GNU Anubis

An SMTP message submission daemon.
GNU Anubis Version 4.3
5 January 2024

Wojciech Polak and Sergey Poznyakoff

Copyright (©) 2001-2023 Wojciech Polak and Sergey Poznyakoff.

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with the Front-Cover texts being “A GNU Manual”, and with the
Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Short Contents

© 00 J O Ot = W N o=

— = =
S =

C

OVEIVIEW . . ottt e e e e 1
Glossary of Frequently Used Terms 3
Authentication. 5
Configuration.o 17
The Rule System i 29
Invoking GNU Anubis....... 47
Quick Start 49
Using the TLS/SSL Encryption, 51
Using S/MIME Signaturesc.veuiuienenen.... 53
Using Anubis to Process Incoming Mail................ ... 55
Using Mutt with Anubis........ 57
Reporting Bugs oo 59
Pixie & Dixie. . ..ot e 61
Multi-Part Message Processing. 67
GNU Free Documentation License 73

Concept Index . ..ot e 81

iii

Table of Contents

1 Overview.............. 1
2 GGlossary of Frequently Used Terms............ 3
3 Authentication................................... 5
3.1 Auth Service ..o 6
3.2 User Database. ... 6
3.3 Database URL ... 7
3.3.1 Plain text databases.............. i 8

3.3.2 Databases in GDBM format 8

3.3.3 MySQL and PostgreSQL...... ... 8

3.4 Managing the Database........... i i i 10
3.4.1 Administrators 10
3.4.1.1 Creating the Database 11

3.4.1.2 Listing Database Records 11

3.4.1.3 Adding New Recordscooviiiiiiiiii .. 12

3.4.1.4 Removing Existing Records 12

3.4.1.5 Modifying Existing Records.......................... 12

3.4.1.6 Summary of All Administrative Commands 13

34,2 U SOrS . oottt 14

4 Configuration................................... 17
4.1 AUTH SeCtiont 19
4.2 CONTROL SeCtion.ouuutiit i 20
4.2.1 Basic Settings ..ot 20
4.2.2 Output Settingscovutiiiiii i 22
4.2.3 SOCKS Proxy ...oouuiiii e 23
4.2.4 ESMTP Authentication Settings.......................... 23

4.2.5 Encryption Settings...........ooiiiiiiiiiiiiii i 25
4.2.6 Security Settingsc.iiiii i 25

4.3 TRANSLATION Sectioncoviiiiiiiiineiiiiinn... 26
4.4 GUILE SeCtionouuiiiiii e 27
5 The Rule System............................... 29
D1 ACHIONS. .o 29
5.2 Conditional Statements............ i 29
5.2.1 Concatenationsttt 31

0.3 TIIgEOTS . e e 31
5.4 Boolean Operatorsc.uueitiiee e, 32

5.5 Regular EXpressions.........coooiiiiiiiiiiiiiiiiii i 33

iv

5.6 Action Listo 34
5.6.1 Stop Action 34

5.6.2 Call Action. 35

5.6.3 Adding Headers or Textcoooeiiiiiiiiiiinnn. .. 35

5.6.4 Removing Headers...............ooo .. 35

5.6.5 Modifying Messages ..ottt 36

5.6.6 Modifying SMTP Commands 37

5.6.7 Inserting Files....... ..o 38

5.6.8 Mail Encryption....... ..o 39

5.6.9 Using an External Processor............. ...t 39
5.6.10 Quick Example. ... 40

5.7 Using Guile Actions ...t 40
5.7.1 Defining Guile Actions........... ..., 41

5.7.2 Invoking Guile Actionso, 42

5.7.3 Support for ROT-13.o 42

5.7.4 Remailers Type-I.... ... i 43

5.7.5 Entire Message Filters........... ... 44

6 Invoking GNU Anubis......................... 47
7 Quick Start................ 49
8 Using the TLS/SSL Encryption............... 51
9 Using S/MIME Signatures.................... 53

10 Using Anubis to Process Incoming Mail.... 55

11 Using Mutt with Anubis..................... 57
11.1 Configure Mutt SMTP . ..ottt 57
11.2 Using GNU mailutils as an interface to mutt.................. 57
11.3 Using msg2smtp.pl as an interface to mutt.................... 58

12 Reporting Bugs............................... 59

Appendix A Pixie & Dixie....................... 61

Appendix B Multi-Part Message Processing... 67

Appendix C GNU Free

Documentation License 73
C.1 ADDENDUM: How to use this License for your documents. ... 80

Concept Index 81

1 Overview

GNU Anubis is an SMTP message submission daemon. Its purpose is to
receive outgoing messages, optionally perform some manipulations over their
content, and to forward altered messages to the mail transport agent.

A usual mail sending scheme looks as follows: the user composes his mes-
sage using mail user agent (MUA for short). Once the message is composed,
the user sends it. While sending, the MUA connects to the mail transport
agent (MTA for short) and passes it the message for delivery. The figure
below illustrates this interaction:

fom— + o +
| MUA | ---[outmsgl---> | MTA | ... [outmsg]
o + o + |
|
\
o +
| Recipient’s |
| Mailbox |
Fommm +

As shown in this figure, outgoing message (outmsg) reaches the recipient’s
mailbox unaltered.

However, there are situations where it may be necessary to modify the
outgoing message before it reaches MTA. For example, the user might wish
to sign outgoing messages with his PGP key, because his MUA does not
support this operation.

In such cases, installing GNU Anubis between the MUA and MTA allows
the user to perform additional processing on the sent message. The figure
below illustrates this concept:

e + e + fmm e +
| MUA | ---[outmsg]l---> | Anubis | ---[modmsg]l---> | MTA |
e + B + fmmm +
|
[modmsg]
\')
o +
| Recipient’s |
| Mailbox |
e +

The outgoing message is modified by GNU Anubis, and it is the resulting
message (modmsg) that reaches the MTA.

GNU Anubis is able to perform a wide set of operations on messages,
such as modifying headers or body, encrypting or signing messages with
GPG (GNU Privacy Guard) keys, installing secure tunnels to MTA using
TLS/SSL encryption, tunneling messages through SOCKS proxies, etc.

2 GNU Anubis Manual

When the set of built-in operations is not enough, administrators can
define new ones using Guile, a GNU’s Ubiquitous Intelligent Language for
Extensions.

Apart from configurable operations, GNU Anubis always performs SMTP
session normalization, a process that ensures that the SMTP stream coming
out of Anubis complies with the RFC 2821, even if the incoming stream does
not. In particular, Anubis removes any extra whitespace appearing between
‘MAIL FROM:’ or ‘SMTP TO’ command and its argument.

Message processing is controlled by two configuration files: a system-wide
one that affects functionality of the system as a whole, and user configuration
files, which modify Anubis behaviour on a per-user basis.

2 Glossary of Frequently Used Terms

Authentication

Protocol

SMTP

Daemon

Server

Proxy

Guile

GPG

A process whereby Anubis determines authenticity of the con-
necting party, its user name and configuration settings.

A standard for information exchange. Protocol defines specific
wording and control flow for communications between two or
more programs, devices or systems.

Simple Mail Transport Protocol is a common mechanism for
exchanging mail across a network. This was described initially
in RFC 821, and subsequently extended by more documents, the
most recent one being RFC 5321.

A process that runs in the background, doing automated pro-
cessing.

A server provides information or other services for its clients.
Most network protocols are client—server based. This term often
refers to hardware, but it can also refer (and we’re using it that
way) to a particular program or process, on that machine, which
provides the service.

A program, which goes between MUA and MTA. It can be used
as a gateway to the outside world, while using a firewall. In this
case a host behind the firewall sends data to the proxy server,
which in turn forwards it to a server outside, receives its replies,
and passes them back to the internal host.

GNU’s Ubiquitous Intelligent Language for Extensions. It pro-
vides a Scheme interpreter conforming to the R5RS language
specification. GNU Anubis uses Guile as its extension language.
For more information about Guile, Section “Overview” in The
Guile Reference Manual.

GNU Privacy Guard, a tool compatible with PGP (Pretty Good
Privacy).

3 Authentication

When GNU Anubis accepts incoming connection, it first has to identify
the remote party, i.e. to determine whether it is authorised to use Anubis
resources and, if so, what configuration settings to use during the session.
We call this process authentication. The exact method of authentication
depends on Anubis operation mode. Currently there are three modes:

proxy No authentication is performed. Anubis switches to the unpriv-
ileged user (see Section 4.2.6 [user-unprivileged], page 25) and
acts as an SMTP proxy.

transparent
Anubis relies on AUTH service (identd) to authenticate users.
This is the default mode. It is compatible with versions of GNU
Anubis up to 3.6.2.

auth This mode uses SMTP AUTH mechanism to authenticate in-
coming connections. See Appendix A [Pixie-Dixie], page 61, the
original description of this mode.

Proxy mode is special in that no authentication is performed in it. The
remaining two modes require authentication. Both have their advantages
and deficiencies, which you need to weigh carefully before choosing which
one to use. They are discussed below:

Transparent (‘traditional’) mode.

Deficiencies:
1. The user must have identd installed on his machine.

2. The user must have a system account on the machine running GNU
Anubis (though the system administrator may relax this limitation by
using user name translation, see Section 4.3 [TRANSLATION Section],
page 26).

Advantages:
1. Relative simplicity. No user database is necessary.
2. Authentication is performed immediately after connection is estab-

lished.

Auth mode.

Deficiencies:
1. A user database is needed
2. MUAs of the users must be able to perform ESMTP AUTH.!

1 Tt is not a serious restriction, however. Users may install Anubis on their machines for
the sole purpose of SMTP authentication, as Pixie-Dixie suggests.

6 GNU Anubis Manual

Advantages:
1. Improved reliability.
2. Users do not have to run identd on their machines.
3. Users are not required to have accounts on the machine where Anubis
runs.
4. Users can remotely modify their configuration files.

3.1 Auth Service

Anubis session in traditional mode begins by querying auth service on the
client machine in order to obtain system name of the user that initiated the
session. Some identd servers are able to encrypt sensitive information in
their replies. Anubus supports encryption protocol introduced by pidentd
server?. If some of your clients implement encryption, you would need the
DES key (or keys) they use for that purpose. Each such key is a sequence of
1024 bytes. Store them in a file and ensure its ownership and mode prevent
dissemination of this information. Any number of keys can be stored.

Once done, inform anubis about location of this file by placing the fol-
lowing statement in the CONTROL section of your configuration file:

identd-keyfile filename

(replace filename with the actual name of the file).

3.2 User Database

A User Database is a storage system where GNU Anubis keeps user creden-
tials, i.e. data necessary for authenticating and authorizing users. The exact
way of storing these data is described further in this manual. In this section
we treat user database as an abstraction layer.

The user database consists of records. Each record keeps information
about a particular user. A record consists of four fields. A field may contain
some value, or be empty, in which case we say that it has null value.

The fields are:

SMTP AUTHID
SMTP authentication ID of the user.

AUTH PASSWORD
SMTP password.

ACCOUNT System user name.
CONFIG Path to the configuration file.

The first two fields are mandatory and must always have non-null values.
No two records in the database may have the same value of SMTP AUTHID field.

2 See https://github.com/ptrrkssn/pidentd

https://github.com/ptrrkssn/pidentd

Chapter 3: Authentication 7

When anubis is trying to authenticate a user, it first looks up in the database
a record with the value of SMTP AUTHID field matching AUTHID given by the
user. If no such entry is found, authentication fails. Otherwise, anubis goes
on and compares the password supplied by the user with that from AUTH
PASSWORD field. If they match, authentication succeeds and anubis passes
to authorization state.

In this state, it first determines the user ID (UID) to switch to. If the
ACCOUNT field is not null, its value is used as account login name. If it
is null, anubis will use privileges of the default not privileged user, speci-
fied by user-notprivileged statement in the global configuration file (see
Section 4.2.6 [Security Settings|, page 25).

The final step is to parse the user configuration file. If CONFIG field is
not null, its value is the absolute pathname of the user configuration file.
Otherwise, anubis searches for file ~/.anubisrc (where ‘*’ denotes home
directory for the system account obtained on the previous step) and if such
a file exists, loads it.

3.3 Database URL

Anubis database is identified by its URL, or Universal Resource Locator. A
URL consists of following elements (square brackets enclose optional ones):
proto://[[user[:password]@]lhost] /path[params]

where:

proto Specifies the database protocol. The protocol describes how to
access the database. In a way, it may be regarded as specify-
ing the database type. Currently, GNU Anubis supports the
following database protocols:
‘text’ A plain text file with users’ credentials.
‘gdbm’ GDBM database
‘mysql’ MySQL database
‘pgsql’ PostgreSQL database
‘postgres’ Alias for ‘pgsql’.
These protocols are described in detail below.
user The name of the user authorized to access the database.
password Password for the above user.
host Domain name or IP address of a machine running the database.

path A path to the database. The exact meaning of this element
depends on the database protocol. It is described in detail when
discussing particular protocols.

params A list of protocol-dependent parameters. Each parameter con-
sists of the parameter name, or keyword and its value separated
by a equals sign:
keyword=name

8 GNU Anubis Manual

Multiple parameters are separated by semicolons.

3.3.1 Plain text databases

A simplest database is a plain text file, with lines representing records.
Empty lines and lines beginning with ‘4’ (comments) sign are ignored. A
record consists of fields, separated by colons (‘:’, ASCII 58). If ‘:” character
occurs as a part of a field, it must be escaped by a single backslash character
(“\\, ASCII 92). Each record must contain at least two and no more than
four fields:

1. SMTP ‘AUTHID’.

2. SMTP password.

3. Account name.

4. Pathname of the user configuration file.

URL syntax

The URL syntax for this type of databases is quite simple:
text:path
where path specifies absolute file name of the database file.

3.3.2 Databases in GDBM format

The protocol value ‘gdbm’ specifies a GDBM database. For the detailed de-
scription of GDBM system Section “Introduction” in The GNU DBM Man-
ual.

Technically speaking, each GDBM record consists of a key and content.
Its key holds the value of SMTP ‘AUTHID’, whereas its content holds SMTP
password, system account name and path to user configuration file, separated
by commas. As it was with ‘text’ databases, the two last fields are optional.

The URL syntax for GDBM databases is:

gdbm: path
where path specifies absolute file name of the database file.

3.3.3 MySQL and PostgreSQL

This is the most flexible database format. GNU Anubis 4.3 supports
MySQL? and PostgreSQL* interfaces. No matter which of them you use,
the implementation details are hidden behind a single consistent Anubis in-
terface.

GNU Anubis supposes that all user data are kept in a single database
table. This table must have at least four columns for storing SMTP ‘AUTHID’,
SMTP password, system account name and path to user configuration file.

3 See http://www.mysql.com.
4 See http://wuw.postgres.org.

http://www.mysql.com
http://www.postgres.org

Chapter 3: Authentication 9

Among those, only the last two may have NULL values. There is no re-
striction on the name of the database or the authentication table, nor on
its column names. This information may be specified in URL as discussed
below.

URL syntax

proto://[[user[:password] @] host/] dbname [params]

Proto describes the database type to use. Use ‘mysql’ for MySQL data-
bases and ‘pgsql’ or ‘postgres’ for PostgreSQL databases.

Optional user and password specify authentication credentials for access-
ing the database.

Host sets the domain name or IP address of the machine running the
database. It may be omitted if the database resides on ‘localhost’.

The database name is specified by the dbname element.

Further details needed for connecting to the database are given by URL
parameters. All of them have reasonable default values, so you’ll have to
specify only those parameters that differ from the default. The following
parameters are defined:

port=number
Specifies port number the database server is listening on. If it
is not given, the behavior depends on the value of the socket
parameter (see below). If socket is not present, the program
will use the default port number for the given protocol (i.e. 3306
for ‘mysql’ and 5432 for ‘pgsql’.

socket=string
Specifies the UNIX file name of the socket to connect to. This
parameter cannot be used together with port (see above).

bufsize=number
Sets length of the buffer for storing SQL queries. Default is 1024
bytes.

table=string
Specifies name of the database table with the authentication
data. Default is ‘users’.

authid=string
Specifies the name of a column in table which holds ‘AUTHID’
value. Default is ‘authid’.

passwd=string
Specifies the name of a column in table which holds the user
password. Default is ‘passwd’.

10 GNU Anubis Manual

account=string
Specifies the name of a column in table which holds the name
of system account to be used for this ‘AUTHID’. Default is
‘account’.

rcfile=string
Specifies the name of a column in table which holds the path
to the user’s configuration file. Default is ‘rcfile’.

When using a MySQL database (‘mysql://’), database parameters and
access credentials are first read from the file /etc/my.cnf, if it exists. This
file called option file in ‘MySQL’ parlance (see Section “option-files” in MySQL
Manual) is organized in groups, each group beginning with the group name
in square brackets on a separate line. Within a group, each non-empty line
consists of a MySQL option name, optionally followed by an equals sign and
the value. By default, settings from the group named ‘anubis’ are read.

Two additional parameters are provided to fine-tune this behavior:

options-file=file
Read options from file instead of /etc/my.cnf. An empty value
(‘options-file=’), disables using the options file.

options—-group=name
Set the name of the group in the MySQL configuration file, from
which to read configuration options.

3.4 Managing the Database

Managing the user database is a complex task, which looks differently from
administrator’s and user’s point of view. Administrators have all privileges
on the database, they can add new records and delete or modify existing
ones. Users, of course, do not have such ample rights. The only thing a user
is able to do is to maintain his own record in the database, provided that he
already has one.

3.4.1 Administrators

All administrative tasks are done via the anubisadm command — a multi-
purpose tool for Anubis administrators.

The command usage syntax is:

anubisadm command [options] database-url

where command specifies the operation to be performed on the database, op-
tions give additional operation-specific parameters, and database-url speci-
fies the database to operate upon.

All administrative tasks can be subdivided into the following five cate-
gories:

e Creating the Database
e Listing Database Records

Chapter 3: Authentication 11

e Adding New Records
e Removing Existing Records

e Modifying Existing Records

3.4.1.1 Creating the Database

To create a database, use anubisadm --create (or anubisadm -c).
Anubisadm will read database entries from the standard input and write
them to the database. The standard input is supposed to be formatted as a
text database (see Section 3.3.1 [text], page 8).

For example, to create a GDBM database from plain text file userlist,
use the following command
anubisadm --create gdbm:/etc/anubis.db < userlist
Similarly, to create an initially empty database, type
anubisadm --create gdbm:/etc/anubis.db < /dev/null
Notice, that if you use SQL database format, —-create command does
not imply creating the database structure! So, before running
anubisadm --create mysql://localhost/dbname < userlist
make sure you create the underlying database structure (including granting

privileges to the anubis user), via the usual procedure. Please refer to
corresponding database manual for the detailed instructions on this.

It is sometimes necessary to convert an existing user database from one
format (protocol) to another. For example, suppose you have been run-
ning GDBM database (text:/etc/anubis.db) for some time, but now it
has grown so big that you decided to switch to PostgreSQL database to
improve performance. To do so, first create the database using postgres
utilities. Then run

anubisadm --1list text:/etc/anubis.db | \
anubisadm --create pgsql://localhost/dbname

That’s all there is to it!

3.4.1.2 Listing Database Records

The --1ist (or -1) option lists the existing database:
anubisadm --list gdbm:/etc/anubis.db
By default it displays all records from the database.

Among its other uses, such invocation is handy for converting user data-
base to another format (see Section 3.4.1.1 [Create], page 11).

If you wish to list only a particular record, specify the AUTHID using
--authid (-i) option. For example, to list the record for AUTHID ‘test’,
type:

example$ anubisadm --list --authid test gdbm:/etc/anubis.db

12 GNU Anubis Manual

3.4.1.3 Adding New Records

To add a new record use the --add (-a) option. Additional data are specified
via the following options:
-i string
--authid=string
Specify the user SMTP AUTHID.

-p string
--password=string
Specify the user password.

-u string
--user=string
Specify the system user name for this AUTHID.

-f string
--rcfile=string
Specify configuration file to be used for this user.

For example, the following command adds a record with SMTP AUTHID
‘test’, password ‘guessme’ and maps it to the system account ‘gray’:

anubisadm --add --authid test --password guessme \
—--user gray gdbm:/etc/anubis.db

3.4.1.4 Removing Existing Records

Removing a record is quite straightforward: use the —-remove (-r) option
and supply the AUTHID to delete via the ——authid option. For example, to
remove the record created in the previous subsection, run:

anubisadm --remove --authid test gdbm:/etc/anubis.db

3.4.1.5 Modifying Existing Records

To modify an existing record use the --modify (-m) option. The record is
identified via the ——authid option. The following options supply the changed
values:

-p string
--password=string
Specify new user password.

-u string
--user=string
Specify new system user name for this AUTHID.

-f string
--rcfile=string
Specify the user’s configuration file.
For example, the following command changes the name of configuration

file for the user ‘smith’:
anubisadm --authid smith \

Chapter 3: Authentication 13

—--rcfile=/var/spool/anubis/common gdbm:/etc/anubis.db

3.4.1.6 Summary of All Administrative Commands

Usage
anubisadm command [options] database-url
Commands:
-C
--create Create the database.
-1
--list List the contents of an existing database.
-a
--add Add a new record.
-m

--modify Modify an existing record.
-r
--remove Remove an existing record.

--version
Display program version number and exit.

--help Display short usage summary and exit.
Options:

-i string

--authid=string
Specify the authid to operate upon. This option is manda-
tory for --add, --modify and --remove commands. It may
also be used with --1ist command.

-p string

-—-password=string
Specify the password for the authid. This option is manda-
tory for --add, --modify and --remove commands.

-u string

--user=string
Specify the system user name corresponding to the given au-
thid. It may be used with --add, -—-modify, and --remove
commands.

-f string

--rcfile=string
Specify the rc file to be used for this authid. The option may
be used with --add, --modify, and --remove commands.

14 GNU Anubis Manual

3.4.2 Users

Users maintain their database records via the anubisusr command. This
command is built if anubis is configured with TLS support.

We suggest invoking anubisusr from your ~/.profile, which will make

sure that your configuration file is up to date when you log in.’.

Usage

anubisusr [options] [smtp-urll
where smtp-url is a URL of your GNU Anubis server. Notice that if it lacks
user name and password, then anubisusr will first try to retrieve them from
your ~/.netrc file (see Section “netrc” in netrc manual page), and if not
found, it will prompt you to supply them.

Options

-m mech

—--mechanism mech
Use the SASL mechanism mech. Give this option several times
to set a list of allowed mechanisms.

--file=file
-f file Sets the user configuration file name (default is .anubisrc).

--netrc+file

-n file Sets the name of the automatic login configuration file (default
is .netrc).

-v

--verbose
Verbose output. Multiple options increase verbosity. Maximum
verbosity level is 3.

Options controlling encryption:

--disable-tls
-d Disable the use of TLS encryption.

--tls-cafile=file
-C file Sets the name of certificate authority file to use when verifying
the server certificate.

--tls-priorities=1list
Sets cipher suite preferences to use. The list argument may
contain a single initial keyword or be a colon-separated list of
TLS keywords. The description of TLS keywords is well beyond
the scope of this document. Please refer to Section “Priority
Strings” in GnuTLS Manual, for a detailed discussion.

5 Make sure to run anubisusr in background, so it does not slow down your normal
login sequence.

Chapter 3: Authentication

Default priority list is ‘NORMAL’.
Informational options:

—--version

Display program version number and exit.

--help Display short usage summary and exit.

15

17

4 Configuration

The behavior of GNU Anubis is controlled by two configuration files. The
system configuration file, /etc/anubisrc, supplies system-wide settings that
affect all users. This file is usually owned by root. The user configuration
file specifies what GNU Anubis should do for a particular user. By default it
is located in ~/.anubisrc. This location can be changed if anubis operates
in auth mode. The permissions of a user configuration file must be set to
0600 (u=rw,g=,0=), otherwise GNU Anubis won’t accept the file.

Lexical Structure

Both configuration files use simple line-oriented syntax. Each line introduces
a single statement. A statement consists of words, each word being defined
as a contiguous sequence of non-whitespace symbols. The word may be
composed of alphanumeric characters and any of the following punctuation
symbols: ‘_’, .7, ¢/’, ‘*=>. Any arbitrary sequence of characters enclosed in a
pair of double quotes is also recognized as a word. Such a sequence is called

quoted string.

Quoted strings follow the same syntax rules as in the C language. A
backslash character ‘\’ alters the meaning of the character following it. This
special construct is called escape sequence. When processing an escape se-
quence, Anubis removes it from the string and replaces it with a single
character as described in the following table:

Sequence Replaced with

\a Audible bell character (ASCII 7)

\b Backspace character (ASCII 8)

\e Escape (ASCII (ASCII 27)

\f Form-feed character (ASCII 12)

\n Newline character (ASCII 10)

\r Carriage return character (ASCII
13)

\t Horizontal tabulation character
(ASCII 9)

\v Vertical ~ tabulation character
(ASCII 11)

Table 4.1: Backslash escapes

A backslash followed by any character not listed above is replaced by the
character alone. This can be used, in particular, for inserting ‘"’ character
within a string, as in the example below:

"This string contains \"quoted string\"."

Similarly, a backslash followed by a newline is replaced by the newline

itself. Thus, the following two strings are equivalent:

"This string is split\nover two lines"

18 GNU Anubis Manual

"This string is split)\
over two lines"
The familiar shell here document syntax can be used to produce a word
containing several lines of text. The syntax is:
<<[-]delimiter
text
delimiter
If “here document” starts with ‘<<-’, then all leading tab characters are
stripped from input lines and the line containing delimiter. This allows to
indent here-document in a natural fashion.
To summarize all the above, let’s consider an example:

first-word "second word" <<-EOT
Third word
containing several
lines of text
EOT
This line contains three words: ‘first-word’, ‘second word’ and the third
one composed of the three lines between the ‘EOT’ markers.

If a statement is very long, it may be split among several lines of text. To
do so, end each line with a backslash (‘\’), immediately before the newline,
as in:

a very long statement\
occupying several lines\
of text

A ‘# in a line starts a comment. The ‘# character and the rest of the
line following it are ignored. Comments may appear anywhere in the config-
uration file, except within a command line or a “here-document” construct.
A line containing just a comment (with optional whitespace before it) is
effectively blank, and is ignored. For example:

This is a comment

if header[Subject] :re "No.*" # This is also a comment
guile-process action-name This # is not a comment!!!

fi

Logical Structure

Statements in a configuration file are grouped into sections. Each section
has its name. A section begins with one of the following constructs:

BEGIN name
—---BEGIN name---

and ends with one of the following constructs:
END
---END---
Notice, that both ‘BEGIN’ and ‘END’ must be uppercase. When using the
second form, any amount of whitespace is allowed between the three dashes
and the word.

Chapter 4: Configuration 19

Sections cannot be nested.

There are five predefined sections, whose names are in uppercase. The
user may define his own sections, which may then be referred to from the
RULE section as subroutines (see Section 5.6.2 [Call Action], page 35).

The predefined section names are:

AUTH Defines authentication mechanisms.

CONTROL
This section specifies the basic GNU Anubis behavior. Its pres-
ence is required in the system configuration file. It may be used
in the user configuration file to override the system-wide set-
tings.

TRANSLATION
This section specifies a translation map for mapping remote user
names to local ones. It may be used only in the system-wide
configuration file.

GUILE Configures the Guile interpreter. This section is allowed in both
configuration files.

RULE Defines rules that for altering the message contents.

4.1 AUTH Section

The AUTH session controls various aspects of authentication mode.

smtp-greeting-message text [Option]
Configures the greeting message issued by GNU Anubis upon accepting
SMTP connection.

smtp-help-message help-text [Option]
Defines the message issued in response to SMTP HELP command. Help-
text is a list of strings. Each string from the list will be displayed on a
separate response line.

sasl-password-db url [Option]
Sets URL of the user database (see Section 3.2 [User Database|, page 6).

sasl-allowed-mech mech-list [Option]
Defines the list of allowed authentication methods.

sasl-service name [Option]
Sets the SASL service name. It is used, among others, with GSSAPI
authentication method. Default is ‘anubis’.

sasl-hostname name [Option]
Sets the SASL hostname. By default, the server determines it automat-
ically. If it happens to make a wrong guess, you can fix it using this
directive.

20 GNU Anubis Manual

sasl-realm name [Option]
Sets the SASL realm. By default, the local domain is used as SASL realm
(see Section 4.2.1 [Basic Settings]|, page 20).

4.2 CONTROL Section

The ‘CONTROL’ section defines basic GNU Anubis behavior. If used in the
system-wide configuration file, it applies to all users in the system. Each
user can have a ‘CONTROL’ section in his configuration file, to customize his
personal settings. Of course, not all options can be set or changed by the
user. Some options can only be set in the system configuration file, and
some only in the user configuration file. By default, options specified in the
user configuration file have a higher priority than those specified in system
configuration file.

All option names are case insensitive, so that bind or BIND or BiNd all
refer to the same option.

4.2.1 Basic Settings

bind [host:]port [Option]
Specify the TCP port on which GNU Anubis listens for connections. The
default host value is ‘INADDR_ANY’, which means that anyone can connect
to GNU Anubis. The default port number is 24 (private mail system).
This option is available only in the system configuration file.
For example, to bind GNU Anubis to port 25 (SMTP) and limit its clients
only to those from ‘localhost’, set the following in your system config-
uration file:

bind localhost:25

remote-mta host|:port] [Option]
Specify a host name or IP address of the remote SMTP. GNU Anubis will
forward mails to that server. The default port number is 25. This option
is available in both configuration files.

local-mta file-name [args] [Option]
Execute a local SMTP server, which works on standard input and output
(inetd-type program). For example:
local-mta /usr/sbin/sendmail -bs
The ‘CONTROL’ section must contain either local-mta or remote-mta, but
not both.

mode mode-name [Option]
Selects Anubis operation mode. Allowed values for mode-name are:

proxy

transparent
auth

Chapter 4: Configuration 21

See Chapter 3 [Authentication], page 5, for the detailed discussion of
GNU Anubis operation modes.

read-entire-body yes-or-no [Option]
Normally, when processing a multi-part message with external filter (see
Section 5.6.9 [External Processor], page 39), Anubis feeds only the first
part to the filter. The rest of the message is copied verbatim. To alter
this behavior so that your external program sees the entire message body,
set read-entire-body yes in your control section.

identd-keyfile filename [Option]
Sets the file name of the file that contains DES keys to use when decoding
responses from the auth (ident) server. This file is used if auth server
encrypts its responses. See Section 3.1 [Auth Service|, page 6, for details.

incoming-mail-rule string [Option]
Declares the name of command section for incoming mail. Default is
‘INCOMING’. This option is available only for system configuration file. See
Chapter 10 [MDA Mode], page 55, for detailed description of incoming
mail processing.

outgoing-mail-rule string [Option]
Declares the name of command section for outgoing mail. Default is
‘RULE’. This option is available only for system configuration file.

smtp-command-rule string [Option]
Declares the name of command section for rewriting SMTP commands.
Default is ‘SMTP’. This option is available only for system configuration
file. See Section 5.6.6 [Modifying SMTP Commands], page 37.

log-tag string [Option]
Tag syslog messages with string. Default is ‘anubis’.

log-facility string [Option]
Use syslog facility string for logging. Valid argument values are: ‘user’,
‘daemon’, ‘auth’, ‘authpriv’, ‘mail’, ‘cron’, ‘localQ’ through ‘local?’
(all names case-insensitive, optionally prefixed by ‘log_’), or a decimal
facility number. Default is ‘mail’.

local-domain string [Option]
Set local domain name. By default, the domain name is defined as the
part of the local host name following the first dot.

Local domain name is used as SASL realm, unless overridden by
‘sasl-realm’ statement (see Section 4.1 [AUTH Section], page 19).

use-pam bool [Option]
Enable the Pluggable Authentication Module interface. If set to yes,
anubis will uses PAM for accounting and session management (service
name ‘anubis’).
The default is yes if PAM support is compiled in.

22 GNU Anubis Manual

4.2.2 Output Settings

termlevel level [Option]
Defines logging verbosity level. Allowed values are:
normal Only errors are logged. This is the default level.
verbose Produce more diagnostic output.
debug Produce debugging output.
silent Do not log anything.

This command is allowed only in the system configuration file.

logfile file-name [Option]
This command sets the name of additional log file. GNU Anubis logs
there messages about user’s SMTP session, as defined by the ‘loglevel’
statement (see below). For example:
logfile "anubis.log"
This will direct additional logging to the ~/anubis.log file in the user’s
home directory.

loglevel level [Option]
This option defines verbosity level for the additional log file. It may be
used only in user configuration file. Allowed values for level are:

none
fails Log only failure messages.
all Log all relevant messages.
tracefile yes-or-no [Option]
tracefile file-name [Option]

This option instructs anubis to log the execution of tests and actions
from the RULE sections. This is useful for debugging configuration files.
When this option is used in the system-wide configuration file, only
boolean argument is allowed. Using ‘tracefile yes’ enables logging of
actions and tests to the default syslog channel. Using ‘tracefile no’
disables it.

When used in the user configuration file, a filename is allowed as an
argument to this option. This allows you to explicitly specify to which file
the tracing output should go. Otherwise, using ‘tracefile yes’ enables
logging to the same file as ‘logfile’ (if possible).

HANG delay [Option]
Do not use this option, unless you are developing or debugging Anubis!
This option instructs each child process to hang for the given number
of seconds. Before hanging, the process issues the following diagnostic
message:

Child process suspended for delay seconds

Chapter 4: Configuration 23

This option is useful for Anubis developers who wish to attach to a child
process with debugger. After attaching, set the variable _anubis_hang to
zero to continue processing. You may wish to add the following statement
to your .gdbinit file:

set variable _anubis_hang=0

4.2.3 SOCKS Proxy

socks-proxy host|:port] [Option]
Enables tunneling incoming connections through a SOCKS proxy server,
specified as an argument host. The default value for port is 1080, which
is a common port number for SOCKS proxies.

socks-v4 yes-or-no [Option]
Use SOCKS protocol version 4. By default it is turned off, and version 5
of the SOCKS protocol is used.

socks—auth username:password [Option]
Sets user name and password for the SOCKS proxy server.

4.2.4 ESMTP Authentication Settings

The following options set authentication credentials for ESMTP authentica-
tion. They are useful, for example, if your MTA requires such an authenti-
cation, but your MUA does not support it.

You can also use these statements in a ‘SMTP’ section. See Section 5.6.6
[Modifying SMTP Commands]|, page 37, for a detailed description of this
feature.

esmtp-allowed-mech mech-list [Option]

Defines the list of allowed authentication mechanisms. Mech-list is a list
of valid authentication mechanism names separated by whitespace.
Anubis selects the authentication method using the following algorithm:
MTA presents a list of authentication methods it supports. For each ele-
ment in mech-list, Anubis tests whether it is available in the list presented
by MTA. If found, this method is selected. For example, suppose that
the MTA reports the following supported mechanisms:

PLAIN LOGIN CRAM-MD5 ANONYMOUS
and in your configuration file you have:

esmtp-allowed-mech DIGEST-MD5 CRAM-MD5 LOGIN
Then, Anubis will select ‘CRAM-MD5’.

esmtp-require-encryption mech-1list [Option]

Declares the list of mechanisms that can be used only over a TLS en-
crypted channel. By default Anubis uses
esmtp-require-encryption LOGIN PLAIN

This prevents sending user password over an unencrypted connection.

24 GNU Anubis Manual

esmtp-auth-delayed yes-or-no [Option]
By default, ESMTP authentication is attempted as early as possible,
normally while handling the client ‘EHLO’ command.
When this statement is set to ‘yes’, authentication is delayed until the
client issued the ‘MAIL’ command. This will allow anubis to select au-
thentication credentials depending on the sender email. For a detailed de-
scription of this feature, see Section 5.6.6 [Modifying SMTP Commands],
page 37.

esmtp-auth-id authentication-id [Option]
Sets authentication ID (user name).

esmtp-authz-id authorization-id [Option]
Sets authorization ID (user name).

esmtp-password password [Option]
Sets ESTMP AUTH password.

esmtp-auth username:password [Option]
This is a shortcut to set both authentication and authorization IDs and
the password. It is equivalent to
esmtp-auth-id username

esmtp-authz-id username
esmtp-password password

The following options specify authentication credentials for GSSAPI,
DIGEST-MD5 and KERBEROS_V5 authentication mechanisms:

esmtp-service service-name [Option]
Sets the name of GSSAPI service.

esmtp-hostname hostname [Option]
Sets hostname of the machine.

esmtp-generic-service servise-name [Option]
Sets generic service name.

esmtp-passcode passcode [Option]
Sets passcode.

esmtp-realm realm-name [Option]
Sets GSSAPI realm.

The following option is useful with the ‘ANONYMOUS’ authentication mech-
anism:

esmtp-anonymous-token token [Option]
Sets the token to be used with the ‘ANONYMOUS’ authentication mechanism

Chapter 4: Configuration 25

4.2.5 Encryption Settings

ssl yes-or-no [Option]
Enable or disable the TLS/SSL encryption between the MUA and the MTA.
The default is ‘no’, but using the TLS/SSL encryption is recommended.
You should also set your private key and certificate using the ‘ssl-key’
and ‘ssl-cert’ keywords (defined below).

See Chapter 8 [TLS/SSL], page 51, for details.

ssl-oneway yes-or-no [Option]
Enable the ONEWAY encryption. Set ssl-oneway yes, if you want to
use the TLS/SSL, but your MUA doesn’t support ESMTP TLS/SSL. Using
this option does not require setting the ‘ssl-key’ and ‘ssl-cert’ options.

ssl-priorities list [Option]
Sets cipher suite preferences to use. The list argument is either a single
initial keyword or a colon-separated list of TLS keywords. The description
of TLS keywords is well beyond the scope of this document. Please refer to
Section “Priority Strings” in GnuTLS Manual, for a detailed discussion.

The default priority list is ‘NORMAL’.

ssl-cert file-name [Option]
Specify the certificate for the TLS/SSL encryption.
Default for file-name is anubis.pem.

ssl-key file-name [Option]
Set the private key for the TLS/SSL encryption.
The default file-name is anubis.pem.

ssl-cafile file-name [Option]
Specify CA certificate file (supported only by GnuTLS).

4.2.6 Security Settings

The following options control various security settings.

drop-unknown-user yes-or-no [Option]
If this option is set to ‘yes’, anubis drops sessions which failed verification
by the IDENT service.
This option is in effect only in ‘transparent’ mode.
Default is ‘no’.

user-notprivileged username [Option]
Defines the unprivileged user, i.e. the user with whose privileges anubis
runs most of the time. This option is available only in the system config-
uration file. For example:
user-notprivileged "anubis"
Caution: This wuser must exist in the system user database
(/etc/passwd).

26 GNU Anubis Manual

rule-priority value [Option]
This statement defines the order of execution of the system and user RULE
sections (See Chapter 5 [Rule System], page 29, for a detailed description).
It is available only in system configuration file.

Allowed values are:
system First execute the system section, then the user one.
user First execute the user section, then the system one.

system-only
Execute only the system RULE section.

user-only
Execute only the user RULE section.

control-priority value [Option]
Sets the order of processing CONTROL sections. This option is available
only in system configuration file.

Allowed values are:

system The system CONTROL section is processed first. Notice, that
this means that the user may override the system settings in
his configuration file. This is the default setting.

user The user CONTROL section is processed first. Thus, the system-
wide settings always override users’ private settings.

4.3 TRANSLATION Section

The ‘TRANSLATION’ section specifies how to translate remote or local user
names, or host names or addresses, to local user names. The ‘TRANSLATION’
section is available only in the system configuration file. The syntax is:

---BEGIN TRANSLATION---
translate [user@]address into username

---END---
address means host name or IP address. You can also specify ‘0.0.0.0’,
and it means any address (‘INADDR_ANY’).

For example:
BEGIN TRANSLATION
translate jack@example.net into john
END
This rule will allows the remote user ‘jack’ at ‘example.net’ to use the
configuration file of the local user ‘john’.
In the contrast, this statement:
translate example.net into john
means that all users at ‘example.net’ are allowed to use the local john’s
configuration file.

Chapter 4: Configuration 27

4.4 GUILE Section

guile-output file [Command]|
Specifies the name of the file to bind to the Scheme standard error and
output ports.
By default both ports are redirected to syslog. The standard error
port uses the ‘err’ priority, and the standard output port writes to the
‘warning’ priority.
This option has no effect if GNU Anubis is started with either
--foreground or —-stdio command line option.

guile-debug yes-or-no [Command]
When set to ‘yes’, enables Guile stack traces and debugging output.

guile-load-path-append path [Command]|
Appends the given path to the list of Guile load paths (see Section “Build
Config” in The Guile Reference Manual).

guile-load-program file [Command]|
Reads the given Scheme program.

29

5 The Rule System

The rule system is a core part of GNU Anubis. It can be regarded as a
program that is executed for every outgoing message.
Throughout this chapter, when showing syntax definitions, their optional
parts will be enclosed in a pair of square brackets, e.g.:
keyword [optional-part] mandatory-part
When the square braces are required symbols, they will be marked as such,
e.g.:
remove ‘[’key‘]’
The rule system is defined in the RULE section. The statements within
this section are executed sequentially. Each statement is either an action or
a conditional statement.

5.1 Actions

An action is a statement defining an operation over the message. Syntacti-
cally, each action is

command [=] right-hand-side
Where command specifies the operation and right-hand-side specifies its
arguments. The equal sign is optional.

5.2 Conditional Statements

A conditional statement defines control flow within the section. It allows to
execute arbitrary actions depending on whether a certain condition is met.
The conditional statement in its simplest form is:

if condition

action-list-1
fi
If condition evaluates to true, then the list of statements action-list-1 is

executed.

A simple condition has the following syntax:
part [sep] [op] [pattern-match-flags] regex
(square brackets denoting optional parts). Its parts are:

part Specifies which part of the input should be considered when
evaluating the condition. It is either ‘command’, meaning the
text of the SMTP command issued while sending the message,
or ‘header’, meaning the value of an RFC822 header. Either
of the two may be followed by the name of the corresponding
command or header enclosed in square brackets. If this part is
missing, all command or headers will be searched.

sep Optional concatenation separator. See Section 5.2.1 [Concate-
nations|, page 31, for its meaning.

30 GNU Anubis Manual

op Either ‘=", meaning “match”, or ‘!=’, meaning “does not match”.
Missing op is equivalent to ‘=’.

pattern-match-flags
Optional pattern-match-flags alter the pattern matching type
used in subsequent conditional expression. It will be described in
detail in the section Section 5.5 [Regular Expressions|, page 33.

regex Regular expression enclosed in double quotes.

The condition yields true if regex matches the part (if op is ‘=’), or does
not match it (if op is ‘!=").
For example:
if header [Subject] "~ *Re:"

fi

The actions represented by ... will be executed only if the ‘Subject:’
header of the message starts with ‘Re:’ optionally preceded by any amount
of whitespace.

A more elaborate form of the conditional allows you to choose among the
two different action sets depending on a given condition. The syntax is:
if condition
action-list-1
else
action-list-2
fi
Here, action-list-1 is executed if the condition is met. Otherwise, action-
list-2 is executed.

Note, that both action-list-1 and action-list-2 can in turn contain condi-
tionals, so that the conditional statements may be nested. This allows for
creating very sophisticated rule sets. As an example, consider the following
statement:

if [List-Id] :re ".*<anubis-commit@gnu.org>"
modify [Subject] "[Anubis Commit Notice] &"
else
if [List-Id] :re ".*<bug-anubis@gnu.org>"
modify [Subject] "[Anubis Bug Notice] &"
else
add [X-Passed] "Subject checking"
fi
fi

The effect of this statement is: depending on the value of List-Id
header, prepend the Subject header with an identification string, or add
an X-Passed header if no known List-Id was found.

To simplify writing such nested conditional statements, the ‘elif’ key-
word is provided:

if condition-1
action-list-1

Chapter 5: The Rule System 31

elif condition-2
action-list-2
else
action-1ist-3
fi
This statement is equivalent to:
if condition
action-list-1
else
if condition-2
action-list-2
else
action-list-3
fi
fi
Any number of ‘elif’ branches may appear in a conditional statement,
the only requirement being that they appear before the ‘else’ statement, if
it is used.

5.2.1 Concatenations

It is important to understand that conditional expressions choose the first
match. To illustrate this, lets suppose you wish to store all recipient emails
from the envelope in the ‘X-Also-Delivered-To’ header. A naive way to
do so is:

if command [rcpt to:] = "(.*)"

add header [X-Also-Delivered-To] "\1"
fi
However, this will store only the very first RCPT TO value, so you will not

achieve your goal.

To help you in this case, anubis offers a concatenation operator, whose
effect is to concatenate the values of all requested keys prior to matching
them against the regular expression. Syntactically, the concatenation oper-
ator is a string enclosed in parentheses, placed right after the key part of a
condition. This string is used as a separator when concatenating values. For
example:

if command [rcpt to:] (",") = "(.x)"
add header [X-Also-Delivered-To] "\1"
fi

This fragment will first create a string containing all RCPT TO addresses,
separated by commas, and then match it against the regular expression on
the right hand side. Since this expression matches any string, the ‘\1’ will
contain a comma-separated list of addresses.

5.3 Triggers

Triggers are conditional statements that use the value of the ‘Subject’
header to alter the control flow. Syntactically, a trigger is:

32 GNU Anubis Manual

trigger [flags] pattern
action-list
done
Here, pattern is the pattern against which the ‘Subject’ header is checked,
flags are optional flags controlling the type of regular expression used (see
Section 5.5 [Regular Expressions], page 33). For backward compatibility, the
keyword rule may be used instead of trigger.

The trigger acts as follows: First, the value of the ‘Subject’ header is
matched against the pattern ‘@@’ pattern. If it matches, then the matched
part is removed from the ‘Subject’, and the action-list is executed.

Basically, putting aside the possibility to use different flavors of regular
expressions, a trigger is equivalent to the following statement:
if header[Subject] :posix "(.*)@@pattern"
modify header [Subject] "\1"
action-list
fi
Thus, adding the ‘@@rule-name’ code to the ‘Subject’ header of your
message, triggers a rule named rule-name, specified in a user configuration
file. For example:
BEGIN RULE
trigger :basic "“gpg-encrypt-john"

gpg-encrypt "john’s_gpg_key"
done

END
Now, if you send an email with the subject ending on ‘@@gpg-encrypt-john’
(e.g.: ‘Subject: hello John!@@gpg-encrypt-john’), it will be encrypted
with John’s public key. The trigger will remove the ‘@@’ and the characters
following it, so John will only receive a message with ‘hello John!’ as a
subject.

Another example shows an even more dynamic trigger, that is using a
substitution and back-references:
---BEGIN RULE---
trigger :extended "“gpg-encrypt:(.*)"
gpg-encrypt "\1"
add [X-GPG-Comment] "Encrypted for \1"
done
--—END-—-
To encrypt a message to user e.g. ‘John’, simply send an email with a subject
‘hello John!@@gpg-encrypt:john’s_gpg_key’. This way, you decide at a
run time which public key should be used, without creating separate rules
for each user.

5.4 Boolean Operators

The following table lists the boolean operators that can be used in Anubis
conditional expressions in the order of increasing binding strength:

Chapter 5: The Rule System 33

° ‘OR.’
e ‘AND’
e ‘NOT’

As an example, let’s consider the following statement:
if header[X-Mailer] "mutt" or header[X-Mailer] "mail" \
and not header[Content-Type] "“multipart/mixed;.*"
action
fi
In this case the action will be executed if the X-Mailer header contains
the word ‘mutt’. The same action will also be executed if the X-Mailer
header contains the word ‘mail’ and the value of the Content-Type header
does not begin with the string ‘multipart/mixed’.

Now, if we wished to execute the action for any message sent using
mail or mutt whose Content-Type header does not begin with the string
‘multipart/mixed’, we would write the following:

if (header[X-Mailer] "mutt" or header [X-Mailer] "mail") \
and not header[Content-Type] "“multipart/mixed;.x*"
action
fi
Notice the use of parentheses to change the binding strength of the boolean
operators.

5.5 Regular Expressions

GNU Anubis supports two types of regular expressions: POSIX (both basic
and extended), and Perl-style regular expressions. The former are always
supported, whereas the support for the latter depends on the configuration
settings at compile time. By default POSIX extended regexps are assumed.
Regular expressions often contain characters, prefixed with a backslash
(e.g. ‘\(C in basic POSIX or ‘\s’ in perl-style regexp). Due to escape substi-
tution (see Table 4.1), you will have to escape the backslash character, e.g.
write:
modify :perl body ["\\stext"] "text"
instead of
WRONG!
modify :perl body ["\stext"] "text"
However, this rule does not apply to back references, i.e. "\1" is OK.
A number of modifiers is provided to change the type of regular expres-
sions. These are described in the following table.

iregex
‘re Indicates that the following pattern should be considered a reg-

ular expression. The default type for this expression is assumed.
:perl

:perlre The regular expression is a Perl-style one.

34 GNU Anubis Manual

;iiaCt Disables regular expression matching, all patterns will be
matched as exact strings.

:scase Enables case-sensitive comparison.

:icase Enables case-insensitive comparison.

:basic Switches to the POSIX Basic regular expression matching.

:extended

Switches to the POSIX Extended regular expression matching.

The special statement regex allows you to alter the default regular ex-
pression type. For example, the following statement

regex :perl :scase

sets the default regular expression types to Perl-style, case-sensitive. The
settings of regex statement regard only those patterns that appear after it
in the configuration file and have force until the next occurrence of the regex
statement.

A couple of examples:

if header[Subject] :perlre "(7<=(7<!foo)bar)baz"

£
This will match any Subject header whose value matches an occurrence of
‘baz’ that is preceded by ‘bar’ which in turn is not preceded by ‘foo’.

if header[Subject] :scase "“Re"
will match a Subject header whose value starts with ‘Re’, but will not match
it if it starts with ‘RE’ or ‘re’.

When using POSIX regular expressions, the extended syntax is enabled
by default. If you wish to use a basic regular expression, precede it with the
:basic flag.

For the detailed description of POSIX regular expressions, See Section

“Regular Expression Library” in Regular Expression Library. For informa-
tion about Perl-style regular expressions, refer to the Perl documentation.

5.6 Action List

An action list is a list of action commands, which control processing of
messages. All action command names are case insensitive, so you can use
for instance: ‘add’ or ‘ADD’ or ‘AdD’, and so on.

5.6.1 Stop Action

The stop command stops processing of the section immediately. It can be
used in the main RULE section as well as in any user-defined section. For
example:

if not header[Content-Typel] "text/plain; .x"

Chapter 5: The Rule System 35

stop
fi

5.6.2 Call Action

The call command invokes a user-defined section much in the same manner
as a subroutine in a programming language. The invoked section continues
to execute until its end or the stop statement is encountered, whichever the
first.
BEGIN myproc
if header[Subject] "Re: .x"
stop
fi
trigger "pgp"
gpg-encrypt "my_gpg_key"
done
END

BEGIN RULE
call myproc
END

5.6.3 Adding Headers or Text

The add command adds arbitrary headers or text to the message. To add a
header, use the following syntax:

add header |'name‘]’ string [Command]
add ‘[’'name’ string [Command]
For example:

add header [X-Comment-1] "GNU’s Not Unix!"
add [X-Comment-2] "Support FSF!"

To add text to the body of the message, use:

add body text [Command|
Adds the text to the message body. Use of this command with ‘here
document’ syntax allows to append multi-line text to the message, e.g.:
add body <<-EOT
Regards,

Hostmaster
EOT

5.6.4 Removing Headers

The remove command removes headers from the message. The syntax is:

remove [flags| header ‘|’string‘’ [Command]
remove |flags| {’string!’ [Command]
The name of the header to delete is given by string parameter. By default
only those headers are removed whose names match it exactly. Optional

36 GNU Anubis Manual

flags allow to change this behavior. See Section 5.5 [Regular Expressions],
page 33, for the detailed description of these.
An example:

remove ["X-Mailer"]

remove :regex ["“X-.x"]
The first example will remove the ‘X-Mailer:’ header from an outgoing
message, and the second one will remove all "X-*" headers.

5.6.5 Modifying Messages

The modify command alters headers or body of the message.

modify [flags| header |’key‘|’ |‘new-key‘|’ [Command]
modify [flags| [’key’]’ ['new-key’ |Command]
For each header whose name matches key, replaces its name with new-key.
If key is a regular expressions, new-key can contain back references. For
example, the following statement selects all headers whose names start
with ‘X-’ and changes their names to begin with ‘X-014-":
modify header :re ["X-\(.x\)"] ["X-014-\1"]

modify [flags| header |’key]’ value [Command]

modify [flags| |’key value [Command]
For each header whose name matches key, changes its value to value. For
example:

modify [Subject] "New subject"

Every occurrence of unescaped ‘&’ in the new value will be replaced by
the old header value. To enter the ‘&’ character itself, escape it with two
backslash characters (‘\\’). For example, the following statement

modify [Subject] "[Anubis \\& others] &"
prepends the Subject header with the string ‘[Anubis & others]’. Thus,
the header line

Subject: Test subject

after having been processed by Anubis, will contain:
Subject: [Anubis & others] Test subject

modify [flags| header {’key‘|’ |‘new-key‘|” value [Command]

modify [flags| [’key]’ ‘['new-key‘ value [Command]
Combines the previous two cases, i.e. changes both the header name and
its value, as shown in the following example:

modify header [X-Mailer] [X-X-Mailer] "GNU Anubis"

modify [flags| body |’key]’ [Command]
Removes all occurrences of key from the message body. For example, this
statement will remove every occurrence of the word ‘old’:
modify body ["old"]

Chapter 5: The Rule System 37

modify [flags| body {’key” string [Command]
Replaces all occurrences of key with string. For example:
modify body :extended ["the old \([[:alnum:]]+\)"] "the new \1"

5.6.6 Modifying SMTP Commands

GNU Anubis is able to modify arguments of SMTP commands. To instruct
it to do so, define a section named ‘SMTP’. Anubis will call this section each
time it receives an SMTP command. This section can contain any statements
allowed for ‘RULE’ section, plus the following special flavor of the ‘modify’
statement:

modify [flags| command ‘|’cmd’ value [Command]
If the current SMTP command matches cmd, rewrite it by using value as
its argument.

For example, this is how to force using ‘my.host.org’ as the ‘EHLO’ ar-

gument:
BEGIN SMTP
modify command [ehlo] "my.host.org"
END

Additionally, the ESMTP authentication settings (see Section 4.2.4
[ESMTP Authentication Settings|, page 23) can be used as actions in this
section. To do so, you must first set esmtp-auth-delayed to ‘yes’ in
the ‘CONTROL’ section (see Section 4.2.4 [ESMTP Authentication Settings],
page 23). Changes in the settings take effect if they occur either before the
‘MAIL’ SMTP command, or while handling this command.

Consider, for example, the following configuration:

BEGIN CONTROL

mode transparent

bind 25

remote-mta mail.example.com

esmtp-auth-delayed yes
END

BEGIN SMTP
if command ["mail from:"] "<smith(\+.*)7?7@example.net>"
esmtp-auth-id smith
esmtp-password guessme
else
esmtp-auth no
fi
END
It delays ESMTP authentication until the receipt of the MAIL com-
mand from the client. Authentication is used only if the mail is being
sent from smith@example.net or any additional mailbox of that user (e.g.
smith+mbox@example.net). Otherwise, authentication is disabled.

The following points are worth mentioning;:

mailto:smith@example.net
mailto:smith+mbox@example.net

38 GNU Anubis Manual

1. As usual, you may use conditional expressions to decide what to modify
and how. For example, the code below replaces the domain part of each
‘MAIL FROM’ command with ‘gnu.org’:

BEGIN SMTP

if command ["mail from:"] "<(.*)Q@(.*)>(.*)"
modify command ["mail from:"] "<\1@gnu.org>\2"

fi

END

2. Each ‘modify command’ statement applies only if the current command
matches its cmd argument. In particular, this means that you cannot
modify already transferred SMTP commands nor the commands to be
transferred. For example, the following code will not work:

BEGIN SMTP

Wrong!

if command ["mail from:"] "<>(.x)"

modify command [ehlo] "domain.net"

fi

END
It is because by the time ‘MAIL FROM’ is received, the ‘EHLO’ command
has already been processed and sent to the server.

The final point to notice is that you may use an alternative name for
that section (if you really want to). To do so, define the new name via
the ‘smtp-command-rule’ option in the ‘CONTROL’ section (see Section 4.2.1
[smtp-command-rule], page 20).

5.6.7 Inserting Files

signature-file-append yes-or-no [Command]|
This action command adds at the end of a message body the ‘--’ line,
and includes a client’s “/.signature file.
Default is ‘no’.

body-append file-name [Command]

This action command includes at the end of the message body the con-
tents of the given file. Unless file-name starts with a ‘/’ character, it is
taken relative to the current user home directory.

body-clear [Command]|
Removes the body of the message.

body-clear-append file-name [Command]|
Replaces the message body with the contents of the specified file. The
action is equivalent to the following command sequence:

body-clear
body-append file-name

Chapter 5: The Rule System 39

5.6.8 Mail Encryption

gpg-passphrase passphrase [Command]
Specifies your private key’s pass phrase for signing messages using the
GNU Privacy Guard. To protect your passwords from being compro-
mised, use the 0600 (u=rw,g=,0=) permissions for the configuration file,
otherwise GNU Anubis won’t accept them.
We recommend setting the ‘gpg-passphrase’ once in your configuration
file, e.g. at the start of RULE section.
GNU Anubis support for the GNU Privacy Guard is based on the GnuPG
Made Easy library, available from http://www.gnupg.org/gpgme.html.

gpg-encrypt gpg-keys [Command]|
This command enables encrypting messages with the GNU Privacy Guard
(Pretty Good Privacy) public key(s). gpg-keys is a comma separated list
of keys (with no space between commas and keys).
gpg-encrypt "John’s public key"

gpg-sign gpg-signer-key [Command]|
gpg-sign ‘yes-or-default’ [Command]
This command signs the message with your GNU Privacy Guard private
key. Specify a passphrase with gpg-passphrase. Value ‘default’ means
your default private key, but you can change it if you have more than one
private key.
For example:
gpg-sign default

or
gpg-passphrase "my office key passphrase"
gpg-sign office@example.key
gpg-sign-encrypt gpg-keys|:gpg-signer-key| [Command]|
gpg-se gpg-keys|:gpg-signer-key] [Command]

This command simultaneously signs and encrypts the message. It has
the same effect as gpg command line switch -se. The argument before
the colon is a comma-separated list of PGP keys to encrypt the message
with. This argument is mandatory. The gpg-signer-key part is optional.
In the absence of it, your default private key is used.
For example:

gpg-sign-encrypt John@example.key
or

gpg-se John@example.key:office@example.key

5.6.9 Using an External Processor

external-body-processor program [args] [Command]|
Pipes the message body through program. The program must be a filter
that reads the text from the standard input and prints the transformed

http://www.gnupg.org/gpgme.html

40 GNU Anubis Manual

text on the standard output. The output from it replaces the original
body of the message. args are any additional arguments the program
may require.

The amount of data fed to the external program depends on the message.
For plain messages, the entire body is passed. For multi-part messages, only
the first part is passed by default. This is based on the assumption that
in most multi-part messages the first part contains textual data, while the
rest contains various (mostly non-textual) attachments. There is a special
configuration variable read-entire-body that controls this behavior (see
Section 4.2.1 [Basic Settings|, page 20). Setting read-entire-body yes in
CONTROL section of your configuration file instructs Anubis to pass the entire
body of multi-part messages to your external processor.

There is a substantial difference between operating in read-entire-body
no (the default) and read-entire-body yes modes. When operating in
read-entire-body no, the first part of the message is decoded and then
passed to the external program. In contrast, when read-entire-body is set
to yes, the message is not decoded. Thus, your external processor must be
able to cope with MIME messages.

5.6.10 Quick Example

Here is a quick example of an action list:
---BEGIN RULE---
if header [X-Mailer] :re ".x"
remove [X-Mailer]
add [X-Comment] "GNU’s Not Unix!"

gpg-sign "my password"
signature-file-append yes
fi
-—-END---
The example above removes the ‘X-Mailer:’ header from the message, adds
the ‘X-Comment :’ header, then signs the message with your private key, and
finally adds a signature from the file in your home directory.

5.7 Using Guile Actions

Guile is the GNU’s Ubiquitous Intelligent Language for Extensions. It pro-
vides a Scheme interpreter conforming to the R5RS language specification.
GNU Anubis uses Guile as its extension language.

This section describes how to write GNU Anubis actions in Scheme. It
assumes that the reader is sufficiently familiar with the Scheme language.
For information about the language, refer to Revised(5) Report on the Algo-
rithmic Language Scheme. For more information about Guile, See Section
“Overview” in The Guile Reference Manual.

Chapter 5: The Rule System 41

5.7.1 Defining Guile Actions

A Guile action is defined as follows:
(define (function-name header body . rest)

L)
Its arguments are:

header List of message headers. Each list element is a cons

(name . value)

where name is the name of the header field, and value is its value
with final CRLF stripped off. Both name and value are strings.

body A string containing the message body.

rest Any additional arguments passed to the function from the
configuration file (see Section 5.7.2 [Invoking Guile Actions],
page 42). This argument may be absent if the function is not
expected to take optional arguments.

The function must return a cons whose car contains the new message
headers, and cdr contains the new message body. If the car is #t, it means
that no headers are changed. If the cdr is #t, it means that the body has
not changed. If the cdr is #f, Anubis will delete the entire message body.

As the first example, let’s consider a no-operation action, i.e. an action
that does not alter the message in any way. It can be written in two ways:

(define (noop-1 header body)
(cons header body))

(define (noop-2 header body)
(cons #t #t))
The following example is a function that deletes the message body and
adds an additional header:
(define (proc header body)
(cons (append header
(cons "X-Body-Deleted" "yes"))
#£))

Let’s consider a more constructive example. The following function
checks if the Subject header starts with string ‘ODP:’ (a Polish equivalent
to ‘Re:’), and if it does, replaces it with ‘Re:’. It also adds the header

X-Processed-By: GNU Anubis

Additionally, an optional argument can be used. If it is given, it will be
appended to the body of the message.

(define (fix-subject hdr body . rest)
"If the Subject: field starts with characters \"ODP:\", replace
them with \"Re:\".
If REST is not empty, append its car to BODY"
(cons (append
(map (lambda (x)
(if (and (string-ci=7? (car x) "subject")

42 GNU Anubis Manual

(string-ci=? (substring (cdr x) 0 4) "ODP:"))
(cons (car x)
(string-append "Re:"
(substring (cdr x) 4)))
x))
hdr)
(list (cons "X-Processed-By" "GNU Anubis")))
(if (null? rest)
#t
(string-append body "\n" (car rest)))))

5.7.2 Invoking Guile Actions

Guile actions are invoked from the RULE section using the guile-process
command. Its syntax is:

function args [Scheme Function]
Arguments:

function The name of the Guile function to be invoked.

args Additional arguments. These are passed to the function as
its third argument (rest).

To pass keyword arguments to the function, use the usual Scheme nota-
tion: ‘#:key’.
As an example, let’s consider the invocation of the fix-subject function,
defined in the previous subsection:
guile-process fix-subject <<-EOT

Kind regards,
Antonius Block
EOT
In this example, the additional argument (a string of three lines) is passed
to the function, which will add it to the message of the body.

5.7.3 Support for ROT-13

The ROT-13 transformation is a simple form of encryption where the letters
A-M are transposed with the letters L-Z. It is often used in Usenet post-
ings/mailing lists to prevent people from accidentally reading a disturbing
message.
GNU Anubis supports ROT-13 via a loadable Guile function. To enable
this support, add the following to your GUILE section:
guile-load-program rot-13.scm

Then, in your RULE section use:

rot-13 keyword-arguments [Scheme Function]
The command accepts the following keyword-arguments:

#:body Encrypt the entire body of the message

Chapter 5: The Rule System 43

#:subject
Encrypt the ‘Subject’ header.

For example:

trigger "rot-13.*body"
guile-process rot-13 #:body
done

trigger "rot-13.*subj"
guile-process rot-13 #:subject
done

5.7.4 Remailers Type-I

GNU Anubis supports remailers of type I. The support is written entirely in
Scheme. To enable it, you need to specify the following in the GUILE section
of your configuration file:

guile-load-program remailer.scm

To send the message via a remailer, use the following command in the
RULE section:

remailer-I keyword-arguments [Scheme Function]
The keyword-arguments specify the various parameters for the remailer.
These are:

#:rrt string
This is the only required keyword argument. It sets the value
for the Request Remailing To line. string should be your
actual recipient’s email address.

#:post news-group
Adds the ‘Anon-Post-To: news-group’ line, and prepares
the message for sending it to the Usenet via a remailer.
Note, that this is only possible with remailers that support
‘Anon-Post-To:’ header.

#:latent time
Adds the ‘Latent-Time:’ line, that causes a remailer to keep
your message for specified time before forwarding it.

#:random Adds random suffix to the latent time.

#:header string
Adds an extra header line to the remailed message.

Example:
trigger "remail:(.*)/(.*)"
guile-process remailer-I \
#:rrt antonius_block@helsingor.net \
#:post \1 \
#:1latent \2 \
#:header "X-Processed-By: GNU Anubis & Remailer-I"
done

44 GNU Anubis Manual

Some remailers require the message to be GPG encrypted or signed. You
can do so by placing gpg-encrypt or gpg-sign statement right after the
invocation of remailer-I, for example:

trigger "remail: (.*)/(.*)"

guile-process remailer-I \
#:rrt antonius_block@helsingor.net \
#:post \1 \
#:latent \2 \
#:header "X-Processed-By: GNU Anubis & Remailer-I"

gpg-sign mykey

done

See Section 5.6.8 [Mail Encryption], page 39, for more information on
mail encryption in GNU Anubis.

5.7.5 Entire Message Filters

There may be cases when you need to use an external filter that pro-
cesses entire message (including headers). You cannot use external-body-
processor, since it feeds only the message body to the program. To over-
come this difficulty, GNU Anubis is shipped with entire-msg.scm module.
This module provides Scheme function entire-msg-filter, which is to be
used in such cases.

entire-msg-filter program [args| [Scheme Function]
Feeds entire message to the given program. The output from the program
replaces message headers and body.

progname Full pathname of the program to be executed.

args Any additional arguments it may require.

Suppose you have a program /usr/libexec/myfilter, that accepts en-
tire message as its input and produces on standard output a modified version
of this message. The program takes the name of a directory for temporary
files as its argument. The following example illustrates how to invoke this
program:

BEGIN GUILE

guile-load-program entire-msg.scm
END

BEGIN RULE
guile-process entire-msg-filter /usr/libexec/myfilter /tmp
END

Another function defined in this module is openssl-filter:

openssl-filter program [args]| [Scheme Function]
This function is provided for use with openssl program. Openssl bi-
nary attempts to rewind its input and fails if the latter is a pipe, so
openssl cannot be used with entire-msg-filter. Instead, you should
use openssl-filter. Its arguments are:

Chapter 5: The Rule System 45

program Path to openssl binary.
args Its arguments

See Chapter 9 [S/MIME], page 53, for an example of use of this function.

47

6 Invoking GNU Anubis

The anubis executable acts like a daemon, i.e. after a successful startup it
disconnects itself from the controlling terminal® and continues its work in the
background. The program reads its initial settings from the ‘CONTROL’ sec-
tion of the site-wide configuration file (see Section 4.2 [CONTROL Section],
page 20) and from the command line options.

Command line options have higher priority than configuration file settings
and can be used to temporarily override them.

The following command line options are understood:

‘-—altrc file’
Specify alternate system configuration file.

‘~=bind [host:]port’

‘~p’ Specify the TCP port on which GNU Anubis listens for connec-
tions. The default host value is ‘INADDR_ANY’, and default port
number is 24 (private mail system).

‘-—check-config[=levell’

‘-c[levell’
Run the configuration file syntax checker. Optional level speci-
fies the verbosity level. The following levels are allowed:

0 Display only errors. This is the default.

1 Print the syntax tree after parsing the file.

2 As ‘1’, but also prints the parser traces.

3 As ‘2’, but also prints the lexical analyzer traces.

‘-—debug’
-D’ Debug mode.

‘-—foreground’
-1’ Foreground mode.

‘-=help’ Print short usage summary and exit.

‘~-local-mta file’

=1 Execute a local SMTP server, which works on standard input
and output (inetd-type program). This option excludes the
‘-—remote-mta’ option.

‘--mode mode-name’

‘-m mode-name’
Selects Anubis operation mode. Allowed values for mode-name
are ‘proxy’, ‘transparent’ (the default), ‘auth’ and ‘mda’. See
Chapter 3 [Authentication], page 5, for the detailed discussion
of Anubis operation modes.

1 Unless given the —-f oreground command line option.

48 GNU Anubis Manual

‘-—norc’ Ignore system configuration file.

‘~-relax-perm-check’
Do not check a user config file permissions.

‘-—remote-mta host[:port]’

‘-r’ Specify a remote SMTP host name or IP address, which GNU
Anubis will connect and forward mail to. The default port num-
ber is 25.

‘--gsilent’

‘-g’ Work silently.

‘-—show-config-options’
Print the list of configuration options used to build GNU Anubis.

‘--stdio’
‘=i’ Use the SMTP protocol (OMP /Tunnel) as described in RFC 821
on standard input and output.

‘——verbose’
4 b

-V Work noisily.

‘--version’
Print version number and copyright.

Examples:

$ anubis --remote-mta smtp-host:25
Run GNU Anubis on port number 24 (private mail system). Note that you
must have root privileges to use port number lower than 1024. Make the
tunnel between your localhost:24 and smtp-host:25.

$ anubis -f --remote-mta smtp-host:25
Same as above, but run GNU Anubis in a foreground mode.

$ anubis -f --local-mta /usr/sbin/sendmail -- sendmail -bs
Same as above, but create a tunnel between localhost:24 and a local program
(local MTA). In this example local program is sendmail with ‘~-bs’ command
line option. The ‘-bs’ option forces sendmail to work on standard input
and output.

$ anubis --norc --remote-mta smtp-host:25
Do not read the system configuration file, make the tunnel between local-
host:24 and smtp-host:25.

$ anubis --bind localhost:1111 --remote-mta smtp-host:25
Create the tunnel between localhost:1111 and smtp-host:25.

$ anubis -i
Use the SMTP protocol (OMP /Tunnel) as described in RFC 821 on standard
input and output.

49

7 Quick Start

By default, GNU Anubis binds to port number 24 (private mail system),
so there shouldn’t be any conflict with your local MTA (Mail Transport
Agent). You only have to reconfigure your MUA (Mail User Agent) to talk
to GNU Anubis directly on port number 24. All MUAs are normally set up
to talk directly to the MTA, so you must change their settings and specify
GNU Anubis’ port number as their target. This makes GNU Anubis act as
an outgoing mail processor between your MUA and the MTA. Read your
MUA’s documentation for more information.

Then you need to choose whether you want to connect GNU Anubis to
a remote or local SMTP host via TCP/IP or a local SMTP program, which
works on standard input and output. In the former case, specify the following
option:
REMOTE-MTA smtp-host:25
In the latter case (local SMTP program), use this:
LOCAL-MTA /path/to/your/mta/mta-executable -bs
Please note that the ‘-bs’ command line option is a common way to run
MTAs on standard input and output, but it is not a rule. Refer to your
MTA’s documentation, for instructions on how to get it working on standard
input and output.
If you would like to run GNU Anubis on port number 25 (which is
a default value for the SMTP) or any other port number, then use the
‘bind’ keyword. For instance, the following code will bind GNU Anubis
to ‘localhost: 25’
bind localhost:25

This can make a conflict between GNU Anubis and your local MTA, which
usually listens on port number 25. To solve this, disable the MTA and specify
the ‘local-mta’ keyword, or run MTA on port number different than GNU
Anubis’ port number (e.g. 1111). For example:

bind localhost:25
remote-mta localhost:1111

Caution: Make sure that your local machine doesn’t accept any incoming
mail (i.e. it is not a POP or IMAP server), otherwise you cannot disable
your MTA or change its port number!

o1

8 Using the TLS/SSL Encryption

The TLS (Transport Layer Security) protocol provides communications pri-
vacy over the Internet. It is described in RFC 2246 document. The proto-
col allows client/server applications to communicate in a way that prevents
eavesdropping, tampering, or message forgery. The primary goal of the pro-
tocol is to provide privacy and data integrity between two communicating
applications. The TLS protocol itself is based on the SSL 3.0 (Secure Socket
Layer) protocol specification.

GNU Anubis supports the TLS/SSL (via the GnuTLS, a Transport Layer
Security Library available from http://www.gnutls.org/), but your MTA
must provide the ‘STARTTLS’ command first. This can be checked by:

$ telnet your-smtp-host 25

ehlo your-domain-name

The server will response with all its available commands. If you see the
word ‘STARTTLS’, then you can use the TLS/SSL encryption. If your MUA
doesn’t support the TLS/SSL encryption, but your MTA does, then you
should use the ‘oneway-ssl’ keyword in your configuration file. Before us-
ing the TLS/SSL encryption, generate a proper private key and a certificate.
GNU anubis provides a scrypt keygen.sh which can be used for this, e.g.:

$ cd anubis-directory

$./build/keygen.sh
This will create the anubis.pem file. Copy it to the directory of your choice,
e.g. /usr/share/ssl/certs/. Next, edit your configuration file by adding;:

ssl yes

ssl-key path-to-the-private-key

ssl-cert path-to-the-certificate

For example:

ssl-key /usr/share/ssl/certs/anubis.pem

ssl-cert /usr/share/ssl/certs/anubis.pem
Caution: FEach client can specify its own private key and a certificate by
adding the ‘ssl-key’ and ‘ssl-cert’ keywords in its own user configuration

file.
See Section 4.2.5 [Encryption Settings|, page 25, for details.

http://www.gnutls.org/

93

9 Using S/MIME Signatures

Anubis version 4.3 does not yet provide built-in support for S/MIME encryp-
tion or signing. To encrypt or sign messages using S/MIME, you will have to
use external programs. Usually such programs require the whole message as
their input, so simply using external-body-processor will not work. GNU
Anubis distribution includes a special Guile program, entire-msg.scm, de-
signed for use with such programs. For its detailed description, please refer
to Section 5.7.5 [Entire Message Filters|, page 44. This chapter addresses a
special case of using it with openssl to sign outgoing messages.

To use openssl for S/MIME signing, invoke it using openssl-filter
function defined in entire-msg.scm. Give it at least -sign and -signer
arguments. Notice, that you should not specify any input or output files.

The following example illustrates this approach:
BEGIN GUILE
guile-load-program entire-msg.scm
END

BEGIN RULE

guile-process openssl-filter /usr/local/ssl/bin/openssl \
smime -sign -signer FILE

END

95

10 Using Anubis to Process Incoming
Mail

Historically Anubis was designed to process outgoing mail. Support for
processing incoming mail was added in version 4.1.

To process incoming mail, Anubis must be started as mail delivery
agent from your MTA configuration file. The invocation line must contain
--mode=mda option, that tells Anubis to act in mail delivery mode. In this
mode, Anubis receives the message from standard input, processes it using
configuration file sections named incoming-mail-rule (see Section 4.2.1
[incoming-mail-rule|, page 20) and finally calls local mailer to actually deliver
the modified message. The local mailer must be given using --local-mta
option.

Let’s summarize the special features of mail delivery mode:

1. The mode is enabled by the ——mode=mda option in the command line
or mode mda setting in CONTROL section of the anubis configuration file.
It the -—mode=mda option is used, the mode setting in the configuration
file is ignored.

2. Anubis uses local mailer to actually deliver messages. The mailer invo-
cation line can contain meta-variables %sender and %recipient, which
will be replaced by the actual sender and recipient email addresses be-
fore starting the mailer.

3. A special option --from may be used in Anubis command line. This
option sets sender email address (see %sender meta variable above). It
implies —-mode=mda. If the option is not given, GNU Anubis will deduce
sender address from UNIX ‘From ’ header or, if it is not present, from
the value of From SMTP header.

4. In MDA mode, Anubis takes recipient email addresses from the com-
mand line.

5. Anubis uses a separate rule section for processing incoming mails. The
default section name is ‘INCOMING’. It may be overridden in system con-
figuration file using incoming-mail-rule (see Section 4.2.1 [incoming-
mail-rule], page 20).

The following discussion explains how to configure Anubis in MDA mode
with different mail transport agents.

e Sendmail
If you use mc file to generate sendmail . cf, use LOCAL_MAILER_PATH and
LOCAL_MAILER_ARGS as shown in the following example:

define (‘LOCAL_MAILER_PATH’, ¢‘/usr/local/sbin/anubis’)
define (‘LOCAL_MAILER_ARGS’,
‘mail --mode=mda -1 ’/libexec/mail.local -f %sender %recipient’)
If you prefer to directly edit sendmail.cf, use M macro to declare Anubis
as a local mailer. For example:

56 GNU Anubis Manual

Mlocal, P=/usr/local/sbin/anubis,
F=1sDFMAw5:/|@qSP£fhn9,
S=EnvFromL/HdrFromL, R=EnvToL/HdrToL,
T=DNS/RFC822/X-Unix,
A=mail --mode=mda -1 ’/libexec/mail.local -f Ysender Y%recipient’ $u

e Exim

With exim, you will need to declare appropriate transport and director
in exim.conf:

transport
mail_local_pipe:
driver = pipe
command = /usr/local/sbin/anubis --mode=mda \
-1 ’/libexec/mail.local -f %sender %recipient’ $local_part
return_path_add
delivery_date_add
envelope_to_add

director

mail_local:
driver = localuser
transport = mail_local_pipe

57
11 Using Mutt with Anubis

Newer versions of mutt (1.5.20) are able to send mail directly via SMTP
channel. Older ones (1.4.1 and 1.5.3) can only use an external program to
send messages.

The following sections describe the recommended ways of configuring
mutt.

11.1 Configure Mutt SMTP

Mutt version 1.5.20 supports SMTP if compiled with the --enable-smtp
option. You can verify if it is so by running the following command:
mutt -v | fgrep ’+USE_SMTP’
If the output contains ‘+USE_SMTP’, then mutt is compiled properly and
you can use further instructions from this section.

set smtp_url = "url"
Sets URL of the Anubis server. The format of url is

smtp://[user[:pass]@lhost[:port]

where square brackets denote optional parts. If Anubis is run-
ning in ‘auth’ mode, user and pass become mandatory. The
latter can also be set using the following statement.

set smtp_pass = "pass"
Sets SMTP password.

set smtp_authenticators="auth-list"
Sets the list of the authentication methods to try when attempt-
ing to perform SMTP AUTH. The argument is a colon-delimited
list of method names.

For example, if Anubis runs on the server ‘anubis.domain.org’, port 24,
your .muttrc could contain:

set smtp_url = "smtp://anubis.domain.org:24"

11.2 Using GNU mailutils as an interface to mutt

GNU Mailutils is a collection of utilities for handling electronic mail. It
includes lots of programs necessary for dealing with e-mail messages. One
of them is maidag — a general-purpose mail delivery agent (see Section
“maidag” in GNU Mailutils Manual).

The package can be downloaded from ftp://ftp.gnu.org/gnu/
mailutils or any of the mirrors (See http://www.gnu.org/order/ftp.
html for a complete list of these. Please, select the mirror closest too you).
The complete information about the package is available from its home page
at http://www.gnu.org/software/mailutils/

ftp://ftp.gnu.org/gnu/mailutils
ftp://ftp.gnu.org/gnu/mailutils
http://www.gnu.org/order/ftp.html
http://www.gnu.org/order/ftp.html
http://www.gnu.org/software/mailutils/

58 GNU Anubis Manual

To use maidag, first download and install GNU mailutils (as usual the
package is shipped with files README and INSTALL which provide the neces-
sary guidelines). Then add to your .muttrc file the following line:

set sendmail="maidag --url smtp://hostnamel[:port]"
where maidag stands for the full file name of maidag utility, hostname and
optional port specify the host name (or IP address) of the machine running
anubis and the port it listens on. Notice, that the default port value for
‘smtp’ is 25, which means that in most cases you will have to specify it
explicitly.

For example, suppose you run anubis on machine ‘anubis.example.org’
and that it listens on port 24. Let’s also assume you have installed mailu-
tils in the default location, so that full file name of the maidag utility is
/usr/local/sbin/maidag. Then, your .muttrc will contain:

set sendmail="/usr/local/sbin/maidag \
--url smtp://anubis.example.org:24"

(the line being split for readability).

11.3 Using msg2smtp.pl as an interface to mutt

GNU Anubis is shipped with msg2smtp.pl — a perl script designed as an
interface between it and mutt. The script is kindly contributed by Michael
de Beer.
The script is located in the subdirectory contrib of GNU Anubis distri-
bution. Copy it to any convenient location, e.g.:
cp anubis-4.3/contrib/msg2smtp.pl /usr/local/libexec
and add the following line to your .muttrc:
set sendmail="/usr/local/libexec/msg2smtp.pl -h hostname -p port"
where hostname and port specify the host name (or IP address) of the ma-
chine running anubis and the port it listens on, respectively.
A complete description of msg2smtp.pl and a discussion of its command
line switches can be found in file contrib/msg2smtp.txt.

99

12 Reporting Bugs

Please send any bug reports, improvements, comments, suggestions, or ques-
tions to bug-anubis@gnu.org.

Before reporting a bug, make sure you have actually found a real bug.
Carefully reread the documentation and see if it really says you can do what
you are trying to do. If it is not clear whether you should be able to do
something or not, report that too; it’s a bug in the documentation!

mailto:bug-anubis@gnu.org

61
Appendix A Pixie & Dixie

e Introduction

This document describes a new scheme for client authentication and
authorization in GNU Anubis 4.x.

e Task Description

So far the only authentication method used by Anubis was based on the
AUTH protocol (RFC 1413) (ftp://ftp.rfc-editor.org/in-notes/
rfc1413.txt), and thus required client party to use a popular daemon
identd, which listens on TCP port 113 for authentication requests. As
its primary advantage, this method allows to quickly identify whom the
server had to deal with, i.e. to obtain user name or his UID. Actually,
the authentication process finishes before the client sends over his first
byte. Besides, this method allows to process the entire SMTP envelope.
It has, however, several drawbacks, first of them being the requirement
to run identd on the client machine, which is not always possible (e.g.
on mobile devices), and may be considered harmful for the system se-
curity (due to sending user ID over the wire).

e The Proposed Solution
Proposed are two operation modes:
1. Traditional or transparent (also known as Pixie ;-)
2. Authentication first (also known as Dixie ;-)

A short description of each mode follows:
— ‘Pixie’ mode
— Server requires the remote party to authenticate itself us-

ing SMTP AUTH (RFC 2554) (ftp://ftp.rfc-editor.org/
in-notes/rfc2554.txt).

— Early processing of SMTP envelope is possible.
— Connections between MUA and MTA are tunneled “on the fly”

— ‘Dixie’ mode In this mode GNU Anubis runs its own user database,
additionally translating logins (see [login translation], page 62). It
also is able to keep users’ configuration files (an additional option
and an advantage — see [anubis database|, page 62).

Users are authenticated using ESMTP AUTH protocol. Early process-
ing of SMTP envelope is not possible in this mode , instead it becomes
possible only after the authentication is finished successfully. This mode
also delays connecting to the MTA, since Anubis first has to perform
ESMTP AUTH, and only after finishing authentication, does it read
and process the user’s configuration file and connects to the selected
MTA. Of course, the client is not able to begin sending messages until
he is authenticated and accepted by Anubis.

ftp://ftp.rfc-editor.org/in-notes/rfc1413.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1413.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2554.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2554.txt

62 GNU Anubis Manual

e Details

There is a great difference between the two modes. To begin with,
‘Pixie’ mode provides a tunnel (or proxy), in the sense that Anubis
connects user’s MUA to the remote MTA without requiring any special
actions from the user.

Let’s consider a simple interaction between ‘Machine-A’, which runs
Anubis 4, and ‘Machine-B’, where MUA is run.

A: 220 Machine-A (GNU Anubis vX.X [Dixie]) ESMTP time; send your identity!
B: EHLO Machine-B

A: 250-Machine-A Hello ID

250-STARTTLS

250-AUTH DIGEST-MD5 CRAM-MD5 LOGIN

250-XDATABASE

250 HELP

B: STARTTLS

A: 220 2.0.0 Ready to start TLS

<TLS>

B: AUTH <METHOD>

[method-specific authentication interchange follows]

Now, the Anubis server has authenticated the client using data from
Anubis database! I'd like this database to contain, beside the user name
and password, the name and password of this user on Machine-A.

Confusing? Let’s suppose that the database contains following record:

[}JohnSmith encrypted-pass-1 John J

The user has authenticated himself as ‘JohnSmith’ with password
‘encrypted-pass-1’, using ESMTP AUTH, and the given credentials
matched those from the Anubis database. Now, Anubis, which has been
running with super-user privileges, switches to UID of the user ‘John’.

Such solution will allow for a very flexible database, that would ease
the administration tasks, since users will be able to update their cor-
responding records (of course, if the system administrator grants them
such privileges). For instance, ODBC, SQL?

Let’s return to our sample session. After successful authentication
and switching to the user’s privileges, Anubis parses file ~/.anubisrc.
Then, based on user’s configuration settings, it connects to the MTA
and from then on operates as SMTP tunnel and mail processor :-). It
sends the following response to ‘Machine-B’:

A: 220 OK, Welcome. Continue sending your mail!

e Further details

The above description shows that it is impossible to use both ‘Pixie’
and ‘Dixie’ simultaneously. It is the responsibility of the system ad-
ministrator to decide which operation mode to use. We could probably

Appendix A: Pixie & Dixie 63

provide for a smooth switching between the two modes, without requir-
ing to restart the daemon... However, it is not critical. Restarting the
daemon in order to switch to another operation mode is also a feasible
solution.

Now, let me describe for what kind of users each mode is intended.

The traditional (‘Pixie’) mode is intended for those users who use Anu-
bis on a single machine or within a local network that allows to use
identd. In short, ‘Pixie’ is useful when the use of identd is possible
and safe.

In contrast, the new mode ‘Dixie’ is intended for more complex setups,
where a single machine running GNU Anubis serves a number of clients
connecting from different machines and networks. It is supposed that
no client machine is running identd. The only recommendation for this
mode is that each user have a system account on the machine running
Anubis. But then, even this is not required!

That’s a feature I haven’t described yet :~) As described above, Anubis
database must contain second login name in order for Anubis to be able
to switch to the user’s privileges and parse his ~/.anubisrc file. Now,
I supposed that the database is able to keep user configuration files as
well. So, each database record must contain an additional flag informing
Anubis whether it should read the local file “/.anubisrc, or read the
configuration file stored in the database. Sure enough, GNU Anubis
still will have to switch to the user’s privileges, for security reasons, but
this can be done using usual user-notprivileged configuration (see
Section 4.2.6 [Security Settings], page 25).

Surely you have noticed that in its response to EHLO command Dixie
returned 250-XDATABASE capability. Yes, this is exactly that command
that I'd like to be used for remote management of the database records
(after having successfully passed ESMTP AUTH).

Available operations are: ADD, MODIFY, REMOVE, meaning addition, mod-
ification and removal of a user record, and UPLOAD, providing a way to
upload the user’s configuration file ~/.anubisrc.

This solution will free the users from the obligation to have ~/.anubisrc
on the server machine, so they, for the first time since early Anubis
versions, will be able to have their own configuration files. Current
versions(! require that the user configuration file be stored on the server
machine before the user is able to use the service. This approach requires
a certain attention from the system administrator. Should the user
wish to change something in his configuration file, he would have to
install the modified file on ‘Machine-A’ (that’s how it works now, and
that’s how it will continue to work for ‘Pixie’ mode). The new ‘Dixie’
mode solves this and frees the user from necessity to contact the system

1 At the time of writing this document — Anubis versions up to 3.6.2.

64

GNU Anubis Manual

administrator of ‘Machine-A’. The Anubis database engine is supposed
to check the correctness of the uploaded configuration file and inform
the client about the result. It also should compute MD5 hash of the file
and compare it to the one sent by the user... What for?

A program sending user’s configuration file

Well, we're almost finished. The user will have a small program,
config-sender, written in whatever language (C, Java, C#), whose
main purpose is to send user’s configuration file to the database. Such
a program could even be installed on a mobile device! Notice also, that
this program is optional, the user is not required to use it. I envision a
situation where:

1. A user logs in to his account on ‘Machine-B’

2. His 7/.profile invokes config-sender program. This program,
in turn, computes MD5 sum of the local /. anubisrc file and sends
it to Anubis. There it will be compared to the sum kept in the
Anubis database, and if the two sums differ, the config-sender
will upload the contents of ~/.anubisrc...2

3. The config-sender program will, of course, connect to the Anubis
database using ESMTP (TLS/AUTH) and XDATABASE.

Such a program will be an additional advantage, since no existing MUA
is, of course, able to use XDATABASE command to manage Anubis data-
base. Notice however, that GNU Hydrant (http://savannah.gnu.
org/projects/hydrant) will probably support XDATABASE in the fu-
ture...

The End.

Thus, the user will simply use his MUA, no identd, no hassle :)
Actually, the only requirement for the MUA is that it support ESMTP
AUTH. Unfortunately, some MUA, even on UNIX-like systems, are still
not able to use ESMTP AUTH. But in this case, the user can install
Anubis on his machine and use it to perform authentication ;-)))

And the last detail: what to do if the remote MTA also requires ESMTP

AUTH? The answer is quite simple: GNU Anubis is already able to
handle this (see Section 4.2.1 [Basic Settings|, page 20).

e Summary (‘Dixie’ mode)

— a little slower than ‘Pixie’, in the sense that the actual connection
to the MTA is established only after successful authentication

— does not require identd!

2

The scheme implemented currently is a bit different. First, the config-sender program
issues an EXAMINE command that fetches the contents of the user configuration file from
the server. Then, it compares it with the local copy kept on the client machine. If the
copies differ, config-sender issues UPLOAD and thus updates the configuration on the
server.

http://savannah.gnu.org/projects/hydrant
http://savannah.gnu.org/projects/hydrant

Appendix A: Pixie & Dixie 65

— allows the user full control over his configuration settings

— delays processing of SMTP envelope until after successful authen-
tication.

e PS: A couple of words about storing configuration files in the database...

These can be stored in a special directory as usual files, then each data-
base record will have an additional field with the name of the configu-
ration file for the given user.

— THE END —

67

Appendix B Multi-Part Message
Processing

0. PREFACE

In its current state (as of Anubis version 4.3) Anubis has proven to be
a useful tool for processing plain text outgoing messages. However, its
use with MIME messages creates several problems despite of a flexible
ruleset supported by the program.

This RFC proposes a new mode of operation that should make process-
ing of MIME messages more convenient.

1. INTRODUCTION

In general, Anubis processes a message using a set of user-defined rules,
called user program, consisting of conditional statements and actions.
Both of them may operate on message body as well as on its headers.
This mode of operation suites excellently for plain text messages, how-
ever it does have its drawbacks when processing multi-part messages.

To begin with, only the first part of multi-part messages is processed,
the rest of message is usually passed to the MTA verbatim. Thus,
this part can be processed by the user program only if it is in plain
text: parts encoded by quoted-printable or, worse yet, base-64 encoding
cannot be processed this way. The only way for the user to process non-
plaintext multi-part messages is by using some extension procedures
(usually external scripts).

A special configuration setting read-entire-body (see Section 4.2.1
[Basic Settings|, page 20) is provided that forces Anubis to process the
entire body of a multi-part message (among other effects it means pass-
ing entire body to the external scripts as well). However, it does not
help solve the problem, since no attempt is being made to decode parts
of the message, so the user is left on his own when processing such
messages.

The solution proposed by this memo boils down to the following: process
each part of the multi-part message as a message on its own allowing
user to define different RULE sections for processing different MIME
types. The following sections describe the approach in more detail.

2. MULTI-PART MESSAGE PROCESSING

When processing a multi part message, Anubis first determines its
MIME type. A user is allowed to define several RULE sections' that
are supposed to handle different MIME types. Anubis keeps a type
<-> section association table (a dispatcher table) which is used to de-
termine the entry point for processing of each particular part. If the
dispatcher table does not contain an entry for the given MIME type,

L This is already possible, See Section 5.6.2 [Call Action], page 35.

68

GNU Anubis Manual

the contents of the part is passed verbatim. Otherwise, Anubis decodes
the part body and passes it for further processing to the RULE section.
When invoking this particular section, MIME headers act as a message
headers and MIME body acts as its body. After the code section finishes
processing of the message part, it is encoded again? and then passed to
the output.

RECURSIVE NATURE

MIME standards allow multi-part messages to be nested to arbitrary
depth, therefore the described above process is inherently recursive.
This brings following implications:

1. The dispatcher table must contain several built-in entries that will
handle recursive descent to the messages of determined MIME type.
At least messages having multipart/* and message/rfc822 con-
tents must be handled. These entries must be configurable, thus
giving final user a possibility to disable some of them. Preferably
there should exist a way of specifying new recursive types as well.

2. A confuguration parameter must be provided that will limit the
maximum recursion depth for such messages.

MIME DISPATCHER TABLE

The structure of MIME dispatcher table should allow for flexible search
of user program entries depending on MIME type of the part being
processed. It is important also that it allows for a default entry, i.e. an
entry that will be used for processing a part whose type is not explicitely
mentioned in the table. The absence of such default entry should be
taken as indication that the part must be transferred verbatim.

Thus, each entry of the dispatcher table must contain at least the fol-
lowing members.

type Specifies regular expressions describing MIME type this
entry handles. For the sake of clarity this memo uses
shell-style regular expressions (see glob(7) or fnmatch(3)).
However, Anubis implementation can use any other regular
expression style it deems appropriate.

entry point

Specifies an entry point to the code section that handles
MIME parts of given type. The entry point is either nil,
meaning default processing (thus the default entry can be
represented as ("*" . nil) at the end of the table), or one
of predefined entry points serving for recursive procession of
message parts, or, finally, it is a code index of a user-defined
rule section.

2

Note that the code section could have modified the Content-Type header and, particu-
larly, its encoding part, therefore it is not necessary that the resulting part is encoded
using the same method as the original one

Appendix B: Multi-Part Message Processing 69

The dispatcher table can contain several entries matching a given MIME
type. In this case, the entry point of each of them must be invoked in
turn. For example, consider this dispatcher table:

text/plain = plaintext

text/x-patch = patchfile

text/* = anytext
When processing a part of type text/plain using this dispatcher table,
first the section named plaintext is called, then its output is gathered
and used as input for the section named anytext. Such approach allows
for building flexible structured user programs.

5. CONFIGURATION ENTITIES

This memo proposes addition of following configuration entities to
CONTROL section of Anubis configuration file. These entries may be
used in both system-wide and user-specific configuration files, the or-
der of their priority being determined as usual by the rule-priority
statement (see Section 4.2.6 [Security Settings], page 25).

clear-dispatch-table [Option]
This option discards from the dispatcher table all entries gathered so
far.

dispatch-mime-type section-id regexp-list [Option]

This option adds or modifies entries in MIME dispatcher table.
Section-id specifies the section identifier, i.e. either the name of a
user-defined rule section, or one of the keywords none and recurse.
In the former case, Anubis must make sure the named section is ac-
tually defined in the configuration file and issue an error message
otherwise.

Regexp-list is whitespace-separated list of regular expressions speci-
fying MIME types that are to be handled by section-id.

The effect of this option is that for each regular expression re from the
list regexp-list, the dispatcher table is searched for an entry whose
type field is exactly the same as re®. If such an entry is found,
its entry code field is replaced with section-id. Otherwise, if no
matching entry was found a new one is constructed:

(re . section-id)

and appended to the end of the list.
For example:

dispatch-mime-type recurse "multipart/*" "message/rfc822"
dispatch-mime-type Text "text/*"
dispatch-mime-type none "x*"
This example specifies that messages (or parts) with types matching
multipart/* and message/rfc822 must be recursed into, those of

3 Byte-for-byte comparison

70

GNU Anubis Manual

type text/* must be processed by user-defined section Text and the
rest of parts must be transferred verbatim. The section Text must
be declared somewhere in the configuration file as

BEGIN Text

END
Notice that the very first dispatch-mime-type specifies a built-in
entry. This memo does not specify whether such a built-in entry
must be present by default, or it should be explicitely declared as in
the example above. The explicit declaration seems to have advantage

of preserving backward compatibility with versions 4.0 and earlier of
Anubis (see [COMPATIBILITY CONSIDERATIONS], page 71).

Notice also that when encountering the very first dispatch-mime-
type (or dispatch-mime-type-prepend, see below) statement in the
user configuration file, Anubis must remove the default entry (if any)
from the existing dispatcher table. Such entry should be added back
after processing user’s CONTROL section, unless clear-dispatch-
table has been used.

dispatch-mime-type-prepend section-id [Option]
regexp-list
Has the same effect as dispatch-mime-type except that the entries
are prepended to the dispatcher table.

recursion-depth number [Option]
This option limits the maximum recursion depth when processing
multi-part messages to number.

TEXT vs BINARY MIME PARTS

This memo does not determine how exactly is Anubis supposed to dis-
cern between text and binary messages. The simplest way is by using
the Content-Type header: if it contains charset= then it describes a
text part. Otherwise it describes a binary part. Probably some more
sophisticated methods should be implemented.

To avoid dependency on any particular charset, text parts must be de-
coded to UTF-8. Correspondingly, any literals used in Anubis config-
uration files must represent valid UTF-8 strings. However, this memo
does not specify whether Anubis implementation should enforce UTF-8
strings in its configuration files.

It is possible to specify processing rules for binary MIME parts. How-
ever, Anubis does not provide any mechanism for binary processing, not
is it supposed to provide any. This memo maintains that the existing
external-body-processor and guile-process statements are quite
sufficient for processing any binary message parts.

7. SAMPLE CONFIGURATION FILE

Appendix B: Multi-Part Message Processing 71

BEGIN CONTROL
dispatch-mime-type recurse "multipart/*" "message/rfc822"
dispatch-mime-type plaintext "text/plain"
dispatch-mime-type image "img/*"

END CONTROL

SECTION plaintext
modify body ["now"] "then"
END

SECTION image
external-body-processor resize-message
END

This example configuration shows the idea of using external-body-
processor statement for binary part processing. The following version
of resize-message script uses convert program for reducing image size
to 120x120 pixels:

#! /bin/sh

TMP=$HOME/tmp/$$

cat - > $TMP

convert -size 120x120 $TMP.jpg -resize 120x120 +profile ’*’ out-$TMP

rm $TMP

cat out-$TMP

rm out-$TMP

8. COMPATIBILITY CONSIDERATIONS
In the absense of any dispatch-mime-type statements, Anubis should
behave exactly as version 4.0 did. Specifying
clear-dispatch-table
in the user configuration file should produce the same effect. This can be

useful if system-wide configuration file contained some dispatch-mime-
type statements.

9. SECURITY CONSIDERATIONS

This specification is believed to not introduce any special security con-
siderations.

73

Appendix C GNU Free Documentation

License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within

74

GNU Anubis Manual

that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTpX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix C: GNU Free Documentation License 75

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque

76

GNU Anubis Manual

copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If

Appendix C: GNU Free Documentation License 7

there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

78

GNU Anubis Manual

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire

Appendix C: GNU Free Documentation License 79

10.

aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the li-
cense notices in the Document, and any Warrany Disclaimers, provided
that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagree-
ment between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new ver-
sions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See http://www.gnu.org/
copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

80 GNU Anubis Manual

C.1 ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the “with...Texts.” line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

Concept Index

/

/etc/my.cnf

A

Action Listoovviiiiiiii i
actions defined

auth service, encryption
AUTH section..............ccooviinnn..
authentication.........................

B

body-append
body-clear
body-clear-append
DUES «

clear-dispatch-table................
client...... ...
command line.........................
Concatenation.........................
Conditional statements................
configuration....................
control-priority.....................
CONTROL section

D

daemon ol
dispatch-mime-type
dispatch-mime-type-prepend.........
drop-unknown-user

81

E

else, conditional statements........... 29
encryption. ... 51
encryption, auth service 6
encryption, identd 6
entire message, filtering................ 44
entire-msg-filter 44
entire-msg-filter,

Scheme function.................... 44
entire-msg.SCm, 44
Escape Sequences...................... 17
esmtp-allowed-mech 23
esmtp-anonymous-token............... 24
esmtp-auth 24
esmtp-auth-delayed 24
esmtp-auth-id................. 24
esmtp-authz-id....................... 24
esmtp-generic-service............... 24
esmtp-hostname....................... 24
esmtp-passcode...........oiiiiiiin... 24
esmtp-password................ ... 24
esmtp-realm..........oooveinnnnnnn... 24
esmtp-require-encryption........... 23
esmtp-service........................ 24
ESMTP authentication................ 23
ex,flag........ ...l 33
exact, flag.......... L. 33
extended, flagl 33
extension language, 27
external-body-processor............. 39
F
FDL, GNU Free

Documentation License.............. 73
fi, conditional statements............. 29
function............... ... il 42

82

G

GNU mailutils. ...t 57
GNU Privacy Guard, GnuPG.......... 39
GnuTLS 51
gPE—eNnCrypPLt ... 39
gpg-passphrase..............ooouuunn. 39
BPE™S€ .ttt 39
gpg-sign......... ..ol 39
gpg-sign-encrypt..................... 39
GPG/PGP private key 39
GPG/PGP publickey 39
Guile...........o 27, 40
Guile Actions, defining 41
guile-debugccoviiiiiinn... 27
guile-load-path-append.............. 27
guile-load-program.................. 27
guile-output 27
guile-process..............cooviinnn. 42
GUILE section, 27

icase, flagl 33
identd, encryption...................... 6
identd-keyfile................ 21
if, conditional statements............. 29
incoming mail, processing.............. 55
incoming-mail-rule.................. 21

L

local-domainooouvuuunnnnnn.. 21
local-mta...........coiiiiiiiin.. 20
log-facility..........oooiiiiiinnan. 21
log-tag......coviiiiiiiiii 21
logfile. ... 22

GNU Anubis Manual

maidago.ovii i 57
mailutilso 57
MDA mode.........oovveiiiiiin.... 55
message submission daemon 1
MOAE ..ottt e 20
modify i 36, 37
msg2smtp.pl. 58
MTA, Mail Transport Agent............ 1
MUA, Mail User Agent 1
Multi-part Messages, Processing with
External Programs.................. 40
mutt ... 57
my.cnf 10

oneway TLS encryption................ 51
openssl......... it 53
openssl-filter....................... 44
openssl-filter, Scheme function.... 44
options file, MySQL 10
outgoing mail processor................. 1
outgoing-mail-rule.................. 21
OVEIVIEW ...t 1

P

perl, flago 33
perlre, flag ool 33
pidentd....... ... 6
Pretty Good Privacy, PGP 39
problems........ oo 59
PrOXY « e ettt et e e e e 1

Quoted Strings ..., 17

Concept Index

R

re,flag ... 33
read-entire-body................. 21, 40
recursion-depth...................... 70
regex, flag. il 33
remailer............. 43
remailer-Icuon.. 43
remailer-I, Scheme function......... 43
remote-mtaooiiiiiiiiiia. 20
TOMOVE .« ot ettt et e e ieeeenennnn 35
Tot-13 .o 42
rot-13, Scheme function............. 42
rule system.......... oL 29
rule-priority.............. 26

S

sasl-allowed-mech 19
sasl-hostname........................ 19
sasl-password-db..................... 19
sasl-realmcovviiinennnnnnnn. 20
sasl-serviceciiiiiii. 19
scase, flag il 33
Scheme. ... 27
Secure Socket Layer, SSL.............. 51
SEIVET e vttt e et e et e ee e 1
settingsl 17
signature-file-append............... 38
Simple Mail Transport

Protocol, SMTP...................... 1
SIMIIMNE .« oottt et n 53

83
smtp-command-rule 21
smtp-greeting-message............... 19
smtp-help-message 19
SMTP normalization 2
socks-auth 23
SOCKS=PIOXYoovviiienn.. .. 23
SOCKS=V4 ... 23
SOCKS ProXy.......covvvviiiiiian... 23
SSL. i 25
ssl-cafilel 25
ssl-cert.....ooiiiiiiiiiiiiii 25
ssl-Key........ooiiiiiiii 25
ssl-onewayooiiiiiii... 25
ssl-priorities....................... 25
SEOD it 34
system configuration file............... 17
T
termlevel ...t 22
tracefile................. 22
TRANSLATION section............... 26
Transport Layer Security, TLS......... 51
Triggers........oooiiiii i 31
tunnel.......... o o 1
U
USE=PAM . oo e ve et eeeeeeeeeeeeeeeeeeann 21
user configuration file.................. 17

user-notprivileged 25

vii

Short Contents

© 00 J O Ot = W N o=

— = =
S =

C

OVEIVIEW . . ottt e e e e 1
Glossary of Frequently Used Terms 3
Authentication. 5
Configuration.o 17
The Rule System i 29
Invoking GNU Anubis....... 47
Quick Start 49
Using the TLS/SSL Encryption, 51
Using S/MIME Signaturesc.veuiuienenen.... 53
Using Anubis to Process Incoming Mail................ ... 55
Using Mutt with Anubis........ 57
Reporting Bugs oo 59
Pixie & Dixie. . ..ot e 61
Multi-Part Message Processing. 67
GNU Free Documentation License 73

Concept Index . ..ot e 81

ix

Table of Contents

1 Overview.............. 1
2 GGlossary of Frequently Used Terms............ 3
3 Authentication................................... 5
3.1 Auth Service ..o 6
3.2 User Database. ... 6
3.3 Database URL ... 7
3.3.1 Plain text databases.............. i 8

3.3.2 Databases in GDBM format 8

3.3.3 MySQL and PostgreSQL...... ... 8

3.4 Managing the Database........... i i i 10
3.4.1 Administrators 10
3.4.1.1 Creating the Database 11

3.4.1.2 Listing Database Records 11

3.4.1.3 Adding New Recordscooviiiiiiiiii .. 12

3.4.1.4 Removing Existing Records 12

3.4.1.5 Modifying Existing Records.......................... 12

3.4.1.6 Summary of All Administrative Commands 13

34,2 U SOrS . oottt 14

4 Configuration................................... 17
4.1 AUTH SeCtiont 19
4.2 CONTROL SeCtion.ouuutiit i 20
4.2.1 Basic Settings ..ot 20
4.2.2 Output Settingscovutiiiiii i 22
4.2.3 SOCKS Proxy ...oouuiiii e 23
4.2.4 ESMTP Authentication Settings.......................... 23

4.2.5 Encryption Settings...........ooiiiiiiiiiiiiii i 25
4.2.6 Security Settingsc.iiiii i 25

4.3 TRANSLATION Sectioncoviiiiiiiiineiiiiinn... 26
4.4 GUILE SeCtionouuiiiiii e 27
5 The Rule System............................... 29
D1 ACHIONS. .o 29
5.2 Conditional Statements............ i 29
5.2.1 Concatenationsttt 31

0.3 TIIgEOTS . e e 31
5.4 Boolean Operatorsc.uueitiiee e, 32

5.5 Regular EXpressions.........coooiiiiiiiiiiiiiiiiii i 33

5.6 Action Listo 34
5.6.1 Stop Action 34

5.6.2 Call Action. 35

5.6.3 Adding Headers or Textcoooeiiiiiiiiiiinnn. .. 35

5.6.4 Removing Headers...............ooo .. 35

5.6.5 Modifying Messages ..ottt 36

5.6.6 Modifying SMTP Commands 37

5.6.7 Inserting Files....... ..o 38

5.6.8 Mail Encryption....... ..o 39

5.6.9 Using an External Processor............. ...t 39
5.6.10 Quick Example. ... 40

5.7 Using Guile Actions ...t 40
5.7.1 Defining Guile Actions........... ..., 41

5.7.2 Invoking Guile Actionso, 42

5.7.3 Support for ROT-13.o 42

5.7.4 Remailers Type-I.... ... i 43

5.7.5 Entire Message Filters........... ... 44

6 Invoking GNU Anubis......................... 47
7 Quick Start................ 49
8 Using the TLS/SSL Encryption............... 51
9 Using S/MIME Signatures.................... 53

10 Using Anubis to Process Incoming Mail.... 55

11 Using Mutt with Anubis..................... 57
11.1 Configure Mutt SMTP . ..ottt 57
11.2 Using GNU mailutils as an interface to mutt.................. 57
11.3 Using msg2smtp.pl as an interface to mutt.................... 58

12 Reporting Bugs............................... 59

Appendix A Pixie & Dixie....................... 61

Appendix B Multi-Part Message Processing... 67

xi

Appendix C GNU Free

Documentation License 73
C.1 ADDENDUM: How to use this License for your documents. ... 80

Concept Index 81

	1 Overview
	2 Glossary of Frequently Used Terms
	3 Authentication
	Auth Service
	User Database
	Database URL
	Plain text databases
	Databases in GDBM format
	MySQL and PostgreSQL

	Managing the Database
	Administrators
	Creating the Database
	Listing Database Records
	Adding New Records
	Removing Existing Records
	Modifying Existing Records
	Summary of All Administrative Commands

	Users

	4 Configuration
	AUTH Section
	CONTROL Section
	Basic Settings
	Output Settings
	SOCKS Proxy
	ESMTP Authentication Settings
	Encryption Settings
	Security Settings

	TRANSLATION Section
	GUILE Section

	5 The Rule System
	Actions
	Conditional Statements
	Concatenations

	Triggers
	Boolean Operators
	Regular Expressions
	Action List
	Stop Action
	Call Action
	Adding Headers or Text
	Removing Headers
	Modifying Messages
	Modifying SMTP Commands
	Inserting Files
	Mail Encryption
	Using an External Processor
	Quick Example

	Using Guile Actions
	Defining Guile Actions
	Invoking Guile Actions
	Support for rot-13
	Remailers Type-I
	Entire Message Filters

	6 Invoking GNU Anubis
	7 Quick Start
	8 Using the TLS/SSL Encryption
	9 Using S/MIME Signatures
	10 Using Anubis to Process Incoming Mail
	11 Using Mutt with Anubis
	Configure Mutt SMTP
	Using GNU mailutils as an interface to mutt
	Using msg2smtp.pl as an interface to mutt

	12 Reporting Bugs
	A Pixie & Dixie
	B Multi-Part Message Processing
	C GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index
	1 Overview
	2 Glossary of Frequently Used Terms
	3 Authentication
	Auth Service
	User Database
	Database URL
	Plain text databases
	Databases in GDBM format
	MySQL and PostgreSQL
	Managing the Database
	Administrators
	Creating the Database
	Listing Database Records
	Adding New Records
	Removing Existing Records
	Modifying Existing Records
	Summary of All Administrative Commands
	Users
	4 Configuration
	AUTH Section
	CONTROL Section
	Basic Settings
	Output Settings
	SOCKS Proxy
	ESMTP Authentication Settings
	Encryption Settings
	Security Settings
	TRANSLATION Section
	GUILE Section
	5 The Rule System
	Actions
	Conditional Statements
	Concatenations
	Triggers

	Boolean Operators
	Regular Expressions
	Action List
	Stop Action
	Call Action
	Adding Headers or Text
	Removing Headers
	Modifying Messages
	Modifying SMTP Commands
	Inserting Files
	Mail Encryption
	Using an External Processor
	Quick Example
	Using Guile Actions
	Defining Guile Actions
	Invoking Guile Actions
	Support for rot-13
	Remailers Type-I
	Entire Message Filters
	6 Invoking GNU Anubis
	7 Quick Start
	8 Using the TLS/SSL Encryption
	9 Using S/MIME Signatures
	10 Using Anubis to Process Incoming Mail

	11 Using Mutt with Anubis
	Configure Mutt SMTP
	Using GNU mailutils as an interface to mutt
	Using msg2smtp.pl as an interface to mutt
	12 Reporting Bugs
	A Pixie & Dixie
	B Multi-Part Message Processing

	C GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Concept Index

