-string->scm], page 125, or [gi-pointer->scm], page 125.

'n-string

'n-pointer

'n-gtype Calls [gi-n-string->scm], page 125, [gi-n-pointer->scm], page 125, or
[gi-n-gtype->scm], page 125.

The optional cmpl (complement) argument must be passed and
set to the number of string(s), pointer(s) or gtype(s) contained in
value, .

'strings

'pointers

Calls [gi-strings->scm], page 126, or [gi-pointers->scm], page 126.

'csv-string

Calls [gi-csv-string->scm], page 126.

'glist

'gslist Calls [gi-glist->scm], page 126, or [gi-gslist->scm], page 126, repsec-
tively.

[Procedure]gi-boolean->scm value
Returns #t or #f.

The GType of value must be a gboolean.

[Procedure]gi-string->scm value
[Procedure]gi-pointer->scm value

Returns a string, a pointer or #f if value is the %null-pointer.

The GType of value must be a gchar* or a gpointer.

[Procedure]gi-n-string->scm value n-string
[Procedure]gi-n-pointer->scm value n-pointer
[Procedure]gi-n-gtype->scm value n-gtype

Returns a (possibly empty list) of string(s), pointer(s) or GType(s).

The GType of value must be a gchar**, a gpointer[] or a GType[]. The n-string,
n-pointer and n-gtype argument must be the length of the value array.

III. G-Golf Core Reference 126

[Procedure]gi-strings->scm value
[Procedure]gi-pointers->scm value

Returns a (possibly empty) list of strings or pointer.

The GType of value must be a gchar** or gpointer[]. The array must be NULL
terminated.

[Procedure]gi-csv-string->scm value
Returns a list of string(s) or #f if value is the %null-pointer.

The GType of value is gchar*. Unless #f, the list of string(s) is obtained by splitting
the (comma separated value) string pointed to by value using using #\, as the char-
pred.

[Procedure]gi-glist->scm g-list
[Procedure]gi-gslist->scm g-slist

Returns a (possibly empty) list.

Obtains and returns a (possibly empty) list of the pointers stored in the data field of
each element of g-list or g-slist.

[Procedure]scm->gi value type [cmpl #f]
Returns the GI representation of value.

The type, a symbol name (also called a type tag or just a tag in the GI terminology)
supported values are:

'boolean Calls [scm->gi-boolean], page 126.

'string

'pointer Calls [scm->gi-string], page 126, or [scm->gi-pointer], page 126.

'n-string

'n-pointer

'n-gtype Calls [scm->gi-n-string], page 127, [scm->gi-n-pointer], page 127, or
[scm->gi-n-gtype], page 127.

The optional cmpl (complement) argument may be passed and set
to the number of string(s), pointer(s) or gtype(s) contained in value.

'strings

'pointers

Calls [scm->gi-strings], page 127, or [scm->gi-pointers], page 127.

'gslist Calls [scm->gi-gslist], page 127.

[Procedure]scm->gi-boolean value
Returns 0 if value is #f, otherwise, it returns 1.

[Procedure]scm->gi-string value
[Procedure]scm->gi-pointer value

Returns a pointer.

If value is #f, it returns %null-pointer. Otherwise, it returns a pointer to the string
in value or value.

III. G-Golf Core Reference 127

[Procedure]scm->gi-n-string value [n-string #f]
[Procedure]scm->gi-strings value

Returns two values.

If value is the empty list, it returns %null-pointer and an empty list. Otherwise, it
returns a pointer to an array of pointer(s) to the string(s) in value and a list of the
‘inner’ string pointer(s).

It is the caller’s responsibility to maintain a reference to those inner pointer(s), until
the array ‘itself’ (the first returned value) is no longer needed/used.

The array returned by [scm->gi-strings], page 127, is NULL terminated, where as the
array returned by [scm->gi-n-string], page 127, is not.

[Procedure]scm->gi-n-pointer value [n-pointer #f]
[Procedure]scm->gi-n-gtype value [n-gtype #f]

Returns a pointer.

If value is an empty list, it returns %null-pointer. Otherwise, it returns a pointer
to an array the pointer(s) or GType(s) in value.

The returned array is not NULL nor 0- terminated.

[Procedure]scm->gi-pointers value
Returns a pointer.

If value is an empty list, it returns %null-pointer. Otherwise, it returns a pointer
to an array the pointer(s) in value.

The returned array is NULL terminated.

[Procedure]scm->gi-gslist value
Returns a pointer.

If value is an empty list, it returns %null-pointer. Otherwise, it returns a pointer
to a GSList, with its element’s data being (in order), the pointer(s) in value.

Types and Values

[Variable]%gi-pointer-size
The size (the number of bytes) that a (Glib) pointer occupies in memory (which is
architecture dependent).

Support

G-Golf uses a series of support modules, each documented in the following subsections.
You may either import them all, like this (use-modules (g-golf support)), or individu-
ally, such as (use-modules (g-golf support modules)), (use-modules (g-golf support

goops)), ...

Module

G-Golf Module Utilities.

III. G-Golf Core Reference 128

Syntax

[re-export-public-interface], page 128

[Syntax]re-export-public-interface mod1 mod2 ...
Re-export the public interface of a mod1 mod2 . . .

Invoked like use-modules, where each mod1 mod2 . . . is a module name (a list of
symbol(s)).

Goops

Syntax, Procedures and Methods

[class-direct-virtual-slots], page 128

[class-virtual-slots], page 128

[class-direct-g-property-slots], page 128

[class-g-property-slots], page 128

[class-direct-child-id-slots], page 128

[class-child-id-slots], page 129

[class-direct-g-param-slots], page 129

[class-g-param-slots], page 129

[mslot-set!], page 129

[generic?], page 129

[Method]class-direct-virtual-slots (self <class>)
Returns a list.

Obtains and returns the list of the class direct slots for self that satisfy the (eq?

(slot-definition-allocation slot) #:virtual) predicate.

[Method]class-virtual-slots (self <class>)
Returns a list.

Obtains and returns the list of the class slots for self that satisfy the (eq? (slot-

definition-allocation slot) #:virtual) predicate.

[Method]class-direct-g-property-slots (self <class>)
Returns a list.

Obtains and returns the list of the class direct slots for self that satisfy the (eq?

(slot-definition-allocation slot) #:g-property) predicate.

[Method]class-g-property-slots (self <class>)
Returns a list.

Obtains and returns the list of the class slots for self that satisfy the (eq? (slot-

definition-allocation slot) #:g-property) predicate.

[Method]class-direct-child-id-slots (self <class>)
Returns a list.

Obtains and returns the list of the class direct slots for self that contain a #:child-id
slot definition option.

III. G-Golf Core Reference 129

[Method]class-child-id-slots (self <class>)
Returns a list.

Obtains and returns the list of the class slots for self that contain a #:child-id slot
definition option.

[Method]class-direct-g-param-slots (self <class>)
Returns a list.

Obtains and returns the list of the class direct slots for self that contain a #:g-param

slot definition option.

[Method]class-g-param-slots (self <class>)
Returns a list.

Obtains and returns the list of the class slots for self that contain a #:g-param slot
definition option.

[Procedure]mslot-set! inst s1 v1 s2 v2 s3 v3 . . .
Returns nothing.

Performs a multiple slot-set! for inst, setting its slot named s1 to the value v1, s2
to v2, s3 to v3 . . .

[Procedure]generic? value
Returns #t if value is a <generic> instance. Otherwise, it returns #f.

Enum

G-Golf class, accessors, methods and procedures to deal with C enum types.

Classes

[<enum>], page 130

[<gi-enum>], page 130

Procedures, Accessors and Methods

[!enum-set], page 130

[enum->value], page 130

[enum->values], page 130

[enum->symbol], page 130

[enum->symbols], page 130

[enum->name], page 131

[enum->names], page 131

[!g-type_], page 131

[!g-name], page 131

[!name__], page 131

Description

G-Golf class, accessors, methods and procedures to deal with C enum types.

III. G-Golf Core Reference 130

Classes

[Class]<enum>
The <enum> class is for enumerated values. Its (unique) slot is:

enum-set #:accessor !enum-set
#:init-keyword #:enum-set

Notes:

• the enum-set can’t be empty and so you must use the #:enum-set (#:init-
keyword) when creating new <enum> instances;

• the #:enum-set (#:init-keyword) accepts either a list of symbols or a well-formed
enum-set;

• a well-formed enum-set is a list of (symbol . id) pairs, where id is a positive
integer.

• each symbol and each id of an enum-set must be unique.

Instances of the <enum> class are immutable (to be precise, there are not meant to be
mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not Immutable’).

[Class]<gi-enum>
The <gi-enum> class is a subclass of <enum>. Its class-direct-slots are:

g-type #:accessor !g-type
#:init-keyword #:g-type
#:init-value #f

g-name #:accessor !g-name
#:init-keyword #:g-name

name #:accessor !name

The name slot is automatically initialized.

Instances of the <gi-enum> class are immutable (to be precise, there are not meant to
be mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not Immutable’).

Procedures, Accessors and Methods

[Accessor]!enum-set (inst <enum>)
Returns the content of the enum-set slot for inst.

[Method]enum->value (inst <enum>) symbol
[Method]enum->values (inst <enum>)

Returns the inst value for symbol (or #f if it does not exists), or the list of all values
for inst, respectively.

[Method]enum->symbol (inst <enum>) value
[Method]enum->symbols (inst <enum>)

Returns the inst symbol for value (or #f if it does not exists), or the list of all symbols
for inst, respectively.

III. G-Golf Core Reference 131

[Method]enum->name (inst <enum>) value
[Method]enum->names (inst <enum>)

Returns the inst name (the string representation of the symbol) for value (or #f if it
does not exists), or the list of all names for inst, respectively.

value can either be a symbol or an id.

[Accessor]!g-type (inst <gi-enum>)
[Accessor]!g-name (inst <gi-enum>)
[Accessor]!name (inst <gi-enum>)

Returns the content of the g-type, g-name or name slot for inst, respectively.

Flags

G-Golf class, accessors, methods and procedures to deal with C flags types.

Classes

[<flags>], page 131

[<gi-flags>], page 131

Procedures, Accessors and Methods

[integer->flags], page 132

[flags->integer], page 132

[!g-type___], page 132

[!g-name______], page 132

[!name_____], page 132

Description

G-Golf class, accessors, methods and procedures to deal with C flags types.

Classes

[Class]<flags>
The <flags> class is a subclass of [<enum>], page 130. It has no direct slots.

[Class]<gi-flags>
The <gi-flags> class is a subclass of <flags>. Its class-direct-slots are:

g-type #:accessor !g-type
#:init-keyword #:g-type
#:init-value #f

g-name #:accessor !g-name
#:init-keyword #:g-name

name #:accessor !name

The name slot is automatically initialized.

Instances of the <gi-flags> class are immutable (to be precise, there are not meant to
be mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not Immutable’).

III. G-Golf Core Reference 132

Procedures, Accessors and Methods

[Method]integer->flags (inst <flags>) n
Returns a possibly empty) list of symbol(s).

Obtains and returns the list of (symbol) flags for the given <flags> instance and its
integer representation n.

[Method]flags->integer (inst <flags>) flags
Returns an integer.

Compute and returns the integer representation for the list of (symbol(s)) given by
flags and the given <flag> instance.

[Accessor]!g-type (inst <gi-flags>)
[Accessor]!g-name (inst <gi-flags>)
[Accessor]!name (inst <gi-flags>)

Returns the content of the g-type, g-name or name slot for inst, respectively.

Struct

G-Golf class, accessors, methods and procedures to deal with C struct types.

Classes

[<gi-struct>], page 132

Procedures, Accessors and Methods

[!g-type____], page 133

[!g-name_], page 133

[!name____], page 133

[!alignment], page 133

[!size], page 133

[!is-gtype-struct?], page 133

[!is-foreign?], page 133

[!field-types], page 133

[!field-desc], page 133

[!scm-types], page 133

[!init-vals], page 133

[!is-opaque?], page 133

[!is-semi-opaque?], page 134

[field-offset], page 134

Description

G-Golf class, accessors, methods and procedures to deal with C struct types.

Classes

[Class]<gi-struct>
<gi-struct> is a class. It’s an instance of <class>.

III. G-Golf Core Reference 133

Superclasses are:

<object>

Class Precedence List is:

<g-struct>

<object>

<top>

Directs slots are:

g-type

g-name

name

alignment

size

is-gtype-struct?

is-foreign?

field-types

field-desc

scm-types

init-vals

is-opaque?

is-semi-opaque?

Instances of the <gi-struct> are immutable (to be precise, there are not meant to be
mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not Immutable’).

Procedures and Accessors

[Accessor]!g-type (inst <gi-struct>)
[Accessor]!g-name (inst <gi-struct>)
[Accessor]!name (inst <gi-struct>)
[Accessor]!alignment (inst <gi-struct>)
[Accessor]!size (inst <gi-struct>)
[Accessor]!is-gtype-struct? (inst <gi-struct>)
[Accessor]!field-types (inst <gi-struct>)
[Accessor]!field-desc (inst <gi-struct>)
[Accessor]!scm-types (inst <gi-struct>)
[Accessor]!init-vals (inst <gi-struct>)

Returns the content of their respective slot for inst.

[Accessor]!is-opaque? (inst <gi-struct>)
Returns #t if inst is ‘opaque’, otherwise, it returns #f.

A <gi-struct> instance is said to be ‘opaque’ when the call to g-struct-info-get-

size upon its GIStructInfo pointer returns zero. In scheme, these <gi-struct> in-
stances have no fields.

III. G-Golf Core Reference 134

‘Opaque’ boxed types should never be ‘decoded’, nor ‘encoded’. Instead, proce-
dures, accessors and methods should ‘blindingly’ receive, pass and/or return their
pointer(s).

[Accessor]!is-semi-opaque? (inst <gi-struct>)
Returns #t if inst is ‘semi-opaque’, otherwise, it returns #f.

A <gi-struct> instance is said to be ‘semi-opaque’ when one of its field types is void,
interface or if the total size of the scm-types differs from the inst size slot vlue.

‘Semi-opaque’ boxed types should never be ‘decoded’, nor ‘encoded’. Instead, proce-
dures, accessors and methods should ‘blindingly’ receive, pass and/or return their
pointer(s).

[Method]field-offset (inst <gi-struct>) field-name
Returns an integer.

Obtain and returns the field-name offset for inst, It is an error to call this method if
there is no such field-name defined for inst.

Union

G-Golf class, accessors, methods and procedures to deal with C union types.

Classes

[<gi-union>], page 134

Procedures, Accessors and Methods

[make-c-union], page 135

[c-union-ref], page 135

[c-union-set!], page 135

[!g-type__], page 135

[!g-name__], page 135

[!name___], page 135

[!size_], page 135

[!alignment_], page 135

[!fields], page 135

[!is-discriminated?], page 135

[!discriminator-offset], page 135

[!discriminator], page 135

Description

G-Golf class, accessors, methods and procedures to deal with C union types.

Classes

[Class]<gi-union>
The <gi-union> class. Its class-direct-slots are:

g-type #:accessor !g-type
#:init-keyword #:g-type

III. G-Golf Core Reference 135

g-name #:accessor !g-name
#:init-keyword #:g-name

name #:accessor !name

size #:accessor !size
#:init-keyword #:size

alignment

#:accessor !alignment
#:init-keyword #:alignment

fields #:accessor !fields
#:init-keyword #:fields

is-discrimanted?

#:accessor !is-discriminated?
#:init-keyword #:is-discriminated?

discriminator-offset

#:accessor !discriminator-offset
#:init-keyword #:discriminator-offset

discriminator

#:accessor !discriminator #:init-keyword #:discriminator #:init-
value #f

The name slot is automatically initialized.

Instances of the <gi-union> are immutable (to be precise, there are not meant to be
mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not Immutable’).

Procedures, Accessors and Methods

[Procedure]make-c-union types [type #f] [val #f]
Returns a pointer.

Create a foreign pointer to a C union for the list of types (see Foreign Types
(https://www.gnu.org/software/guile/manual/guile.html#Foreign-Types) in
the Guile Reference Manual for a list of supported types).

[Procedure]c-union-ref foreign size type
Returns the content of the C union pointed by foreign, for the given size and type.

[Procedure]c-union-set! foreign size type val
Returns nothing.

Sets the content of the C union pointed by foreign to val, given its size and type.

[Accessor]!g-type (inst <gi-union>)
[Accessor]!g-name (inst <gi-union>)
[Accessor]!name (inst <gi-union>)
[Accessor]!size (inst <gi-union>)
[Accessor]!alignment (inst <gi-union>)
[Accessor]!fields (inst <gi-union>)

https://www.gnu.org/software/guile/manual/guile.html#Foreign-Types
https://www.gnu.org/software/guile/manual/guile.html#Foreign-Types

III. G-Golf Core Reference 136

[Accessor]!is-discriminated? (inst <gi-union>)
[Accessor]!discriminator-offset (inst <gi-union>)
[Accessor]!discriminator (inst <gi-union>)

Returns the content of their respective slot for inst.

Utilities

Procedures

[g-studly-caps-expand], page 136

[g-name->name], page 137

[g-name->class-name], page 137

[g-name->short-name], page 137

[class-name->name], page 137

[class-name->g-name], page 138

[name->g-name], page 138

[syntax-name->method-name], page 138

[gi-type-tag->ffi], page 139

[gi-type-tag->init-val], page 139

Description

G-Golf utilities low level API.

Procedures

[Procedure]g-studly-caps-expand str
Returns a string33.

Expand the StudlyCaps str to a more schemey-form, according to the conventions of
GLib libraries. For example:

(g-studly-caps-expand "GStudlyCapsExpand")

⇒ "g-studly-caps-expand"

(g-studly-caps-expand "GSource")

⇒ "g-source"

(g-studly-caps-expand "GtkIMContext")

⇒ "im-context"

G-Golf slightly modified the original code to also allow the possibility to specially
treat the str (expanded) tokens, such as:

(g-studly-caps-expand "WebKitWebContext")

33 This procedure, as well as [g-name->name], page 137, and [g-name->class-name], page 137, come
from Guile-GNOME (https://www.gnu.org/software/guile-gnome), where there are named
GStudlyCapsExpand, gtype-name->scm-name and gtype-name->class-name.

In G-Golf, these procedures are also be used to transform other (GObject Introspection) names, such as
function names, hence they use the g-name-> prefix instead

https://www.gnu.org/software/guile-gnome

III. G-Golf Core Reference 137

⇒ "webkit-web-context" ;; not "web-kit-web-context"

The list of StudlyCaps token exception pairs are maintained in the [g-studly-caps-
expand-token-exception], page 35, alist.

[Procedure]g-name->name g-name [as-string? #f]
[Procedure]g-name->class-name g-name [as-string? #f]

Return a symbol name, or a string name if as-string is #t.

[g-name->name], page 137, first obtains, the scheme representation of g-name, as a
string, by looking for a possible entry in [g-name-transform-exception], page 35, or if
it failed, by calling [g-studly-caps-expand], page 136.

If the optional as-string argument is #t, it returns that string, otherwise, it calls and
returns the result of string->symbol.

[g-name->class-name], page 137, calls [g-name->name], page 137, surrounds the re-
sult using #\< and #\> characters then either return that string, if as-string? is #t,
otherwise it calls and returns the result of string->symbol:

(g-name->class-name "GtkWindow")

⇒ <gtk-window>

[Procedure]g-name->short-name g-name g-class-name [as-string? #f]
Return a symbol name, or a string name if as-string is #t.

Obtains and returns a (method) short name for g-name. It first obtains the sro
(scheme representation of) both g-name and g-class-name (which is expected to be
the upstream method container (class) name), as a string, then:

• if the sro g-class-name is (fully) contained in the sro g-name, it drops the sro
g-class-name prefix - or its plural form - and its trailing #\- (hiphen) delimiter
from the sro g-name;

• otherwise, it drops the longest common sro string prefix it finds.

If the optional as-string argument is #t, it returns that string, otherwise, it calls and
returns the result of string->symbol.

To illustrate, here is an example for each of the three above exposed cases:

(g-name->shortname "gdk_event_get_event_type" "GdkEvent")

⇒ get-event-type

(g-name->shortname "gdk_events_get_angle" "GdkEvent")

⇒ get-angle

(g-name->short-name "gtk_drag_begin" "GtkWidget")

⇒ drag-begin

[Procedure]class-name->name class-name
Returns a (symbol) name.

Obtains and returns the (symbol) name for class-name, by dropping the surrounding
'<' and '>' characters. For example:

(class-name->name '<foo-bar>)

III. G-Golf Core Reference 138

⇒ 'foo-bar

[Procedure]class-name->g-name class-name
Returns a string.

Obtains and returns the StudlyCaps string reprentation for class-name. For example:

(class-name->g-name '<foo-bar>)

⇒ "FooBar"

[Procedure]name->g-name name [as-string? #f]
Return a symbol, or a string if as-string is #t.

Unless name is a string, it first calls (symbol->string name), then changes all occur-
rences of - (hyphen) to _ (underscore) (other characters are not valid in a g-name).

If the optional as-string argument is #t, it returns that string, otherwise, it calls and
returns the result of string->symbol.

[Procedure]syntax-name->method-name name
Returns a (symbol) name.

This procedure is used to ‘protect’ syntax names, from being redefined as generic
functions and methods.

Users should normally not call this procedure - except for testing purposes, if/when
they customize its default settings - it is appropriately and automatically called by
G-Golf when importing a GI typelib.

Here is what it does:

• it first checks if a renamer is available, by calling [syntax-name-protect-renamer],
page 39, and if so, calls it passing name and returns the result;

• if no renamer is available, it checks if either or both [syntax-name-protect-
prefix], page 39, and [syntax-name-protect-postfix], page 39, is(are) available,
calls symbol-append adequately passing either or both and name and returns
the result.

• It will raise an exception if none of the syntax name protect prefix, postfix and
renamer is available.

See [Customization Square], page 33, - GI Syntax Name Protect. G-Golf GI Syntax
Name Protect default values are:

[syntax-name-
protect-prefix],
page 39,

#f

[syntax-name-
protect-postfix],
page 39,

'_ (the symbol)

III. G-Golf Core Reference 139

[syntax-name-
protect-renamer],
page 39,

#f

As an example, using these default settings, the method short name for gcr-secret-
exchange-begin would be begin_.

[Procedure]gi-type-tag->ffi type-tag
Returns an integer or '* (the symbol *).

Obtains the correponding Guile’s ffi tag value for type-tag, which must be a member
of [%gi-type-tag], page 88. If type-tag is unknown, an exception is raised. Note that
Guile’s ffi tag values are integers or '* (the symbol *, used by convention to denote
pointer types.

[Procedure]gi-type-tag->init-val type-tag
Returns the default init value for type-tag.

Obtains and returns the default init value for type-tag, which will either be 0 (zero),
or %null-pointer.

G-Golf High Level API

G-Golf High Level API modules are defined in the hl-api subdirectory, such as (g-golf
hl-api gobject).

Where you may load these modules individually, the easiest way to use the G-Golf High
Level API is to import the hl-api module: it imports and re-exports the public interface
of (oop goops), some G-Golf support modules and all G-Golf High Level API modules:

(use-modules (g-golf hl-api))

As stated in the introduction, G-Golf high level API (main) objective is to make (imported)
GOBject classes and methods available using GOOPS, the Guile Object Oriented System
(see Section “GOOPS” in The GNU Guile Reference Manual), in a way that is largely
inspired by Guile-Gnome (https://www.gnu.org/software/guile-gnome).

Closure

G-Golf closure high level API.
The G-Golf integration with GObject Closures.

Classes

[<closure>], page 140

Accessors and Methods

[!g-closure], page 140

[!function], page 140

[!return-type], page 140

[!param-types], page 140

[invoke], page 141

https://www.gnu.org/software/guile-gnome

III. G-Golf Core Reference 140

Description

The GLib/GObject type system supports the creation and invocation of ‘Closures’, which
represents a callback supplied by the programmer (see [Closures], page 78, if you are curious
about the low-level description and API, though you don’t need to to understand and use
the high level API described here).

Its infrastructure allows one to pass a Scheme function to C, and have C call into Scheme,
and vice versa. In Scheme, a <closure> instance holds a pointer to a GClosure instance,
a Scheme procedure, the type of its return value, and a list of the type of its arguments.

Closures can be invoked with [invoke], page 141, for example:

,use (g-golf)

(make <closure>

#:function (lambda (a b) (+ a b))

#:return-type 'int

#:param-types '(int int))

⇒ $2 = #<<closure> 55f24a0228d0>

(invoke $2 3 2)

⇒ $3 = 5

Classes

[Class]<closure>
Its slots are:

g-closure

#:accessor !g-closure

function #:accessor !function
#:init-keyword #:function

return-type

#:accessor !return-type
#:init-keyword #:return-type

param-types

#:accessor !param-types
#:init-keyword #:param-types

The #:return-type and #:param-types accept respectively one symbol and a list of
symbols that are members of the [%g-type-fundamental-types], page 61.

Instances of the <closure> class are immutable (to be precise, there are not meant to
be mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not Immutable’).

Accessors and Methods

Note: in this section, the closure argument is [must be] a <closure> instance.

III. G-Golf Core Reference 141

[Accessor]!g-closure closure
[Accessor]!function closure
[Accessor]!return-type closure
[Accessor]!param-types closure

Returns the content of their respective slot for closure.

[Method]invoke closure . args
Returns the result of the invocation of closure, using (the possibly empty list of) args.

This is a ‘low level’ method, not used internally, provided mainly for debugging
(or demonstration) purposes, so you may test and verify your callbacks and signals
procedures34.

Function

G-Golf GI function and argument high level API.
The G-Golf GI function and argument high level API.

Classes

[<function>], page 144

[<argument>], page 145

34 From scheme, you would ‘immediately’ call the procedure instead of course.

III. G-Golf Core Reference 142

III. G-Golf Core Reference 143

Accessors and Methods

[!info_], page 146

[!namespace_], page 146

[!g-name____], page 146

[!name], page 146

[!override?], page 146

[!i-func], page 146

[!o-func], page 146

[!o-spec-pos], page 146

[!flags], page 146

[!is-method?], page 146

[!n-arg], page 146

[!caller-owns], page 146

[!return-type_], page 146

[!type-desc], page 146

[!may-return-null], page 146

[!arguments], page 146

[!n-gi-arg-in], page 146

[!args-in], page 146

[!gi-args-in], page 146

[!gi-args-in-bv], page 146

[!n-gi-arg-out], page 146

[!args-out], page 146

[!gi-args-out], page 146

[!gi-args-out-bv], page 146

[!gi-arg-result], page 146

[!g-name_____], page 147

[!name_], page 147

[!closure], page 147

[!destroy], page 147

[!direction], page 147

[!transfert], page 147

[!scope], page 147

[!type-tag], page 147

[!type-desc_], page 147

[!forced-type], page 147

[!string-pointer], page 147

[!is-pointer?], page 147

[!may-be-null?], page 147

[!is-caller-allocate?], page 147

[!is-optional?], page 147

[!is-return-value?], page 147

[!is-skip?], page 147

[!arg-pos], page 147

[!gi-argument-in], page 147

[!gi-argument-in-bv-pos], page 147

[!gi-argument-out], page 147

[!gi-argument-out-bv-pos], page 147

[!gi-argument-field], page 147

III. G-Golf Core Reference 144

Classes

[Class]<function>
Its slots are:

info #:accessor !info

namespace

#:accessor !namespace

g-name #:accessor !g-name

name #:accessor !name

override?

#:accessor !override?

i-func #:accessor !i-func

o-func #:accessor !o-func

o-spec-pos

#:accessor !o-spec-pos

flags #:accessor !flags

is-method?

#:accessor !is-method

n-arg #:accessor !n-arg

caller-owns

#:accessor !caller-owns

return-type

#:accessor !return-type

type-desc

#:accessor !type-desc

may-return-null?

#:accessor !may-return-null?

arguments

#:accessor !arguments

n-gi-arg-in

#:accessor !n-gi-arg-in

args-in #:accessor !args-in

gi-args-in

#:accessor !gi-args-in

gi-args-in-bv

#:accessor !gi-args-in-bv

n-gi-arg-out

#:accessor !n-gi-arg-out

III. G-Golf Core Reference 145

args-out #:accessor !args-out

gi-args-out

#:accessor !gi-args-out

gi-args-out-bv

#:accessor !gi-args-out-bv

gi-arg-result

#:accessor !gi-arg-result

Instances of the <function> class are immutable (to be precise, there are not meant to
be mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not Immutable’).

[Class]<argument>
Its slots are:

g-name #:accessor !g-name
#:init-keyword #:g-name

name #:accessor !name
#:init-keyword #:name

closure #:accessor !closure

destroy #:accessor !destroy

direction

#:accessor !direction
#:init-keyword #:direction

transfert

#:accessor !transfert

scope #:accessor !scope

type-tag #:accessor !type-tag
#:init-keyword #:type-tag

type-desc

#:accessor !type-desc
#:init-keyword #:type-desc

forced-type

#:accessor !forced-type
#:init-keyword #:forced-type

string-pointer

#:accessor !string-pointer

is-pointer?

#:accessor !is-pointer?
#:init-keyword #:is-pointer?

may-be-null?

#:accessor !may-be-nul?
#:init-keyword #:may-be-null?

III. G-Golf Core Reference 146

is-caller-allocate?

#:accessor !is-caller-allocate?

is-optional?

#:accessor !is-optional?

is-return-value?

#:accessor !is-return-value?

is-skip? #:accessor !is-skip?

arg-pos #:accessor !arg-pos
#:init-keyword #:arg-pos

gi-argument-in

#:accessor !gi-argument-in
#:init-value #f

gi-argument-in-bv-pos

#:accessor !gi-argument-in-bv-pos
#:init-value #f

gi-argument-out

#:accessor !gi-argument-out
#:init-value #f

gi-argument-out-bv-pos

#:accessor !gi-argument-out-bv-pos
#:init-value #f

name #:accessor !gi-argument-field
#:init-keyword #:gi-argument-field

Instances of the <argument> class are immutable (to be precise, there are not meant to
be mutated, see [GOOPS Notes and Conventions], page 9, ’Slots are not Immutable’).

Accessors and Methods

Note: in this section, the function and argument arguments are [must be] a <function>

and an <argument> instance, respectively.

[Accessor]!info function
[Accessor]!namespace function
[Accessor]!g-name function
[Accessor]!name function
[Accessor]!override? function
[Accessor]!i-func function
[Accessor]!o-func function
[Accessor]!o-spec-pos function
[Accessor]!flags function
[Accessor]!is-method? function
[Accessor]!n-arg function
[Accessor]!caller-owns function
[Accessor]!return-type function

III. G-Golf Core Reference 147

[Accessor]!type-desc function
[Accessor]!may-return-null function
[Accessor]!arguments function
[Accessor]!n-gi-arg-in function
[Accessor]!args-in function
[Accessor]!gi-args-in function
[Accessor]!gi-args-in-bv function
[Accessor]!n-gi-arg-out function
[Accessor]!args-out function
[Accessor]!gi-args-out function
[Accessor]!gi-args-out-bv function
[Accessor]!gi-arg-result function

Returns the content of their respective slot for function.

[Accessor]!g-name argument
[Accessor]!name argument
[Accessor]!closure argument
[Accessor]!destroy argument
[Accessor]!direction argument
[Accessor]!transfert argument
[Accessor]!scope argument
[Accessor]!type-tag argument
[Accessor]!type-desc argument
[Accessor]!forced-type argument
[Accessor]!string-pointer argument
[Accessor]!is-pointer? argument
[Accessor]!may-be-null? argument
[Accessor]!is-caller-allocate? argument
[Accessor]!is-optional? argument
[Accessor]!is-return-value? argument
[Accessor]!is-skip? argument
[Accessor]!arg-pos argument
[Accessor]!gi-argument-in argument
[Accessor]!gi-argument-in-bv-pos argument
[Accessor]!gi-argument-out argument
[Accessor]!gi-argument-out-bv-pos argument
[Accessor]!gi-argument-field argument

Returns the content of their respective slot for argument.

Import

G-Golf GI import interfaces.
The G-Golf GI namespace (Typelib) import interfaces.

III. G-Golf Core Reference 148

Procedures

[gi-import-info], page 148

[gi-import-enum], page 148

[gi-import-flags], page 148

[gi-import-struct], page 148

[gi-import-function], page 149

[gi-import-constant], page 150

Variables

[%gi-base-info-types], page 150

[%gi-imported-base-info-types], page 150

Procedures

[Procedure]gi-import-info info
Returns the object or constant returned by the one of the gi-import-enum, gi-

import-flags, . . . , called upon info.

Obtains the GIBaseInfo type for info and uses it to dispatch a call to gi-import-

enum, gi-import-enum, . . . , and returns the object or constant returned by the
procedure that has been called.

You probably will prefer to call [gi-import-by-name], page 21, most of the time, but
here is a example:

,use (g-golf)

(g-irepository-require "Clutter")

⇒ $2 = #<pointer 0x5642cb065e30>

(g-irepository-find-by-name "Clutter" "ActorFlags")

⇒ $3 = #<pointer 0x5642cb067de0>

(gi-import-info $3)

⇒ $4 = #<<gi-flags> 5642cb13c5d0>

(describe $4)

a #<<gi-flags> 5642cb13c5d0> is an instance of class <gi-flags>

a Slots are:

a enum-set = ((mapped . 2) (realized . 4) (reactive . 8) (visible . 16) (no-layout . 32))

a g-type = 94844874149456

a g-name = "ClutterActorFlags"

a name = clutter-actor-flags

[Procedure]gi-import-enum info [#:with-method #t]
[Procedure]gi-import-flags info [#:with-method #t]
[Procedure]gi-import-struct info [#:with-method #t]

Returns a [<gi-enum>], page 130, a [<gi-flags>], page 131, or a [<gi-struct>], page 132,
instance, respectively.

III. G-Golf Core Reference 149

The info argument is (must be) a pointer to GIEnumInfo, a GIEnumInfo for which
([g-base-info-get-type], page 91, info) returned 'flags and a GIStructInfo

respectively. It is an error to call any of these procedures upon an invalid info argu-
ment.

The optional keyword #:with-method argument - which is #t by default - is passed
using #f, then info will be imported without its respective methods. A description and
an example ware also given here above, as part of the [gi-import-by-name], page 21,
documentation entry.

Every imported [<gi-enum>], page 130, [<gi-flags>], page 131, and [<gi-struct>],
page 132, instance is cached under the 'enum, 'flags and 'boxed main key
(respectively), using the content of their (symbol) name slot as the secondary key.
For example, reusing the "Clutter" "ActorFlags" namespace/name introduced
above, you would retreive its [<gi-flags>], page 131, instance as is:

...

(gi-cache-ref 'flags 'clutter-actor-flags)

⇒ $6 = #<<gi-flags> 5642cb13c5d0>

[Procedure]gi-import-function info
Returns a [<function>], page 144, instance.

Imports info - a pointer to a GIFunctionInfo (see [Function Info], page 94), which
represents a function, a method or a constructor - in Guile and exports its interface.
This procedure also imports, recursively (and exports the interface of) its argument’s
type(s) and method(s).

Every imported function, method and constructor is cached under 'function main
key, and using the value of their [<function>], page 144, instance name slot as the
secondary key. Here is an example:

,use (g-golf)

(g-irepository-require "Clutter")

⇒ $2 = #<pointer 0x55c191f3fe30>

(g-irepository-find-by-name "Clutter" "init")

⇒ $3 = #<pointer 0x55c191f41de0>

(gi-import-function $3)

⇒ $4 = #<<function> 55c191e81510>

(describe $4)

a #<<function> 55c191e81510> is an instance of class <function>

a Slots are:

a info = #<pointer 0x55c191f41de0>

a name = clutter-init

a flags = ()

a n-arg = 2

a caller-owns = nothing

a return-type = interface

III. G-Golf Core Reference 150

...

(gi-cache-ref 'function 'clutter-init)

⇒ $5 = #<<function> 55c191e81510>

Returned value(s):

In most situations - unless the return-type is 'void (in which case nothing is re-
turned) - the function or method returned value comes first, then in order, if any, the
value(s) of its 'inout and 'out argument(s).

However, some function and method, that have at least one 'inout or 'out argu-
ment(s), do return #t or #f solely to indicate that the function or method call was
successful or not. It is only if the call is successful that the 'inout and 'out argu-
ment(s) have been ‘correctly’ set and may safely be used.

In scheme, when binding such a function or method, we would rather (a) when the
call is successful, elude the boolean and return, in order, the 'inout and/or 'out

argument(s) value(s); and (b), when the call is unsuccessful, raise an exception.

Since it is not possible to automatically detect these functions and methods, G-Golf
provides a series of interfaces to maintain, at user discretion and responsibility, a
list of GI typelib functions and methods for which G-Golf is expected to elude their
result value from the returned value(s). G-Golf interfaces to maintain this list are
documented in the [Customization Square], page 33, section.

[Procedure]gi-import-constant info
Returns two values, the constant value and its name.

Obtains and returns the info constant value and its name. For example:

,use (g-golf)

(g-irepository-require "GLib")

⇒ #<pointer 0x55ad58e6ae00>

(g-irepository-find-by-name "GLib" "PRIORITY_DEFAULT_IDLE")

⇒ $3 = #<pointer 0x55ad58e6cde0>

(gi-import-constant $3)

⇒ $4 = 200

⇒ $5 = "PRIORITY_DEFAULT_IDLE"

Constants are curently not being automatically imported, though this will probably
change in the near future, stay tuned.

Variables

[Variable]%gi-base-info-types
[Variable]%gi-imported-base-info-types

A (cumulative) list of the distinct (top level) base info types contained in the imported
namespace(s).

These two variables have no other purpose then offering a feedback about: (a) the (top
level) base info types contained in the namespace(s) passed to [gi-import], page 20;

Appendix A: GNU Free Documentation License 151

(b) the (top level) base info types that have effectively been imported - when G-Golf

is complete, both lists should be identical.

Initially, these variables are empty. As [gi-import], page 20, [gi-import-info], page 148,
and/or [gi-import-by-name], page 21, are being called, they are filled with new types,
which are added to both lists.

Note that the order in which base info types appear in these two lists is rrelevant, and
may slightly vary, depending on the order of the namespace used for the successive
[gi-import], page 20, calls and how complete is G-Golf.

Utilities

G-Golf additional utilities.

Procedures

[gi-find-by-property-name], page 151

Description

G-Golf additional utilities.

Procedures

[Procedure]gi-find-by-property-name namespace name
Returns a (possibly empty) list.

Obtains and returns a (possibly empty) list of (pointers to) GIObjectInfo in names-
pace that have a property named name. Property names are obtained calling g-base-
info-get-name, with no translation/transformation - underscore, if any, are kept ’as
is’, and the comparison with name is case sensitive.

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

http://fsf.org/

Appendix A: GNU Free Documentation License 152

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image

Appendix A: GNU Free Documentation License 153

format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher

Appendix A: GNU Free Documentation License 154

of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Appendix A: GNU Free Documentation License 155

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

Appendix A: GNU Free Documentation License 156

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the

Appendix A: GNU Free Documentation License 157

license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 158

such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Appendix A: GNU Free Documentation License 159

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

\input texinfo

Concept Index 160

Concept Index

This index contains concepts, keywords and non-Schemey names for several features, to
make it easier to locate the desired sections.

C
copying . 1

G
GPL . 1

L
license . 1

T
the GNU Project . 1

Procedure Index 161

Procedure Index

This is an alphabetical list of all the procedures, methods and macros in G-Golf.

!
!alignment . 133, 135
!arg-pos . 147
!args-in . 147
!args-out . 147
!arguments . 147
!axis . 26
!button . 26
!callback . 42
!caller-owns . 146
!click-count . 26
!closure . 147
!coords . 26
!derived . 31
!destroy . 147
!device . 26
!device-tool . 26
!direction . 147
!discriminator . 136
!discriminator-offset . 136
!enum-set . 130
!event . 25
!event-sequence . 26
!event-type . 26
!field-desc . 133
!field-types . 133
!fields . 135
!flags . 146
!forced-type . 147
!function . 141
!g-class . 31
!g-closure . 141
!g-inst . 31
!g-name 31, 42, 131, 132, 133, 135, 146, 147
!g-type . 31, 131, 132, 133, 135
!gf-long-name? . 42
!gi-arg-result . 147
!gi-args-in . 147
!gi-args-in-bv . 147
!gi-args-out . 147
!gi-args-out-bv . 147
!gi-argument-field . 147
!gi-argument-in . 147
!gi-argument-in-bv-pos . 147
!gi-argument-out . 147
!gi-argument-out-bv-pos . 147
!i-func . 146
!info . 31, 42, 146
!init-vals . 133
!is-caller-allocate? . 147
!is-discriminated? . 135
!is-gtype-struct? . 133
!is-method? . 146

!is-opaque? . 133
!is-optional? . 147
!is-pointer? . 147
!is-return-value? . 147
!is-semi-opaque? . 134
!is-skip? . 147
!keycode . 26
!keyname . 26
!keyval . 26
!long-name-prefix . 42
!may-be-null? . 147
!may-return-null . 147
!n-arg . 146
!n-gi-arg-in . 147
!n-gi-arg-out . 147
!name 42, 131, 132, 133, 135, 146, 147
!namespace . 31, 146
!o-func . 146
!o-spec-pos . 146
!override? . 146
!param-types . 141
!pointer-emulated . 26
!return-type . 141, 146
!root-coords . 26
!root-x . 27
!root-y . 27
!scancode . 26
!scm-types . 133
!scope . 147
!screen . 26
!scroll-deltas . 26
!scroll-direction . 26
!seat . 26
!size . 133, 135
!source-device . 26
!specializer . 42
!state . 26
!string-pointer . 147
!time . 26
!transfert . 147
!type-desc . 146, 147
!type-tag . 147
!window . 26
!x . 27
!y . 27

A
allocate-c-struct . 43

Procedure Index 162

C
c-union-ref . 135
c-union-set! . 135
call-with-input-typelib . 87
class-child-id-slots . 129
class-direct-child-id-slots 128
class-direct-g-param-slots 129
class-direct-g-property-slots 128
class-direct-virtual-slots 128
class-g-param-slots . 129
class-g-property-slots . 128
class-name->g-name . 138
class-name->name . 137
class-virtual-slots . 128

D
define-vfunc . 41

E
enum->name . 131
enum->names . 131
enum->symbol . 130
enum->symbols . 130
enum->value . 130
enum->values . 130

F
field-offset . 134
flags->integer . 132

G
g-arg-info-get-closure . 115
g-arg-info-get-destroy . 115
g-arg-info-get-direction 115
g-arg-info-get-ownership-transfer 115
g-arg-info-get-scope . 115
g-arg-info-get-type . 115
g-arg-info-is-caller-allocates 116
g-arg-info-is-optional . 116
g-arg-info-is-return-value 116
g-arg-info-is-skip . 116
g-arg-info-may-be-null . 116
g-base-info-equal . 91
g-base-info-get-attribute 91
g-base-info-get-container 91
g-base-info-get-name . 91
g-base-info-get-namespace 91
g-base-info-get-type . 91
g-base-info-get-typelib . 91
g-base-info-is-deprecated 91
g-base-info-iterate-attributes 91
g-base-info-ref . 91
g-base-info-unref . 91
g-boxed-free . 66

g-bytes-new . 56
g-callable-info-can-throw-gerror 93
g-callable-info-create-closure 94
g-callable-info-get-arg . 93
g-callable-info-get-caller-owns 93
g-callable-info-get-instance-ownership-

transfer . 93
g-callable-info-get-n-args 93
g-callable-info-get-return-type 93
g-callable-info-invoke . 93
g-callable-info-is-method 94
g-callable-info-may-return-null 94
g-callable-info-prepare-closure 123
g-closure-add-invalidate-notifier 79
g-closure-free . 79
g-closure-invoke . 79
g-closure-new-simple . 80
g-closure-ref . 79
g-closure-ref-count . 79
g-closure-set-marshal . 80
g-closure-sink . 79
g-closure-size . 78
g-closure-unref . 79
g-constant-info-free-value 118
g-constant-info-get-type 118
g-constant-info-get-value 118
g-enum-info-get-method . 102
g-enum-info-get-n-methods 102
g-enum-info-get-n-values 101
g-enum-info-get-value . 101
g-field-info-get-flags . 119
g-field-info-get-offset . 119
g-field-info-get-type . 119
g-free . 46
g-function-info-get-flags 95
g-function-info-get-property 95
g-function-info-get-symbol 95
g-function-info-get-vfunc 96
g-function-info-invoke . 96
g-get-os-info . 53
g-get-prgname . 52
g-get-system-config-dirs . 52
g-get-system-data-dirs . 52
g-golf-typelib-new . 87
g-idle-source-new . 48
g-info-type-to-string . 121
g-interface-info-find-method 113
g-interface-info-find-signal 113
g-interface-info-find-vfunc 114
g-interface-info-get-constant 114
g-interface-info-get-iface-struct 114
g-interface-info-get-method 113
g-interface-info-get-n-constants 114
g-interface-info-get-n-methods 113
g-interface-info-get-n-prerequisites 113
g-interface-info-get-n-properties 113
g-interface-info-get-n-signals 113
g-interface-info-get-n-vfuncs 114

Procedure Index 163

g-interface-info-get-prerequisite 113
g-interface-info-get-property 113
g-interface-info-get-signal 113
g-interface-info-get-vfunc 114
g-io-channel-ref . 51
g-io-channel-unix-new . 50
g-io-channel-unref . 51
g-io-create-watch . 51
g-irepository-enumerate-versions 85
g-irepository-find-by-gtype 86
g-irepository-find-by-name 86
g-irepository-get-c-prefix 86
g-irepository-get-default 85
g-irepository-get-dependencies 85
g-irepository-get-info . 85
g-irepository-get-loaded-namespaces 85
g-irepository-get-n-infos 85
g-irepository-get-shared-library 86
g-irepository-get-typelib-path 85
g-irepository-get-version 86
g-irepository-require . 86
g-list-data . 54
g-list-free . 54
g-list-length . 54
g-list-next . 54
g-list-nth-data . 54
g-list-prev . 54
g-main-context-default . 48
g-main-context-new . 48
g-main-loop-new . 47
g-main-loop-quit . 48
g-main-loop-ref . 47
g-main-loop-run . 48
g-main-loop-unref . 48
g-malloc . 46
g-malloc0 . 46
g-memdup . 46
g-name->class-name . 137
g-name->name . 137
g-name->short-name . 137
g-name-transform-exception 35
g-name-transform-exception-add 35
g-name-transform-exception-remove 35
g-name-transform-exception-reset 35
g-name-transform-exception? 35
g-object-add-toggle-ref . 64
g-object-class-find-property 63
g-object-class-install-property 63
g-object-class-list-properties 63
g-object-get-property . 65
g-object-info-find-method 109
g-object-info-find-signal 109
g-object-info-get-abstract 108
g-object-info-get-class-struct 110
g-object-info-get-constant 108
g-object-info-get-field . 108
g-object-info-get-get-value-function 110

g-object-info-get-get-value-function-

pointer . 110
g-object-info-get-interface 109
g-object-info-get-method 109
g-object-info-get-n-constants 108
g-object-info-get-n-fields 108
g-object-info-get-n-interfaces 109
g-object-info-get-n-methods 109
g-object-info-get-n-properties 109
g-object-info-get-n-signals 109
g-object-info-get-n-vfuncs 109
g-object-info-get-parent 108
g-object-info-get-property 109
g-object-info-get-set-value-function 110
g-object-info-get-set-value-function-

pointer . 110
g-object-info-get-signal 109
g-object-info-get-type-init 108
g-object-info-get-type-name 108
g-object-info-get-vfunc . 110
g-object-is-floating . 64
g-object-new . 63
g-object-new-with-properties 64
g-object-ref . 64
g-object-ref-count . 64
g-object-ref-sink . 64
g-object-remove-toggle-ref 65
g-object-set-property . 65
g-object-type . 65
g-object-type-name . 65
g-object-unref . 64
g-param-spec-boolean . 70
g-param-spec-boxed . 73
g-param-spec-double . 71
g-param-spec-enum . 72
g-param-spec-flags . 72
g-param-spec-float . 71
g-param-spec-get-blurb . 76
g-param-spec-get-default-value 76
g-param-spec-get-flags . 77
g-param-spec-get-name . 76
g-param-spec-get-nick . 76
g-param-spec-int . 70
g-param-spec-object . 74
g-param-spec-param . 73
g-param-spec-string . 72
g-param-spec-type . 76
g-param-spec-type-name . 76
g-param-spec-uint . 71
g-property-info-get-flags 120
g-property-info-get-ownership-transfer . . . 120
g-property-info-get-type 120
g-quark-from-string . 57
g-quark-to-string . 57
g-registered-type-info-get-g-type 100
g-registered-type-info-get-type-init 100
g-registered-type-info-get-type-name 100
g-set-prgname . 52

Procedure Index 164

g-signal-connect-closure-by-id 82
g-signal-emitv . 82
g-signal-handler-disconnect 83
g-signal-info-get-flags . 97
g-signal-list-ids . 82
g-signal-lookup . 82
g-signal-newv . 81
g-signal-parse-name . 83
g-signal-query . 81
g-slist-append . 55
g-slist-data . 55
g-slist-free . 56
g-slist-length . 56
g-slist-next . 55
g-slist-nth-data . 56
g-slist-prepend . 56
g-source-attach . 49
g-source-destroy . 49
g-source-free . 49
g-source-get-priority . 50
g-source-is-destroyed? . 49
g-source-ref . 49
g-source-ref-count . 49
g-source-remove . 50
g-source-set-closure . 80
g-source-set-priority . 49
g-source-unref . 49
g-struct-info-get-alignment 103
g-struct-info-get-field . 103
g-struct-info-get-method 104
g-struct-info-get-n-fields 103
g-struct-info-get-n-methods 103
g-struct-info-get-size . 103
g-struct-info-is-foreign 103
g-struct-info-is-gtype-struct 103
g-strv-get-type . 66
g-studly-caps-expand . 136
g-studly-caps-expand-token-exception 35
g-studly-caps-expand-token-exception-add . 36
g-studly-caps-expand-token-exception-

remove . 36
g-studly-caps-expand-token-exception-

reset . 36
g-studly-caps-expand-token-exception? 36
g-timeout-source-new . 48
g-timeout-source-new-seconds 48
g-type->symbol . 58
g-type-add-interface-static 60
g-type-class-peek . 59
g-type-class-peek-parent . 60
g-type-class-ref . 59
g-type-class-unref . 59
g-type-ensure . 60
g-type-from-class . 59
g-type-from-name . 59
g-type-fundamental . 60
g-type-info-get-array-fixed-size 121
g-type-info-get-array-length 121

g-type-info-get-array-type 122
g-type-info-get-ffi-type 122
g-type-info-get-interface 121
g-type-info-get-param-type 121
g-type-info-get-tag . 121
g-type-info-is-pointer . 121
g-type-info-is-zero-terminated 122
g-type-interface-peek . 60
g-type-interfaces . 60
g-type-is-a . 59
g-type-name . 59
g-type-param-boolean . 74
g-type-param-boxed . 75
g-type-param-char . 74
g-type-param-double . 75
g-type-param-enum . 75
g-type-param-flags . 75
g-type-param-float . 75
g-type-param-gtype . 75
g-type-param-int . 74
g-type-param-int64 . 75
g-type-param-long . 75
g-type-param-object . 75
g-type-param-override . 75
g-type-param-param . 75
g-type-param-pointer . 75
g-type-param-string . 75
g-type-param-uchar . 74
g-type-param-uint . 74
g-type-param-uint64 . 75
g-type-param-ulong . 75
g-type-param-unichar . 75
g-type-param-variant . 75
g-type-parent . 59
g-type-query . 60
g-type-register-static-simple 60
g-type-tag-to-string . 88
g-typelib-free . 87
g-typelib-get-namespace . 87
g-typelib-new-from-memory 87
g-union-info-get-alignment 105
g-union-info-get-discriminator 105
g-union-info-get-discriminator-offset 105
g-union-info-get-discriminator-type 105
g-union-info-get-field . 104
g-union-info-get-method . 105
g-union-info-get-n-fields 104
g-union-info-get-n-methods 105
g-union-info-get-size . 105
g-union-info-is-discriminated? 105
g-unix-fd-source-new . 53
g-value-get-boolean . 70
g-value-get-boxed . 73
g-value-get-double . 71
g-value-get-enum . 72
g-value-get-flags . 72
g-value-get-float . 71
g-value-get-int . 70

Procedure Index 165

g-value-get-object . 74
g-value-get-param . 73
g-value-get-pointer . 74
g-value-get-string . 73
g-value-get-uint . 71
g-value-get-variant . 74
g-value-info-get-value . 102
g-value-init . 67
g-value-new . 67
g-value-ref . 69
g-value-set! . 70
g-value-set-boolean . 70
g-value-set-boxed . 74
g-value-set-double . 72
g-value-set-enum . 72
g-value-set-flags . 72
g-value-set-float . 71
g-value-set-int . 70
g-value-set-object . 74
g-value-set-param . 73
g-value-set-pointer . 74
g-value-set-string . 73
g-value-set-uint . 71
g-value-size . 67
g-value-type . 69
g-value-type-name . 69
g-value-type-tag . 69
g-value-unset . 67
g-vfunc-info-get-flags . 98
g-vfunc-info-get-invoker . 98
g-vfunc-info-get-offset . 98
g-vfunc-info-get-signal . 98
generic? . 129
gi->scm . 125
gi-attribute-iter-new . 124
gi-boolean->scm . 125
gi-cache-ref . 32
gi-cache-show . 32
gi-check-version . 89
gi-csv-string->scm . 126
gi-effective-version . 89
gi-enum-import . 101
gi-enum-value-values . 101
gi-find-by-property-name 151
gi-function-info-is-method? 95
gi-g-param-spec-show . 75
gi-glist->scm . 126
gi-gslist->scm . 126
gi-import . 20
gi-import-by-name . 21
gi-import-constant . 150
gi-import-enum . 148
gi-import-flags . 148
gi-import-function . 149
gi-import-info . 148
gi-import-struct . 148
gi-interface-import . 111
gi-interface-show . 111

gi-major-version . 89
gi-method-short-name-skip 38
gi-method-short-name-skip-add 38
gi-method-short-name-skip-all 38
gi-method-short-name-skip-remove 38
gi-method-short-name-skip-reset 38
gi-method-short-name-skip? 38
gi-micro-version . 89
gi-minor-version . 89
gi-n-gtype->scm . 125
gi-n-pointer->scm . 125
gi-n-string->scm . 125
gi-object-method-find-by-name 108
gi-object-method-names . 108
gi-object-property-names 107
gi-object-show . 107
gi-pointer->scm . 125
gi-pointer-inc . 124
gi-pointer-new . 124
gi-pointers->scm . 126
gi-property-g-type . 120
gi-registered-type-info-name 99
gi-string->scm . 125
gi-strings->scm . 126
gi-strip-boolean-result . 37
gi-strip-boolean-result-add 37
gi-strip-boolean-result-remove 37
gi-strip-boolean-result-reset 37
gi-strip-boolean-result? . 37
gi-struct-field-desc . 103
gi-struct-field-types . 103
gi-struct-import . 103
gi-type-info-extract-ffi-return-value 122
gi-type-tag->ffi . 139
gi-type-tag->init-val . 139
gi-type-tag-extract-ffi-return-value 123
gi-type-tag-get-ffi-type 122
gi-version . 89
glib-get-major-version . 46
glib-get-micro-version . 46
glib-get-minor-version . 46
gobject-class? . 32

I
integer->flags . 132
invoke . 141

M
make-c-union . 135
mslot-set! . 129

N
name->g-name . 138

Procedure Index 166

R
re-export-public-interface 128

S
scm->g-type . 43
scm->gi . 126
scm->gi-boolean . 126
scm->gi-gslist . 127
scm->gi-n-gtype . 127
scm->gi-n-pointer . 127
scm->gi-n-string . 127
scm->gi-pointer . 126
scm->gi-pointers . 127
scm->gi-string . 126
scm->gi-strings . 127
symbol->g-type . 58
syntax-name->method-name 138
syntax-name-protect-postfix 39
syntax-name-protect-postfix-reset 39

syntax-name-protect-postfix-set 39
syntax-name-protect-prefix 39
syntax-name-protect-prefix-reset 39
syntax-name-protect-prefix-set 39
syntax-name-protect-renamer 39
syntax-name-protect-renamer-reset 39
syntax-name-protect-renamer-set 39
syntax-name-protect-reset 39

U
unref . 31

V
vfunc . 42

W
with-gerror . 125

Variable Index 167

Variable Index

This is an alphabetical list of all the important variables and constants in G-Golf.

%g-function-info-flags of <gi-flags> 96
%g-io-condition of <gi-flag> 51
%g-param-flags of <gi-enum> 77
%g-signal-flags of <gi-enum> 83
%g-type-fundamental-flags of <gi-enum> 61
%g-type-fundamental-types of <gi-enum> 61
%gi-array-type of <gi-enum> 89
%gi-base-info-types . 150
%gi-cache . 33

%gi-direction of <gi-enum> 116

%gi-imported-base-info-types 150

%gi-info-type of <gi-enum> 92

%gi-pointer-size . 127

%gi-scope-type of <gi-enum> 116

%gi-transfer of <gi-enum> 117

%gi-type-tag of <gi-enum> . 88

%gi-vfunc-info-flags of <gi-flags> 98

Type Index 168

Type Index

This is an alphabetical list of all the important data types defined in the G-Golf Program-
mers Manual.

<argument> . 145
<closure> . 140
<enum> . 130
<flags> . 131
<function> . 144
<gdk-event> . 22
<gi-enum> . 130
<gi-flags> . 131

<gi-struct> . 132
<gi-union> . 134
<ginterface> . 29
<gobject-class> . 30
<gobject> . 29
<gtype-class> . 30
<gtype-instance> . 31
<vfunc> . 41

List of Examples 169

List of Examples

Example 1: . 13
Example 2: . 19

	Preface
	Contributors to this Manual
	Join the GNU Project
	The G-Golf License

	I. Introduction
	About G-Golf
	Obtaining and installing G-Golf
	Contact Information
	Reporting Bugs

	II. Using G-Golf
	Before you start
	Naming Conventions
	GOOPS Notes and Conventions
	Configuring Guile for G-Golf
	Customizing G-Golf
	SXML Support - Emacs users

	Getting Started with G-Golf
	Hello World!
	Selective Import
	Scripting
	Building Applications
	G-Golf on Mobile Devices

	Working with GNOME
	Import
	Events
	GObject

	G-Golf Valley
	Cache Park
	Customization Square
	VFunc Alley
	Utils Arcade

	III. G-Golf Core Reference
	Overview
	Structure and Naming Conventions

	Glib
	Version Information (1)
	Memory Allocation
	The Main Event Loop
	IO Channels
	Miscellaneous Utility Functions
	UNIX-specific utilities and integration
	Doubly-Linked Lists
	Singly-Linked Lists
	Byte Arrays
	Quarks

	GObject
	Type Information
	GObject
	Enumeration and Flag Types
	Boxed Types
	Generic Values
	Parameters and Values
	GParamSpec
	Closures
	Signals

	GObject Introspection
	Repository
	Typelib
	Common Types
	Version Information (2)
	Base Info
	Callable Info
	Function Info
	Signal Info
	VFunc Info
	Registered Type Info
	Enum Info
	Struct Info
	Union Info
	Object Info
	Interface Info
	Arg Info
	Constant Info
	Field Info
	Property Info
	Type Info
	FFI Interface
	Utilities

	Support
	Module
	Goops
	Enum
	Flags
	Struct
	Union
	Utilities

	G-Golf High Level API
	Closure
	Function
	Import
	Utilities

	A GNU Free Documentation License
	Concept Index
	Procedure Index
	Variable Index
	Type Index
	List of Examples

