GNU Parallel Tutorial

GNU Parallel Tutorial

This tutorial shows off much of GNU parallel's functionality. The tutorial is meant to learn the options
in and syntax of GNU parallel. The tutorial is not to show realistic examples from the real world.

Reader's guide

If you prefer reading a book buy GNU Parallel 2018 at
https://www.lulu.com/shop/ole-tange/gnu-parallel-2018/paperback/product-23558902.html or
download it at: https://doi.org/10.5281/zenod0.1146014

Otherwise start by watching the intro videos for a quick introduction:
https://lwww.youtube.com/playlist?list=PL284C9FF2488BC6D1

Then browse through the examples (man parallel_examples). That will give you an idea of what
GNU parallel is capable of.

If you want to dive even deeper: spend a couple of hours walking through the tutorial (man
parallel_tutorial). Your command line will love you for it.

Finally you may want to look at the rest of the manual (man parallel) if you have special needs not
already covered.

If you want to know the design decisions behind GNU parallel, try: man parallel_design. This is also
a good intro if you intend to change GNU parallel.

Prerequisites
To run this tutorial you must have the following:

parallel >= version 20160822

Install the newest version using your package manager (recommended for security
reasons), the way described in README, or with this command:

$ (wget -O - pi.dk/3 || lynx -source pi.dk/3 || curl

pi.dk/3/ || \
fetch -o - http://pi.dk/3) > install.sh

$ shalsuminstall.sh

12345678 51621b7f 1eel03c0 0783aae4 ef 9889f 8

$ md5suminstall.sh

62eada78 703b5500 241b8e50 baf 62758

$ sha5l12suminstall.sh

160d3159 9480cf5c al01512f 150b7ac0 206a65dc 86f 2bb6b
bdf 1a2bc 96bc6d06

7f 8237c2 0964b67f bccf8a93 332528fa 1le5ab43 2a6226a6
cebl97ab 7f03c061

$ bash install.sh

This will also install the newest version of the tutorial which you can see by running
this:

man parallel _tutorial
Most of the tutorial will work on older versions, too.

abc-file:
The file can be generated by this command:
parallel -k echo ::: AB C > abc-file

def-file:
The file can be generated by this command:

Page 1

GNU Parallel Tutorial

abcO-file:

abc_-file:

tsv-file.tsv

num8

numl128

num30000

num1000000

num_%header

fixedlen

parallel -k echo ::: DEF > def-file

The file can be generated by this command:
perl -e "printf "AOBI\OC\0"' > abcO-file

The file can be generated by this command:
perl -e '"printf "ABC"'" > abc _-file

The file can be generated by this command:
perl -e "printf "fI\Ntf2\nAltB\nCQtD\n"" > tsv-file.tsv

The file can be generated by this command:
perl -e '"for(1..8){print "$_\n"}'" > nunB

The file can be generated by this command:
perl -e '"for(1..128){print "$ \n"}' > numl28

The file can be generated by this command:
perl -e 'for(1..30000){print "$ \n"}'" > nunB000O

The file can be generated by this command:
perl -e 'for(1..1000000){print "$ \n"}'" > numlO00000

The file can be generated by this command:

(echo %eadl; echo %head2; \
perl -e '"for(1..10){print "$_\n"}"') > num %header

The file can be generated by this command:
perl -e 'print "HHHHAAABBBCCC'' > fi xedl en

For remote running: ssh login on 2 servers with no password in $SERVER1 and $SERVER2 must

work.

SERVER1=ser ver. exanpl e. com
SERVER2=ser ver 2. exanpl e. net

So you must be able to do this without entering a password:

ssh $SERVERL echo wor ks
ssh $SERVER2 echo wor ks

Page 2

GNU Parallel Tutorial

It can be setup by running ssh-keygen -t dsa; ssh-copy-id $SERVERL1 and using
an empty passphrase, or you can use ssh-agent.

Input sources

GNU parallel reads input from input sources. These can be files, the command line, and stdin
(standard input or a pipe).

A single input source
Input can be read from the command line:

parallel echo ::: ABC

Output (the order may be different because the jobs are run in parallel):

A
B
C

The input source can be a file:

parallel -a abc-file echo

Output: Same as above.
STDIN (standard input) can be the input source:

cat abc-file | parallel echo

Output: Same as above.

Multiple input sources

GNU parallel can take multiple input sources given on the command line. GNU parallel then
generates all combinations of the input sources:

parallel echo ::: ABC::: DEF

Output (the order may be different):

OO0 WwWwW> > >
TMOTTMOTTMmMO

The input sources can be files:

parallel -a abc-file -a def-file echo

Output: Same as above.
STDIN (standard input) can be one of the input sources using -:

cat abc-file | parallel -a - -a def-file echo

Page 3

GNU Parallel Tutorial

Output: Same as above.
Instead of -a files can be given after :::::

cat abc-file | parallel echo :::: - def-file

Output: Same as above.
;7 and i can be mixed:

parallel echo ::: ABC:::: def-file

Output: Same as above.

Linking arguments from input sources
With --link you can link the input sources and get one argument from each input source:

parallel --link echo ::: ABC::: DEF

Output (the order may be different):

A D
B E
CF

If one of the input sources is too short, its values will wrap:

parallel --link echo ::: ABCDE::: FG

Output (the order may be different):
AF

moOw
TO TGO

For more flexible linking you can use :::+ and ::::+. They work like ::: and :::: except they link the
previous input source to this input source.

This will link ABC to GHI:

parallel echo :::: abc-file :::+ GHI1 :::: def-file

Output (the order may be different):

®
W)

OO0 WmwW > > >
T T TITIOO

MTMOTMMmMO T m

This will link GHI to DEF:

Page 4

GNU Parallel Tutorial

parallel echo :::: abc-file ::: GHI ::::+ def-file

Output (the order may be different):

®
w)

OO0 WWW>» > >
T IOTIO T
TMOTMOTMm

If one of the input sources is too short when using :::+ or ::::+, the rest will be ignored:

parallel echo ::: ABCDE::.:+FG

Output (the order may be different):
AF
B G

Changing the argument separator.

GNU parallel can use other separators than ::: or ::::. This is typically useful if ::: or :::: is used in the
command to run:

parallel --arg-sep ,, echo,, ABC:::: def-file

Output (the order may be different):

OO0 WwWwW> > >
TMOTTMOTTMmMO

Changing the argument file separator:

parallel --arg-file-sep // echo ::: ABC// def-file

Output: Same as above.

Changing the argument delimiter

GNU parallel will normally treat a full line as a single argument: It uses \n as argument delimiter. This
can be changed with -d:

parallel -d _ echo :::: abc_-file

Output (the order may be different):

A
B

Page 5

GNU Parallel Tutorial

C

NUL can be given as \0:
parallel -d '\0'" echo :::: abcO-file

Output: Same as above.

A shorthand for -d "\0'" is -0 (this will often be used to read files from find ... -print0):

parallel -0 echo :::: abcO-file

Output: Same as above.
End-of-file value for input source
GNU parallel can stop reading when it encounters a certain value:

parallel -E stop echo ::: ABstop CD

Output:

A
B

Skipping empty lines
Using --no-run-if-empty GNU parallel will skip empty lines.

(echo 1; echo; echo 2) | parallel --no-run-if-enpty echo

Output:

1
2

Building the command line
No command means arguments are commands

If no command is given after parallel the arguments themselves are treated as commands:

parallel ::: Is "echo foo' pwd

Output (the order may be different):

[list of files in current dir]
f oo

[/ path/to/ current/working/dir]

The command can be a script, a binary or a Bash function if the function is exported using export -f:

Only works in Bash

ny_func() {
echo in ny_func $1

}
export -f ny_func
parallel my func ::: 1 2 3

Output (the order may be different):

Page 6

GNU Parallel Tutorial

inm _func 1
in m _func 2
in m _func 3

Replacement strings
The 7 predefined replacement strings

GNU parallel has several replacement strings. If no replacement strings are used the default is to
append {}:

parallel echo ::: A/B.C

Output:
A/ B.C

The default replacement string is {}:

paral l el echo {} ::: AB.C

Output:
A/ B.C

The replacement string {.} removes the extension:

parallel echo {.} ::: AB.C

Output:
A B

The replacement string {/} removes the path:

parallel echo {/} ::: AB.C

Output:
B.C

The replacement string {//} keeps only the path:
parallel echo {//} ::: AIB.C

Output:
A

The replacement string {/.} removes the path and the extension:

parallel echo {/.} ::: AIB.C

Output:
B

The replacement string {#} gives the job number:

Page 7

GNU Parallel Tutorial

paral l el echo {#} ::: ABC

Output (the order may be different):

1
2
3

The replacement string {%]} gives the job slot number (between 1 and number of jobs to run in
parallel):

parallel -j 2 echo {% ::: ABC

Output (the order may be different and 1 and 2 may be swapped):

1
2
1

Changing the replacement strings
The replacement string {} can be changed with -I:

parallel -1 ,, echo,, ::: ABC

Output:
AB.C

The replacement string {.} can be changed with --extensionreplace:

paral | el --extensionreplace ,, echo,, ::: ABC

Output:
A B

The replacement string {/} can be replaced with --basenamereplace:

paral |l el --basenanereplace ,, echo,, ::: ABC

Output:
B.C

The replacement string {//} can be changed with --dirnamereplace:

paral |l el --dirnanereplace ,, echo,, ::: ABC

Output:
A

The replacement string {/.} can be changed with --basenameextensionreplace:

paral | el --basenaneextensionreplace ,, echo,, ::: ABC

Page 8

GNU Parallel Tutorial

Output:
B

The replacement string {#} can be changed with --seqreplace:

paral l el --seqreplace ,, echo,, ::: ABC

Output (the order may be different):

1
2
3

The replacement string {%} can be changed with --slotreplace:

parallel -j2 --slotreplace ,, echo,, ::: ABC

Output (the order may be different and 1 and 2 may be swapped):

1
2
1

Perl expression replacement string

When predefined replacement strings are not flexible enough a perl expression can be used instead.
One example is to remove two extensions: foo.tar.gz becomes foo

parallel echo '{= s:\.[*"]+$::;s:\. [~]+$::; =}' ::: foo.tar.gz

Output:

foo
In {= =} you can access all of GNU parallel's internal functions and variables. A few are worth
mentioning.

total_jobs() returns the total number of jobs:

paral l el echo Job {#} of {='$_=total _jobs()' =} ::: {1..5}
Output:

Job 1 of 5

Job 2 of 5

Job 3 of 5

Job 4 of 5

Job 5 of 5

Q(...) shell quotes the string:
paral l el echo {} shell quoted is {="'$ =Q($_)' =} ::: "*/1#$

Output:
*/1#% shell quoted is */\I\#\$

Page 9

GNU Parallel Tutorial

skip() skips the job:
parallel echo {= "if($_==3) { skip() }' =} ::: {1..5}

Output:
1
2
4
5
@arg contains the input source variables:
parallel echo {= "if($arg[1l]==$arg[2]) { skip() }' =} \
o {1..3F 0 {1..3}

Output:
12

WWNN PP
NPFP,WEFEW

If the strings {= and =} cause problems they can be replaced with --parens:
parallel --parens ,,,, echo ',, s:\.[~A]+$:;s:\. [~ 148 "\
foo.tar.gz
Output:

f oo

To define a shorthand replacement string use --rpl:
parallel --rpl ".. s:\. [~]+ ;s\ [~]+48%::;" echo '.." \
foo.tar.gz
Output: Same as above.
If the shorthand starts with { it can be used as a positional replacement string, too:
parallel --rpl "{..} s:\.[~]+%::;s:\.[~.]+%::;"' echo '"{..}'
foo.tar.gz
Output: Same as above.

If the shorthand contains matching parenthesis the replacement string becomes a dynamic
replacement string and the string in the parenthesis can be accessed as $$1. If there are multiple
matching parenthesis, the matched strings can be accessed using $$2, $$3 and so on.

You can think of this as giving arguments to the replacement string. Here we give the argument
.tar.gz to the replacement string {%string} which removes string:

parallel --rpl '{%.+?)} s/$$1$//;' echo {%tar.gz}.zip ::: foo.tar.gz

Output:

Page 10

GNU Parallel Tutorial

foo.zip

Here we give the two arguments tar.gz and zip to the replacement string {/string1/string2} which
replaces string1 with string2:

parallel --rpl "{/(.+?)/(.*?)} s/$$1/$$2/;' echo {/tar.gz/zip} \
foo.tar.gz

Output:

foo.zip

GNU parallel's 7 replacement strings are implemented as this:

--rpl t{}

--rpl ' {#} $_=%job->seq()’

--rpl {9 $_=$job->slot()’

--rpl " {/} sio*!

--rpl "{//} $d obal ::use{"File::Basenane"} |
eval "use File::Basenane; 1;"; $ =

--rpl {70} sioflin; osiNLU[AM LTS

--rpl C{.} stV [N L]H4S

di rname($));"

Positional replacement strings

With multiple input sources the argument from the individual input sources can be accessed with {
number}:

parallel echo {1} and {2} ::: AB::: CD

Output (the order may be different):

A and C
A and D
B and C
B and D

The positional replacement strings can also be modified using /, //, /., and .:

paral l el echo /={1/} //={1//} /.={1/.} .={1.} ::: AB.CDEF

Output (the order may be different):
/=B.C//=A/.=B .=A/'B
/=E.F //=D/.=E .=DIE
If a position is negative, it will refer to the input source counted from behind:
paral l el echo 1={1} 2={2} 3={3} -1={-1} -2={-2} -3={-3} \
> AB::: CD::: EF
Output (the order may be different):

1=A 2=C 3=E -1=E -2=C -

oo
@ > > >
NN NN
TR TR TR TR
O0O0OO0
wwww
TR TR
mTmmT
ENNINIR
T TR TR
mTmmT
IR
TR TR TR
O0O0OO0
0w ww w
TR
©>>>>

Page 11

GNU Parallel Tutorial

1=B 2=C 3=F -1=F -2=C -3=B
1=B 2=D 3=E -1=E -2=D -3=B
1=B 2=D 3=F -1=F -2=D -3=B

Positional perl expression replacement string

To use a perl expression as a positional replacement string simply prepend the perl expression with
number and space:

parallel echo '{=2 s:\.[A.]+%::;s:\. [~]+%::; =} {1}' \
::: bar ::: foo.tar.gz
Output:
foo bar

If a shorthand defined using --rpl starts with { it can be used as a positional replacement string, too:
parallel --rpl "{..} s:\.[~]+%::;s:\.[~.]1+%::;" echo '{2..} {1}' \
211 bar ::: foo.tar.gz
Output: Same as above.

Input from columns

The columns in a file can be bound to positional replacement strings using --colsep. Here the
columns are separated by TAB (\t):

parallel --colsep "\t' echo 1={1} 2={2} :::: tsv-file.tsv

Output (the order may be different):

1=f1 2=f2
1=A 2=B
1=C 2=D

Header defined replacement strings

With --header GNU parallel will use the first value of the input source as the name of the
replacement string. Only the non-modified version {} is supported:

paral l el --header : echo f1={f1} f2={f2} ::: f1 AB::: f2 CD

Output (the order may be different):

f1=A f2=C
f1=A f2=D
f1=B f2=C
f1=B f2=D

It is useful with --colsep for processing files with TAB separated values:
paral l el --header : --colsep "\t' echo f1={f1} f2={f2} \
tsv-file.tsv

Output (the order may be different):

f1=A f2=B
f1=C f2=D

Page 12

GNU Parallel Tutorial

More pre-defined replacement strings with --plus
--plus adds the replacement strings {+/} {+.} {+..} {+...} {.} {..} {/..} {/...} {##}. The idea being that
{+foo} matches the opposite of {foo} and {} = {+/}{/} = {}{+} ={+H{/}{+} ={ }{+. I ={+}{..}.
{(+}={.}{+..} =+l }{+..}.

paral | el --plus
paral | el --plus
paral | el --plus
paral | el --plus
paral | el --plus
paral | el --plus
paral | el --plus
paral | el --plus
Output:

echo
echo
echo
echo
echo
echo
echo
echo

{} ::: dir/sub/file.exl.ex2.ex3

{+/}Y1{/} ::: dir/sub/file.exl.ex2.ex3

{.}.{+.} ::: dir/sub/file.exl.ex2.ex3

{+ Y1 {/7.}y.{+.} ::: dir/sub/file.exl.ex2.ex3
{..}.{+ .} dir/sub/file.exl. ex2.ex3

{+ Y1 {/..}y.{+..} ::: dir/sub/file.exl.ex2.ex3
{...}.{+ ..} ::: dir/sub/file.exl.ex2.ex3

{+ Y1 {/...}.{+. ..} ::: dir/sub/file.exl. ex2.ex3

dir/sub/file.exl. ex2.ex3

{##} is simply the number of jobs:

paral l el --plus echo Job {#} of {##} :::. {1..5}

Output:

Job 1 of
Job 2 of
Job 3 of
Job 4 of
Job 5 of

g1 o1 o1 o1 ol

Dynamic replacement strings with --plus
--plus also defines these dynamic replacement strings:

{:-string}

{:number}

{:numberl:number2}

{#string}

{%string}

{/string1/string2}

{~string}

{~string}

Default value is string if the argument is empty.

Substring from number till end of string.

Substring from numberl to number2.

If the argument starts with string, remove it.

If the argument ends with string, remove it.

Replace stringl with string?2.

If the argument starts with string, upper case it. string must be a
single letter.

Page 13

GNU Parallel Tutorial

If the argument contains string, upper case it. string must be a

single letter.
{,string}
If the argument starts with string, lower case it. string must be a
single letter.
{,,string}
If the argument contains string, lower case it. string must be a
single letter.
They are inspired from Bash:
unset myvar
echo ${nyvar:-nyval}
parall el --plus echo {:-nyval} ::: "$nyvar"
nyvar =abcAaAdef
echo ${nyvar: 2}
parallel --plus echo {:2} ::: "$nyvar"
echo ${nyvar: 2: 3}
parallel --plus echo {:2:3} ::: "$myvar"
echo ${nyvar #bc}
paral l el --plus echo {#bc} ::: "$nyvar"
echo ${nyvar #abc}
paral l el --plus echo {#abc} ::: "$nyvar"
echo ${nyvar %le}
parallel --plus echo {%e} ::: "$myvar"
echo ${nyvar %def }
parall el --plus echo {%ef} ::: "S$myvar"
echo ${nyvar/def/ghi}
parall el --plus echo {/def/ghi} ::: "$nmyvar"
echo ${nyvar~a}
paral l el --plus echo {”#a} ::: "$nyvar"
echo ${nyvar~"a}
parallel --plus echo {~a} ::: "$nyvar"
nyvar =AbcAaAdef
echo ${nyvar, A}
parallel --plus echo '{,A}"' ::: "$myvar"
echo ${nyvar, , A}
parallel --plus echo '{,,A}"' ::: "$nyvar"
Output:
nyval
nyval
cAaAdef
cAaAdef
cAa

Page 14

GNU Parallel Tutorial

cAa
abcAaAdef
abcAaAdef
AaAdef
AaAdef
abcAaAdef
abcAaAdef
abcAaA
abcAaA
abcAaAgh
abcAaAgh
AbcAaAdef
AbcAaAdef
Abc AAAdef
Abc AAAdef
abcAaAdef
abcAaAdef
abcaaadef
abcaaadef

More than one argument
With --xargs GNU parallel will fit as many arguments as possible on a single line:

cat nunBOOOO | parallel --xargs echo | wc -I

Output (if you run this under Bash on GNU/Linux):
2

The 30000 arguments fitted on 2 lines.

The maximal length of a single line can be set with -s. With a maximal line length of 10000 chars 17
commands will be run:

cat nunB0000 | parallel --xargs -s 10000 echo | wc -1

Output:

17
For better parallelism GNU parallel can distribute the arguments between all the parallel jobs when
end of file is met.

Below GNU parallel reads the last argument when generating the second job. When GNU parallel
reads the last argument, it spreads all the arguments for the second job over 4 jobs instead, as 4
parallel jobs are requested.

The first job will be the same as the --xargs example above, but the second job will be split into 4
evenly sized jobs, resulting in a total of 5 jobs:

cat nunmB0000 | parallel --jobs 4 -mecho | we -1

Output (if you run this under Bash on GNU/Linux):
5

This is even more visible when running 4 jobs with 10 arguments. The 10 arguments are being spread

Page 15

GNU Parallel Tutorial

over 4 jobs:

parallel --jobs 4 -mecho ::: 1234567829 10

A replacement string can be part of a word. -m will not repeat the context:

parallel --jobs 4 -mecho pre-{}-post ::: ABCDEFG

Output (the order may be different):

pre- A B-post
pre-C D post
pre- E F-post
pre- G post
To repeat the context use -X which otherwise works like -m:

parallel --jobs 4 -X echo pre-{}-post ::: ABCDEFG

Output (the order may be different):

pre- A- post pre-B-post
pre- C- post pre-D- post
pre- E- post pre-F-post
pre- G post
To limit the number of arguments use -N:

parallel -N3 echo ::: ABCDEFGH

Output (the order may be different):

ABC
DEF
GH

-N also sets the positional replacement strings:

parall el -N3 echo 1={1} 2={2} 3={3} ::: ABCDEFGH

Output (the order may be different):

1=A 2=B 3=C
2=E 3=F

1=D
1=G 2=H 3=

-NO reads 1 argument but inserts none:

parallel -NO echo foo ::: 1 2 3

Page 16

GNU Parallel Tutorial

Quoting

Output:

f oo
f oo
f oo

Command lines that contain special characters may need to be protected from the shell.
The perl program print "@ARGV\n" basically works like echo.
perl -e "print "@RGAN"' A

Output:
A

To run that in parallel the command needs to be quoted:

parall el perl -e 'print "@RGAN"' ::: This wont work
Output:
[Not hi ng]

To quote the command use -q:

parallel -q perl -e 'print "@RGAN"' ::: This works

Output (the order may be different):

Thi s
wor ks

Or you can quote the critical part using \';

parallel perl -e \'"'"print "@RGAN"'\' ::: This works, too

Output (the order may be different):

Thi s
wor ks,
t oo

GNU parallel can also \-quote full lines. Simply run this:

paral |l el --shell quote

Warning: Input is read fromthe term nal. You either know what you
Warni ng: are doing (in which case: YOU ARE AWESOVE!) or you forgot
WArning: ::: or :::: or to pipe data into parallel. If so

War ni ng: consi der going through the tutorial: man parallel _tutorial
Warning: Press CTRL-D to exit.

perl -e "print "@\RGAN"'

[CTRL- Dl

Output:

Page 17

GNU Parallel Tutorial

perl\ -e\ \'print\ \"@RGA\n\"\'

This can then be used as the command:

paral l el perl\ -e\ \'print\ \"@RGA\n\"\"' ::: This al so works

Output (the order may be different):

Thi s
al so
wor ks

Trimming space
Space can be trimmed on the arguments using --trim:

parallel --trimr echo pre-{}-post ::: ' A"
Output:
pre- A-post

To trim on the left side:

parallel --triml echo pre-{}-post ::: ' A"

Output:
pre- A -post

To trim on the both sides:

parallel --trimlr echo pre-{}-post ::: ' A"
Output:
pr e- A- post

Respecting the shell

This tutorial uses Bash as the shell. GNU parallel respects which shell you are using, so in zsh you
can do:

paral l el echo \={} ::: zsh bash Is

Output:

/usr/bin/zsh
/ bi n/ bash
/bin/ls

In csh you can do:

parallel 'set a="{}"; if({ test -d "$a" }) echo "$ais a dir"" ::: *

Output:

[somedir] is a dir

Page 18

GNU Parallel Tutorial

This also becomes useful if you use GNU parallel in a shell script: GNU parallel will use the same

shell as the shell script.

Controlling the output
The output can prefixed with the argument:

parallel --tag echo foo-{} ::: ABZC

Output (the order may be different):

A foo- A
B f oo-B
C foo-C

To prefix it with another string use --tagstring:

parallel --tagstring {}-bar echo foo-{} ::: ABZC

Output (the order may be different):

A- bar foo- A
B- bar f oo-B
C- bar foo-C

To see what commands will be run without running them use --dryrun:

parallel --dryrun echo {} ::: ABC

Output (the order may be different):

echo A
echo B
echo C

To print the command before running them use --verbose:

paral l el --verbose echo {} ::: ABZC

Output (the order may be different):

echo A
echo B
A
echo C
B
C

GNU parallel will postpone the output until the command completes:
parallel -j2 "printf "%-start\n%" {} {};
sleep {};printf "%\n" -mddle;echo {}-end

Output:

2-start
2-m ddl e
2-end

4

2

Page 19

GNU Parallel Tutorial

1-start
1-m ddl e
1-end
4-start
4-m ddl e
4- end

To get the output immediately use --ungroup:

parallel -j2 --ungroup 'printf "%-start\n%" {} {};
sleep {};printf "%\n" -mddle;echo {}-end" ::: 4 2 1

Output:

4-start
42-start
2-mddl e
2-end
1-start
1-m ddl e
1-end
-mddl e
4- end

--ungroup is fast, but can cause half a line from one job to be mixed with half a line of another job.
That has happened in the second line, where the line '4-middle' is mixed with '2-start'.

To avoid this use --linebuffer:

parallel -j2 --linebuffer "printf "%-start\n%" {

}{}
sleep {};printf "%\n" -mddle;echo {}-end" ::: 4 2

1
Output:

4-start
2-start
2-m ddl e
2-end
1-start
1-mddl e
1-end
4-m ddl e
4- end

To force the output in the same order as the arguments use --keep-order/-k:

parallel -j2 -k "printf "%-start\n%" {} {};
sleep {};printf "%\n" -mddle;echo {}-end" ::: 4 2 1

Output:

4-start
4-m ddl e
4- end
2-start
2-m ddl e
2-end

Page 20

GNU Parallel Tutorial

1-start
1-m ddl e
1-end

Saving output into files

GNU parallel can save the output of each job into files:

parallel --files echo ::: ABC

Output will be similar to this:

[t mp/ pAR6UWICQCY. par
[t mp/ opj hZCz AX4. par
[t mp/ WOAT_Rph2o0. par

By default GNU parallel will cache the output in files in /tmp. This can be changed by setting
$TMPDIR or --tmpdir:

parallel --tnmpdir /var/tmp --files echo ::: ABC

Output will be similar to this:

/var/tnp/ N _vk7phQRc. par
[var/tmp/ 7zA4Ccf 3wZ. par
[var/tnp/ Ll uKgF_2LP. par

Or:
TMPDI R=/var/tnp parallel --files echo ::: ABC

Output: Same as above.
The output files can be saved in a structured way using --results:

parallel --results outdir echo ::: ABC

Output:

A
B
C

These files were also generated containing the standard output (stdout), standard error (stderr), and
the sequence number (seq):

outdir/ 1/ Al seq
outdir/ 1/ Al stderr
outdir/ 1/ Al stdout
outdir/ 1/ Bl seq
outdir/ 1/ Bl stderr
outdir/ 1/ B/ stdout
outdir/1l/ d seq
outdir/ 1/ Cl/ stderr
outdir/ 1/ C stdout

--header : will take the first value as name and use that in the directory structure. This is useful if you
are using multiple input sources:

Page 21

GNU Parallel Tutorial
paral l el --header : --results outdir echo ::: f1 AB::: f2 CD

Generated files:

outdir/f1/ AN f2/C seq
outdir/f1/ Af2/Clstderr
outdir/f1/ A f2/Cl stdout
outdir/f1/ A f2/ D seq
outdir/f1/ A f2/ D stderr
outdir/f1/ A f2/ D stdout
outdir/f1/ B/ f2/C seq
outdir/f1/B/f2/Clstderr
outdir/f1/B/f2/Cl stdout
outdir/f1/ B/ f2/ D seq
outdir/f1/B/f2/ D stderr
outdir/f1/B/f2/ D stdout

The directories are named after the variables and their values.

Controlling the execution
Number of simultaneous jobs
The number of concurrent jobs is given with --jobs/-j:

fusr/bin/time parallel -NO -j64 sleep 1 :::: numl28
With 64 jobs in parallel the 128 sleeps will take 2-8 seconds to run - depending on how fast your
machine is.
By default --jobs is the same as the number of CPU cores. So this:

/usr/bin/tinme parallel -NO sleep 1 :::: nunil28

should take twice the time of running 2 jobs per CPU core:

/usr/bin/time parallel -NO --jobs 200% sleep 1 :::: numl28

--jobs 0 will run as many jobs in parallel as possible:

/usr/bin/tinme parallel -NO --jobs O sleep 1 :::: numl28

which should take 1-7 seconds depending on how fast your machine is.
--jobs can read from a file which is re-read when a job finishes:

echo 50% > ny_j obs

fusr/bin/time parallel -NO --jobs ny_jobs sleep 1 :::: nunml28 &
sleep 1

echo 0 > ny_j obs

wai t

The first second only 50% of the CPU cores will run a job. Then 0 is put into my_jobs and then the
rest of the jobs will be started in parallel.

Instead of basing the percentage on the number of CPU cores GNU parallel can base it on the
number of CPUs:

paral | el --use-cpus-instead-of-cores -NO sleep 1 :::: nunB

Page 22

GNU Parallel Tutorial

Shuffle job order

If you have many jobs (e.g. by multiple combinations of input sources), it can be handy to shuffle the
jobs, so you get different values run. Use --shuf for that:

parallel --shuf echo ::: 123 ::: abc::: ABC

Output:

Al'l conbinations but different order for each run.

Interactivity

GNU parallel can ask the user if a command should be run using --interactive:

parallel --interactive echo ::: 1 2 3

Output:

echo 1 ?2...y
echo 2 ?...n
1
echo 3 ?...y
3

GNU parallel can be used to put arguments on the command line for an interactive command such
as emacs to edit one file at a time:

parallel --tty emacs ::: 1 2 3

Or give multiple argument in one go to open multiple files:

parallel -X --tty vi ::: 123

A terminal for every job

Timing

Using --tmux GNU parallel can start a terminal for every job run:

seq 10 20 | parallel --tnux 'echo start {}; sleep {}; echo done {}'

This will tell you to run something similar to:

tmux -S /tnp/tnsrPrQ0 attach

Using normal tmux keystrokes (CTRL-b n or CTRL-b p) you can cycle between windows of the
running jobs. When a job is finished it will pause for 10 seconds before closing the window.

Some jobs do heavy I/O when they start. To avoid a thundering herd GNU parallel can delay starting
new jobs. --delay X will make sure there is at least X seconds between each start:

parallel --delay 2.5 echo Starting {}\;date ::: 1 2 3
Output:

Starting 1

Thu Aug 15 16:24: 33 CEST 2013

Starting 2

Thu Aug 15 16: 24: 35 CEST 2013

Page 23

GNU Parallel Tutorial

Starting 3
Thu Aug 15 16:24: 38 CEST 2013

If jobs taking more than a certain amount of time are known to fail, they can be stopped with
--timeout. The accuracy of --timeout is 2 seconds:

parallel --tinmeout 4.1 sleep {}\; echo {} ::: 2 4 6 8

Output:

2
4

GNU parallel can compute the median runtime for jobs and kill those that take more than 200% of the

median runtime:

paral l el --tineout 200% sleep {}\; echo {} ::: 2.1 2.2 37 2.3

Output:

Progress information
Based on the runtime of completed jobs GNU parallel can estimate the total runtime:

parallel --eta sleep ::: 132213321

Output:
Conputers / CPU cores / Max jobs to run
l:local /| 2/ 2

Conput er:j obs runni ng/jobs conpl et ed/ %of started jobs/
Aver age seconds to conplete

ETA: 2s Oleft 1.1lavg |ocal:0/9/100% 1. 1s
GNU parallel can give progress information with --progress:

parallel --progress sleep ::: 132213321

Output:

Conputers / CPU cores / Max jobs to run
l:local [/ 2/ 2

Conput er:j obs runni ng/jobs conpl et ed/ %of started jobs/
Aver age seconds to conplete
| ocal : 0/ 9/100% 1. 1s

A progress bar can be shown with --bar:

parallel --bar sleep ::: 132213321

Page 24

GNU Parallel Tutorial

And a graphic bar can be shown with --bar and zenity:

seq 1000 | parallel -j10 --bar '(echo -n {};sleep 0.1)" \
2> >(perl -pe 'BEA N{($/="\r";$|=1};s/\r/\n/g" |
zenity --progress --auto-kill --auto-close)

A logfile of the jobs completed so far can be generated with --joblog:

parallel --joblog /tnp/log exit ::: 1230
cat /tnp/log

Output:
Seq Host Starttinme Runtine Send Receive Exitval Signal Comand
1 : 1376577364. 974 0. 008 0 0 1 0 exit 1
2 : 1376577364.982 0.013 0 0 2 0 exit 2
3 : 1376577364. 990 0.013 0 0 3 0 exit 3
4 : 1376577365. 003 0. 003 0 0 0 0 exit 0

The log contains the job sequence, which host the job was run on, the start time and run time, how
much data was transferred, the exit value, the signal that killed the job, and finally the command being
run.

With a joblog GNU parallel can be stopped and later pickup where it left off. It it important that the
input of the completed jobs is unchanged.

parallel --joblog /tnp/log exit ::: 1230
cat /tnp/log
parallel --resune --joblog /tnmp/log exit ::: 123000
cat /tnp/log

Output:
Seq Host Starttinme Runti me Send Receive Exitval Signal Command
1 : 1376580069. 544 0.008 O 0 1 0 exit 1
2 : 1376580069. 552 0.009 O 0 2 0 exit 2
3 1376580069. 560 0.012 O 0 3 0 exit 3
4 1376580069.571 0.005 O 0 0 0 exit O
Seq Host Starttinme Runtine Send Receive Exitval Signal Comand
1 : 1376580069.544 0.008 O 0 1 0 exit 1
2 1376580069.552 0.009 O 0 2 0 exit 2
3 : 1376580069.560 0.012 O 0 3 0 exit 3
4 : 1376580069.571 0.005 O 0 0 0 exit O
5 : 1376580070.028 0.009 O 0 0 0 exit O
6 1376580070.038 0.007 O 0 0 0 exit O

Note how the start time of the last 2 jobs is clearly different from the second run.

With --resume-failed GNU parallel will re-run the jobs that failed:
parallel --resune-failed --joblog /tnp/log exit ::: 123000
cat /tnp/log

Output:
Seq Host Starttinme Runti me Send Receive Exitval Signal Command
1 : 1376580069. 544 0.008 O 0 1 0 exit 1

Page 25

GNU Parallel Tutorial

WNPFPOOOPRWDN

1376580069.
1376580069.
1376580069.
1376580070.
1376580070.
1376580154.
1376580154.
1376580154.

552
560
571
028
038
433
444
466

[cNeoNeoNeoNeolNolNoNo

. 009
. 012
. 005
. 009
. 007
. 010
. 022
. 005

[cNeoNeoNolNeoloNoNol

[cNeoNeoNolNeoloNoNol

WNNPFPOOOWN
[cNeoNeoNolNeoloNoNol

exit
exit
exit
exit
exit
exit
exit
exit

Note how seq 1 2 3 have been repeated because they had exit value different from 0.

--retry-failed does almost the same as --resume-failed. Where --resume-failed reads the

WNNPFPOOOWN

commands from the command line (and ignores the commands in the joblog), --retry-failed ignores
the command line and reruns the commands mentioned in the joblog.

paral | el

Output:

--retry-failed --joblog /tnp/log
cat /tnp/log

Seq Host Starttinme

WNEFPWNRPFPOOPR,WNPE

Termination

1376580069.
1376580069.
1376580069.
1376580069.
1376580070.
1376580070.
1376580154.
1376580154.
1376580154.
1376580164.
1376580164.
1376580164.

Unconditional termination

544
552
560
571
028
038
433
444
466
633
644
666

Runti me Send Recei ve Exitval
. 008
. 009
.012
. 005
. 009
. 007
. 010
. 022
. 005
. 010
. 022
. 005

cNeoNeoNeoleololoNolNolNolNelNe]

0

cNeoNoNeoNeolololoNoNoNe

cNeoNoNeolololoNolNoNoNelNe]

0

WNPFPWNPFPOOOWNLPE
OO OO0 O0OO0OO0O0OO0OO0o

By default GNU parallel will wait for all jobs to finish before exiting.

Si gnal

exit
exit
exit
exit
exit
exit
exit
exit
exit
exit
exit
exit

Comand

1

WNPFPWNPFPOOOWN

If you send GNU parallel the TERM signal, GNU parallel will stop spawning new jobs and wait for the
remaining jobs to finish. If you send GNU parallel the TERM signal again, GNU parallel will kill all
running jobs and exit.

Termination dependent on job status

For certain jobs there is no need to continue if one of the jobs fails and has an exit code different from
0. GNU parallel will stop spawning new jobs with --halt soon,fail=1:

paral | el

Output:

0
0
1

paral l el :
echo 1;
paral l el :

2

-j2 --halt soon,fail=1 echo {}\; exit {}
This job fail ed:

exit 1

Starting no nore jobs. Waiting for 1 jobs to

00123

finish.

Page 26

GNU Parallel Tutorial

With --halt now,fail=1 the running jobs will be killed immediately:

parallel -j2 --halt now fail=1 echo {}\; exit {} ::: 00123

Output:

0

0

1

parallel: This job failed:
echo 1; exit 1

If --halt is given a percentage this percentage of the jobs must fail before GNU parallel stops
spawning more jobs:

parallel -j2 --halt soon,fail =20%echo {}\; exit {} \
0123456789

Output:

0

1

parallel: This job failed:
echo 1; exit 1

2

parallel: This job failed:
echo 2; exit 2

parallel: Starting no nore jobs. Waiting for 1 jobs to finish.
3

parallel: This job failed:
echo 3; exit 3

If you are looking for success instead of failures, you can use success. This will finish as soon as the
first job succeeds:

parallel -j2 --halt now, success=1 echo {}\; exit {} ::: 1230456

Output:

1

2

3

0

parallel: This job succeeded:
echo 0; exit O

GNU parallel can retry the command with --retries. This is useful if a command fails for unknown
reasons now and then.

parallel -k --retries 3\
"echo tried {} >>/tnmp/runs; echo conpleted {}; exit {}' ::: 120
cat /tnp/runs

Output:

conpleted 1
conpl eted 2

Page 27

GNU Parallel Tutorial

conpleted 0O

tried
tried
tried
tried
tried
tried
tried

ONEFNEFEDNPE

Note how job 1 and 2 were tried 3 times, but 0 was not retried because it had exit code 0.

Termination signals (advanced)

Using --termseq you can control which signals are sent when killing children. Normally children will
be killed by sending them SIGTERM, waiting 200 ms, then another SIGTERM, waiting 100 ms, then
another SIGTERM, waiting 50 ms, then a SIGKILL, finally waiting 25 ms before giving up. It looks like
this:

show_si gnal s() {
perl -e 'for(keys %81 G§ {
$SIG($_} = eval "sub { print \"Got $_\\m"; }";
}

whi l e(1){sl eep 1}'

export -f show_signals
echo | parallel --termseq TERM 200, TERM 100, TERM 50, KI LL, 25 \
-u --tinmeout 1 show signals

Output:

Got TERM

Got TERM

Got TERM
Or just:

echo | parallel -u --tineout 1 show signals

Output: Same as above.
You can change this to SIGINT, SIGTERM, SIGKILL:

echo | parallel --ternseq |NT, 200, TERM 100, KI LL, 25 \
-u --tineout 1 show signals

Output:
Got | NT
Got TERM

The SIGKILL does not show because it cannot be caught, and thus the child dies.

Limiting the resources
To avoid overloading systems GNU parallel can look at the system load before starting another job:

paral l el --1oad 100% echo load is less than {} job per cpu ::: 1

Page 28

GNU Parallel Tutorial

Output:
[when then load is | ess than the nunmber of cpu cores]
load is less than 1 job per cpu

GNU parallel can also check if the system is swapping.

paral l el --noswap echo the systemis not swapping ::: now

Output:
[when then systemis not swappi ng]
the systemis not swapping now

Some jobs need a lot of memory, and should only be started when there is enough memory free.
Using --memfree GNU parallel can check if there is enough memory free. Additionally, GNU parallel
will kill off the youngest job if the memory free falls below 50% of the size. The killed job will put back
on the queue and retried later.

parallel --menfree 1G echo will run if nore than 1 GBBis ::: free

GNU parallel can run the jobs with a nice value. This will work both locally and remotely.

parallel --nice 17 echo this is being run with nice -n ::: 17

Output:

this is being run with nice -n 17

Remote execution
GNU parallel can run jobs on remote servers. It uses ssh to communicate with the remote machines.

Sshlogin
The most basic sshlogin is -S host:
parallel -S $SERVERL echo running on ::: $SERVERL
Output:

runni ng on [$SERVERL]

To use a different username prepend the server with username@:

paral |l el -S usernane@SERVERL echo running on ::: username@SERVERL

Output:
runni ng on [usernane@SERVER1]

The special sshlogin : is the local machine:

parallel -S : echo running on ::: the_local nachine

Output:

runni ng on the_| ocal _nmachi ne

Page 29

GNU Parallel Tutorial

If ssh is not in $PATH it can be prepended to $SERVERL1.:
parallel -S '/usr/bin/ssh '$SERVERL echo custom::: ssh

Output:

cust om ssh

The ssh command can also be given using --ssh:

paral l el --ssh /usr/bin/ssh -S $SERVERL echo custom::: ssh

or by setting $SPARALLEL_SSH:
export PARALLEL_ SSH=/usr/ bi n/ssh
parallel -S $SERVERL echo custom::: ssh
Several servers can be given using multiple -S:

paral l el -S $SERVERL -S $SERVER2 echo ::: running on nore hosts

Output (the order may be different):

runni ng
on

nor e
host s

Or they can be separated by ,:
parall el -S $SERVERL, $SERVER2 echo ::: running on nore hosts

Output: Same as above.
Or newline:

This gives a \n between $SERVERL and $SERVER2
SERVERS=""echo $SERVER1; echo $SERVER2" "
parallel -S "$SERVERS' echo ::: running on nore hosts

They can also be read from a file (replace user@ with the user on $SERVER?2):

echo $SERVERL > nodefile

Force 4 cores, special ssh-command, usernane

echo 4//usr/bin/ssh user @SERVER2 >> nodefile

parallel --sshloginfile nodefile echo ::: running on nore hosts
Output: Same as above.

Every time a job finished, the --sshloginfile will be re-read, so it is possible to both add and remove
hosts while running.

The special --sshloginfile .. reads from ~/.parallel/sshloginfile.

To force GNU parallel to treat a server having a given number of CPU cores prepend the number of
core followed by / to the sshlogin:

parallel -S 4/$SERVERL echo force {} cpus on server ::: 4

Page 30

GNU Parallel Tutorial

Output:
force 4 cpus on server
Servers can be put into groups by prepending @groupname to the server and the group can then be
selected by appending @groupname to the argument if using --hostgroup:
parallel --hostgroup -S @rpl/ $SERVERL -S @r p2/ $SERVER2 echo {} \
run_on_grpl@rpl run_on_grp2@rp2
Output:
run_on_grpl
run_on_grp2
A host can be in multiple groups by separating the groups with +, and you can force GNU parallel to
limit the groups on which the command can be run with -S @groupname:
parallel -S @rpl -S @rpl+grp2/ $SERVERL -S @r p2/ SERVER2 echo {} \
run_on_grpl also_grpl
Output:
run_on_grpl

al so_grp1l

Transferring files
GNU parallel can transfer the files to be processed to the remote host. It does that using rsync.

echo This is input file > input file
parallel -S $SERVERL --transferfile {} cat ::: input_file
Output:

This is input_file

If the files are processed into another file, the resulting file can be transferred back:

echo This is input file > input file

parallel -S $SERVERL --transferfile {} --return {}.out \
cat {} ">"{}.out ::: input _file

cat input_file.out

Output: Same as above.

To remove the input and output file on the remote server use --cleanup:

echo This is input_file > input_file

parallel -S $SERVERL --transferfile {} --return {}.out --cleanup \
cat {} ">"{}.out ::: input_file

cat input_file.out

Output: Same as above.

There is a shorthand for --transferfile {} --return --cleanup called --trc:

echo This is input_file > input_file
parallel -S $SERVERL --trc {}.out cat {} ">"{}.out ::: input_file

Page 31

GNU Parallel Tutorial

cat input_file.out

Output: Same as above.

Some jobs need a common database for all jobs. GNU parallel can transfer that using --basefile
which will transfer the file before the first job:

echo conmon data > comon_file
paral l el --basefile common_file -S $SERVERL \
cat common_file\; echo {} ::: foo

Output:

commpn dat a
f oo

To remove it from the remote host after the last job use --cleanup.

Working dir
The default working dir on the remote machines is the login dir. This can be changed with --workdir
mydir.

Files transferred using --transferfile and --return will be relative to mydir on remote computers, and
the command will be executed in the dir mydir.

The special mydir value ... will create working dirs under ~/.parallel/tmp on the remote computers. If
--cleanup is given these dirs will be removed.

The special mydir value . uses the current working dir. If the current working dir is beneath your home
dir, the value . is treated as the relative path to your home dir. This means that if your home dir is
different on remote computers (e.qg. if your login is different) the relative path will still be relative to
your home dir.

parallel -S $SERVERL pwd ::: ""
parallel --workdir . -S $SERVERL pwd ::: ""
parallel --workdir ... -S $SERVERL pwd ::: ""

Output:

[the login dir on $SERVER1]
[current dir relative on $SERVER1]
[a dir in ~/.parallel/tnp/...]

Avoid overloading sshd

If many jobs are started on the same server, sshd can be overloaded. GNU parallel can insert a
delay between each job run on the same server:

parallel -S $SERVERL --sshdelay 0.2 echo ::: 1 2 3

Output (the order may be different):

1
2
3

sshd will be less overloaded if using --controlmaster, which will multiplex ssh connections:

parallel --controlmaster -S $SERVERL echo ::: 1 2 3

Page 32

GNU Parallel Tutorial

Output: Same as above.

Ignore hosts that are down

In clusters with many hosts a few of them are often down. GNU parallel can ignore those hosts. In
this case the host 173.194.32.46 is down:

parallel --filter-hosts -S 173.194. 32. 46, $SERVERL echo ::: bar

Output:

bar

Running the same commands on all hosts
GNU parallel can run the same command on all the hosts:

parallel --onall -S $SERVER1, $SERVER2 echo ::: foo bar

Output (the order may be different):

foo
bar
foo
bar

Often you will just want to run a single command on all hosts with out arguments. --nonall is a no
argument --onall:

parallel --nonall -S $SERVERL, $SERVER2 echo foo bar

Output:
foo bar
foo bar
When --tag is used with --nonall and --onall the --tagstring is the host:

parallel --nonall --tag -S $SERVER1, $SERVER2 echo foo bar

Output (the order may be different):
$SERVERL f oo bar
$SERVER2 f o0 bar
--jobs sets the number of servers to log in to in parallel.

Transferring environment variables and functions

env_parallel is a shell function that transfers all aliases, functions, variables, and arrays. You active it
by running:

source “which env_parallel.bash’

Replace bash with the shell you use.
Now you can use env_parallel instead of parallel and still have your environment:

al i as nmyecho=echo
nmyvar="Joe's var is

Page 33

GNU Parallel Tutorial

env_parallel -S $SERVERL 'nyecho $nyvar' ::: green

Output:

Joe's var is green

The disadvantage is that if your environment is huge env_parallel will fail.

When env_parallel fails, you can still use --env to tell GNU parallel to transfer an environment
variable to the remote system.

MYVAR=' f oo bar’

export MYVAR

parall el --env MYVAR -S $SERVERL echo ' $MYWVAR ::: baz
Output:

foo bar baz

This works for functions, too, if your shell is Bash:

This only works in Bash

ny_func() {
echo in ny_func $1

}
export -f ny_func

parallel --env ny_func -S $SERVERL ny_func ::: baz
Output:
in my_func baz
GNU parallel can copy all user defined variables and functions to the remote system. It just needs to
record which ones to ignore in ~/.parallel/ignored_vars. Do that by running this once:
paral l el --record-env
cat ~/.parallel/ignored_vars
Output:
[list of variables to ignore - including $PATH and $HOVE]

Now all other variables and functions defined will be copied when using --env _.

The function is only copied if using Bash

ny_func2() {
echo in ny_func2 $VAR $1

}

export -f ny_func2

VAR=f 00

export VAR

parallel --env _ -S $SERVERL 'echo $VAR, ny func2' ::: bar
Output:

foo

Page 34

GNU Parallel Tutorial

in my_func2 foo bar

If you use env_parallel the variables, functions, and aliases do not even need to be exported to be
copied:

NOT=' not exported var'
al i as nmyecho=echo
not _ex() {
nyecho in not_exported func $NOT $1
}

env_parallel --env _ -S $SERVERL 'echo $NOT; not_ex' ::: bar

Output:

not exported var
in not_exported_func not exported var bar

Showing what is actually run
--verbose will show the command that would be run on the local machine.

When using --cat, --pipepart, or when a job is run on a remote machine, the command is wrapped
with helper scripts. -vv shows all of this.

parallel -vv --pipepart --block IMwc :::: nunB30000

Output:

<nunB0000 perl -e '"while(@RGY) { sysseek(STDIN,shift,0) || die;
$left = shift; while($read = sysread(STDI N, $buf, ($left > 131072
? 131072 : $left))){ $left -= $read; syswite(STDOUT, $buf); } }'
0 0 0 168894 | (wc)

30000 30000 168894

When the command gets more complex, the output is so hard to read, that it is only useful for
debugging:

ny_func3() {
echo in nmy_func $1 > $1. out
}

export -f nmy_func3
parallel -vv --workdir ... --nice 17 --env _ --trc {}.out \
-S $SERVERL ny_func3 {} ::: abc-file

Output will be similar to:

(ssh server -- nkdir -p ./.parallel/tnmp/aspire-1928520-1;rsync
--protocol 30 -rlDzR -essh ./abc-file
server:./.parallel/tnp/aspire-1928520-1);ssh server -- exec perl -e
\''"@NU Parall el =("use","I PC.: Qpen3; ", "use","M ME: : Base64") ;

eval "@NU_Paral | el "; my$eval =decode_base64(j oi n"", GARGV) ; eval $eval ;'\’
c3l zdGvt KCJt a2Rpci I sli 1wl i wi LSOi LCl ucGFy YWksZWw dGIWL2Fzcd yZS0xOTl 4N
TsgY2hkaXl gl i 5wWwYXJhbGxl bC90bXAv YXNwaXJl LTESM g1M At MBI gf Hxwem udChTVE
BhcnFsbGvs G BDYWsub3QY2hkaXl gdG8gLnBhenFsbGVsL3Rt cCOhc3Bpemit MIky ODU
i KSAmJi Bl ed 0l DI INTskRUSWey JPTERQVOQ f TOi L2hvbWlvdGFuZ2WcHIpdnfFOL3Bh
I j skRUSVey JQQVIBTEXFTFIQSUQ f TOi MIky ODUy MCI 7JEVOVNnsi UEFSQUX MRUxf UOVRI
0Bi YXNoX2Z1bmNOaWucz1xdyht eVOndWsj Myk71 G nKCRFTI Z71 1 NI RUxM n09fi 9j c2
ByaWs0l FNUREVSUi Ai QLNI L1RDUOggRE8gTk9UI FNVUFBPU QgbnV3bd uzZXMgSU4gVk F

Page 35

GNU Parallel Tutorial

TLOZVTkNUSUOOUy 4gVWbz ZXQyQGJIhc2hf ZnVuY3Rpbh25z XG4i OyBl eGVj | CImYWkzZSI 7
YXNoZnVuYy A9l CJt eVIndWbj Mygpl Hsgl GVj aGBgaWlgbXl f ZnVuYyBcJDEgPi BcJDEub
Xhwb3J01 Clm GL5X2Z1bmVezl DAvZGV2L251bGn71 j t AQVIHV] 0i bXI f ZnVuYzMgYWj LW
RzaGVvsbD0i JEVOVNnt TSEVMIHOI Oy RObXBkaXI 91 i 90bXAi OyRuaVWNl PTE3O2RveyRFTI Z
MRUxf VE1LQX TOKdGLwZd yLi | veGRyli 5gb2l ul i | sbWFweygwLi 45LCJhl i 4ul noi LCIB
KVt y YWEk KDYy KV19KDEuULj UpO313ad sZSgt ZSRFTI Z7 UEFSQUXx MRUxf VEL Q¥ Sk7JFNJ

f T1zdW 7JGRvbmMJOMIt 90Oy RnaWRZnByazt 1bnxl c3MbJHBpZO 7¢c2V0cCGdycDt | dnfFse
WOy aXR5KDAs MOwk b j ZSI 92V4AZWWKke2hl bGasl i 1j 1'i woJGIhc2hmdWsj Li JAQVIHV
JI eGVj G QhXG4i B1lkb3skczOkeczwx Pz AuMDAXKy RzKj EuNMDVBJHWY ¢ 2Vs ZVWWNOKHVUZGV
mM.HVUZGVnL.CRz KTt 9dWs0aWhoJ GRvbmv8f GdI dHBwaWPPTEpO2t pbGmoUOI HSFVQLCOk
dWbsZXNz JGRvbmJ7d2FpdDt | ed OKCQ Jj EyNz8xM gr KCQ Jj EyNyk6MsskPz4+0Ck=;
_EXIT_status=$?; nkdir -p ./.; rsync --protocol 30 --rsync-path=cd\
./ .parallel/tnp/aspire-1928520-1/./.\;\ rsync -rl DzR -essh
server:./abc-file.out ./.;ssh server -- \(rm -f\

./ .parallel/tnp/aspire-1928520-1/abc-file\;\ sh\ -c\ \'rndir\

./ .parallel/tnp/aspire-1928520-1/\ ./.parallel/tmp/\ ./.parallell/\
2\>/dev/nul I\'"\;rmd -rf\ ./.parallel/tnp/aspire-1928520-1\;\);ssh
server -- \(rm -f\ ./.parallel/tnp/aspire-1928520-1/abc-file.out\;\
sh\ -c\ \'rndir\ ./.parallel/tnp/aspire-1928520-1/\ ./.parallel/tnp/\
.M .parallel/\ 2\>/dev/nulI\"\;rm -rf\
./.parallel/tnp/aspire-1928520-1\;\);ssh server -- rm-rf
.parallel/tnp/aspire-1928520-1; exit $ EXI T status;

Saving output to shell variables (advanced)

GNU parset will set shell variables to the output of GNU parallel. GNU parset has one important
limitation: It cannot be part of a pipe. In particular this means it cannot read anything from standard
input (stdin) or pipe output to another program.

To use GNU parset prepend command with destination variables:

parset nyvarl,myvar2 echo ::: a b
echo $nyvarl
echo $nyvar?2
Output:
a
b
If you only give a single variable, it will be treated as an array:
parset nyarray seq {} 5::: 12 3
echo "${nyarray[1]}"

Output:
2
3
4
5

The commands to run can be an array:

cnd=("echo '<<joe \"double space\" cartoon>>"" "pwd")
parset data ::: "${cmd[@}"

echo "${data[0]}"

echo "${data[1]}"

Page 36

GNU Parallel Tutorial

Output:

<<joe "double space" cartoon>>
[current dir]

Saving to an SQL base (advanced)

GNU parallel can save into an SQL base. Point GNU parallel to a table and it will put the joblog there
together with the variables and the output each in their own column.

CSV as SQL base
The simplest is to use a CSV file as the storage table:

paral | el --sql andworker csv:///%Ftnp/log.csv \
seq ::: 10 ::: 12 13 14
cat /tnmp/l og.csv

Note how '/ in the path must be written as %2F.
Output will be similar to:

Seq, Host, Starttime, JobRunti me, Send, Recei ve, Exi tval , _Si gnal ,
Command, V1, V2, St dout , Stderr

1,:,1458254498. 254, 0. 069, 0,9, 0,0, "seq 10 12", 10, 12,"10

11

12

2,:,1458254498. 278, 0. 080, 0,12, 0,0, "seq 10 13",10, 13,"10
11
12
13

3,:,1458254498. 301, 0. 083, 0, 15, 0,0, "seq 10 14", 10, 14,"10
11
12
13
14

A proper CSV reader (like LibreOffice or R's read.csv) will read this format correctly - even with fields
containing newlines as above.

If the output is big you may want to put it into files using --results:

parallel --results outdir --sglandworker csv:///%Ftnp/log2.csv \
seq ::: 10 ::: 12 13 14
cat /tnp/log2.csv

Output will be similar to:

Seq, Host, Startti me, JobRunti ne, Send, Recei ve, Exi tval , _Si gnal ,

Command, V1, V2, St dout , St derr
1,:,1458824738. 287, 0.029,0,9,0,0,

"seq 10 12",10,12,outdir/1/10/2/12/stdout,outdir/1/10/2/12/stderr
2,:,1458824738. 298, 0. 025, 0, 12, 0, O,

"seq 10 13", 10, 13, outdir/1/10/2/13/stdout,outdir/1/10/2/13/stderr
3,:,1458824738. 309, 0. 026, 0, 15, 0, O,

"seq 10 14", 10, 14, outdir/ 1/ 10/ 2/ 14/ stdout, outdir/1/10/2/ 14/ stderr

Page 37

GNU Parallel Tutorial

DBURL as table
The CSV file is an example of a DBURL.

GNU parallel uses a DBURL to address the table. A DBURL has this format:

vendor://[[user][:password] @[host][:port]/[database[/tabl e]

Example:

nysql ://scott:tiger@y. exanpl e. com nydat abase/ nyt abl e
postgresql://scott:tiger@g. exanpl e. com mydat abase/ nyt abl e
sqlite3:///9Y%RFt mpY¥%2Fmydat abase/ nyt abl e

csv:///9%2Ft mp/ | og. csv

To refer to /tmp/mydatabase with sqlite or csv you need to encode the / as %2F.
Run a job using sqlite on mytable in /tmp/mydatabase:

DBURL=sql ite3:/// %Ft np¥2Fnydat abase
DBURLTABLE=$DBURL/ nyt abl e
parall el --sqgl andworker $DBURLTABLE echo ::: foo bar ::: baz quuz

To see the result:

sgl $DBURL ' SELECT * FROM nytabl e ORDER BY Seq;'

Output will be similar to:

Seq| Host | Startti me| JobRunti ne| Send| Recei ve| Exi tval | _Si gnal |
Conmand| V1| V2| St dout | St derr
1] :]1451619638. 903| 0. 806] | 8] 0| 0] echo foo baz|foo| baz|foo baz

|
2| 1] 1451619639. 265| 1. 54| | 9] 0] 0] echo foo quuz|foo| quuz|foo quuz

|
3| :]1451619640. 378| 1. 43| | 8| 0] O] echo bar baz| bar| baz| bar baz

|
4| :| 1451619641. 473]| 0. 958| | 9] 0| O] echo bar quuz| bar| quuz]| bar quuz

The first columns are well known from --joblog. V1 and V2 are data from the input sources. Stdout
and Stderr are standard output and standard error, respectively.

Using multiple workers
Using an SQL base as storage costs overhead in the order of 1 second per job.

One of the situations where it makes sense is if you have multiple workers.

You can then have a single master machine that submits jobs to the SQL base (but does not do any
of the work):

parallel --sgl master $DBURLTABLE echo ::: foo bar ::: baz quuz

On the worker machines you run exactly the same command except you replace --sqlmaster with
--sglworker.

parall el --sglworker $DBURLTABLE echo ::: foo bar ::: baz quuz

To run a master and a worker on the same machine use --sqlandworker as shown earlier.

Page 38

GNU Parallel Tutorial

--pipe

The --pipe functionality puts GNU parallel in a different mode: Instead of treating the data on stdin
(standard input) as arguments for a command to run, the data will be sent to stdin (standard input) of
the command.

The typical situation is:

command_A | command_B | command_C

where command_B is slow, and you want to speed up command_B.

Chunk size

By default GNU parallel will start an instance of command_B, read a chunk of 1 MB, and pass that to
the instance. Then start another instance, read another chunk, and pass that to the second instance.

cat numlO000000 | parallel --pipe we

Output (the order may be different):

165668 165668 1048571
149797 149797 1048579
149796 149796 1048572
149797 149797 1048579
149797 149797 1048579
149796 149796 1048572
85349 85349 597444

The size of the chunk is not exactly 1 MB because GNU parallel only passes full lines - never half a
line, thus the blocksize is only 1 MB on average. You can change the block size to 2 MB with --block:

cat numl000000 | parallel --pipe --block 2M wc

Output (the order may be different):

315465 315465 2097150
299593 299593 2097151
299593 299593 2097151
85349 85349 597444

GNU parallel treats each line as a record. If the order of records is unimportant (e.g. you need all
lines processed, but you do not care which is processed first), then you can use --roundrobin.
Without --roundrobin GNU parallel will start a command per block; with --roundrobin only the
requested number of jobs will be started (--jobs). The records will then be distributed between the
running jobs:

cat numlO000000 | parallel --pipe -j4 --roundrobin wc

Output will be similar to:

149797 149797 1048579
299593 299593 2097151
315465 315465 2097150
235145 235145 1646016

One of the 4 instances got a single record, 2 instances got 2 full records each, and one instance got 1
full and 1 partial record.

Page 39

GNU Parallel Tutorial

Records
GNU parallel sees the input as records. The default record is a single line.

Using -N140000 GNU parallel will read 140000 records at a time:
cat numl000000 | parallel --pipe -N140000 wc

Output (the order may be different):

140000 140000 868895
140000 140000 980000
140000 140000 980000
140000 140000 980000
140000 140000 980000
140000 140000 980000
140000 140000 980000
20000 20000 140001

Note how that the last job could not get the full 140000 lines, but only 20000 lines.
If a record is 75 lines -L can be used:

cat numl000000 | parallel --pipe -L75 wc

Output (the order may be different):

165600 165600 1048095
149850 149850 1048950
149775 149775 1048425
149775 149775 1048425
149850 149850 1048950
149775 149775 1048425
85350 85350 597450

25 25 176

Note how GNU parallel still reads a block of around 1 MB; but instead of passing full lines to wc it
passes full 75 lines at a time. This of course does not hold for the last job (which in this case got 25
lines).

Fixed length records
Fixed length records can be processed by setting --recend " and --block recordsize. A header of
size n can be processed with --header .{n}.
Here is how to process a file with a 4-byte header and a 3-byte record size:

cat fixedlen | parallel --pipe --header .{4} --block 3 --recend '' \
"echo start; cat; echo'

Output:

start
HHHHAAA
start
HHHHCCC
start
HHHHBBB

It may be more efficient to increase --block to a multiplum of the record size.

Page 40

GNU Parallel Tutorial

Record separators
GNU parallel uses separators to determine where two records split.

--recstart gives the string that starts a record; --recend gives the string that ends a record. The
default is --recend "\n' (newline).

If both --recend and --recstart are given, then the record will only split if the recend string is
immediately followed by the recstart string.

Here the --recend is setto ', "

echo /foo, bar/, /baz, qux/, | \
parallel -kN1 --recend ', ' --pipe echo JOB{#}\;cat\;echo END

Output:

JOB1
/foo, END
JoB2

bar/, END
JOB3

/ baz, END
JOB4
qux/,

END

Here the --recstart is set to /:

echo /foo, bar/, /baz, qux/, | \
parallel -kNl1 --recstart / --pipe echo JOB{#}\;cat\;echo END

Output:

JOBL

/ f oo, bar END
JoB2

/, END

JOB3

/ baz, quxEND
JOoB4

l,

END

Here both --recend and --recstart are set:

echo /foo, bar/, /baz, qux/, | \

parallel -kNl1 --recend ', --recstart / --pipe \
echo JOB{#}\;cat\;echo END

Output:

JOBL

/foo, bar/, END
JoB2

[baz, qux/,

END

Note the difference between setting one string and setting both strings.

Page 41

GNU Parallel Tutorial
With --regexp the --recend and --recstart will be treated as a regular expression:

echo foo, bar, _baz, qux, | \
parallel -kNl1 --regexp --recend ,_+ --pipe \
echo JOB{#}\;cat\;echo END

Output:

JOB1

f oo, bar, END
JoB2

baz, __END
JOB3

qux,

END

GNU parallel can remove the record separators with --remove-rec-sep/--rrs:

echo foo, bar, _baz, qux, | \
parallel -kNlL --rrs --regexp --recend ,_+ --pipe \
echo JOB{#}\;cat\;echo END

Output:

JOB1

f 0o, bar END
JOB2
bazEND
JOB3

qux,

END

Header

If the input data has a header, the header can be repeated for each job by matching the header with
--header. If headers start with % you can do this:

cat num %eader | \
paral l el --header '(%*\n)*' --pipe -N3 echo JOB{#}\; cat

Output (the order may be different):

JOB1
%headl
%head2
1

2

3

JoB2
%headl
%head2

JOB3
Oheadl
Ohead?2

Page 42

GNU Parallel Tutorial

8

9

JOB4
%headl
%head?2
10

If the header is 2 lines, --header 2 will work:

cat num %eader | parallel --header 2 --pipe -N3 echo JOB{#}\; cat

Output: Same as above.

--pipepart
--pipe is not very efficient. It maxes out at around 500 MB/s. --pipepart can easily deliver 5 GB/s. But
there are a few limitations. The input has to be a normal file (not a pipe) given by -a or :::: and -L/-I/-N
do not work. --recend and --recstart, however, do work, and records can often be split on that alone.

paral | el --pipepart -a numl000000 --bl ock 3m wc

Output (the order may be different):

444443 444444 3000002
428572 428572 3000004
126985 126984 888890

Shebang
Input data and parallel command in the same file
GNU parallel is often called as this:

cat input_file | parallel comrand

With --shebang the input_file and parallel can be combined into the same script.
UNIX shell scripts start with a shebang line like this:
#!1/ bi n/ bash
GNU parallel can do that, too. With --shebang the arguments can be listed in the file. The parallel
command is the first line of the script:
#!/usr/bin/parallel --shebang -r echo
f oo
bar
baz
Output (the order may be different):

f oo
bar
baz

Parallelizing existing scripts
GNU parallel is often called as this:

Page 43

GNU Parallel Tutorial

cat input _file | parallel comrand
paral l el command ::: foo bar

If command is a script, parallel can be combined into a single file so this will run the script in parallel:

cat input _file | comand
conmand foo bar

This perl script perl_echo works like echo:

#!/ usr/ bi n/ perl
print " @\WRGAN"

It can be called as this:

paral l el perl_echo ::: foo bar

By changing the #!-line it can be run in parallel:

#!/usr/ bin/parallel --shebang-wap /usr/bin/perl
print "@\WRGAN"
Thus this will work:

perl _echo foo bar

Output (the order may be different):

f oo
bar

This technique can be used for:

Perl:
#!/usr/ bin/parallel --shebang-wap /usr/bin/perl

print "Argunents @\RGWN";

Python:
#!/usr/bin/parallel --shebang-wap /usr/bin/python

i mport sys
print '"Argunments', str(sys.argv)

Bash/sh/zsh/Korn shell:
#!/usr/bin/parallel --shebang-w ap /bin/bash

echo Argunents "$@

csh:
#!/usr/bin/parallel --shebang-wap /bin/csh

Page 44

GNU Parallel Tutorial

Tcl:

GNUplot:

Ruby:

Octave:

Common LISP:

PHP:

echo Argunents "$argv"

#!/usr/bin/parallel --shebang-wap /usr/bin/tclsh

puts "Argunments $argv"

#!/usr/bin/parallel --shebang-wap /usr/bin/Rscript
vanilla --slave

args <- conmandArgs(trailingOnly = TRUE)
print(paste("Arguments ", args))

#!/usr/bin/parallel --shebang-wap ARG={} /usr/bin/gnupl ot

print "Argunents ", system('echo $ARG)

#!/usr/bin/parallel --shebang-wap /usr/bin/ruby

print "Arguments "
puts ARGV

#!/usr/bin/parallel --shebang-wap /usr/bin/octave

printf ("Argunents");
arg_list = argv ();

for i = 1:nargin
printf (" %", arg_list{i});
endf or
printf ("\n");
#!/usr/bin/parallel --shebang-wap /usr/bin/clisp

(format t "~&-S~&" ' Argunents)
(format t "~&-S~&" *args*)

#!/usr/bin/parallel --shebang-wap /usr/bin/php
<?php
echo "Arguments";
foreach(array_slice($argv, 1) as $v)
{
echo " $v";
}
echo "\ n";
?>

Page 45

GNU Parallel Tutorial

Node.js:
#!/usr/bin/parallel --shebang-wap /usr/bin/node
var myArgs = process.argv.slice(2);
consol e.l og(' Argunents ', myArgs);
LUA:;
#!/usr/bin/parallel --shebang-wap /usr/bin/lua
io.wite "Argunents"
for a = 1, #arg do
io.wite(" ")
io.wite(arg[a])
end
print("")
C#:
#!/usr/bin/parallel --shebang-wap ARGV={} /usr/bin/csharp
var argv = Environnent. Get Envi ronment Vari abl e(" ARGV") ;
print("Argunments "+argv);
Semaphore

Mutex

GNU parallel can work as a counting semaphore. This is slower and less efficient than its normal
mode.

A counting semaphore is like a row of toilets. People needing a toilet can use any toilet, but if there
are more people than toilets, they will have to wait for one of the toilets to become available.

An alias for parallel --semaphore is sem.

sem will follow a person to the toilets, wait until a toilet is available, leave the person in the toilet and
exit.

sem --fg will follow a person to the toilets, wait until a toilet is available, stay with the person in the
toilet and exit when the person exits.

sem --wait will wait for all persons to leave the toilets.
sem does not have a queue discipline, so the next person is chosen randomly.

-j sets the number of toilets.

The default is to have only one toilet (this is called a mutex). The program is started in the background
and sem exits immediately. Use --wait to wait for all sems to finish:

sem 'sleep 1; echo The first finished &&
echo The first is now running in the background &&
sem 'sleep 1; echo The second finished &&
echo The second is now running in the background
sem --wait

Output:

The first is now running in the background
The first finished

Page 46

GNU Parallel Tutorial

The second is now running in the background
The second fi nished

The command can be run in the foreground with --fg, which will only exit when the command
completes:

sem--fg 'sleep 1; echo The first finished &&
echo The first finished running in the foreground &&
sem--fg 'sleep 1; echo The second finished &&
echo The second finished running in the foreground
sem - -wai t

The difference between this and just running the command, is that a mutex is set, so if other sems
were running in the background only one would run at a time.

To control which semaphore is used, use --semaphorename/--id. Run this in one terminal:

sem--id ny_id -u "echo First started; sleep 10; echo First done'
and simultaneously this in another terminal:
sem--id ny_id -u 'echo Second started; sleep 10; echo Second done'

Note how the second will only be started when the first has finished.

Counting semaphore

A mutex is like having a single toilet: When it is in use everyone else will have to wait. A counting
semaphore is like having multiple toilets: Several people can use the toilets, but when they all are in
use, everyone else will have to wait.

sem can emulate a counting semaphore. Use --jobs to set the number of toilets like this:

sem - -j obs
sem - -j obs
sem - -j obs
sem - -j obs
sem --wait

Output:

Start 1
Start 2
Start 3
1 done
Start 4
2 done
3 done
4 done

Timeout

1 done
2 done
3 done
4 done

echo
echo
echo
echo

3 --idny_id -u "echo Start 1; sleep 5;
3 --idny_id -u '"echo Start 2; sleep 6;
3 --idny_id -u '"echo Start 3; sleep 7;
3 --idny_id -u '"echo Start 4; sleep 8;
--id my_id

EEEE

With --semaphoretimeout you can force running the command anyway after a period (positive
number) or give up (negative number):

sem--id foo
sem--id foo
sem--id foo
sem--id foo

-u 'echo Slow started; sleep 5; echo Slow ended &&
--semaphoreti meout 1 'echo Forced running after 1 sec’
--senmaphoreti meout -2 'echo Gve up after 2 secs’
--wai t

&&

Page 47

GNU Parallel Tutorial

Output:

Sl ow started
paral | el : Warni ng: Semaphore tined out. Stealing the semaphore.
Forced running after 1 sec
paral | el : Warni ng: Semaphore tined out. Exiting.
Sl ow ended
Note how the 'Give up' was not run.

Informational
GNU parallel has some options to give short information about the configuration.

--help will print a summary of the most important options:

parallel --help

Output:
Usage:

paral l el [options] [command [argunments]] < list_of _argunents

paral l el [options] [command [argunents]] (::: arguments|::::
argfile(s))...

cat ... | parallel --pipe [options] [command [argunents]]

-jn Run n jobs in parallel

-k Keep sane order

- X Mul tiple argunents with context replace

--col sep regexp Split input on regexp for positional replacenents

{y {.} {/}y {/.} {#} {94 {= perl code =} Repl acenent strings

{3} {3.} {3/} {3/.} {=3 perl code =} Posi tional replacenent strings

Wth --plus: {y ={+}{/}y ={.y.{+} ={+¥{/.}y.{+} ={..}.{+..} =
{+yr{. .y {+. .y ={... . {+ ..}y ={+}Y{/...}.{+ ..}

-S sshlogin Exampl e: foo@erver. exanpl e. com

--slf .. Use ~/.parallel/sshloginfile as the Iist of sshlogins
--trc {}.bar Shorthand for --transfer --return {}.bar --cleanup
--onal | Run the given conmand with argument on all sshlogins
--nonal | Run the given command with no argunments on all sshl ogins
- - pi pe Split stdin (standard input) to multiple jobs.

--recend str Record end separator for --pipe.

--recstart str Record start separator for --pipe.
See 'man parallel' for details

Academi c tradition requires you to cite works you base your article on.
When using progranms that use GNU Parallel to process data for publication
pl ease cite:

O Tange (2011): GN\U Parallel - The Conmand-Li ne Power Tool,
;1 ogin: The USENI X Magazi ne, February 2011: 42-47.

This hel ps funding further devel opnment; AND I T WON' T COST YOU A CENT.

Page 48

GNU Parallel Tutorial

If you pay 10000 EUR you should feel free to use GNU Parall el without
citing.
When asking for help, always report the full output of this:

paral |l el --version

Output:

GN\U paral | el 20230122

Copyright (C 2007-2026 O e Tange, http://ole.tange.dk and Free Software

Foundation, Inc.

Li cense GPLv3+: GNU GPL version 3 or |ater
<https://gnu.org/licenses/gpl.htm >

This is free software: you are free to change and redistribute it.

GNU parallel cones with no warranty.

Web site: https://ww. gnu. org/software/parallel

VWhen using progranms that use GNU Parallel to process data for publication
pl ease cite as described in 'parallel --citation'.
In scripts --minversion can be used to ensure the user has at least this version:
paral l el --mnversion 20130722 && \
echo Your version is at |east 20130722.
Output:

20160322
Your version is at |east 20130722.

If you are using GNU parallel for research the BibTeX citation can be generated using --citation:

parallel --citation

Output:

Academi c tradition requires you to cite works you base your article on.
VWhen using progranms that use GNU Parallel to process data for publication
pl ease cite:

@rticl e{Tange2011a,
title = {G\WU Parallel - The Conmand-Li ne Power Tool},
aut hor = {Q Tange},

address = {Frederiksberg, Denmark},
journal = {;login: The USEN X Magazi ne},
nonth = {Feb},

nunber = {1},

vol une = {36},

url = {https://ww.gnu.org/s/parallel},

year = {2011},
pages = {42-47},
doi = {10.5281/zenodo. 16303}

Page 49

GNU Parallel Tutorial

Profiles

(Feel free to use \nocite{Tange201la})

This hel ps funding further devel opnent; AND I T WON' T COST YOU A CENT.
If you pay 10000 EUR you should feel free to use GNU Parallel wthout
citing.

If you send a copy of your published article to tange@nu.org, it will be
nmentioned in the rel ease notes of next version of GNU Parallel.

With --max-line-length-allowed GNU parallel will report the maximal size of the command line:

paral | el --max-1ine-|ength-all owed

Output (may vary on different systems):

131071

--number-of-cpus and --number-of-cores run system specific code to determine the number of
CPUs and CPU cores on the system. On unsupported platforms they will return 1.:

paral | el --nunber-of-cpus
paral | el --nunber-of-cores

Output (may vary on different systems):

4
64

The defaults for GNU parallel can be changed systemwide by putting the command line options in
letc/parallel/config. They can be changed for a user by putting them in ~/.parallel/config.

Profiles work the same way, but have to be referred to with --profile:

echo '--nice 17" > ~/.parallel/nicetinmeout
echo '--tinmeout 300% >> ~/.parallel/nicetineout
parallel --profile nicetimeout echo ::: ABC

Output:

A
B
C

Profiles can be combined:

echo '-vv --dry-run' > ~/.parallel/dryverbose
parallel --profile dryverbose --profile nicetinmeout echo ::: ABC

Output:

echo A
echo B
echo C

Page 50

GNU Parallel Tutorial

Spread the word
I hope you have learned something from this tutorial.

If you like GNU parallel:

(Re-)walk through the tutorial if you have not done so in the past year
(https://www.gnu.org/software/parallel/parallel_tutorial.html)

Give a demo at your local user group/your team/your colleagues

Post the intro videos and the tutorial on Reddit, Mastodon, Diaspora*, forums, blogs, Identi.ca,
Google+, Twitter, Facebook, Linkedin, and mailing lists

Request or write a review for your favourite blog or magazine (especially if you do something cool
with GNU parallel)

Invite me for your next conference

If you use GNU parallel for research:

Please cite GNU parallel in you publications (use --citation)

If GNU parallel saves you money:

[]

(Have your company) donate to FSF or become a member https://my.fsf.org/donate/

(C) 2013-2026 Ole Tange, GFDLv1.3+ (See LICENSES/GFDL-1.3-or-later.txt)

Page 51

