An ONC RPC Framework for Guile

for GNU Guile-RPC 0.4

Ludovic Courtes

Edition 0.4
21 May 2014

Copyright (©) 2007, 2008, 2009, 2010, 2012, 2014 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the author.

Table of Contents

An ONC RPC Framework for Guile.............. 1
1 Introduction........... 3

2 Obtaining and Installing GNU Guile-RPC ... 5

3 Quick Start....... ... 7
3.1 Defining Data Typeso 8
3.1.1 Creating the Client........... ... i, 8

3.1.2 Creating the Server.......... ..., 9

4 API Reference........................... 11
4.1 Usage NOtes ..o e e 11
4.2 Implementation of XDR.........oo i 11
4.2.1 XDR Type Representationsooo... 11

4.2.2 XDR Standard Data Types..........ooiiiiiiiiiiian.. 13

4.2.3 XDR Encoding and Decoding 15

4.3 TImplementation of ONC RPC......... 15
4.3.1 Building an RPC Client 15

4.3.2 Building an RPC Server................o.ooiiiiiiit. 16

4.3.3 ONC RPC Message Types......c.coviiiiiiiiiiiniina . 19

4.3.4 Record Marking Standard 20

4.4 Standard RPC Programs..............oooiiiiiiiiiiiiii .. 21
4.4.1 The Portmapper Program 21

4.5 XDR/RPC Language Compiler.................ooiiiiiiia... 23
4.5.1 Parsert 23

4.5.2 Code Generation Compiler Back-End..................... 24

4.5.3 Run-Time Compiler Back-End............................ 25

5 Stand-Alone Tools............................. 27
5.1 Invoking grpc-compilecouiiuiiiiiiiiiiiniiiiie... 27
5.2 Invoking grpc-rpcinfoccoviiiiiiiiiiiiiii 28
5.3 Invoking grpc—nfs-export.......... 28

6 References............. 31
Appendix A Portability Notes................. 33

Appendix B GNU Free Documentation License
.. 35

ii An ONC RPC Framework for Guile
Concept Index............. 43

Function Index 45

Variable Index........ 47

An ONC RPC Framework for Guile

An ONC RPC Framework for Guile

This document describes GNU Guile-RPC version 0.4. It was last updated in May 2014.

Chapter 1: Introduction 3

1 Introduction

GNU Guile-RPC is a framework for distributed programming under GNU Guile. It is a pure
Scheme implementation of the ONC RPC standard, i.e., the “Open Network Computing”
Remote Procedure Call standard. ONC RPC is standardized by the Internet Engineering
Task Force (IETF) as RFC 1831. It is based on the External Data Representation standard
(XDR), known as RFC 4506 (see Chapter 6 [References|, page 31).

Remote procedure calls allow programs on different, potentially remote machines to
interact together. A remote procedure call is the invocation of the procedure of a program
located on a remote host (the RPC server), as the name implies. Doing so requires the
procedure arguments on the client-side to be encoded, or marshalled, i.e., converted to a
representation suitable for transfer over the network. On the server-side, upon reception of
the RPC, those arguments must be decoded or unmarshalled, i.e., converted back to a form
that is directly understandable by the server program—for instance, data using Scheme
data types, should the server program be written in Scheme. The value returned by the
RPC server must be encoded and decoded similarly.

When using the ONC RPC protocol, the way data items are encoded is dictated by the
XDR standard. This encoding has the advantage of being particularly compact, allowing
for relatively low bandwidth requirements and fast implementations, especially compared
to more verbose RPC protocols such as XML-RPC and SOAP.

The XDR encoding is not self-describing, i.e., it is impossible given an arbitrary XDR
encoded sequence to determine the XDR type of the encoded data. This is different from
D-Bus (http://dbus.freedesktop.org/), for example, which uses a compact and self-
describing encoding. In practice, this is sufficient for a wide range of applications.

GNU Guile-RPC provides an easy access to the ONC RPC protocol for the Guile Scheme
programmer. In particular, it allows standard Scheme types to be mapped to XDR data
types, so that Scheme objects are easily encoded to or decoded from XDR.

Please send bug reports, comments and patches to the Guile-RPC mailing list.

http://dbus.freedesktop.org/
mailto:bug-guile-rpc@gnu.org

Chapter 2: Obtaining and Installing GNU Guile-RPC 5

2 Obtaining and Installing GNU Guile-RPC

The GNU Guile-RPC web page is located at http://www.gnu.org/software/guile-rpc/
. You can obtain copy of GNU Guile-RPC from ftp://alpha.gnu.org/gnu/guile-rpc/.

In order to use GNU Guile-RPC, all that is needed is GNU Guile 2.0 (http://www.gnu.
org/software/guile/guile.html) or later.

http://www.gnu.org/software/guile-rpc/
http://www.gnu.org/software/guile-rpc/
ftp://alpha.gnu.org/gnu/guile-rpc/
http://www.gnu.org/software/guile/guile.html
http://www.gnu.org/software/guile/guile.html

Chapter 3: Quick Start 7

3 Quick Start

This section illustrates how ONC RPC clients and servers can be implemented using Guile-
RPC. ONC RPC defines a language to describe RPCs and the data types they depend on
(see Chapter 6 [References|, page 31). This language, which we refer to as the XDR/RPC
language or simply RPC' language, is essentially an interface description language (IDL).
It resembles the C programming language and borrows C’s type definition constructs and
adds the program and version constructs that introduce RPC definitions.

Consider the following RPC definition, written using the XDR/RPC language:

struct result_t

{
int integer_part;
unsigned int decimal_part;

};

program ARITHMETIC_PROGRAM
{
version ARITHMETIC_VERSION
{
/* Return the integer part and the 1000th of the
given double-precision floating point number. */
result_t split_number (double) = 1;
} = 0;
} = 80000;

It defines a simple RPC interface named ARITHMETIC which contains only one procedure
called split_number (). The interface itself has a program number that identifies it (here,
80000). Normally, program numbers below 20000000 (hexadecimal) are assigned by Sun
Microsystems, Inc. and thus should not be used unless the number has been properly
registered (see Chapter 6 [References|, page 31, for details). It also has a version number
(here, 0) that is user-defined and should be increased when the interface changes (e.g.,
when procedures are added, modified, etc.). Finally, the procedure split_number () has a
procedure number (here, 1) that allows it to be distinguished from other procedures.

People vaguely familiar with the C programming language should have guessed by now
that this simple interface defines a procedure that takes a double-precision floating-point
number and returns a structure that contains two fields.

Client and server creation are two-step. Since the first step—data type definition—is
the same for both, that leaves us with a total of three steps, described below. Nicely, each
of these steps can be automated using the XDR/RPC language compiler (see Section 5.1
[Invoking grpc-compile], page 27).

More details about the XDR type definition as well as client and server creation are
available in the API reference (see Chapter 4 [API Reference|, page 11).

8 An ONC RPC Framework for Guile

3.1 Defining Data Types

Before actually creating a client or server for this interface, one must define the types it uses.
The simplest way to define one or several data types is to pipe their definition in XDR/RPC
language through the compiler (see Section 5.1 [Invoking grpc-compile|, page 27):

$ grpc-compile --xdr --constants < input.x > types.scm

Given the description from input.x in RPC language, this command generates code
that provides access to the constants and data types defined therein. The resulting Scheme
code, types.scm, can then be loaded in other Scheme files (see Section “Loading” in The
GNU Guile Reference Manual).

In addition, code in types.scm depends on Guile-RPC modules that it uses at run-time.
Thus, it must first import the relevant modules:

(use-modules (rpc xdr)
(rpc xdr types))

Then, the result_t type is defined (this is the code generated by the compiler but it
can also be written “by hand”):

(define result-type
(make-xdr-struct-type (list xdr-integer ;3 ‘integer_part’
xdr-unsigned-integer))) ;; ‘decimal_part’

3.1.1 Creating the Client

Producing a client to invoke split_number () is as simple as this:

(use-modules (rpc rpc))

(define invoke-split-number

(make-synchronous-rpc-call 80000 0 ;3 program and version
1 ;3 procedure number
xdr-double ;; argument type

result-type))

Again, this definition, minus the use-modules clause, can alternatively be generated by
the compiler from the RPC description in XDR/RPC language (see Section 5.1 [Invoking
grpc-compile], page 27):

$ grpc-compile --client < input.x > client.scm
Once this is done, invoking the procedure is as simple as this:
(invoke-split-number 3.14 #x7777 socket)

The first argument to invoke-split-number is the argument of split_number (); the
second argument is a transaction ID, i.e., an arbitrarily chosen number that identifies the
remote procedure call; the third argument should be an output port, typically one bound
to a connection to the RPC server:

(define socket (socket PF_INET SOCK_STREAM 0))
(connect socket AF_INET INADDR_LOOPBACK 6666)

This example creates an IPv4 connection to the local host on port 6666 (see Section
“Network Sockets and Communication” in The GNU Guile Reference Manual).

Chapter 3: Quick Start 9

On success, invoke-split-number returns a two-element list where the first element
corresponds to the integer_part field of the result and the second element correspond to
the decimal_part field of the result, both represented as Scheme exact integers.

3.1.2 Creating the Server

Creating a TCP server for our RPC interface should be quite easy as well. We can re-use
our previous type definitions (see Section 3.1 [Defining Data Types|, page 8). Then, all we
have to do is to create a definition for our program.

(use-modules (rpc rpc server))

(define (split-number-handler number)
;; Handle a ‘split-number’ request.
(let* ((int (floor number))
(dec (floor (* 1000 (- number int)))))
(1ist (inexact->exact int)
(inexact->exact dec))))

(define my-rpc-program
;; Define our RPC program.
(let* ((proc (make-rpc-procedure 1 xdr-double result-type
split-number-handler))
(version (make-rpc-program-version O (list proc))))
(make-rpc-program 80000 (list version))))

Alternatively, using the compiler allows the above definition of my-rpc-program to be
automatically generated from the XDR/RPC definition file (see Section 5.1 [Invoking grpc-
compile], page 27):

$ grpc-compile --server < input.x > server.scm

However, there is a slight difference compared to the above “hand-written” approach:
server.scm does not contain the actual definition of my-rpc-program since it does not know
about your split-number-handler procedure. Instead, given the RPC/XDR definition
given earlier, it contains a make-ARITHMETIC-PROGRAM-server procedure; this procedure
can be passed a list associating RPC names to Scheme procedures, and returns the resulting
RPC program object:

(define my-rpc-program
(make-ARITHMETIC-PROGRAM-server
¢ (("ARITHMETIC_VERSION" ;; specify the target version

;3 list all supported RPCs for this version
("split_number" . ,split-number-handler)))))

As can be seen, using the compiler-generated server stub, one doesn’t have to deal
explicitly with program, version and RPC numbers, which clarifies the code.

Finally, we can make the server listen for incoming connections and handle client re-
quests, using Section “Network Sockets and Communication” in The GNU Guile Reference
Manual.

;3 Creating a listening TCP socket.

10 An ONC RPC Framework for Guile

(define server-socket (socket PF_INET SOCK_STREAM 0))

;3 Listen for connections on 127.0.0.1, port 6666.
(bind server-socket AF_INET INADDR_LOOPBACK 6666)
(listen server-socket 1024)

;3 Go ahead and serve requests.
(run-stream-rpc-server (list (cons server-socket my-rpc-program))
1000000 ;; a one—-second timeout
#f ;; we don’t care about closed connections
(lambda () ;; our idle thunk
(format #t "one second passed~%")))

And now we're all set: We have a working TCP client and server for this wonderful

RPC interface! This would work similarly for other stream-oriented transports such as
Unix-domain sockets: only the socket and bind calls need to be adapted.

Chapter 4: API Reference 11

4 API Reference

This section first details facilities available to manipulate XDR, types. It then describes
Scheme procedures that should be used to build ONC RPC clients and servers.

4.1 Usage Notes

Guile-RPC makes use of the SRFI-34 exception mechanism (http://srfi.schemers.org/
srfi-34/srfi-34.html) along with SRFI-35 error conditions (http://srfi.schemers.
org/srfi-35/srfi-35.html) to deal with the various protocol errors'. Thus, users are
expected to use these mechanisms to handle the error conditions described in the following
sections. Hopefully, in most cases, error conditions raised by Guile-RPC code provide users
with detailed information about the error.

4.2 Implementation of XDR

This section describes how XDR types are represented in Guile-RPC, as well as how one
can encode Scheme values to XDR and decode XDR, binary data to Scheme values.

4.2.1 XDR Type Representations

The XDR standard defines various basic data types and allows for the definition of com-
pound data types (“structs”), fixed-size and variable-size arrays as well as “unions”. Fixed-
size arrays and structs can actually be thought as the same type: Their size if known in
advance and they are encoded as the succession of the data they contain. Thus, those types
can be summarized as 4 great classes: “basic” types, variable-length arrays, structs and
unions.

The (rpc xdr) module provides facilities to create Scheme objects representing XDR
data types and to manipulate them. These Scheme objects, described below, are all im-
mutable, i.e., they cannot be modified after creation.

make-xdr-basic-type name size type-pred encoder decoder [Scheme Procedure]
[vector-encoder [vector-decoder]]
This returns an <xdr-basic-type> object describing a type whose encoding fits on
size octets, and which is encoded/decoded using the encoder and decoder procedures.
type-pred should be a predicate checking the validity of an input Scheme value for
encoding into this type.

Optionally, vector-encoder and vector-decoder can be passed and should be proce-
dures that efficiently encode/decode sequences of data items of this type (for in-
stance, the vector decoder could use the bytevector->int-list procedure of the
(rnrs bytevectors) module to speed up decoding). The vector encoder is invoked
as (vector-encoder type value bv index) while the vector decoder is invoked as
(vector-decoder type count port).

Users should normally not need to define new basic types since all the basic types
defined by XDR are already available in (rpc xdr types) (see Section 4.2.2 [XDR
Standard Data Types|, page 13). Thus, we will not describe its use further.

1 Guile 1.8 provides an implementation of the former in the (srfi srfi-34) module, while the latter is
currently provided by the guile-1ib package (http://www.nongnu.org/guile-1ib/).

http://srfi.schemers.org/srfi-34/srfi-34.html
http://srfi.schemers.org/srfi-34/srfi-34.html
http://srfi.schemers.org/srfi-35/srfi-35.html
http://srfi.schemers.org/srfi-35/srfi-35.html
http://www.nongnu.org/guile-lib/

12 An ONC RPC Framework for Guile

make-xdr-struct-type base-types [Scheme Procedure]
Return a new XDR struct type made of a sequence of XDR, data items whose types
are listed in base-types.

Struct types encode from/decode to Scheme lists whose length is that of base-types.

make-xdr-vector-type base-type max-element-count [Scheme Procedure]
Return an object describing an XDR variable-length array of elements of types base-
type (again, an XDR type object). If max-element-count is a number, then it de-
scribes the maximum number of items of type base-type that are allow in actual
arrays of this type. If base-type is #f, then arrays of this type may contain up to
2732 - 1 items of type base-type.

Vector types are encoded from arrays, which includes Scheme vectors, SRFI-4 vectors
or strings (see Section “Arrays” in The GNU Guile Reference Manual). By default,
vector types decode to vectors, but any other kind of array can be used: it only
needs to be specified as the vector-decoder argument of make-xdr-basic-type for
the corresponding base type. Of course, SRFI-4 vectors, for example, may only be
used when an XDR integer vector with a matching integer range is expected.

If max-element-count is specified and a vector to be encoded contains more than
max-element-count elements, then an &xdr-vector-size-exceeded-error error con-
dition is raised. Likewise, if XDR data to be decoded describes vectors larger than
max-element-count, this error condition is raised.

make-xdr-union-type discr-type discr/type-alist default-type [Scheme Procedure]
Return a new XDR discriminated union type, using discr-type as the discriminant
type (which must be a 32-bit basic type) and discr/type-alist to select the “arm” type
depending on the discriminant value. If no suitable value is found in discr/type-alist
and default-type is not #f, then default type is used as the arm type.

Union types encode from/decode to Scheme pairs whose car is the discriminant’s
value and whose cdr is the actual union value.

xdr-union-arm-type union discriminant [Scheme Procedure]
Return the type that should be used for union’s arm given discriminant (a Scheme
value).

Sometimes, one may want to define recursive types, i.e., types that refer to themselves.
This is particularly useful to implement lists. For example, in XDR language, a list of
integers can be defined as follows:

struct integer_list_t
{
int x;
integer_list_t *next;
};
This notation is a shortcut for the following structure:

struct integer_list_t
{
int x;
union switch (bool opted)

Chapter 4: API Reference 13

{
case TRUE:
integer_list_t value;
case FALSE:
void;
} next;
s
The integer_list_t type references itself. Defining it using our API seems impossible
at first: one cannot pass a self-reference to make-xdr-struct-type (since the object is not
yet created!), and the self-reference cannot be added after the fact since objects returned
by make-xdr-struct-type are immutable.

The API addresses this problem by allowing thunks (zero-argument procedures) to be
used as types. Together with Scheme’s letrec recursive binding construct or a top-level
define (see Section “Binding constructs” in Revised® Report on the Algorithmic Language
Scheme), it makes it possible to create such recursive types:

(letrec ((integer-list
(make-xdr-struct-type
(l1ist xdr-integer
(make-xdr-union-type xdr-boolean
¢((TRUE . ,(lambda QO
integer-1list))
(FALSE . ,xdr-void))
#£)))))
integer-list)
The trick here is that using the thunk effectively defers the evaluation of the self-
reference?.

It is often useful to know the size in octets it takes to encode a given value according
to an XDR type. However, as we just saw, the size of some XDR types (variable-length
arrays and unions) cannot be known in advance: The encoding size depends on the actual
value to encode. The following procedure allow the computation of the size of the XDR
representation of some value.

xdr-type-size type value [Scheme Procedure]
Return the size (in octets) of type when applied to value. type must be an XDR
type object returned by one of the above procedures, while value should be a Scheme
value suitable for encoding with type.

The following section lists the standard XDR data types.

4.2.2 XDR Standard Data Types
All the basic data types defined by XDR are defined in the (rpc xdr types) module.

xdr-integer [Scheme Variable]
xdr-unsigned-integer [Scheme Variable]

2 This idea was inspired by Oleg Kiselyov’s description of thunked parent pointers in SXML, which may
be found at http://okmij.org/ftp/Scheme/parent-pointers.txt.

http://okmij.org/ftp/Scheme/parent-pointers.txt

14 An ONC RPC Framework for Guile

xdr-hyper-integer [Scheme Variable]

xdr-unsigned-hyper-integer [Scheme Variable]
XDR’s 32-bit and 64-bit signed and unsigned integer types. This type decodes
to/encodes from Scheme exact numbers.

xdr-float [Scheme Variable]

xdr-double [Scheme Variable]
32-bit and 64-bit IEEE-754 floating point numbers. This type decodes to/encodes
from Scheme inexact numbers. Note that XDR also defines a “quadruple-precision
floating point type” (i.e., 128-bit long) that is currently not available (FIXME).

xdr-void [Scheme Variable]
The “void” type that yields zero bits. Any Scheme value is suitable as an input when
encoding with this type. When decoding this type, the %void value (which may be
compared via eq?) is returned.

XDR provides support for “enumerations”, similar to that found in C. An enumeration
type maps symbols to integers and are actually encoded as 32-bit integers.

make-xdr-enumeration name enum-alist [Scheme Procedure]
Return an enumeration type that obeys the symbol-integer mapping provided in
enum-alist which should be a list of symbol-integer pairs. The returned type decodes
to/encodes from Scheme symbols, as provided in enum-alist. Upon decoding/encoding
of an enumeration, an &xdr-enumeration-error is raised if an incorrect value (i.e.,
one not listed in enum-alist) is found.

xdr-boolean [Scheme Variable]
XDR’s boolean type which is an enumeration. It encodes to/decodes from Scheme
symbols TRUE and FALSE.

Several fixed-size and variable-size are predefined in the standard.

make-xdr-fixed-length-opaque-array size [Scheme Procedure]
Return a fixed-length “opaque” array of size octets. An opaque array is simply a
sequence of octets.

The returned XDR type object is actually an <xdr-struct-type> object. Thus,
it encodes from/decodes to Scheme lists of exact integers. Conversion to a Scheme
string, if needed, is left to the user.

make-xdr-variable-length-opaque-array limit [Scheme Procedure]
Return a variable-length opaque array. As for make-xdr-vector-type (see
Section 4.2.1 [XDR Type Representations|, page 11), limit can be either a number
specifying the maximum number of elements that can be held by the created type,
or #f in which case the variable-length array can hold up to 2732 - 1 octets.

The returned XDR type object is actually an <xdr-vector-type> object. Thus, it
encodes from/decodes to Scheme vectors of exact integers.

make-xdr-string limit [Scheme Procedure]
This is a synonym of make-xdr-variable-length-opaque-array since XDR’s string
type actually represents ASCII strings, i.e., sequences of octets.

Chapter 4: API Reference 15

xdr-variable-length-opaque-array [Scheme Variable]
xdr-string [Scheme Variable]
These convenience variables contain the unlimited variable-length opaque array.

4.2.3 XDR Encoding and Decoding

The following primitives are exported by the (rpc xdr) module. They implement the
encoding of Scheme values to XDR data types, and the decoding of binary XDR data to
Scheme values. The exact mapping between XDR data types and Scheme data types has
been discussed earlier.

xdr-encode! bv index type value [Scheme Procedure]
Encode value (a suitable Scheme value), using XDR type type, into bytevector bv at
index. Return the index where encoding ended.

bv should be an R6RS bytevector large enough to hold the XDR representation
of value according to type. To that end, users may rely on xdr-type-size (see
Section 4.2.1 [XDR Type Representations|, page 11).

Error conditions sub-classing &xdr-error may be raised during encoding. The exact
exceptions that may be raised are type-dependent and have been discussed in the
previous sections.

xdr-decode type port [Scheme Procedure]
Decode from port (a binary input port) a value of XDR type type. Return the decoded
value.

Error conditions sub-classing &xdr-error may be raised during encoding. The exact
exceptions that may be raised are type-dependent and have been discussed in the
previous sections.

4.3 Implementation of ONC RPC

This section describes facilities available for the creation of ONC RPC clients and servers,
as well as lower-level details about raw RPC messages.

4.3.1 Building an RPC Client

Basic building blocks for the creation of RPC clients are provided by the (rpc rpc) module.
The easiest way to build an RPC client is through make-synchronous-rpc-call.

make-synchronous-rpc-call program version procedure [Scheme Procedure]
arg-type result-type

Return a procedure that may be applied to a list of arguments, transaction ID (any
unsigned number representable on 32 bits), and I/O port, to make a synchronous RPC
call to the remote procedure numbered procedure in program, version version. On
success, the invocation result is eventually returned. Otherwise, an error condition is
raised. arg-type and result-type should be XDR type objects (see Section 4.2.1 [XDR
Type Representations|, page 11).

Error conditions that may be raised include those related to XDR encoding and
decoding (see Section 4.2.3 [XDR Encoding and Decoding], page 15), as well as RPC-
specific error conditions inheriting from &rpc-error (i.e., conditions that pass the

16 An ONC RPC Framework for Guile

rpc-error? predicate). These are detailed in Section 4.3.3 [ONC RPC Message
Types], page 19.

For an example, see Section 3.1.1 [Creating the Client], page 8.

It is also possible to create “one-way” calls, i.e., RPC calls that do not expect a reply
(i.e., no return value, not even void). This is useful, for instance, to implement batched
calls where clients do not wait for the server to reply (see Chapter 6 [References], page 31).
Asynchronous calls can be implemented in terms of this, too.

make-one-way-rpc-call program version procedure arg-type [Scheme Procedure]
result-type
Similar to make-synchronous-rpc-call, except that the returned procedure does
not wait for a reply.

4.3.2 Building an RPC Server

The (rpc rpc server) module provides helpful facilities for building an ONC RPC server.
In particular, it provides tools to decode RPC call messages, as well as an event loop
mechanisms that allows RPC calls to be automatically dispatched to the corresponding
Scheme handlers.

procedure-call-information call-msg [Scheme Procedure]
Return an <rpc-call> object that denotes the procedure call requested in call-msg
(the result of an (xdr-decode rpc-message port) operation). If call-msg is not an
appropriate RPC call message, an error condition is raised.

The error condition raised may be either onc-rpc-version-mismatch-error? or
rpc-invalid-call-message-error?.

The returned object can be queried using the rpc-call- procedures described below.

rpc-call-xid call [Scheme Procedure]
Return the transaction ID (“xid” for short) of call.

rpc-call-program call [Scheme Procedure]
rpc-call-version call [Scheme Procedure]
rpc-call-procedure call [Scheme Procedure]

Return the program, version or procedure number of call.

rpc-call-credentials call [Scheme Procedure]

rpc-call-verifier call [Scheme Procedure]
Return the credentials and verifier provided by the client for call. FIXME: As of
version 0.4, this information is not usable.

The following procedures allow the description of RPC “programs”. Such descriptions
can then be readily used to produced a full-blown RPC processing loop.

make-rpc-program number versions [Scheme Procedure]
Return a new object describing the RPC program identified by number and consisting
of the versions listed in versions.

Chapter 4: API Reference 17

make-rpc-program-version number procedures [Scheme Procedure]
Return a new object describing the RPC program version identified by number and
consisting of the procedures listed in procedures.

make-rpc-procedure number argument-xdr-type [Scheme Procedure]
result-xdr-type handler [one-way?]
Return a new object describing a procedure whose number is number, whose argument
type is argument-xdr-type and whose result type is result-xdr-type (see Section 4.2.1
[XDR Type Representations|, page 11). handler should be a procedure that will be
invoked upon reception of an RPC call for that procedure.

If synchronous RPC processing is used, i.e., through serve-one-stream-request,
then handler is passed the decoded argument and should return a result type that
may be encoded as result-xdr-type. If asynchronous processing is used, i.e., through
serve-one-stream-request/asynchronous, then handler is passed the decoded ar-
gument along with a continuation that must be invoked to actually return the result.

If one-way? is passed and is true, then the returned procedure is marked as “one-
way” (see Section 4.3.1 [Building an RPC Client|, page 15). For one-way procedures,
run-stream-rpc-server and similar procedures ignores the return value of handler
and don’t send any reply when procedure number is invoked.

Once a program, its versions and procedures have been defined, an RPC server for that
program (and possibly others) can be run using the following procedures.

run-stream-rpc-server sockets+rpc-programs timeout [Scheme Procedure]
close-connection-proc idle-thunk

Run a full-blown connection-oriented (i.e., SOCK_STREAM, be it PF_UNIX or PF_INET)
RPC server for the given listening sockets and RPC programs. sockets+rpc-programs
should be a list of listening socket-RPC program pairs (where “RPC programs” are
objects as returned by make-rpc-program). timeout should be a number of microsec-
onds that the loop should wait for input; when no input is available, idle-thunk is
invoked, thus at most every timeout microseconds. If close-connection-proc is a pro-
cedure, it is called when a connection is being closed is passed the corresponding
<stream-connection> object.

While an RPC server is running over a stream-oriented transport such as TCP using
run-stream-rpc-server, its procedure handlers can get information about the current
connection and client:

current-stream-connection [Scheme Procedure]
This procedure returns a <stream-connection> object describing the current TCP
connection (when within a run-stream-rpc-server invocation). This object can be
queried with the procedures described below.

stream-connection? obj [Scheme Procedure]
Return #t if obj is a <stream-connection> object.

stream-connection-port connection [Scheme Procedure]
Return the I/O port (not the TCP port) for connection.

18 An ONC RPC Framework for Guile

stream-connection-peer-address connection [Scheme Procedure]
Return the IP address of the peer/client of connection (see Section “Network Socket
Address” in The GNU Guile Reference Manual).

stream-connection-rpc-program connection [Scheme Procedure]
Return the RPC program object corresponding to connection.

For a complete RPC server example, Section 3.1.2 [Creating the Server], page 9.

The run-stream-rpc-server mechanism is limited to servers managing only RPC con-
nections, and only over stream-oriented transports. Should your server need to handle
other input sources, a more geneneral event handling mechanism is available. This works
by first creating a set of I/O managers and then passing run-input-event-1loop a list of
I/O manager-file descriptor pairs to actually handle I/O events.

make-i/o-manager exception-handler read-handler [Scheme Procedure]
Return an I/O manager. When data is available for reading, read-handler will be
called and passed a port to read from; when an exception occurs on a port, exception-
handler is called and passed the failing port.

i/o-manager? obj [Scheme Procedure]
Return #t if obj is an I/O manager.

i/o-manager-exception-handler manager [Scheme Procedure]

i/o-manager-read-handler manager [Scheme Procedure]

Return, respectively, the exception handler and the read handler of manager.

run-input-event-loop fd+manager-list timeout idle-thunk [Scheme Procedure]
Run an input event loop based on fd+manager-list, a list of pairs of input ports (or file
descriptors) and I/O managers. I/O managers are invoked are invoked and passed
the corresponding port when data becomes readable or when an exception occurs.
I/O manager handlers can:
e return #f, in which case the port and I/O manager are removed from the list of
watched ports;

e return a pair containing an input port and I/O manager, in which case this pair
is added to the list of watched ports;

e return true, in which case the list of watched ports remains unchanged.

When timeout (a number of microseconds) is reached, idle-thunk is invoked. If time-
out is #f, then an infinite timeout is assumed and idle-thunk is never run. The event
loop returns when no watched port is left.

The event loop provided by run-input-event-loop should cover a wide range of ap-
plications. However, it will turn out to be insufficient in situations where tasks must be
executed at specific times, and where the interval between consecutive executions varies
over the program’s lifetime.

Finally, a lower-level mechanism is available to handle a single incoming RPC:

serve-one-stream-request program port [Scheme Procedure]
Serve one RPC for program, reading the RPC from port (using the record-marking
protocol) and writing the reply to port. If port is closed or the end-of-file was reached,
an &rpc-connection-lost-error is raised.

Chapter 4: API Reference 19

serve-one-stream-request/asynchronous program port [Scheme Procedure]
Same as serve-one-stream-request except that the RPC is to be handled in an
asynchronous fashion.

Concretely, the procedure handler passed to make-rpc-procedure is called with two
arguments instead of one: the first one is the actual procedure argument, and the
second one is a one-argument procedure that must be invoked to return the proce-
dure’s result—in other words, procedure call processing is decoupled from procedure
call return using continuation-passing style.

4.3.3 ONC RPC Message Types

The (rpc rpc types) module provides a representation of the various XDR types defined
in the standard to represent RPC messages (see Chapter 6 [References|, page 31). We only
describe the most important ones as well as procedures from the (rpc rpc) module that
help use it.

rpc-message [Scheme Variable]
This variable contains a XDR struct type representing all possible RPC messages—
the rpc_msg struct type defined in RFC 1831. By “rpc message” we mean the header
that is transmitted before the actual procedure argument to describe the procedure
call being made.

Roughly, this header contains a transaction ID allowing clients to match call/reply
pairs, plus information describing either the call or the reply being made. Calls
essentially contain a program, version and procedure numbers. Replies, on the other
hand, can be more complex since they can describe a large class of errors.

rpc-message-type [Scheme Variable]
This variable is bound to an XDR enumeration. Its two possible values are CALL and
REPLY (both represented in Scheme using symbols), denoting a procedure call and a
reply to a procedure call, respectively.

make-rpc-message xid type args ... [Scheme Procedure]
Return an rpc-message datum. type should be either CALL or REPLY (the two val-
ues of the rpc-message-type enumeration). The arguments args are message-type-
specific. For example, a message denoting a procedure call to procedure number 5 of
version 1 of program 77 can be created as follows:

(define my-call-msg

(make-rpc-message #x123 ;; the transaction ID
CALL ;; the message type
77 1 5))

It can then be encoded in the usual way (see Section 4.2.3 [XDR Encoding and
Decoding], page 15):
(let* ((size (xdr-type-size rpc-message my-call-msg))
(bv (make-bytevector size)))
(xdr-encode! bv O rpc-message my-call-msg)
)

Likewise, a reply message denoting a successful RPC call can be produced as follows:

20 An ONC RPC Framework for Guile

(make-rpc-message xid ’REPLY ’MSG_ACCEPTED ’SUCCESS)

It is worth noting that in practice, “messages” of type rpc-message are followed by
additional data representing either the procedure call arguments (if the message is a
CALL message) or the procedure return value (if the message is a REPLY message).

assert-successful-reply rpc-msg xid [Scheme Procedure]
Return true if rpc-msg (an RPC message as returned by a previous (xdr-decode
rpc-message port) call) is a valid reply for the invocation labeled with transaction
ID xid indicating that it was accepted. If xid is #t, any reply transaction ID is
accepted and it is returned (provided the rest of the message denotes an accepted
message). On failure, an appropriate error condition is raised.

The error conditions that may be raised obey rpc-error? and rpc-call-error?.
More precisely, error conditions include the following:

rpc-program-unavailable-error?
If rpc-msg denotes the fact that the program requested by the corre-
sponding RPC call is not available.

rpc-program-mismatch-error?
If the corresponding RPC call requested a program version that is not
available. The procedures rpc-program-mismatch-error:low-version
and rpc-program-mismatch-error:high-version return, respectively,
the lowest and highest version numbers supported by the remote server.

rpc-procedure-unavailable-error?
If the corresponding RPC call requested a procedure that is not available.

rpc-garbage-arguments—-error?
If the remote server failed to decode the procedure arguments.

rpc-system-error?
If the remote server failed to allocate enough memory for argument de-
coding, for instance.

4.3.4 Record Marking Standard

The ONC RPC standard defines a record-marking protocol for stream-oriented transport
layers such as TCP whereby (1) each RPC message is sent out as a single record and (2)
where records may be split into several fragments. This allows implementations to “delimit
one message from another in order to detect and possibly recover from protocol errors” (see
Chapter 6 [References|, page 31).

This protocol is implemented by the (rpc rpc transports) module. It is automatically
used by the high-level client and server facilities, namely Section 4.3.1 [Building an RPC
Client], page 15 and Section 4.3.2 [Building an RPC Server|, page 16. The available facilities
are described below.

send-rpc-record port bv offset len [Scheme Procedure]
Send the RPC message of len octets encoded at offset offset in bv (a bytevector) to
port. This procedure sends the len octets of the record without fragmenting them.

Chapter 4: API Reference 21

make-rpc-record-sender fragment-len [Scheme Procedure]
This procedure is a generalization of send-rpc-record.

Return a procedure that sends data according to the record marking standard, chop-
ping its input bytevector into fragments of size fragment-len octets.

rpc-record-marking-input-port port [Scheme Procedure]
Return a binary input port that proxies port in order to implement decoding of the
record marking standard (RFC 1831, Section 10).

4.4 Standard RPC Programs

GNU Guile-RPC provides client-side and /or server-side of some commonly found ONC RPC
program, which are described below. Currently, this is limited to the portmapper interface,
but other interfaces (e.g., “mount”, NFSv2) may follow.

4.4.1 The Portmapper Program

The (rpc rpc portmap) module implements the widespread portmapper RPC program
defined in RFC 1833 (see Chapter 6 [References], page 31). As the name suggests, the
portmapper interface allows servers to be queried for the association between an RPC
service and the port it is listening to. It also allows clients to query the list of services
registered.

In practice, most machines run a system-wide portmap daemon on port 111 (TCP or
UDP), and it is this server that is queried for information about locally hosted RPC pro-
grams. The grpc-rpcinfo program is a portmapper client that can be used to query a
portmapper server (see Section 5.2 [Invoking grpc-rpeinfo], page 28)

Note that registering RPC programs with the portmapper is optional: it is basically
a directory mechanism that allows servers to be located quite easily, but other existing
mechanisms could be used for that purpose, e.g., decentralized service discovery (see Section
“service discovery with DNS-SD in Guile-Avahi” in Using Avahi in Guile Scheme Programs).

The module exports client-side procedures, as returned by make-synchronous-rpc-
call (see Section 4.3.1 [Building an RPC Client], page 15), for the various portmapper
procedures. They are listed below.

portmapper-null arg xid port [Scheme Procedure]
Invoke the null RPC over port, ignoring arg, and return %void.

portmapper-set arg xid port [Scheme Procedure]
Invoke the set RPC over port with argument arg. The invoked server should register
the RPC program specified by arg, where arg must be an XDR struct (i.e., a Scheme
list) containing these four elements: the RPC program number, its version number,
its protocol and its port. The protocol number should be one of IPPROTO_TCP or
IPPROTO_UDP (see Section “Network Sockets and Communication” in The GNU Guile
Reference Manual). An XDR boolean is returned, indicating whether the request
successful.

portmapper-unset arg xid port [Scheme Procedure]
Invoke the unset RPC over port with argument arg. The invoked server should
unregister the RPC program specified by arg, where arg must have the same form

22 An ONC RPC Framework for Guile

as for portmapper-set. Again, an XDR boolean is returned, indicating whether the
request was successful.

portmapper-get-port arg xid port [Scheme Procedure]
Invoke the get-port RPC over port with argument arg, which must have the same
form as previously mentioned (except that its port number is ignored). The invoked
server returns an unsigned integer indicating the port of that RPC program.

portmapper-dump arg xid port [Scheme Procedure]
Invoke the dump RPC over port, ignoring arg. The invoked server should return a list
of 4-element lists describing the registered RPC programs. Those four element list
are the same as for portmapper-set and portmapper-get, namely the RPC program
number and version, its protocol and its port.

portmapper-call-it arg xid port [Scheme Procedure]
Invoke the call-it procedure over port. Quoting RFC 1833, this procedure “allows a
client to call another remote procedure on the same machine without knowing the
remote procedure’s port number”. Concretely, it makes the portmapper invoke over
UDP the procedure of the program matching the description in arg, where arg is an
XDR struct (i.e., a Scheme list) containing an RPC program and version number,
a procedure number, and an opaque array denoting the procedure arguments (an
xdr-variable-length-opaque-array).

On success, it returns a struct consisting of the port number of the matching program
and an opaque array representing the RPC reply. On failure, it does not return.
Therefore, this synchronous call version may be inappropriate. We recommend that
you do not use it.

The portmap module also provides convenience functions to retrieve the symbolic name
associated with common RPC program numbers. The association between program num-
bers and their name is usually stored in /etc/rpc on Unix systems and it can be parsed
using the read-rpc-service-list procedure.

read-rpc-service-list port [Scheme Procedure]
Return a list of name-program pairs read from port (e.g., the /etc/rpc file), showing
the connection between an RPC program human-readable name and its program
number.

lookup-rpc-service-name service-list program [Scheme Procedure]
Lookup RPC program numbered program in service-list (a list as returned by
read-rpc-service-list) and return its human-readable name.

lookup-rpc-service-number service-list program [Scheme Procedure]
Lookup RPC program named program in service-list (a list as returned by read-rpc-
service-list) and return its RPC program number.

Chapter 4: API Reference 23

4.5 XDR/RPC Language Compiler

This section describes the compiler’s programming interface. Most of the time,
its command-line interface is all is needed; it is described in Section 5.1 [Invoking
grpc-compile], page 27. This section is intended for users who need more flexibility than is
provided by grpc-compile.

The compiler consists of a lexer, a parser and two compiler back-ends. The lexer sepa-
rates input data into valid XDR/RPC language tokens; the parser then validates the input
syntax and produces an abstract syntax tree of the input. Finally, the back-ends are re-
sponsible for actually “compiling” the input into something usable by the programmer. The
back-end used by the grpc-compile command is the code generation back-end. In addi-
tion, an experimental run-time compiler back-end is available, making it possible to compile
dynamically definitions in the XDR/RPC language at run-time; this technology paves the
way for a wide range of crazy distributed applications, the programmer’s imagination being
the only real limitation?®.

4.5.1 Parser

The parser is available under the (rpc compiler parser) module. The main procedure,
rpc-language->sexp, reads XDR/RPC language descriptions and returns the abstract
syntax tree (AST) in the form of an S-expression. The AST can be shown using the
--intermediate option of the grpc-compile command-line tool (see Section 5.1 [Invoking
grpc-compile], page 27). Below is an illustration of the mapping between the XDR/RPC
language and the S-exp representation.

const SIZE = 10;
struct foo

{
int x;
enum { NO = 0, YES =1 } y;
float z[SIZE];
};
. yields:

(define-constant "SIZE" 10)
(define-type
"foo"
(struct
(llel "intll)
("y" (enum ("NO" 0) ("YES" 1)))
("z" (fixed-length-array "float" "SIZE"))))

rpc-language->sexp port [Scheme Procedure]
Read a specification written in the XDR, Language from port and return the corre-
sponding sexp-based representation. This procedure can raise a &compiler-error
exception (see below).

The behavior of the parser can be controlled using the *parser-options* parameter object:

3 Finding useful applications leveraging the flexibility offered by the run-time compiler back-end is left as
an exercise to the reader.

24 An ONC RPC Framework for Guile

parser-options [Scheme Variable]
This SRFI-39 parameter object (http://srfi.schemers.org/srfi-39/srfi-39.
html) must be a list of symbols or the empty list. Each symbol describes an option.
For instance, allow-unsigned instructs the parser to recognize unsigned as if it were
unsigned int (see Section 5.1 [Invoking grpc-compile], page 27).

Source location information is attached to the S-expressions returned by rpc-language-
>sexp. It can be queried using the procedures below. Note that not-only top-level S-
expressions (such as define-type or define-constant expressions) can be queried, but
also sub-expressions, e.g., the enum S-expression above.

sexp-location sexp [Scheme Procedure]
Return the source location associated with sexp or #f if no source location information
is available.

location-line loc [Scheme Procedure]
location-column loc [Scheme Procedure]
location-file loc [Scheme Procedure]

Return the line number, column number or file name from location loc, an object
returned by sexp-location.

In case of parse errors or other compiler errors, a &compiler-error error condition (or
an instance of a sub-type thereof) may be raise.

&compiler-error [Scheme Variable]
The “compiler error” error condition type.

compiler-error? c [Scheme Procedure]
Return #t if ¢ is a compiler error.

compiler-error:location ¢ [Scheme Procedure]
Return the source location information associated with c, or #f if that information is
not available.

4.5.2 Code Generation Compiler Back-End

The code generation back-end is provided by the (rpc compiler) module. Given an
XDR/RPC description, it returns a list of S-expressions, each of which is a top-level Scheme
expression implementing an element of the input description. These expressions are meant
to be dumped to a Scheme file; this is what the command-line interface of the compiler does
(see Section 5.1 [Invoking grpc-compile], page 27).

Here is an example XDR/RPC description and the resulting client code, as obtained,
e.g., with grpc-compile --xdr --constants --client:

const max = 010;

struct foo

{
int X;
float y<max>;

};

http://srfi.schemers.org/srfi-39/srfi-39.html
http://srfi.schemers.org/srfi-39/srfi-39.html

Chapter 4: API Reference 25

(define max 8)
(define foo
(make-xdr-struct-type
(list xdr-integer
(make-xdr-vector-type xdr-float max))))
As can be seen here, the generated code uses the run-time support routines described
earlier (see Section 4.2 [Implementation of XDR], page 11); an optimization would consist

in generating specialized code that does not depend on the run-time support, but it is not
implemented yet.

This front-end consists of two procedures:

rpc-language->scheme-client input type-defs? [Scheme Procedure]
constant-defs?
rpc-language->scheme-server input type-defs? [Scheme Procedure]

constant-defs?
These procedures return a list of top-level Scheme expressions implementing input
for an RPC client or, respectively, a server.

input can be either an input port, a string, or an AST as returned by rpc-language-
>sexp (see Section 4.5.1 [Parser], page 23). If type-defs? is #t, then type definition
code is produced; if constant-defs? is #t, then constant definition code is produced.

Both procedures can raise error conditions having a sub-type of &compiler-error.

4.5.3 Run-Time Compiler Back-End

The run-time compiler back-end is also provided by the (rpc compiler) module. It reads
XDR/RPC definitions and returns data structures readily usable to deal with the XDR
data types or RPC programs described, at run-time. Actually, as of version 0.4, it does not
have an API to deal with RPC programs, only with XDR data types.

rpc-language->xdr-types input [Scheme Procedure]
Read XDR type definitions from input and return an alist; element of the returned
alist is a pair whose car is a string naming an XDR data type and whose cdr is an
XDR data type object (see Section 4.2.1 [XDR Type Representations], page 11). input
can be either an input port, a string, or an AST as returned by rpc-language->sexp
(see Section 4.5.1 [Parser], page 23).

This procedure can raise error conditions having a sub-type of &compiler-error.

Here is an example of two procedures that, given XDR type definitions, decode (respec-
tively encode) an object of that type:

(use-modules (rpc compiler)
(rpc xdr)
(rnrs bytevectors)
(rnrs io ports))

26 An ONC RPC Framework for Guile

(define (decode-data type-defs type-name port)
;; Read binary data from PORT as an object of type
;3 TYPE-NAME whose definition is given in TYPE-DEFS.
(let* ((types (rpc-language->xdr-types type-defs))
(type (cdr (assoc type-name types))))
(xdr-decode type port)))

(define (encode-data type-defs type-name object)
;5 Encode OBJECT as XDR data type named TYPE-NAME from
;; the XDR type definitions in TYPE-DEFS.
(let* ((types (rpc-language->xdr-types type-defs))
(type (cdr (assoc type-name types)))
(size (xdr-type-size type object))
(bv (make-bytevector size)))
(xdr-encode! bv 0 type object)
(open-bytevector-input-port bv)))
These procedures can then be used as follows:
(let ((type-defs (string-append "typedef hyper chbouib<>;"

"struct foo { "
" int x; float y; chbouib z;"
"};")

(type-name "foo")

(object (1 2.0 #(3 4 5))))

(equal? (decode-data type-defs type-name
(encode-data type-defs type-name
object))
object))

#t
Note that in this example type-defs contains two type definitions, which is why the
type-name argument is absolutely needed.

Chapter 5: Stand-Alone Tools 27

5 Stand-Alone Tools

GNU Guile-RPC comes with stand-alone tools that can be used from the command-line.

5.1 Invoking grpc-compile

The grpc-compile command provides a simple command-line interface to the XDR/RPC
language compiler (see Section 4.5 [Compiler], page 23). It reads a RPC definitions written
in the XDR/RPC language on the standard input and, depending on the options, write
Scheme code containing client, server, data type or constant definitions on the standard
output.

--help Print a summary of the command-line options and exit.

—--version
Print the version number of GNU Guile-RPC and exit.

-—xdr
-x Compile XDR type definitions.
--constants
-C Compile XDR constant definitions.
--client
-C Compile client RPC stubs.
--server
-s Compile server RPC stubs.
--strict
-S
Use strict XDR standard compliance per Chapter 6 [References]|, page 31. By
default, the compiler recognizes extensions implemented by Sun Microsystems,
Inc., and also available in the GNU C Library’s rpcgen. These extensions
include:
e support for % line comments; these are actually treated as special directives
by rpcgen but they are simply ignored by grpc-compile;
e support for the char type, equivalent to int;
e support for the unsigned type, equivalent to unsigned int;
e the ability to use struct in type specifiers;
e the ability to use string as the type specifier of a procedure parameter.
Also note that some XDR/RPC definition files (.x files) originally designed to
be used in C programs with rpcgen include C preprocessor directives. Unlike
rpcgen, which automatically invokes cpp, such input files need to be piped
through cpp -P before being fed to grpc-compile.
-—intermediate

Output the intermediate form produced by the parser (see Section 4.5.1 [Parser],
page 23).

28 An ONC RPC Framework for Guile

Code generation options can be combined. For instance, the command line below writes
data type and constant definitions as well as client stubs in a single file:

$ grpc-compile --xdr --constants --client < input.x > client-stubs.scm

The various pieces of generated code can also be stored in separate files. The following
example shows how to create one file containing constant and type definitions, another one
containing client stubs, and a third one containing server stubs. Since the two last files
depend on the first one, care must be taken to load them beforehand.

$ grpc-compile --xdr --constants < input.x > types+constants.scm
$ echo ’(load "types+constants.scm")’ > client-stubs.scm

$ grpc-compile --client < input.x >> client-stubs.scm

$ echo ’(load "types+constants.scm")’ > server-stubs.scm

$ grpc-compile --server < input.x >> server-stubs.scm

In the future, there may be additional --use-module and --define-module options to
make it easier to use Guile’s module system in generated code.

5.2 Invoking grpc-rpcinfo

This program is equivalent to the rpcinfo program available on most Unix systems and
notably provided by the GNU C Library. In is a client of the portmapper RPC program
(see Section 4.4.1 [The Portmapper Program|, page 21). Among the options supported by
rpcinfo, only a few of them are supported at this moment:

--help Print a summary of the command-line options and exit.

--version
Print the version number of GNU Guile-RPC and exit.

——dump
-p Query the portmapper and list the registered RPC services.

--delete
-d Unregister the RPC program with the given RPC program and version numbers
from the portmapper.

Note that the host where the portmapper lives can be specified as the last argument to
grpc-rpcinfo:

Query the portmapper at host ‘klimt’.

$ grpc-rpcinfo -p klimt

program vers proto port name
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper

$ grpc-rpcinfo -d 100000 2 klimt
ERROR: ‘portmapper-unset’ failed FALSE
5.3 Invoking grpc-nfs-export

Guile-RPC comes with an example NFS (Network File System) server, provided by the
grpc-nfs-export command. More precisely, it implements NFS version 2, i.e., the NFS_

Chapter 5: Stand-Alone Tools 29

PROGRAM RPC program version 2 along with the MOUNTPROG program version 1, which are
closely related (see Chapter 6 [References|, page 31). It is a TCP server.

Enough technical details. The important thing about grpc-nfs-export is this: although
it’s of little use in one’s everyday life, this NFS server is nothing less than life-changing.
It’s different from any file system you’ve seen before. It’s the ultimate debugging aid for
any good Guile hacker.

The “file hierarchy” served by grpc-nfs-export is—guess what?—Guile’s module hi-
erarchy! In other words, when mounting the file system exported by grpc-nfs-export,
the available files are bindings, while directories represent modules (see Section “The Guile
module system” in The GNU Guile Reference Manual). The module hierarchy can also be
browsed from the REPL using Guile’s nested-ref procedure. Here’s a sample session:

$./grpc-nfs-export &
$ sudo mount -t nfs -o nfsvers=2,tcp,port=2049 localhost: /nfs/

$ 1s /nfs/Y%app/modules/
guile/ guile-rpc/ guile-user/ ice-9/ r6rs/ rpc/ srfi/

$ 1s /nfs/%app/modules/rpc/rpc/portmap/%module-public-interface/

lookup-rpc-service-name Jportmapper-port
lookup-rpc-service-number Yportmapper-program-number
portmapper-call-it portmapper-set
portmapper-dump portmapper-unset
portmapper-get-port Jhportmapper-version-number
portmapper-null read-rpc-service-list

$ cat /nfs/%app/modules/rpc/xdr/xdr-decode
#<procedure xdr-decode (type port)>

$ cat /nfs/%app/modules/rpc/xdr/%xdr-endianness
big
Here is the option reference:
--help Print a summary of the command-line options and exit.

—--version
Print the version number of GNU Guile-RPC and exit.

--nfs-port=port
-p port Listen for NFS connections on port (default: 2049).
--mount-port=mount-port

-P mount-port
Listen for mount connections on mount-port (default: 6666).

--debug Produce debugging messages.

In addition, grpc-nfs-export can be passed the name of a Scheme source file, in which
case it will load that file in a separate thread while still serving NFS and mount requests.
This allows the program’s global variables to be monitored via the NFS mount.

30 An ONC RPC Framework for Guile

As of version 0.4, this toy server exhibits poor performance, notably when running 1s
(which translates into a few readdir and many lookup RPCs, the latter being costly) in
directories containing a lot of files. This is probably partly due to the use of TCP, and
partly due to other inefficiencies that we hope to fix soon.

Chapter 6: References 31

6 References

RFC 1831 R. Srinivasan et al., “RPC: Remote Procedure Call Protocol Specification Ver-
sion 2” (http://tools.ietf.org/html/rfc1831), August 1995.

RFC 4506 M. Eisler et al., “XDR: External Data Representation Standard” (http://
tools.ietf.org/html/rfc4506), May 2006.

RFC 1833 R. Srinivasan et al., “Binding Protocols for ONC RPC Version 2” (http://
tools.ietf.org/html/rfc1833), August 2005.

RFC 1094 B. Nowicki, “NFS: Network File System Protocol Specification” (http: //
tools.ietf.org/html/rfc1094), March 1989.

http://tools.ietf.org/html/rfc1831
http://tools.ietf.org/html/rfc1831
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/html/rfc1833
http://tools.ietf.org/html/rfc1833
http://tools.ietf.org/html/rfc1094
http://tools.ietf.org/html/rfc1094

Appendix A: Portability Notes 33

Appendix A Portability Notes

This appendix is about Guile-RPC’s portability. Of course, Guile-RPC can be ported to any
OS/architecture Guile runs on. What this section deals with is portability among Scheme
implementations.

Although implemented on top of GNU Guile, Guile-RPC uses mostly portable APIs

such as SRFIs (http://srfi.schemers.org/). Thus, it should be relatively easy to port
to other Scheme implementations or to systems like Snow (http://snow.iro.umontreal.
ca/). Below are a few notes on portability, listing APIs and tools Guile-RPC depends on.

Modules. Guile-RPC uses Guile’s hierarchical modules system (see Section “The Guile
module system” in The GNU Guile Reference Manual). Nevertheless, many Scheme
systems have a similar module system, e.g., Snow and Bigloo, and also R6RS. Thus, it
should be easy to translate the define-module and use-module clauses to some other
Scheme.

R6RS APIs (http://wuw.rbrs.org/). While Guile-RPC is not R6RS code, it employs
two R6RS APIs: bytevectors and related binary I/O primitives. These are provided
by the (rnrs bytevectors) and (rnrs io ports) modules of Guile-R6RS-Libs (also
included in Guile 2.x). MzScheme, Larceny, Ikarus (among others) provide these APIs.

Generalized vectors. The (rpc xdr) module uses Guile’s generalized vectors API (see
Section “Generalized Vectors” in The GNU Guile Reference Manual). This allows ap-
plications to use regular vectors, SRFI-4 homogeneous vectors, arrays, etc., to represent
XDR variable-length arrays (see Section 4.2.1 [XDR Type Representations|, page 11).
On Scheme implementations that do not support generalized vectors, regular vectors
can be used instead.

Pattern matching. The (rpc compiler) module uses Andrew K. Wright’s pattern
matcher (http://www.cs.indiana.edu/scheme-repository/code.match.html),
known as (ice-9 match) in Guile. This pattern matcher is portable and available
in many Scheme implementations; alternative, compatible pattern matchers are also
available sometimes, e.g., in MzScheme.

LALR parsing. The (rpc compiler parser) module uses Dominique Boucher’s LALR
parser generator (http://code.google.com/p/lalr-scm), known as (system base
lalr) in Guile 2.0. This package is available on most Scheme implementations and as
a “snowball”.

Lexer. The (rpc compiler lexer) module was automatically generated using Danny
Dubé’s SILex (http://www.iro.umontreal.ca/ dube/), a portable lexer generator.

Source location tracking. To preserve source location information, the XDR/RPC
parser in (rpc compiler parser) uses Guile’s “source property” API, which allows
such information to be attached to pairs (see Section “Source Properties” in The GNU
Guile Reference Manual). Behind the scenes, source properties are implemented using
a weak hash table, so it should be easy to port them to other Scheme implementations.
Testing. The test suite uses the SRFI-64 API for test suites (http://srfi.schemers.
org/srfi-64/srfi-64.html), whose reference implementation runs on most Schemes.
Networking. Guile’s own networking primitives are only used in the (rpc rpc server),
which contains a server event loop. This part of the module would need porting to the
target system, but it would be quite easy to isolate the few features it depends on.

http://srfi.schemers.org/
http://snow.iro.umontreal.ca/
http://snow.iro.umontreal.ca/
http://www.r6rs.org/
http://www.cs.indiana.edu/scheme-repository/code.match.html
http://www.cs.indiana.edu/scheme-repository/code.match.html
http://code.google.com/p/lalr-scm
http://code.google.com/p/lalr-scm
http://www.iro.umontreal.ca/~dube/
http://www.iro.umontreal.ca/~dube/
http://srfi.schemers.org/srfi-64/srfi-64.html
http://srfi.schemers.org/srfi-64/srfi-64.html

34 An ONC RPC Framework for Guile

Portability patches can be posted to the Guile-RPC mailing list where they will be
warmly welcomed!

mailto:bug-guile-rpc@gnu.org

Appendix B: GNU Free Documentation License 35

Appendix B GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

36

An ONC RPC Framework for Guile

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix B: GNU Free Documentation License 37

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

38

o

N.

0.

An ONC RPC Framework for Guile

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix B: GNU Free Documentation License 39

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

40

10.

An ONC RPC Framework for Guile

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 41

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index

Concept Index

A

abstract syntax tree oL 23

B

batched calls............ 16, 17

C

C PrePrOCESSOT . . v v vve et et et e 27
compiler back-endsl 23
compiler errors o ool 24
compiler invocation............. o oL 27

D

distributed programming............ 3

E

event loop ... 16

G

grpc-compile il 27
grpc-nfs-export........l 28
grpc-rpcinfo ... ool 28

I

I/O managerooiuiiiiiiniiaanan... 18
1 7
interface description language................... 7

M

marshalling.......... oo 3

43
N
Network File System 28
NES. 28
one-way calls ool 16, 17
P
PALSET « . 23
portability. i 33
portmap daemon. ..., 21
POItMAPPET .« .\ 21
RO6RS ..o 33
record-marking protocol 20
TECUISiVe typeso 12
rpc_msg struct type ... 19
TPCEEI ottt et 27
rpcinfo.... ... 28
self-referencing typesl 12
service diSCOVEry..........oiiiiiiiii i, 21
Sun XDR/RPC language extensions 27
T
transaction ID (xid) 8, 16, 20

X

XDR type objects i 11
XDR/RPC 1anguageovvuvuineniinienenan. 7

Function Index

Function Index

A

assert-successful-reply..................... 20

C

compiler-error:location..................... 24
compiler-error?........... ..., 24
current-stream-connection.................. 17

I

i/o-manager-exception-handler.............. 18
i/o-manager-read-handler 18
i/o-manager? ... 18

L

location-column..........oviuiiinnnnnnnnnnnn.. 24
location-file........... .o, 24
location-lineccovuuniiiiiinnneeennn.. 24
lookup-rpc-service-name..................... 22
lookup-rpc-service-number 22

M

make-i/o-manager..................ooeiiia... 18
make-one-way-rpc-call....................... 16
make-IPC—MESSAZE. . ..o oot 19
make-rpc-procedure 17
BTN o ool o afe Y= -1 N 16
make-rpc-program-version 17
make-rpc-record-sender...................... 21
make-synchronous-rpc-call 15
make-xdr-basic-typeoiiiiiiiin. 11
make-xdr-enumeration........................ 14
make-xdr-fixed-length-opaque-array........ 14
make-xdr-string........... ..o 14
make-xdr-struct-type................. 12
make-xdr-union-typecoiiiiiinn. 12
make-xdr-variable-length-opaque-array..... 14
make-xdr-vector-typecooiinnnn 12

P

portmapper-call-it 22
portmapper-dump.................iiiiiiii... 22
portmapper-get-port, 22

45
portmapper-null............coiiiiiiiiiiiiann 21
portmapper-set.............. ...l 21
portmapper-unset................. . il 21
procedure-call-information................. 16
R
read-rpc-service-list....................... 22
rpc-call-credentials........................ 16
rpc-call-error?. ... 20
rpc-call-procedure 16
rpc-call-program...................oiiiii... 16
rpc-call-verifier.............ol 16
rpc-call-version............ ..ot 16
rpc-call-xid...........oo il 16
TPC—@ITOT? . . ittt 20
rpc-garbage-arguments-error?............... 20
rpc-language->scheme-client................ 25
rpc-language->scheme-server................ 25
rpc-language-—>SeXPttt 23
rpc-language->xdr-types..................... 25
rpc-procedure-unavailable-error?.......... 20
rpc-program-mismatch-error?................ 20
rpc-program-unavailable-error?............. 20
rpc-record-marking-input-port.............. 21
rpc-system-error?...................LL 20
run-input-event-loop........................ 18
run-stream-rpCc-Server....................... 17
S
send-rpc-record........... ... il 20
serve-one-stream-request 18
serve-one-stream-request/asynchronous..... 19
sexp-location............l 24
stream-connection-peer-address............. 18
stream-connection-port............... 17
stream-connection-rpc-program.............. 18
stream-connection? 17
X
xdr-booleanol 14
xdr-decode............. ...l 15
xdr-encode!l 15
XAr-type-SiZe ...ttt 13
xdr-union-arm-typeiiiii.. .. 12

Variable Index

Variable Index

&compiler—error..........coiiiiiiiiiii... 24
*
xparser-options*............. 24

R

TPC-MESSAZE ..o oovveeeiiie e 19
IPC-MESSACE~LYPE . . e 19

47
S
SOCK_STREAMo 17
X
xdr-double........ 14
xdr-float........ccouuiiiiiiiii i 14
xdr-hyper-integer................ 13
xdr-integer 13
xdr-string..................oooooi L 15
xdr-unsigned-hyper-integer 14
xdr-unsigned-integer........................ 13
xdr-variable-length-opaque-array 15

	An ONC RPC Framework for Guile
	Introduction
	Obtaining and Installing GNU Guile-RPC
	Quick Start
	Defining Data Types
	Creating the Client
	Creating the Server

	API Reference
	Usage Notes
	Implementation of XDR
	XDR Type Representations
	XDR Standard Data Types
	XDR Encoding and Decoding

	Implementation of ONC RPC
	Building an RPC Client
	Building an RPC Server
	ONC RPC Message Types
	Record Marking Standard

	Standard RPC Programs
	The Portmapper Program

	XDR/RPC Language Compiler
	Parser
	Code Generation Compiler Back-End
	Run-Time Compiler Back-End

	Stand-Alone Tools
	Invoking grpc-compile
	Invoking grpc-rpcinfo
	Invoking grpc-nfs-export

	References
	Portability Notes
	GNU Free Documentation License
	Concept Index
	Function Index
	Variable Index

