
Guile-OpenGL
version 0.1.0, updated 23 March 2014

This manual is for Guile-OpenGL (version 0.1.0, updated 23 March 2014)

Copyright c© 2014 Free Software Foundation, Inc. and others.

Guile-OpenGL is free software: you can redistribute and/or modify it and its
documentation under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Guile-OpenGL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Portions of this document were generated from the upstream OpenGL documentation. The
work as a whole is redistributable under the license above. Sections containing generated
documentation are prefixed with a specific copyright header.

http://www.gnu.org/licenses/

i

Short Contents

1 Introduction . 1

2 API Conventions . 2
3 GL . 4

4 GLU . 418
5 GLX . 460
6 GLUT . 495

A GNU General Public License . 499

B GNU Lesser General Public License . 510

Function Index . 513

Chapter 1: Introduction 1

1 Introduction

Guile-OpenGL is Guile’s interface to OpenGL.

In addition to the OpenGL API, Guile also provides access to related libraries and
toolkits such as GLU, GLX, and GLUT. The following chapters discuss the parts of OpenGL
and how Guile binds them.

But before that, some notes on the binding as a whole.

1.1 About

Guile-OpenGL uses the dynamic foreign function interface provided by Guile 2.0, providing
access to OpenGL without any C code at all. In fact, much of Guile-OpenGL (and this
manual) is automatically generated from upstream API specifications and documentation.

We have tried to do a very complete job at wrapping OpenGL, and additionally have
tried to provide a nice Scheme interface as well. Our strategy has been to separate the
binding into low-level and high-level pieces.

The low-level bindings correspond exactly with the OpenGL specification, and are well-
documented. However, these interfaces are not so nice to use from Scheme; output argu-
ments have to be allocated by the caller, and there is only the most basic level of type
checking, and no sanity checking at all. For example, you can pass a bytevector of image
data to the low-level glTexImage2D procedure, but no check is made that the dimensions
you specify actually correspond to the size of the bytevector. This function could end up
reading past the end of the bytevector. Worse things can happen with procedures that
write to arrays, like glGetTexImage.

The high-level bindings are currently a work in progress, and are being manually written.
They intend to be a complete interface to the OpenGL API, without the need to use the
low-level bindings. However, the low-level bindings will always be available for you to use
if needed, and have the advantage that their behavior is better documented and specified
by OpenGL itself.

Low-level bindings are accessed by loading the (module low-level), for example via:

(use-modules (gl low-level))

The high-level modules are named like (module), for example (gl).

Chapter 2: API Conventions 2

2 API Conventions

FIXME: A very rough draft. Bindings and text are not fully synced until more work is done
here.

This chapter documents the general conventions used by the low-level and high-level
bindings. Any conventions specific to a particular module are documented in the relevent
section.

As Guile-OpenGL is in very early stages of development these conventions are subject
to change. Feedback is certainly welcome, and nothing is set in stone.

2.1 Enumerations

The OpenGL API defines many symbolic constants, most of which are collected together
as named enumerations or bitfields. Access to these constants is the same for the low-level
bindings and high-level interface.

For each OpenGL enumeration type, there is a similarly named Scheme type whose
constructor takes an unquoted Scheme symbol naming one of the values. Guile-OpenGL
translates the names to a more common Scheme style:

• any API prefix is removed (for example, GL); and

• all names are lowercase, with underscores and CamelCase replaced by hyphens.

For example, the OpenGL API defines an enumeration with symbolic constants whose C
names are GL POINTS, GL LINES, GL TRIANGLES, and so on. Collectively they form
the BeginMode enumeration type. To access these constants in Guile, apply the constant
name to the enumeration type: (begin-mode triangles).

Bitfields are similar, though the constructor accepts multiple symbols and produces an
appropriate mask. In the GLUT API there is the DisplayMode bitfield, with symbolic
constants GLUT RGB, GLUT INDEX, GLUT SINGLE, and so on. To create a mask rep-
resenting a double-buffered, rgb display-mode with a depth buffer: (display-mode double

rgb depth).

Enumeration and bitfield values, once constructed, can be compared using eqv?. For
example, to determine if modelview is the current matrix mode use (eqv? (gl-matrix-

mode) (matrix-mode modelview)).

2.2 Functions

The low-level bindings currently use names identical to their C API counterparts.

High-level bindings adopt names that are closer to natural language, and a more common
style for Scheme:

• the API prefix is always removed;

• abbreviations are avoided; and

• names are all lowercase with words separated by hyphens.

Some function names are altered in additional ways, to make clear which object is being
operated on. Functions that mutate objects or state will have their name prefixed with
set-, such as set-matrix-mode.

Chapter 2: API Conventions 3

FIXME: This choice may be too unnatural for GL users.

Where the C API specifies multiple functions that perform a similar task on varying
number and types of arguments, the high-level bindings provide a single function that takes
optional arguments, and, where appropriate, using only the most natural type. Consider
the group of C API functions including glVertex2f, glVertex3f, and so on; the high-level
GL interface provides only a single function glVertex with optional arguments.

The high-level interfaces may differ in other ways, and it is important to refer to the
specific documentation.

It is generally fine to intermix functions from corresponding low-level and high-level
bindings. This can be useful if you know the specific type of data you are working with
and want to avoid the overhead of dynamic dispatch at runtime. Any cases where such
intermixing causes problems will be noted in the documentation for the high-level bindings.

Chapter 3: GL 4

3 GL

3.1 About OpenGL

The OpenGL API is a standard interface for drawing three-dimensional graphics. From
its origin in Silicon Graphics’s workstations the early 1990s, today it has become ubiqui-
tous, with implementations on mobile phones, televisions, tablets, desktops, and even web
browsers.

OpenGL has been able to achieve such widespread adoption not just because it co-
evolved with powerful graphics hardware, but also because it was conceived of as an interface
specification and not a piece of source code. In fact, these days it is a family of APIs,
available in several flavors and versions:

OpenGL 1.x
This series of specifications started with the original releases in 1992, and ended
with OpenGL 1.5 in 2003. This era corresponds to a time when graphics cards
were less powerful and more special-purpose, with dedicated hardware to handle
such details as fog and lighting. As such the OpenGL 1.x API reflects the
capabilities of these special units.

OpenGL 2.x
By the early 2000s, graphics hardware had become much more general-purpose
and needed a more general-purpose API. The so-called fixed-function render-
ing pipeline of the earlier years was replaced with a programmable rendering
pipeline, in which effects that would have required special hardware were in-
stead performed by custom programs running on the graphics card. OpenGL
added support for allocating buffer objects on the graphics card, and for shader
programs, which did the actual rendering. In time, this buffer-focused API
came to be the preferred form of talking to the GL.

OpenGL ES
OpenGL ES was a “cut-down” version of OpenGL 2.x, designed to be small
enough to appeal to embedded device vendors. OpenGL ES 1.x removed some
of the legacy functionality from OpenGL, while adding interfaces to use fixed-
point math, for devices without floating-point units. OpenGL ES 2.x went
farther still, removing the fixed-function pipeline entirely. OpenGL ES 2.x is
common on current smart phone platforms.

OpenGL 3.x and above
The OpenGL 3.x series followed the lead of OpenGL ES, first deprecating (in
3.0) and then removing (in 3.1) the fixed-function pipeline. OpenGL 3.0 was
released in 2008, but the free Mesa impementation only began supporting it in
2012, so it is currently (23 March 2014) less common.

Guile wraps the OpenGL 2.1 API. It’s a ubiquitous subset of the OpenGL implemen-
tations that are actually deployed in the wild; its legacy API looks back to OpenGL 1.x,
while the buffer-oriented API is compatible with OpenGL ES.

The full OpenGL 2.1 specification is available at http://www.opengl.org/registry/
doc/glspec21.20061201.pdf.

http://www.opengl.org/registry/doc/glspec21.20061201.pdf
http://www.opengl.org/registry/doc/glspec21.20061201.pdf

Chapter 3: GL 5

3.2 GL Contexts

All this talk about drawing is very well and good, but how do you actually get a canvas?
Interestingly enough, this is outside the purview of the OpenGL specification. There are
specific ways to get an OpenGL context for each different windowing system that is out
there. OpenGL is all crayons and no paper.

For the X window system, there is a standard API for creating a GL context given a
window (or a drawable), GLX. See Chapter 5 [GLX], page 460, for more information on its
binding in Guile.

Bseides creating contexts from native windows or drawables, each backend also supports
functions to make a context current. The OpenGL API is stateful; you can think of each
call as taking an implicit current context parameter, which holds the current state of the
GL and is operated on by the function in question. Contexts are thread-specific, and one
context should not be active on more than one thread at a time.

All calls to OpenGL functions must be made while a context is active; otherwise the
result is undefined. Hopefully while you are getting used to this rule, your driver is nice
enough not to crash on you if you call a function outside a GL context, but it’s not even
required to do that. Backend-specific functions may or may not require a context to be
current; for example, Windows requires a context to be current, wheras GLX does not.

There have been a few attempts at abstracting away the need for calling API specific
to a given windowing system, notably GLUT and EGL. GLUT is the older of the two, and
though it is practically unchanged since the mid-1990s, it is still widely used on desktops.
See Chapter 6 [GLUT], page 495, for more on GLUT.

EGL is technically part of OpenGL ES, and was designed with the modern OpenGL
API and mobile hardware in mind, though it also works on the desktop. Guile does not yet
have an EGL binding.

3.3 Rendering

To draw with OpenGL, you obtain a drawing context (see Section 3.2 [GL Contexts], page 5)
and send the GL some geometry. (You can think of the GL as a layer over your graphics
card.) You can give the GL points, lines, and triangles in three-dimensional space. You
configure your GL to render a certain part of space, and it takes your geometry, rasterizes
it, and writes it to the screen (when you tell it to).

That’s the basic idea. You can customize most parts of this rendering pipeline, by
specifying attributes of your geometry with the OpenGL API, and by programmatically
operating on the geometry and the pixels with programs called shaders.

GL is an immediate-mode graphics API, which is to say that it doesn’t keep around a
scene graph of objects. Instead, at every frame you as the OpenGL user have to tell the GL
what is in the world, and how to paint it. It’s a fairly low-level interface, but a powerful one.
See http://www.opengl.org/wiki/Rendering_Pipeline_Overview, for more details.

In the old days of OpenGL 1.0, it was common to call a function to paint each individual
vertex. You’ll still see this style in some old tutorials. This quickly gets expensive if you
have a lot of vertexes, though. This style, known as Legacy OpenGL, was deprecated
and even removed from some versions of OpenGL. See http://www.opengl.org/wiki/

Legacy_OpenGL, for more on the older APIs.

http://www.opengl.org/wiki/Rendering_Pipeline_Overview
http://www.opengl.org/wiki/Legacy_OpenGL
http://www.opengl.org/wiki/Legacy_OpenGL

Chapter 3: GL 6

Instead, the newer thing to do is to send the geometry to the GL in a big array buffer,
and have the GL draw geometry from the buffer. The newer functions like glGenBuffers

allocate buffers, returning an integer that names a buffer managed by the GL. You as a
user can update the contents of the buffer, but when drawing you reference the buffer by
name. This has the advantage of reducing the chatter and data transfer between you and
the GL, though it can be less convenient to use.

So which API should you use? Use what you feel like using, if you have a choice. Legacy
OpenGL isn’t going away any time soon on the desktop. Sometimes you don’t have a choice,
though; for example, when targeting a device that only supports OpenGL ES 2.x, legacy
OpenGL is unavailable.

But if you want some advice, we suggest that you use the newer APIs. Not only will your
code be future-proof and more efficient on the GL level, reducing the number of API calls
improves performance, and it can reduce the amount of heap allocation in your program.
All floating-point numbers are currently allocated on the heap in Guile, and doing less
floating-point math in tight loops can only be a good thing.

3.4 GL API

The procedures exported from the (gl) module are documented below, organized by their
corresponding section in the OpenGL 2.1 specification.

(use-modules (gl))

See http://www.opengl.org/registry/doc/glspec21.20061201.pdf, for more infor-
mation.

3.4.1 OpenGL Operation

3.4.1.1 Begin/End Paradigm

[Macro]gl-begin begin-mode body ...
Begin immediate-mode drawing with begin-mode, evaluate the sequence of body ex-
pressions, and then end drawing (as with glBegin and glEnd).

The values produced by the last body expression are returned to the continuation of
the gl-begin.

[Function]gl-edge-flag boundary?
Flag edges as either boundary or nonboundary. Note that the edge mode is only
significant if the polygon-mode is line or point.

3.4.1.2 Vertex Specification

[Function]gl-vertex x y [z=0.0] [w=1.0]
Draw a vertex at the given coordinates.

The following procedures modify the current per-vertex state. Drawing a vertex captures
the current state and associates it with the vertex.

[Function]gl-texture-coordinates s [t=0.0] [r=0.0] [q=1.0]
Set the current texture coordinate.

http://www.opengl.org/registry/doc/glspec21.20061201.pdf

Chapter 3: GL 7

[Function]gl-multi-texture-coordinates texture s [t=0.0] [r=0.0] [q=1.0]
Set the current texture coordinate for a specific texture unit.

[Function]gl-color red green blue [alpha=1.0]
Set the current color.

[Function]gl-vertex-attribute index x [y=0.0] [z=0.0] [w=1.0]
Set the current value of a generic vertex attribute.

[Function]gl-normal x y z
Set the current normal vector. By default the normal should have unit length, though
setting (enable-cap rescale-normal) or (enable-cap normalize) can change this.

[Function]gl-fog-coordinate coord
Set the current fog coordinate.

[Function]gl-secondary-color red green blue
Set the current secondary color.

[Function]gl-index c
Set the current color index.

3.4.1.3 Rectangles

[Function]gl-rectangle x1 y1 x2 y2
Draw a rectangle in immediate-mode with a given pair of corner points.

3.4.1.4 Coordinate Transformation

[Function]gl-depth-range near-val far-val
Specify the mapping of the near and far clipping planes, respectively, to window
coordinates.

[Function]gl-viewport x y width height
Set the viewport: the pixel position of the lower-left corner of the viewport rectangle,
and the width and height of the viewport.

[Function]gl-load-matrix m [#:transpose=#f]
Load a matrix. m should be a packed vector in column-major order.

Note that Guile’s two-dimensional arrays are stored in row-major order, so you might
need to transpose the matrix as it is loaded (via the #:transpose keyword argument).

[Function]gl-multiply-matrix m [#:transpose=#f]
Multiply the current matrix by m. As with gl-load-matrix, you might need to
transpose the matrix first.

[Function]set-gl-matrix-mode matrix-mode
Set the current matrix mode. See the matrix-mode enumerator.

[Macro]with-gl-push-matrix body ...
Save the current matrix, evaluate the sequence of body expressions, and restore the
saved matrix.

Chapter 3: GL 8

[Function]gl-load-identity
Load the identity matrix.

[Function]gl-rotate angle x y z
Rotate the current matrix about the vector (x,y,z). angle should be specified in
degrees.

[Function]gl-translate x y z
Translate the current matrix.

[Function]gl-scale x y z
Scale the current matrix.

[Function]gl-frustum left right bottom top near-val far-val
Multiply the current matrix by a perspective matrix. left, right, bottom, and top are
the coordinates of the corresponding clipping planes. near-val and far-val specify the
distances to the near and far clipping planes.

[Function]gl-ortho left right bottom top near-val far-val
Multiply the current matrix by a perspective matrix. left, right, bottom, and top are
the coordinates of the corresponding clipping planes. near-val and far-val specify the
distances to the near and far clipping planes.

[Function]set-gl-active-texture texture
Set the active texture unit.

[Function]gl-enable enable-cap
[Function]gl-disable enable-cap

Enable or disable server-side GL capabilities.

3.4.1.5 Colors and Coloring

[Function]set-gl-shade-model mode
Select flat or smooth shading.

3.4.2 Rasterization

3.4.3 Per-Fragment Operations

[Function]set-gl-stencil-function stencil-function k [#:mask] [#:face]
Set the front and/or back function and the reference value k for stencil testing.
Without the face keyword argument, both functions are set. The default mask is
all-inclusive.

[Function]set-gl-stencil-operation stencil-fail depth-fail depth-pass [#:face]
Set the front and/or back stencil test actions. Without the face keyword argument,
both stencil test actions are set. See the stencil-op enumeration for possible values
for stencil-fail, depth-fail, and depth-pass.

[Function]set-gl-blend-equation mode-rgb [mode-alpha=mode-rgb]
Set the blend equation. With one argument, set the same blend equation for all com-
ponents. Pass two arguments to specify a separate equation for the alpha component.

Chapter 3: GL 9

[Function]set-gl-blend-function src-rgb dest-rgb [src-alpha=src-rgb]
[dest-alpha=dest-rgb]

Set the blend function. With two arguments, set the same blend function for all
components. Pass an additional two arguments to specify separate functions for the
alpha components.

[Function]set-gl-scissor x y width height
Define the scissor box. The box is defined in window coordinates, with (x,y) being
the lower-left corner of the box.

[Function]set-gl-sample-coverage value invert
Specify multisample coverage parameters.

[Function]set-gl-alpha-function func ref
Specify the alpha test function. See the alpha-function enumerator.

[Function]set-gl-depth-function func
Specify the depth test function. See the depth-function enumerator.

[Function]set-gl-blend-color r g b a
Specify the blend color.

[Function]set-gl-logic-operation opcode
Specify a logical pixel operation for color index rendering.

3.4.3.1 Whole Framebuffer Operations

[Function]set-gl-draw-buffers buffers
Specify a list of color buffers to be drawn into. buffers should be a list of draw-buffer-
mode enumerated values.

[Function]set-gl-stencil-mask mask [#:face]
Control the writing of individual bits into the front and/or back stencil planes. With
one argument, the stencil mask for both states are set.

[Function]set-gl-draw-buffer mode
Specify the buffer or buffers to draw into.

[Function]set-gl-index-mask mask
Control the writing of individual bits into the color index buffers.

[Function]set-gl-color-mask red? green? blue? alpha?
Enable and disable writing of frame buffer color components.

[Function]set-gl-depth-mask enable?
Enable and disable writing into the depth buffer.

[Function]gl-clear mask
Clear a set of buffers to pre-set values. Use the clear-buffer-mask enumerator to
specify which buffers to clear.

Chapter 3: GL 10

[Function]set-gl-clear-color r g b a
Set the clear color for the color buffers.

[Function]set-gl-clear-index c
Set the clear index for the color index buffers.

[Function]set-gl-clear-depth depth
Set the clear value for the depth buffer.

[Function]set-gl-clear-stencil-value s
Set the clear value for the stencil buffer.

[Function]set-gl-clear-accumulation-color r g b a
Set the clear color for the accumulation buffer.

[Function]set-gl-accumulation-buffer-operation op value
Operate on the accumulation buffer. op may be one of the accum-op enumerated
values. The interpretation of value depends on op.

3.4.3.2 Drawing, Reading and Copying Pixels

[Function]set-gl-read-buffer mode
Select a color buffer source for pixels. Use read-buffer-mode to select a mode.

[Function]gl-copy-pixels x y width height type
Copy pixels from a screen-aligned rectangle in the frame buffer to a region relative to
the current raster position. type selects which buffer to copy from.

3.4.4 Special Functions

3.4.5 State and State Requests

3.4.5.1 Querying GL State

[Macro]with-gl-push-attrib bits body ...
Save part of the current state, evaluation the sequence of body expressions, then
restore the state. Use attrib-mask to specify which parts of the state to save.

3.5 GL Enumerations

The functions from this section may be had by loading the module:

(use-modules (gl enums)

[Macro]attrib-mask bit...
Bitfield constructor. The symbolic bit arguments are replaced with their correspond-
ing numeric values and combined with logior at compile-time. The symbolic argu-
ments known to this bitfield constructor are:

current, point, line, polygon, polygon-stipple, pixel-mode, lighting, fog,
depth-buffer, accum-buffer, stencil-buffer, viewport, transform, enable,
color-buffer, hint, eval, list, texture, scissor, all-attrib.

Chapter 3: GL 11

[Macro]version-1-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

multisample-bit, multisample, sample-alpha-to-coverage, sample-alpha-

to-one, sample-coverage, sample-buffers, samples, sample-coverage-

value, sample-coverage-invert, clamp-to-border, texture0, texture1,
texture2, texture3, texture4, texture5, texture6, texture7, texture8,
texture9, texture10, texture11, texture12, texture13, texture14,
texture15, texture16, texture17, texture18, texture19, texture20,
texture21, texture22, texture23, texture24, texture25, texture26,
texture27, texture28, texture29, texture30, texture31, active-texture,
client-active-texture, max-texture-units, transpose-modelview-

matrix, transpose-projection-matrix, transpose-texture-matrix,
transpose-color-matrix, subtract, compressed-alpha, compressed-luminance,
compressed-luminance-alpha, compressed-intensity, compressed-rgb,
compressed-rgba, texture-compression-hint, texture-compressed-

image-size, texture-compressed, num-compressed-texture-formats,
compressed-texture-formats, normal-map, reflection-map, texture-cube-map,
texture-binding-cube-map, texture-cube-map-positive-x, texture-cube-map-
negative-x, texture-cube-map-positive-y, texture-cube-map-negative-y,
texture-cube-map-positive-z, texture-cube-map-negative-z, proxy-texture-
cube-map, max-cube-map-texture-size, combine, combine-rgb, combine-alpha,
rgb-scale, add-signed, interpolate, constant, primary-color, previous,
source0-rgb, source1-rgb, source2-rgb, source0-alpha, source1-alpha,
source2-alpha, operand0-rgb, operand1-rgb, operand2-rgb, operand0-alpha,
operand1-alpha, operand2-alpha, dot3-rgb, dot3-rgba.

[Macro]arb-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

multisample-bit-arb, multisample-arb, sample-alpha-to-coverage-arb,
sample-alpha-to-one-arb, sample-coverage-arb, sample-buffers-arb,
samples-arb, sample-coverage-value-arb, sample-coverage-invert-arb.

[Macro]ext-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

multisample-bit-ext, multisample-ext, sample-alpha-to-mask-ext,
sample-alpha-to-one-ext, sample-mask-ext, 1pass-ext, 2pass-0-ext,
2pass-1-ext, 4pass-0-ext, 4pass-1-ext, 4pass-2-ext, 4pass-3-ext,
sample-buffers-ext, samples-ext, sample-mask-value-ext, sample-mask-

invert-ext, sample-pattern-ext, multisample-bit-ext.

Chapter 3: GL 12

[Macro]3dfx-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

multisample-bit-3dfx, multisample-3dfx, sample-buffers-3dfx,
samples-3dfx, multisample-bit-3dfx.

[Macro]clear-buffer-mask bit...
Bitfield constructor. The symbolic bit arguments are replaced with their correspond-
ing numeric values and combined with logior at compile-time. The symbolic argu-
ments known to this bitfield constructor are:

depth-buffer, accum-buffer, stencil-buffer, color-buffer, coverage-buffer-
bit-nv.

[Macro]client-attrib-mask bit...
Bitfield constructor. The symbolic bit arguments are replaced with their correspond-
ing numeric values and combined with logior at compile-time. The symbolic argu-
ments known to this bitfield constructor are:

client-pixel-store, client-vertex-array, client-all-attrib.

[Macro]version-3-0 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

map-read-bit, map-write-bit, map-invalidate-range-bit, map-invalidate-

buffer-bit, map-flush-explicit-bit, map-unsynchronized-bit, context-flag-
forward-compatible-bit, invalid-framebuffer-operation, half-float,
clip-distance0, clip-distance1, clip-distance2, clip-distance3,
clip-distance4, clip-distance5, clip-distance6, clip-distance7,
framebuffer-attachment-color-encoding, framebuffer-attachment-

component-type, framebuffer-attachment-red-size, framebuffer-attachment-
green-size, framebuffer-attachment-blue-size, framebuffer-attachment-

alpha-size, framebuffer-attachment-depth-size, framebuffer-attachment-

stencil-size, framebuffer-default, framebuffer-undefined, depth-stencil-
attachment, major-version, minor-version, num-extensions, context-flags,
index, compressed-red, compressed-rg, rg, rg-integer, r8, r16, rg8, rg16,
r16f, r32f, rg16f, rg32f, r8i, r8ui, r16i, r16ui, r32i, r32ui, rg8i, rg8ui,
rg16i, rg16ui, rg32i, rg32ui, max-renderbuffer-size, depth-stencil,
unsigned-int-24-8, vertex-array-binding, rgba32f, rgb32f, rgba16f,
rgb16f, compare-ref-to-texture, depth24-stencil8, texture-stencil-

size, vertex-attrib-array-integer, max-array-texture-layers,
min-program-texel-offset, max-program-texel-offset, clamp-vertex-color,
clamp-fragment-color, clamp-read-color, fixed-only, max-varying-

components, texture-red-type, texture-green-type, texture-blue-type,
texture-alpha-type, texture-luminance-type, texture-intensity-

type, texture-depth-type, unsigned-normalized, texture-1d-array,
proxy-texture-1d-array, texture-2d-array, proxy-texture-2d-array,

Chapter 3: GL 13

texture-binding-1d-array, texture-binding-2d-array, r11f-g11f-b10f,
unsigned-int-10f-11f-11f-rev, rgb9-e5, unsigned-int-5-9-9-9-

rev, texture-shared-size, transform-feedback-varying-max-length,
transform-feedback-varying-max-length-ext, back-primary-color-nv,
back-secondary-color-nv, texture-coord-nv, clip-distance-nv, vertex-id-

nv, primitive-id-nv, generic-attrib-nv, transform-feedback-attribs-nv,
transform-feedback-buffer-mode, transform-feedback-buffer-mode-

ext, transform-feedback-buffer-mode-nv, max-transform-feedback-

separate-components, max-transform-feedback-separate-components-ext,
max-transform-feedback-separate-components-nv, active-varyings-

nv, active-varying-max-length-nv, transform-feedback-varyings,
transform-feedback-varyings-ext, transform-feedback-varyings-nv,
transform-feedback-buffer-start, transform-feedback-buffer-start-ext,
transform-feedback-buffer-start-nv, transform-feedback-buffer-

size, transform-feedback-buffer-size-ext, transform-feedback-

buffer-size-nv, transform-feedback-record-nv, primitives-generated,
primitives-generated-ext, primitives-generated-nv, transform-feedback-

primitives-written, transform-feedback-primitives-written-ext,
transform-feedback-primitives-written-nv, rasterizer-discard,
rasterizer-discard-ext, rasterizer-discard-nv, max-transform-feedback-

interleaved-components, max-transform-feedback-interleaved-components-

ext, max-transform-feedback-interleaved-components-nv, max-transform-

feedback-separate-attribs, max-transform-feedback-separate-attribs-ext,
max-transform-feedback-separate-attribs-nv, interleaved-attribs,
interleaved-attribs-ext, interleaved-attribs-nv, separate-attribs,
separate-attribs-ext, separate-attribs-nv, transform-feedback-

buffer, transform-feedback-buffer-ext, transform-feedback-

buffer-nv, transform-feedback-buffer-binding, transform-feedback-

buffer-binding-ext, transform-feedback-buffer-binding-nv,
framebuffer-binding, draw-framebuffer-binding, renderbuffer-binding,
read-framebuffer, draw-framebuffer, read-framebuffer-binding,
renderbuffer-samples, depth-component32f, depth32f-stencil8,
framebuffer-attachment-object-type, framebuffer-attachment-object-type-
ext, framebuffer-attachment-object-name, framebuffer-attachment-object-

name-ext, framebuffer-attachment-texture-level, framebuffer-attachment-

texture-level-ext, framebuffer-attachment-texture-cube-map-face,
framebuffer-attachment-texture-cube-map-face-ext, framebuffer-attachment-
texture-layer, framebuffer-attachment-texture-3d-zoffset-ext,
framebuffer-complete, framebuffer-complete-ext, framebuffer-incomplete-

attachment, framebuffer-incomplete-attachment-ext, framebuffer-incomplete-
missing-attachment, framebuffer-incomplete-missing-attachment-ext,
framebuffer-incomplete-dimensions-ext, framebuffer-incomplete-formats-

ext, framebuffer-incomplete-draw-buffer, framebuffer-incomplete-draw-

buffer-ext, framebuffer-incomplete-read-buffer, framebuffer-incomplete-

read-buffer-ext, framebuffer-unsupported, framebuffer-unsupported-ext,
max-color-attachments, max-color-attachments-ext, color-attachment0,
color-attachment0-ext, color-attachment1, color-attachment1-

Chapter 3: GL 14

ext, color-attachment2, color-attachment2-ext, color-attachment3,
color-attachment3-ext, color-attachment4, color-attachment4-

ext, color-attachment5, color-attachment5-ext, color-attachment6,
color-attachment6-ext, color-attachment7, color-attachment7-

ext, color-attachment8, color-attachment8-ext, color-attachment9,
color-attachment9-ext, color-attachment10, color-attachment10-ext,
color-attachment11, color-attachment11-ext, color-attachment12,
color-attachment12-ext, color-attachment13, color-attachment13-ext,
color-attachment14, color-attachment14-ext, color-attachment15,
color-attachment15-ext, depth-attachment, depth-attachment-

ext, stencil-attachment, stencil-attachment-ext, framebuffer,
framebuffer-ext, renderbuffer, renderbuffer-ext, renderbuffer-width,
renderbuffer-width-ext, renderbuffer-height, renderbuffer-height-ext,
renderbuffer-internal-format, renderbuffer-internal-format-ext,
stencil-index1, stencil-index1-ext, stencil-index4, stencil-index4-ext,
stencil-index8, stencil-index8-ext, stencil-index16, stencil-index16-ext,
renderbuffer-red-size, renderbuffer-red-size-ext, renderbuffer-green-

size, renderbuffer-green-size-ext, renderbuffer-blue-size,
renderbuffer-blue-size-ext, renderbuffer-alpha-size, renderbuffer-alpha-
size-ext, renderbuffer-depth-size, renderbuffer-depth-size-

ext, renderbuffer-stencil-size, renderbuffer-stencil-size-

ext, framebuffer-incomplete-multisample, max-samples, rgba32ui,
rgba32ui-ext, rgb32ui, rgb32ui-ext, alpha32ui-ext, intensity32ui-ext,
luminance32ui-ext, luminance-alpha32ui-ext, rgba16ui, rgba16ui-ext,
rgb16ui, rgb16ui-ext, alpha16ui-ext, intensity16ui-ext, luminance16ui-ext,
luminance-alpha16ui-ext, rgba8ui, rgba8ui-ext, rgb8ui, rgb8ui-ext,
alpha8ui-ext, intensity8ui-ext, luminance8ui-ext, luminance-alpha8ui-ext,
rgba32i, rgba32i-ext, rgb32i, rgb32i-ext, alpha32i-ext, intensity32i-ext,
luminance32i-ext, luminance-alpha32i-ext, rgba16i, rgba16i-ext,
rgb16i, rgb16i-ext, alpha16i-ext, intensity16i-ext, luminance16i-ext,
luminance-alpha16i-ext, rgba8i, rgba8i-ext, rgb8i, rgb8i-ext, alpha8i-ext,
intensity8i-ext, luminance8i-ext, luminance-alpha8i-ext, red-integer,
red-integer-ext, green-integer, green-integer-ext, blue-integer,
blue-integer-ext, alpha-integer, alpha-integer-ext, rgb-integer,
rgb-integer-ext, rgba-integer, rgba-integer-ext, bgr-integer,
bgr-integer-ext, bgra-integer, bgra-integer-ext, luminance-integer-ext,
luminance-alpha-integer-ext, rgba-integer-mode-ext, float-32-

unsigned-int-24-8-rev, framebuffer-srgb, compressed-red-rgtc1,
compressed-signed-red-rgtc1, compressed-rg-rgtc2, compressed-signed-

rg-rgtc2, sampler-1d-array, sampler-2d-array, sampler-1d-array-shadow,
sampler-2d-array-shadow, sampler-cube-shadow, unsigned-int-vec2,
unsigned-int-vec3, unsigned-int-vec4, int-sampler-1d, int-sampler-2d,
int-sampler-3d, int-sampler-cube, int-sampler-1d-array, int-sampler-2d-

array, unsigned-int-sampler-1d, unsigned-int-sampler-2d, unsigned-int-

sampler-3d, unsigned-int-sampler-cube, unsigned-int-sampler-1d-

array, unsigned-int-sampler-2d-array, query-wait, query-no-wait,

Chapter 3: GL 15

query-by-region-wait, query-by-region-no-wait, buffer-access-flags,
buffer-map-length, buffer-map-offset.

[Macro]arb-map-buffer-range bit...
Bitfield constructor. The symbolic bit arguments are replaced with their correspond-
ing numeric values and combined with logior at compile-time. The symbolic argu-
ments known to this bitfield constructor are:

map-read, map-write, map-invalidate-range, map-invalidate-buffer,
map-flush-explicit, map-unsynchronized.

[Macro]ext-map-buffer-range enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

map-read-bit-ext, map-write-bit-ext, map-invalidate-range-bit-

ext, map-invalidate-buffer-bit-ext, map-flush-explicit-bit-ext,
map-unsynchronized-bit-ext.

[Macro]version-4-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

context-flag-debug-bit, num-shading-language-versions, vertex-attrib-

array-long.

[Macro]khr-debug enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

context-flag-debug-bit, debug-output-synchronous, debug-next-logged-

message-length, debug-callback-function, debug-callback-user-param,
debug-source-api, debug-source-window-system, debug-source-shader-

compiler, debug-source-third-party, debug-source-application,
debug-source-other, debug-type-error, debug-type-deprecated-behavior,
debug-type-undefined-behavior, debug-type-portability, debug-type-

performance, debug-type-other, debug-type-marker, debug-type-push-group,
debug-type-pop-group, debug-severity-notification, max-debug-group-

stack-depth, debug-group-stack-depth, buffer, shader, program, query,
program-pipeline, sampler, display-list, max-label-length, max-debug-

message-length, max-debug-logged-messages, debug-logged-messages,
debug-severity-high, debug-severity-medium, debug-severity-low,
debug-output.

[Macro]arb-robustness enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 16

context-flag-robust-access-bit-arb, lose-context-on-reset-arb,
guilty-context-reset-arb, innocent-context-reset-arb, unknown-context-

reset-arb, reset-notification-strategy-arb, no-reset-notification-arb.

[Macro]arb-separate-shader-objects enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-shader-bit, fragment-shader-bit, geometry-shader-bit,
tess-control-shader-bit, tess-evaluation-shader-bit, all-shader-

bits, program-separable, active-program, program-pipeline-binding.

[Macro]arb-compute-shader enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compute-shader-bit, max-compute-shared-memory-size, max-compute-uniform-
components, max-compute-atomic-counter-buffers, max-compute-atomic-

counters, max-combined-compute-uniform-components, compute-local-

work-size, max-compute-local-invocations, uniform-block-referenced-

by-compute-shader, atomic-counter-buffer-referenced-by-compute-

shader, dispatch-indirect-buffer, dispatch-indirect-buffer-binding,
compute-shader, max-compute-uniform-blocks, max-compute-texture-

image-units, max-compute-image-uniforms, max-compute-work-group-count,
max-compute-work-group-size.

[Macro]ext-separate-shader-objects enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-shader-bit-ext, fragment-shader-bit-ext, all-shader-bits-ext,
program-separable-ext, active-program-ext, program-pipeline-binding-ext,
active-program-ext.

[Macro]ext-shader-image-load-store enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-array-barrier-bit-ext, element-array-barrier-bit-ext,
uniform-barrier-bit-ext, texture-fetch-barrier-bit-ext, shader-image-

access-barrier-bit-ext, command-barrier-bit-ext, pixel-buffer-barrier-

bit-ext, texture-update-barrier-bit-ext, buffer-update-barrier-bit-ext,
framebuffer-barrier-bit-ext, transform-feedback-barrier-bit-ext,
atomic-counter-barrier-bit-ext, all-barrier-bits-ext, max-image-

units-ext, max-combined-image-units-and-fragment-outputs-ext,
image-binding-name-ext, image-binding-level-ext, image-binding-layered-

ext, image-binding-layer-ext, image-binding-access-ext, image-1d-ext,

Chapter 3: GL 17

image-2d-ext, image-3d-ext, image-2d-rect-ext, image-cube-ext,
image-buffer-ext, image-1d-array-ext, image-2d-array-ext, image-cube-

map-array-ext, image-2d-multisample-ext, image-2d-multisample-array-ext,
int-image-1d-ext, int-image-2d-ext, int-image-3d-ext, int-image-2d-rect-
ext, int-image-cube-ext, int-image-buffer-ext, int-image-1d-array-ext,
int-image-2d-array-ext, int-image-cube-map-array-ext, int-image-2d-

multisample-ext, int-image-2d-multisample-array-ext, unsigned-int-

image-1d-ext, unsigned-int-image-2d-ext, unsigned-int-image-3d-ext,
unsigned-int-image-2d-rect-ext, unsigned-int-image-cube-ext,
unsigned-int-image-buffer-ext, unsigned-int-image-1d-array-ext,
unsigned-int-image-2d-array-ext, unsigned-int-image-cube-map-array-ext,
unsigned-int-image-2d-multisample-ext, unsigned-int-image-2d-

multisample-array-ext, max-image-samples-ext, image-binding-format-ext.

[Macro]arb-shader-image-load-store enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-array-barrier-bit, element-array-barrier-bit,
uniform-barrier-bit, texture-fetch-barrier-bit, shader-image-

access-barrier-bit, command-barrier-bit, pixel-buffer-barrier-

bit, texture-update-barrier-bit, buffer-update-barrier-bit,
framebuffer-barrier-bit, transform-feedback-barrier-bit, atomic-counter-
barrier-bit, all-barrier-bits, max-image-units, max-combined-image-

units-and-fragment-outputs, image-binding-name, image-binding-level,
image-binding-layered, image-binding-layer, image-binding-access,
image-1d, image-2d, image-3d, image-2d-rect, image-cube, image-buffer,
image-1d-array, image-2d-array, image-cube-map-array, image-2d-

multisample, image-2d-multisample-array, int-image-1d, int-image-2d,
int-image-3d, int-image-2d-rect, int-image-cube, int-image-buffer,
int-image-1d-array, int-image-2d-array, int-image-cube-map-array,
int-image-2d-multisample, int-image-2d-multisample-array, unsigned-int-

image-1d, unsigned-int-image-2d, unsigned-int-image-3d, unsigned-int-

image-2d-rect, unsigned-int-image-cube, unsigned-int-image-buffer,
unsigned-int-image-1d-array, unsigned-int-image-2d-array, unsigned-int-

image-cube-map-array, unsigned-int-image-2d-multisample, unsigned-int-

image-2d-multisample-array, max-image-samples, image-binding-format,
image-format-compatibility-type, image-format-compatibility-by-size,
image-format-compatibility-by-class, max-vertex-image-uniforms,
max-tess-control-image-uniforms, max-tess-evaluation-image-uniforms,
max-geometry-image-uniforms, max-fragment-image-uniforms, max-combined-

image-uniforms.

[Macro]arb-shader-storage-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 18

shader-storage-barrier-bit, shader-storage-buffer, shader-storage-

buffer-binding, shader-storage-buffer-start, shader-storage-buffer-size,
max-vertex-shader-storage-blocks, max-geometry-shader-storage-blocks,
max-tess-control-shader-storage-blocks, max-tess-evaluation-shader-

storage-blocks, max-fragment-shader-storage-blocks, max-compute-

shader-storage-blocks, max-combined-shader-storage-blocks, max-shader-

storage-buffer-bindings, max-shader-storage-block-size, shader-storage-

buffer-offset-alignment, max-combined-shader-output-resources,
max-combined-image-units-and-fragment-outputs.

[Macro]intel-map-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

layout-default-intel, layout-linear-intel, layout-linear-cpu-cached-

intel, texture-memory-layout-intel.

[Macro]boolean enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

false, true.

[Macro]begin-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

points, lines, line-loop, line-strip, triangles, triangle-strip,
triangle-fan, quads, quad-strip, polygon.

[Macro]version-3-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

lines-adjacency, line-strip-adjacency, triangles-adjacency,
triangle-strip-adjacency, program-point-size, depth-clamp,
texture-cube-map-seamless, geometry-vertices-out, geometry-input-

type, geometry-output-type, max-geometry-texture-image-units,
framebuffer-attachment-layered, framebuffer-incomplete-layer-targets,
geometry-shader, max-geometry-uniform-components, max-geometry-output-

vertices, max-geometry-total-output-components, quads-follow-provoking-

vertex-convention, first-vertex-convention, last-vertex-convention,
provoking-vertex, sample-position, sample-mask, sample-mask-value,
max-sample-mask-words, texture-2d-multisample, proxy-texture-

2d-multisample, texture-2d-multisample-array, proxy-texture-2d-

multisample-array, texture-binding-2d-multisample, texture-binding-

2d-multisample-array, texture-samples, texture-fixed-sample-locations,

Chapter 3: GL 19

sampler-2d-multisample, int-sampler-2d-multisample, unsigned-int-

sampler-2d-multisample, sampler-2d-multisample-array, int-sampler-2d-

multisample-array, unsigned-int-sampler-2d-multisample-array, max-color-
texture-samples, max-depth-texture-samples, max-integer-samples,
max-server-wait-timeout, object-type, sync-condition, sync-status,
sync-flags, sync-fence, sync-gpu-commands-complete, unsignaled, signaled,
already-signaled, timeout-expired, condition-satisfied, wait-failed,
timeout-ignored, sync-flush-commands-bit, timeout-ignored, max-vertex-

output-components, max-geometry-input-components, max-geometry-output-

components, max-fragment-input-components, context-core-profile-bit,
context-compatibility-profile-bit, context-profile-mask.

[Macro]arb-geometry-shader-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

lines-adjacency-arb, line-strip-adjacency-arb, triangles-adjacency-

arb, triangle-strip-adjacency-arb, program-point-size-arb,
max-varying-components, max-geometry-texture-image-units-arb,
framebuffer-attachment-object-type, framebuffer-attachment-object-type-
ext, framebuffer-attachment-object-name, framebuffer-attachment-object-

name-ext, framebuffer-attachment-texture-level, framebuffer-attachment-

texture-level-ext, framebuffer-attachment-texture-cube-map-face,
framebuffer-attachment-texture-cube-map-face-ext, framebuffer-attachment-
texture-layer, framebuffer-attachment-texture-3d-zoffset-ext,
framebuffer-complete, framebuffer-complete-ext, framebuffer-incomplete-

attachment, framebuffer-incomplete-attachment-ext, framebuffer-incomplete-
missing-attachment, framebuffer-incomplete-missing-attachment-ext,
framebuffer-incomplete-dimensions-ext, framebuffer-incomplete-formats-

ext, framebuffer-incomplete-draw-buffer, framebuffer-incomplete-draw-

buffer-ext, framebuffer-incomplete-read-buffer, framebuffer-incomplete-

read-buffer-ext, framebuffer-unsupported, framebuffer-unsupported-ext,
max-color-attachments, max-color-attachments-ext, color-attachment0,
color-attachment0-ext, color-attachment1, color-attachment1-

ext, color-attachment2, color-attachment2-ext, color-attachment3,
color-attachment3-ext, color-attachment4, color-attachment4-

ext, color-attachment5, color-attachment5-ext, color-attachment6,
color-attachment6-ext, color-attachment7, color-attachment7-

ext, color-attachment8, color-attachment8-ext, color-attachment9,
color-attachment9-ext, color-attachment10, color-attachment10-ext,
color-attachment11, color-attachment11-ext, color-attachment12,
color-attachment12-ext, color-attachment13, color-attachment13-ext,
color-attachment14, color-attachment14-ext, color-attachment15,
color-attachment15-ext, depth-attachment, depth-attachment-

ext, stencil-attachment, stencil-attachment-ext, framebuffer,
framebuffer-ext, renderbuffer, renderbuffer-ext, renderbuffer-width,
renderbuffer-width-ext, renderbuffer-height, renderbuffer-height-ext,

Chapter 3: GL 20

renderbuffer-internal-format, renderbuffer-internal-format-ext,
stencil-index1, stencil-index1-ext, stencil-index4, stencil-index4-ext,
stencil-index8, stencil-index8-ext, stencil-index16, stencil-index16-ext,
renderbuffer-red-size, renderbuffer-red-size-ext, renderbuffer-green-

size, renderbuffer-green-size-ext, renderbuffer-blue-size,
renderbuffer-blue-size-ext, renderbuffer-alpha-size, renderbuffer-alpha-
size-ext, renderbuffer-depth-size, renderbuffer-depth-size-

ext, renderbuffer-stencil-size, renderbuffer-stencil-size-ext,
framebuffer-attachment-layered-arb, framebuffer-incomplete-layer-

targets-arb, framebuffer-incomplete-layer-count-arb, geometry-shader-

arb, geometry-vertices-out-arb, geometry-input-type-arb, geometry-output-
type-arb, max-geometry-varying-components-arb, max-vertex-varying-

components-arb, max-geometry-uniform-components-arb, max-geometry-

output-vertices-arb, max-geometry-total-output-components-arb.

[Macro]nv-geometry-program-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

lines-adjacency-ext, line-strip-adjacency-ext, triangles-adjacency-

ext, triangle-strip-adjacency-ext, program-point-size-ext,
geometry-program-nv, max-program-output-vertices-nv, max-program-

total-output-components-nv, max-geometry-texture-image-units-ext,
framebuffer-attachment-texture-layer-ext, framebuffer-attachment-

layered-ext, framebuffer-incomplete-layer-targets-ext, framebuffer-incomplete-
layer-count-ext, geometry-vertices-out-ext, geometry-input-type-ext,
geometry-output-type-ext.

[Macro]arb-tessellation-shader enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

patches, uniform-block-referenced-by-tess-control-shader, uniform-block-
referenced-by-tess-evaluation-shader, max-tess-control-input-

components, max-tess-evaluation-input-components, max-combined-

tess-control-uniform-components, max-combined-tess-evaluation-

uniform-components, patch-vertices, patch-default-inner-level,
patch-default-outer-level, tess-control-output-vertices, tess-gen-mode,
tess-gen-spacing, tess-gen-vertex-order, tess-gen-point-mode, isolines,
fractional-odd, fractional-even, max-patch-vertices, max-tess-gen-

level, max-tess-control-uniform-components, max-tess-evaluation-

uniform-components, max-tess-control-texture-image-units, max-tess-

evaluation-texture-image-units, max-tess-control-output-components,
max-tess-patch-components, max-tess-control-total-output-components,
max-tess-evaluation-output-components, tess-evaluation-shader,
tess-control-shader, max-tess-control-uniform-blocks, max-tess-

evaluation-uniform-blocks.

Chapter 3: GL 21

[Macro]nv-gpu-shader-5 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

patches, int64-nv, unsigned-int64-nv, int8-nv, int8-vec2-nv, int8-vec3-nv,
int8-vec4-nv, int16-nv, int16-vec2-nv, int16-vec3-nv, int16-vec4-

nv, int64-vec2-nv, int64-vec3-nv, int64-vec4-nv, unsigned-int8-nv,
unsigned-int8-vec2-nv, unsigned-int8-vec3-nv, unsigned-int8-vec4-nv,
unsigned-int16-nv, unsigned-int16-vec2-nv, unsigned-int16-vec3-nv,
unsigned-int16-vec4-nv, unsigned-int64-vec2-nv, unsigned-int64-vec3-nv,
unsigned-int64-vec4-nv, float16-nv, float16-vec2-nv, float16-vec3-nv,
float16-vec4-nv.

[Macro]accum-op enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

accum, load, return, mult, add.

[Macro]alpha-function enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

never, less, equal, lequal, greater, notequal, gequal, always.

[Macro]blending-factor-dest enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

zero, one, src-color, one-minus-src-color, src-alpha, one-minus-src-alpha,
dst-alpha, one-minus-dst-alpha, constant-color-ext, one-minus-constant-

color-ext, constant-alpha-ext, one-minus-constant-alpha-ext.

[Macro]blending-factor-src enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

zero, one, dst-color, one-minus-dst-color, src-alpha-saturate, src-alpha,
one-minus-src-alpha, dst-alpha, one-minus-dst-alpha, constant-color-ext,
one-minus-constant-color-ext, constant-alpha-ext, one-minus-constant-

alpha-ext.

[Macro]blend-equation-mode-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

logic-op, func-add-ext, min-ext, max-ext, func-subtract-ext, func-reverse-
subtract-ext, alpha-min-sgix, alpha-max-sgix.

Chapter 3: GL 22

[Macro]color-material-face enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

front, back, front-and-back.

[Macro]color-material-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

ambient, diffuse, specular, emission, ambient-and-diffuse.

[Macro]color-pointer-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

byte, unsigned-byte, short, unsigned-short, int, unsigned-int, float, double.

[Macro]color-table-parameter-p-name-sgi enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-table-scale-sgi, color-table-bias-sgi.

[Macro]color-table-target-sgi enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-table-sgi, post-convolution-color-table-sgi, post-color-matrix-

color-table-sgi, proxy-color-table-sgi, proxy-post-convolution-color-

table-sgi, proxy-post-color-matrix-color-table-sgi, texture-color-table-
sgi, proxy-texture-color-table-sgi.

[Macro]convolution-border-mode-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

reduce-ext.

[Macro]convolution-parameter-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

convolution-border-mode-ext, convolution-filter-scale-ext,
convolution-filter-bias-ext.

Chapter 3: GL 23

[Macro]convolution-target-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

convolution-1d-ext, convolution-2d-ext.

[Macro]cull-face-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

front, back, front-and-back.

[Macro]depth-function enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

never, less, equal, lequal, greater, notequal, gequal, always.

[Macro]draw-buffer-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

none, front-left, front-right, back-left, back-right, front, back, left,
right, front-and-back, aux0, aux1, aux2, aux3.

[Macro]oes-framebuffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fog, lighting, texture-1d, texture-2d, line-stipple, polygon-stipple,
cull-face, alpha-test, blend, index-logic-op, color-logic-op, dither,
stencil-test, depth-test, clip-plane0, clip-plane1, clip-plane2,
clip-plane3, clip-plane4, clip-plane5, light0, light1, light2, light3,
light4, light5, light6, light7, texture-gen-s, texture-gen-t, texture-gen-r,
texture-gen-q, map1-vertex-3, map1-vertex-4, map1-color-4, map1-index,
map1-normal, map1-texture-coord-1, map1-texture-coord-2, map1-texture-

coord-3, map1-texture-coord-4, map2-vertex-3, map2-vertex-4, map2-color-4,
map2-index, map2-normal, map2-texture-coord-1, map2-texture-coord-2,
map2-texture-coord-3, map2-texture-coord-4, point-smooth, line-smooth,
polygon-smooth, scissor-test, color-material, normalize, auto-normal,
polygon-offset-point, polygon-offset-line, polygon-offset-fill,
vertex-array, normal-array, color-array, index-array, texture-coord-array,
edge-flag-array, convolution-1d-ext, convolution-2d-ext, separable-2d-

ext, histogram-ext, minmax-ext, rescale-normal-ext, shared-texture-

palette-ext, texture-3d-ext, multisample-sgis, sample-alpha-to-mask-

sgis, sample-alpha-to-one-sgis, sample-mask-sgis, texture-4d-sgis,
async-histogram-sgix, async-tex-image-sgix, async-draw-pixels-sgix,

Chapter 3: GL 24

async-read-pixels-sgix, calligraphic-fragment-sgix, fog-offset-sgix,
fragment-lighting-sgix, fragment-color-material-sgix, fragment-light0-

sgix, fragment-light1-sgix, fragment-light2-sgix, fragment-light3-sgix,
fragment-light4-sgix, fragment-light5-sgix, fragment-light6-sgix,
fragment-light7-sgix, framezoom-sgix, interlace-sgix, ir-instrument1-

sgix, pixel-tex-gen-sgix, pixel-texture-sgis, reference-plane-sgix,
sprite-sgix, color-table-sgi, post-convolution-color-table-

sgi, post-color-matrix-color-table-sgi, texture-color-table-

sgi, invalid-framebuffer-operation-oes, rgba4-oes, rgb5-a1-oes,
depth-component16-oes, max-renderbuffer-size-oes, framebuffer-binding-

oes, renderbuffer-binding-oes, framebuffer-attachment-object-type-oes,
framebuffer-attachment-object-name-oes, framebuffer-attachment-

texture-level-oes, framebuffer-attachment-texture-cube-map-face-oes,
framebuffer-attachment-texture-3d-zoffset-oes, framebuffer-complete-

oes, framebuffer-incomplete-attachment-oes, framebuffer-incomplete-

missing-attachment-oes, framebuffer-incomplete-dimensions-oes,
framebuffer-incomplete-formats-oes, framebuffer-incomplete-draw-buffer-
oes, framebuffer-incomplete-read-buffer-oes, framebuffer-unsupported-

oes, color-attachment0-oes, depth-attachment-oes, stencil-attachment-

oes, framebuffer-oes, renderbuffer-oes, renderbuffer-width-

oes, renderbuffer-height-oes, renderbuffer-internal-format-

oes, stencil-index1-oes, stencil-index4-oes, stencil-index8-

oes, renderbuffer-red-size-oes, renderbuffer-green-size-oes,
renderbuffer-blue-size-oes, renderbuffer-alpha-size-oes, renderbuffer-depth-
size-oes, renderbuffer-stencil-size-oes, rgb565-oes.

[Macro]enable-cap enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fog, lighting, texture-1d, texture-2d, line-stipple, polygon-stipple,
cull-face, alpha-test, blend, index-logic-op, color-logic-op, dither,
stencil-test, depth-test, clip-plane0, clip-plane1, clip-plane2,
clip-plane3, clip-plane4, clip-plane5, light0, light1, light2, light3,
light4, light5, light6, light7, texture-gen-s, texture-gen-t, texture-gen-r,
texture-gen-q, map1-vertex-3, map1-vertex-4, map1-color-4, map1-index,
map1-normal, map1-texture-coord-1, map1-texture-coord-2, map1-texture-

coord-3, map1-texture-coord-4, map2-vertex-3, map2-vertex-4, map2-color-4,
map2-index, map2-normal, map2-texture-coord-1, map2-texture-coord-2,
map2-texture-coord-3, map2-texture-coord-4, point-smooth, line-smooth,
polygon-smooth, scissor-test, color-material, normalize, auto-normal,
polygon-offset-point, polygon-offset-line, polygon-offset-fill,
vertex-array, normal-array, color-array, index-array, texture-coord-array,
edge-flag-array, convolution-1d-ext, convolution-2d-ext, separable-2d-

ext, histogram-ext, minmax-ext, rescale-normal-ext, shared-texture-

palette-ext, texture-3d-ext, multisample-sgis, sample-alpha-to-mask-

sgis, sample-alpha-to-one-sgis, sample-mask-sgis, texture-4d-sgis,

Chapter 3: GL 25

async-histogram-sgix, async-tex-image-sgix, async-draw-pixels-sgix,
async-read-pixels-sgix, calligraphic-fragment-sgix, fog-offset-sgix,
fragment-lighting-sgix, fragment-color-material-sgix, fragment-light0-

sgix, fragment-light1-sgix, fragment-light2-sgix, fragment-light3-sgix,
fragment-light4-sgix, fragment-light5-sgix, fragment-light6-sgix,
fragment-light7-sgix, framezoom-sgix, interlace-sgix, ir-instrument1-

sgix, pixel-tex-gen-sgix, pixel-texture-sgis, reference-plane-sgix,
sprite-sgix, color-table-sgi, post-convolution-color-table-sgi,
post-color-matrix-color-table-sgi, texture-color-table-sgi.

[Macro]error-code enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

no-error, invalid-enum, invalid-value, invalid-operation, stack-overflow,
stack-underflow, out-of-memory, table-too-large-ext, texture-too-large-

ext.

[Macro]arb-framebuffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

invalid-framebuffer-operation, framebuffer-attachment-color-encoding,
framebuffer-attachment-component-type, framebuffer-attachment-red-size,
framebuffer-attachment-green-size, framebuffer-attachment-blue-size,
framebuffer-attachment-alpha-size, framebuffer-attachment-depth-

size, framebuffer-attachment-stencil-size, framebuffer-default,
framebuffer-undefined, depth-stencil-attachment, index, max-renderbuffer-
size, depth-stencil, unsigned-int-24-8, depth24-stencil8, texture-stencil-
size, texture-red-type, texture-green-type, texture-blue-type,
texture-alpha-type, texture-luminance-type, texture-intensity-

type, texture-depth-type, unsigned-normalized, framebuffer-binding,
draw-framebuffer-binding, renderbuffer-binding, read-framebuffer,
draw-framebuffer, read-framebuffer-binding, renderbuffer-samples,
framebuffer-attachment-object-type, framebuffer-attachment-object-type-
ext, framebuffer-attachment-object-name, framebuffer-attachment-object-

name-ext, framebuffer-attachment-texture-level, framebuffer-attachment-

texture-level-ext, framebuffer-attachment-texture-cube-map-face,
framebuffer-attachment-texture-cube-map-face-ext, framebuffer-attachment-
texture-layer, framebuffer-attachment-texture-3d-zoffset-ext,
framebuffer-complete, framebuffer-complete-ext, framebuffer-incomplete-

attachment, framebuffer-incomplete-attachment-ext, framebuffer-incomplete-
missing-attachment, framebuffer-incomplete-missing-attachment-ext,
framebuffer-incomplete-dimensions-ext, framebuffer-incomplete-formats-

ext, framebuffer-incomplete-draw-buffer, framebuffer-incomplete-draw-

buffer-ext, framebuffer-incomplete-read-buffer, framebuffer-incomplete-

read-buffer-ext, framebuffer-unsupported, framebuffer-unsupported-ext,

Chapter 3: GL 26

max-color-attachments, max-color-attachments-ext, color-attachment0,
color-attachment0-ext, color-attachment1, color-attachment1-

ext, color-attachment2, color-attachment2-ext, color-attachment3,
color-attachment3-ext, color-attachment4, color-attachment4-

ext, color-attachment5, color-attachment5-ext, color-attachment6,
color-attachment6-ext, color-attachment7, color-attachment7-

ext, color-attachment8, color-attachment8-ext, color-attachment9,
color-attachment9-ext, color-attachment10, color-attachment10-ext,
color-attachment11, color-attachment11-ext, color-attachment12,
color-attachment12-ext, color-attachment13, color-attachment13-ext,
color-attachment14, color-attachment14-ext, color-attachment15,
color-attachment15-ext, depth-attachment, depth-attachment-

ext, stencil-attachment, stencil-attachment-ext, framebuffer,
framebuffer-ext, renderbuffer, renderbuffer-ext, renderbuffer-width,
renderbuffer-width-ext, renderbuffer-height, renderbuffer-height-ext,
renderbuffer-internal-format, renderbuffer-internal-format-ext,
stencil-index1, stencil-index1-ext, stencil-index4, stencil-index4-ext,
stencil-index8, stencil-index8-ext, stencil-index16, stencil-index16-ext,
renderbuffer-red-size, renderbuffer-red-size-ext, renderbuffer-green-

size, renderbuffer-green-size-ext, renderbuffer-blue-size,
renderbuffer-blue-size-ext, renderbuffer-alpha-size, renderbuffer-alpha-
size-ext, renderbuffer-depth-size, renderbuffer-depth-size-

ext, renderbuffer-stencil-size, renderbuffer-stencil-size-ext,
framebuffer-incomplete-multisample, max-samples.

[Macro]ext-framebuffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

invalid-framebuffer-operation-ext, max-renderbuffer-size-ext,
framebuffer-binding-ext, renderbuffer-binding-ext, framebuffer-attachment-
object-type, framebuffer-attachment-object-type-ext, framebuffer-attachment-
object-name, framebuffer-attachment-object-name-ext, framebuffer-attachment-
texture-level, framebuffer-attachment-texture-level-ext, framebuffer-attachment-
texture-cube-map-face, framebuffer-attachment-texture-cube-map-face-

ext, framebuffer-attachment-texture-layer, framebuffer-attachment-

texture-3d-zoffset-ext, framebuffer-complete, framebuffer-complete-ext,
framebuffer-incomplete-attachment, framebuffer-incomplete-attachment-

ext, framebuffer-incomplete-missing-attachment, framebuffer-incomplete-

missing-attachment-ext, framebuffer-incomplete-dimensions-ext,
framebuffer-incomplete-formats-ext, framebuffer-incomplete-draw-buffer,
framebuffer-incomplete-draw-buffer-ext, framebuffer-incomplete-read-

buffer, framebuffer-incomplete-read-buffer-ext, framebuffer-unsupported,
framebuffer-unsupported-ext, max-color-attachments, max-color-

attachments-ext, color-attachment0, color-attachment0-ext,
color-attachment1, color-attachment1-ext, color-attachment2,
color-attachment2-ext, color-attachment3, color-attachment3-

Chapter 3: GL 27

ext, color-attachment4, color-attachment4-ext, color-attachment5,
color-attachment5-ext, color-attachment6, color-attachment6-

ext, color-attachment7, color-attachment7-ext, color-attachment8,
color-attachment8-ext, color-attachment9, color-attachment9-ext,
color-attachment10, color-attachment10-ext, color-attachment11,
color-attachment11-ext, color-attachment12, color-attachment12-ext,
color-attachment13, color-attachment13-ext, color-attachment14,
color-attachment14-ext, color-attachment15, color-attachment15-

ext, depth-attachment, depth-attachment-ext, stencil-attachment,
stencil-attachment-ext, framebuffer, framebuffer-ext, renderbuffer,
renderbuffer-ext, renderbuffer-width, renderbuffer-width-ext,
renderbuffer-height, renderbuffer-height-ext, renderbuffer-internal-

format, renderbuffer-internal-format-ext, stencil-index1, stencil-index1-
ext, stencil-index4, stencil-index4-ext, stencil-index8, stencil-index8-

ext, stencil-index16, stencil-index16-ext, renderbuffer-red-size,
renderbuffer-red-size-ext, renderbuffer-green-size, renderbuffer-green-

size-ext, renderbuffer-blue-size, renderbuffer-blue-size-

ext, renderbuffer-alpha-size, renderbuffer-alpha-size-ext,
renderbuffer-depth-size, renderbuffer-depth-size-ext, renderbuffer-stencil-
size, renderbuffer-stencil-size-ext.

[Macro]feedback-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

2d, 3d, 3d-color, 3d-color-texture, 4d-color-texture.

[Macro]feed-back-token enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pass-through-token, point-token, line-token, polygon-token, bitmap-token,
draw-pixel-token, copy-pixel-token, line-reset-token.

[Macro]ffd-mask-sgix bit...
Bitfield constructor. The symbolic bit arguments are replaced with their correspond-
ing numeric values and combined with logior at compile-time. The symbolic argu-
ments known to this bitfield constructor are:

texture-deformation-bit-sgix, geometry-deformation-bit-sgix.

[Macro]ffd-target-sgix enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

geometry-deformation-sgix, texture-deformation-sgix.

Chapter 3: GL 28

[Macro]fog-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

linear, exp, exp2, fog-func-sgis.

[Macro]fog-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fog-color, fog-density, fog-end, fog-index, fog-mode, fog-start, fog-offset-
value-sgix.

[Macro]fragment-light-model-parameter-sgix enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-light-model-local-viewer-sgix, fragment-light-model-two-side-

sgix, fragment-light-model-ambient-sgix, fragment-light-model-normal-

interpolation-sgix.

[Macro]front-face-direction enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

cw, ccw.

[Macro]get-color-table-parameter-p-name-sgi enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-table-scale-sgi, color-table-bias-sgi, color-table-format-sgi,
color-table-width-sgi, color-table-red-size-sgi, color-table-green-

size-sgi, color-table-blue-size-sgi, color-table-alpha-size-sgi,
color-table-luminance-size-sgi, color-table-intensity-size-sgi.

[Macro]get-convolution-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

convolution-border-mode-ext, convolution-filter-scale-ext,
convolution-filter-bias-ext, convolution-format-ext, convolution-width-

ext, convolution-height-ext, max-convolution-width-ext, max-convolution-
height-ext.

[Macro]get-histogram-parameter-p-name-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 29

histogram-width-ext, histogram-format-ext, histogram-red-size-ext,
histogram-green-size-ext, histogram-blue-size-ext, histogram-alpha-size-
ext, histogram-luminance-size-ext, histogram-sink-ext.

[Macro]get-map-query enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

coeff, order, domain.

[Macro]get-minmax-parameter-p-name-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

minmax-format-ext, minmax-sink-ext.

[Macro]get-pixel-map enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-map-i-to-i, pixel-map-s-to-s, pixel-map-i-to-r, pixel-map-i-to-g,
pixel-map-i-to-b, pixel-map-i-to-a, pixel-map-r-to-r, pixel-map-g-to-g,
pixel-map-b-to-b, pixel-map-a-to-a.

[Macro]get-pointerv-p-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-array-pointer, normal-array-pointer, color-array-pointer,
index-array-pointer, texture-coord-array-pointer, edge-flag-

array-pointer, feedback-buffer-pointer, selection-buffer-pointer,
instrument-buffer-pointer-sgix.

[Macro]get-p-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

current-color, current-index, current-normal, current-texture-coords,
current-raster-color, current-raster-index, current-raster-texture-

coords, current-raster-position, current-raster-position-valid,
current-raster-distance, point-smooth, point-size, point-size-range,
point-size-granularity, line-smooth, line-width, line-width-range,
line-width-granularity, line-stipple, line-stipple-pattern, line-stipple-
repeat, smooth-point-size-range, smooth-point-size-granularity,
smooth-line-width-range, smooth-line-width-granularity, aliased-point-

size-range, aliased-line-width-range, list-mode, max-list-nesting,
list-base, list-index, polygon-mode, polygon-smooth, polygon-stipple,

Chapter 3: GL 30

edge-flag, cull-face, cull-face-mode, front-face, lighting, light-model-

local-viewer, light-model-two-side, light-model-ambient, shade-model,
color-material-face, color-material-parameter, color-material, fog,
fog-index, fog-density, fog-start, fog-end, fog-mode, fog-color,
depth-range, depth-test, depth-writemask, depth-clear-value, depth-func,
accum-clear-value, stencil-test, stencil-clear-value, stencil-func,
stencil-value-mask, stencil-fail, stencil-pass-depth-fail, stencil-pass-
depth-pass, stencil-ref, stencil-writemask, matrix-mode, normalize,
viewport, modelview-stack-depth, projection-stack-depth, texture-stack-

depth, modelview-matrix, projection-matrix, texture-matrix, attrib-stack-
depth, client-attrib-stack-depth, alpha-test, alpha-test-func, alpha-test-
ref, dither, blend-dst, blend-src, blend, logic-op-mode, index-logic-op,
logic-op, color-logic-op, aux-buffers, draw-buffer, read-buffer,
scissor-box, scissor-test, index-clear-value, index-writemask,
color-clear-value, color-writemask, index-mode, rgba-mode, doublebuffer,
stereo, render-mode, perspective-correction-hint, point-smooth-hint,
line-smooth-hint, polygon-smooth-hint, fog-hint, texture-gen-s,
texture-gen-t, texture-gen-r, texture-gen-q, pixel-map-i-to-i-size,
pixel-map-s-to-s-size, pixel-map-i-to-r-size, pixel-map-i-to-g-size,
pixel-map-i-to-b-size, pixel-map-i-to-a-size, pixel-map-r-to-r-size,
pixel-map-g-to-g-size, pixel-map-b-to-b-size, pixel-map-a-to-a-size,
unpack-swap-bytes, unpack-lsb-first, unpack-row-length, unpack-skip-rows,
unpack-skip-pixels, unpack-alignment, pack-swap-bytes, pack-lsb-first,
pack-row-length, pack-skip-rows, pack-skip-pixels, pack-alignment,
map-color, map-stencil, index-shift, index-offset, red-scale, red-bias,
zoom-x, zoom-y, green-scale, green-bias, blue-scale, blue-bias,
alpha-scale, alpha-bias, depth-scale, depth-bias, max-eval-order,
max-lights, max-clip-distances, max-clip-planes, max-texture-size,
max-pixel-map-table, max-attrib-stack-depth, max-modelview-stack-depth,
max-name-stack-depth, max-projection-stack-depth, max-texture-stack-

depth, max-viewport-dims, max-client-attrib-stack-depth, subpixel-bits,
index-bits, red-bits, green-bits, blue-bits, alpha-bits, depth-bits,
stencil-bits, accum-red-bits, accum-green-bits, accum-blue-bits,
accum-alpha-bits, name-stack-depth, auto-normal, map1-color-4,
map1-index, map1-normal, map1-texture-coord-1, map1-texture-coord-2,
map1-texture-coord-3, map1-texture-coord-4, map1-vertex-3, map1-vertex-4,
map2-color-4, map2-index, map2-normal, map2-texture-coord-1, map2-texture-
coord-2, map2-texture-coord-3, map2-texture-coord-4, map2-vertex-3,
map2-vertex-4, map1-grid-domain, map1-grid-segments, map2-grid-domain,
map2-grid-segments, texture-1d, texture-2d, feedback-buffer-size,
feedback-buffer-type, selection-buffer-size, polygon-offset-units,
polygon-offset-point, polygon-offset-line, polygon-offset-fill,
polygon-offset-factor, texture-binding-1d, texture-binding-2d,
texture-binding-3d, vertex-array, normal-array, color-array, index-array,
texture-coord-array, edge-flag-array, vertex-array-size, vertex-array-

type, vertex-array-stride, normal-array-type, normal-array-stride,
color-array-size, color-array-type, color-array-stride, index-array-type,

Chapter 3: GL 31

index-array-stride, texture-coord-array-size, texture-coord-

array-type, texture-coord-array-stride, edge-flag-array-stride,
clip-plane0, clip-plane1, clip-plane2, clip-plane3, clip-plane4,
clip-plane5, light0, light1, light2, light3, light4, light5, light6,
light7, light-model-color-control, blend-color-ext, blend-equation-

ext, pack-cmyk-hint-ext, unpack-cmyk-hint-ext, convolution-1d-ext,
convolution-2d-ext, separable-2d-ext, post-convolution-red-scale-ext,
post-convolution-green-scale-ext, post-convolution-blue-scale-ext,
post-convolution-alpha-scale-ext, post-convolution-red-bias-ext,
post-convolution-green-bias-ext, post-convolution-blue-bias-

ext, post-convolution-alpha-bias-ext, histogram-ext, minmax-ext,
polygon-offset-bias-ext, rescale-normal-ext, shared-texture-palette-ext,
texture-3d-binding-ext, pack-skip-images-ext, pack-image-height-ext,
unpack-skip-images-ext, unpack-image-height-ext, texture-3d-ext,
max-3d-texture-size-ext, vertex-array-count-ext, normal-array-count-ext,
color-array-count-ext, index-array-count-ext, texture-coord-array-

count-ext, edge-flag-array-count-ext, detail-texture-2d-binding-sgis,
fog-func-points-sgis, max-fog-func-points-sgis, generate-mipmap-

hint-sgis, multisample-sgis, sample-alpha-to-mask-sgis, sample-alpha-

to-one-sgis, sample-mask-sgis, sample-buffers-sgis, samples-sgis,
sample-mask-value-sgis, sample-mask-invert-sgis, sample-pattern-sgis,
pixel-texture-sgis, point-size-min-sgis, point-size-max-sgis, point-fade-
threshold-size-sgis, distance-attenuation-sgis, pack-skip-volumes-sgis,
pack-image-depth-sgis, unpack-skip-volumes-sgis, unpack-image-depth-

sgis, texture-4d-sgis, max-4d-texture-size-sgis, texture-4d-binding-sgis,
async-marker-sgix, async-histogram-sgix, max-async-histogram-

sgix, async-tex-image-sgix, async-draw-pixels-sgix, async-read-

pixels-sgix, max-async-tex-image-sgix, max-async-draw-pixels-sgix,
max-async-read-pixels-sgix, calligraphic-fragment-sgix, max-clipmap-

virtual-depth-sgix, max-clipmap-depth-sgix, convolution-hint-sgix,
fog-offset-sgix, fog-offset-value-sgix, fragment-lighting-sgix,
fragment-color-material-sgix, fragment-color-material-face-sgix,
fragment-color-material-parameter-sgix, max-fragment-lights-sgix,
max-active-lights-sgix, light-env-mode-sgix, fragment-light-model-

local-viewer-sgix, fragment-light-model-two-side-sgix, fragment-light-

model-ambient-sgix, fragment-light-model-normal-interpolation-

sgix, fragment-light0-sgix, framezoom-sgix, framezoom-factor-sgix,
max-framezoom-factor-sgix, instrument-measurements-sgix, interlace-sgix,
ir-instrument1-sgix, pixel-tex-gen-sgix, pixel-tex-gen-mode-sgix,
pixel-tile-best-alignment-sgix, pixel-tile-cache-increment-sgix,
pixel-tile-width-sgix, pixel-tile-height-sgix, pixel-tile-grid-

width-sgix, pixel-tile-grid-height-sgix, pixel-tile-grid-depth-sgix,
pixel-tile-cache-size-sgix, deformations-mask-sgix, reference-plane-

equation-sgix, reference-plane-sgix, sprite-sgix, sprite-mode-sgix,
sprite-axis-sgix, sprite-translation-sgix, pack-subsample-rate-sgix,
unpack-subsample-rate-sgix, pack-resample-sgix, unpack-resample-sgix,
post-texture-filter-bias-range-sgix, post-texture-filter-scale-range-

Chapter 3: GL 32

sgix, vertex-preclip-sgix, vertex-preclip-hint-sgix, color-matrix-sgi,
color-matrix-stack-depth-sgi, max-color-matrix-stack-depth-sgi,
post-color-matrix-red-scale-sgi, post-color-matrix-green-scale-sgi,
post-color-matrix-blue-scale-sgi, post-color-matrix-alpha-scale-sgi,
post-color-matrix-red-bias-sgi, post-color-matrix-green-bias-sgi,
post-color-matrix-blue-bias-sgi, post-color-matrix-alpha-bias-sgi,
color-table-sgi, post-convolution-color-table-sgi, post-color-matrix-

color-table-sgi, texture-color-table-sgi.

[Macro]qcom-alpha-test enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

alpha-test-qcom, alpha-test-func-qcom, alpha-test-ref-qcom.

[Macro]ext-unpack-subimage enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unpack-row-length, unpack-skip-rows, unpack-skip-pixels.

[Macro]ext-multiview-draw-buffers enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

draw-buffer-ext, read-buffer-ext, draw-buffer-ext, read-buffer-ext,
color-attachment-ext, multiview-ext, max-multiview-buffers-ext.

[Macro]nv-read-buffer enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

read-buffer-nv.

[Macro]get-texture-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-mag-filter, texture-min-filter, texture-wrap-s, texture-wrap-

t, texture-width, texture-height, texture-internal-format,
texture-components, texture-border-color, texture-border, texture-red-

size, texture-green-size, texture-blue-size, texture-alpha-size,
texture-luminance-size, texture-intensity-size, texture-priority,
texture-resident, texture-depth-ext, texture-wrap-r-ext, detail-texture-
level-sgis, detail-texture-mode-sgis, detail-texture-func-points-sgis,
generate-mipmap-sgis, sharpen-texture-func-points-sgis, texture-filter4-
size-sgis, texture-min-lod-sgis, texture-max-lod-sgis, texture-base-

level-sgis, texture-max-level-sgis, dual-texture-select-sgis,

Chapter 3: GL 33

quad-texture-select-sgis, texture-4dsize-sgis, texture-wrap-q-

sgis, texture-clipmap-center-sgix, texture-clipmap-frame-sgix,
texture-clipmap-offset-sgix, texture-clipmap-virtual-depth-sgix,
texture-clipmap-lod-offset-sgix, texture-clipmap-depth-sgix,
texture-compare-sgix, texture-compare-operator-sgix, texture-lequal-

r-sgix, texture-gequal-r-sgix, shadow-ambient-sgix, texture-max-

clamp-s-sgix, texture-max-clamp-t-sgix, texture-max-clamp-r-sgix,
texture-lod-bias-s-sgix, texture-lod-bias-t-sgix, texture-lod-bias-r-

sgix, post-texture-filter-bias-sgix, post-texture-filter-scale-sgix.

[Macro]nv-texture-border-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-border-color-nv, clamp-to-border-nv.

[Macro]hint-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

dont-care, fastest, nicest.

[Macro]hint-target enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

perspective-correction-hint, point-smooth-hint, line-smooth-hint,
polygon-smooth-hint, fog-hint, pack-cmyk-hint-ext, unpack-cmyk-hint-ext,
generate-mipmap-hint-sgis, convolution-hint-sgix, texture-multi-buffer-

hint-sgix, vertex-preclip-hint-sgix.

[Macro]histogram-target-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

histogram-ext, proxy-histogram-ext.

[Macro]index-pointer-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

short, int, float, double.

[Macro]light-env-mode-sgix enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

replace, modulate, add.

Chapter 3: GL 34

[Macro]light-env-parameter-sgix enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

light-env-mode-sgix.

[Macro]light-model-color-control enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

single-color, separate-specular-color.

[Macro]light-model-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

light-model-ambient, light-model-local-viewer, light-model-two-side,
light-model-color-control.

[Macro]light-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

ambient, diffuse, specular, position, spot-direction, spot-exponent,
spot-cutoff, constant-attenuation, linear-attenuation, quadratic-attenuation.

[Macro]list-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compile, compile-and-execute.

[Macro]data-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

byte, unsigned-byte, short, unsigned-short, int, unsigned-int, float,
2-bytes, 3-bytes, 4-bytes, double, double-ext.

[Macro]oes-element-index-uint bit...
Bitfield constructor. The symbolic bit arguments are replaced with their correspond-
ing numeric values and combined with logior at compile-time. The symbolic argu-
ments known to this bitfield constructor are:

.

[Macro]oes-texture-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 35

half-float-oes.

[Macro]ext-vertex-attrib-64-bit enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

double-mat2-ext, double-mat3-ext, double-mat4-ext, double-mat-2x-3-

ext, double-mat-2x-4-ext, double-mat-3x-2-ext, double-mat-3x-4-ext,
double-mat-4x-2-ext, double-mat-4x-3-ext, double-vec2-ext, double-vec3-

ext, double-vec4-ext.

[Macro]arb-half-float-vertex enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

half-float.

[Macro]arb-half-float-pixel enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

half-float-arb.

[Macro]nv-half-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

half-float-nv.

[Macro]apple-float-pixels enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

half-apple, rgba-float32-apple, rgb-float32-apple, alpha-float32-apple,
intensity-float32-apple, luminance-float32-apple, luminance-alpha-

float32-apple, rgba-float16-apple, rgb-float16-apple, alpha-float16-

apple, intensity-float16-apple, luminance-float16-apple, luminance-alpha-
float16-apple, color-float-apple.

[Macro]arb-es2-compatibility enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fixed, implementation-color-read-type, implementation-color-read-format,
rgb565, low-float, medium-float, high-float, low-int, medium-int, high-int,
shader-binary-formats, num-shader-binary-formats, shader-compiler,
max-vertex-uniform-vectors, max-varying-vectors, max-fragment-uniform-

vectors.

Chapter 3: GL 36

[Macro]oes-fixed-point enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fixed-oes.

[Macro]nv-vertex-attrib-integer-64-bit enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

int64-nv, unsigned-int64-nv.

[Macro]list-name-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

byte, unsigned-byte, short, unsigned-short, int, unsigned-int, float,
2-bytes, 3-bytes, 4-bytes.

[Macro]list-parameter-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

list-priority-sgix.

[Macro]logic-op enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

clear, and, and-reverse, copy, and-inverted, noop, xor, or, nor, equiv, invert,
or-reverse, copy-inverted, or-inverted, nand, set.

[Macro]map-target enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

map1-color-4, map1-index, map1-normal, map1-texture-coord-1, map1-texture-
coord-2, map1-texture-coord-3, map1-texture-coord-4, map1-vertex-3,
map1-vertex-4, map2-color-4, map2-index, map2-normal, map2-texture-

coord-1, map2-texture-coord-2, map2-texture-coord-3, map2-texture-

coord-4, map2-vertex-3, map2-vertex-4, geometry-deformation-sgix,
texture-deformation-sgix.

[Macro]material-face enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

front, back, front-and-back.

Chapter 3: GL 37

[Macro]material-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

emission, shininess, ambient-and-diffuse, color-indexes, ambient, diffuse,
specular.

[Macro]matrix-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

modelview, projection, texture.

[Macro]mesh-mode-1 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point, line.

[Macro]mesh-mode-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point, line, fill.

[Macro]minmax-target-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

minmax-ext.

[Macro]normal-pointer-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

byte, short, int, float, double.

[Macro]pixel-copy-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color, depth, stencil.

[Macro]ext-discard-framebuffer enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-ext, depth-ext, stencil-ext.

Chapter 3: GL 38

[Macro]pixel-format enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-index, stencil-index, depth-component, red, green, blue, alpha, rgb,
rgba, luminance, luminance-alpha, abgr-ext, cmyk-ext, cmyka-ext, ycrcb-422-
sgix, ycrcb-444-sgix.

[Macro]oes-depth-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

red-ext.

[Macro]ext-texture-rg enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

red-ext, rg-ext, r8-ext, rg8-ext.

[Macro]pixel-map enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-map-i-to-i, pixel-map-s-to-s, pixel-map-i-to-r, pixel-map-i-to-g,
pixel-map-i-to-b, pixel-map-i-to-a, pixel-map-r-to-r, pixel-map-g-to-g,
pixel-map-b-to-b, pixel-map-a-to-a.

[Macro]pixel-store-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unpack-swap-bytes, unpack-lsb-first, unpack-row-length, unpack-skip-rows,
unpack-skip-pixels, unpack-alignment, pack-swap-bytes, pack-lsb-first,
pack-row-length, pack-skip-rows, pack-skip-pixels, pack-alignment,
pack-skip-images-ext, pack-image-height-ext, unpack-skip-images-ext,
unpack-image-height-ext, pack-skip-volumes-sgis, pack-image-depth-sgis,
unpack-skip-volumes-sgis, unpack-image-depth-sgis, pixel-tile-

width-sgix, pixel-tile-height-sgix, pixel-tile-grid-width-sgix,
pixel-tile-grid-height-sgix, pixel-tile-grid-depth-sgix, pixel-tile-

cache-size-sgix, pack-subsample-rate-sgix, unpack-subsample-rate-sgix,
pack-resample-sgix, unpack-resample-sgix.

[Macro]pixel-store-resample-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 39

resample-replicate-sgix, resample-zero-fill-sgix, resample-decimate-

sgix.

[Macro]pixel-store-subsample-rate enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-subsample-4444-sgix, pixel-subsample-2424-sgix, pixel-subsample-

4242-sgix.

[Macro]pixel-tex-gen-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

none, rgb, rgba, luminance, luminance-alpha, pixel-tex-gen-alpha-replace-
sgix, pixel-tex-gen-alpha-no-replace-sgix, pixel-tex-gen-alpha-ms-sgix,
pixel-tex-gen-alpha-ls-sgix.

[Macro]pixel-tex-gen-parameter-name-sgis enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-fragment-rgb-source-sgis, pixel-fragment-alpha-source-sgis.

[Macro]pixel-transfer-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

map-color, map-stencil, index-shift, index-offset, red-scale,
red-bias, green-scale, green-bias, blue-scale, blue-bias, alpha-scale,
alpha-bias, depth-scale, depth-bias, post-convolution-red-scale-ext,
post-convolution-green-scale-ext, post-convolution-blue-scale-ext,
post-convolution-alpha-scale-ext, post-convolution-red-bias-ext,
post-convolution-green-bias-ext, post-convolution-blue-bias-ext,
post-convolution-alpha-bias-ext, post-color-matrix-red-scale-sgi,
post-color-matrix-green-scale-sgi, post-color-matrix-blue-scale-sgi,
post-color-matrix-alpha-scale-sgi, post-color-matrix-red-bias-sgi,
post-color-matrix-green-bias-sgi, post-color-matrix-blue-bias-sgi,
post-color-matrix-alpha-bias-sgi.

[Macro]pixel-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

bitmap, byte, unsigned-byte, short, unsigned-short, int, unsigned-int, float,
unsigned-byte-3-3-2-ext, unsigned-short-4-4-4-4-ext, unsigned-short-5-5-
5-1-ext, unsigned-int-8-8-8-8-ext, unsigned-int-10-10-10-2-ext.

Chapter 3: GL 40

[Macro]point-parameter-name-sgis enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point-size-min-sgis, point-size-max-sgis, point-fade-threshold-size-

sgis, distance-attenuation-sgis.

[Macro]polygon-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point, line, fill.

[Macro]read-buffer-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

front-left, front-right, back-left, back-right, front, back, left, right,
aux0, aux1, aux2, aux3.

[Macro]rendering-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

render, feedback, select.

[Macro]sample-pattern-sgis enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

1pass-sgis, 2pass-0-sgis, 2pass-1-sgis, 4pass-0-sgis, 4pass-1-sgis,
4pass-2-sgis, 4pass-3-sgis.

[Macro]separable-target-ext enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

separable-2d-ext.

[Macro]shading-model enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

flat, smooth.

[Macro]stencil-function enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 41

never, less, equal, lequal, greater, notequal, gequal, always.

[Macro]stencil-op enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

zero, keep, replace, incr, decr, invert.

[Macro]string-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vendor, renderer, version, extensions.

[Macro]tex-coord-pointer-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

short, int, float, double.

[Macro]texture-coord-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

s, t, r, q.

[Macro]texture-env-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

modulate, decal, blend, replace-ext, add, texture-env-bias-sgix.

[Macro]texture-env-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-env-mode, texture-env-color.

[Macro]texture-env-target enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-env.

[Macro]texture-filter-func-sgis enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

filter4-sgis.

Chapter 3: GL 42

[Macro]texture-gen-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

eye-linear, object-linear, sphere-map, eye-distance-to-point-

sgis, object-distance-to-point-sgis, eye-distance-to-line-sgis,
object-distance-to-line-sgis.

[Macro]texture-gen-parameter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-gen-mode, object-plane, eye-plane, eye-point-sgis, object-point-

sgis, eye-line-sgis, object-line-sgis.

[Macro]oes-texture-cube-map enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-gen-mode, normal-map-oes, reflection-map-oes, texture-cube-map-

oes, texture-binding-cube-map-oes, texture-cube-map-positive-x-oes,
texture-cube-map-negative-x-oes, texture-cube-map-positive-y-oes,
texture-cube-map-negative-y-oes, texture-cube-map-positive-z-oes,
texture-cube-map-negative-z-oes, max-cube-map-texture-size-oes,
texture-gen-str-oes.

[Macro]texture-mag-filter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

nearest, linear, linear-detail-sgis, linear-detail-alpha-sgis,
linear-detail-color-sgis, linear-sharpen-sgis, linear-sharpen-alpha-

sgis, linear-sharpen-color-sgis, filter4-sgis, pixel-tex-gen-q-ceiling-

sgix, pixel-tex-gen-q-round-sgix, pixel-tex-gen-q-floor-sgix.

[Macro]texture-min-filter enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

nearest, linear, nearest-mipmap-nearest, linear-mipmap-nearest,
nearest-mipmap-linear, linear-mipmap-linear, filter4-sgis,
linear-clipmap-linear-sgix, nearest-clipmap-nearest-sgix,
nearest-clipmap-linear-sgix, linear-clipmap-nearest-sgix, pixel-tex-gen-
q-ceiling-sgix, pixel-tex-gen-q-round-sgix, pixel-tex-gen-q-floor-sgix.

Chapter 3: GL 43

[Macro]texture-parameter-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-mag-filter, texture-min-filter, texture-wrap-s, texture-wrap-

t, texture-border-color, texture-priority, texture-wrap-r-ext,
detail-texture-level-sgis, detail-texture-mode-sgis, generate-mipmap-

sgis, dual-texture-select-sgis, quad-texture-select-sgis, texture-wrap-

q-sgis, texture-clipmap-center-sgix, texture-clipmap-frame-sgix,
texture-clipmap-offset-sgix, texture-clipmap-virtual-depth-sgix,
texture-clipmap-lod-offset-sgix, texture-clipmap-depth-sgix,
texture-compare-sgix, texture-compare-operator-sgix, shadow-ambient-

sgix, texture-max-clamp-s-sgix, texture-max-clamp-t-sgix, texture-max-

clamp-r-sgix, texture-lod-bias-s-sgix, texture-lod-bias-t-sgix,
texture-lod-bias-r-sgix, post-texture-filter-bias-sgix, post-texture-

filter-scale-sgix.

[Macro]texture-target enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-1d, texture-2d, proxy-texture-1d, proxy-texture-2d, texture-3d-

ext, proxy-texture-3d-ext, detail-texture-2d-sgis, texture-4d-sgis,
proxy-texture-4d-sgis, texture-min-lod-sgis, texture-max-lod-sgis,
texture-base-level-sgis, texture-max-level-sgis.

[Macro]texture-wrap-mode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

clamp, repeat, clamp-to-border-sgis, clamp-to-edge-sgis.

[Macro]pixel-internal-format enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

r3-g3-b2, alpha4, alpha8, alpha12, alpha16, luminance4, luminance8,
luminance12, luminance16, luminance4-alpha4, luminance6-alpha2,
luminance8-alpha8, luminance12-alpha4, luminance12-alpha12,
luminance16-alpha16, intensity, intensity4, intensity8, intensity12,
intensity16, rgb4, rgb5, rgb8, rgb10, rgb12, rgb16, rgba2, rgba4, rgb5-a1,
rgba8, rgb10-a2, rgba12, rgba16, rgb2-ext, dual-alpha4-sgis, dual-alpha8-

sgis, dual-alpha12-sgis, dual-alpha16-sgis, dual-luminance4-sgis,
dual-luminance8-sgis, dual-luminance12-sgis, dual-luminance16-sgis,
dual-intensity4-sgis, dual-intensity8-sgis, dual-intensity12-sgis,
dual-intensity16-sgis, dual-luminance-alpha4-sgis, dual-luminance-

alpha8-sgis, quad-alpha4-sgis, quad-alpha8-sgis, quad-luminance4-sgis,

Chapter 3: GL 44

quad-luminance8-sgis, quad-intensity4-sgis, quad-intensity8-sgis,
depth-component16-sgix, depth-component24-sgix, depth-component32-sgix.

[Macro]oes-rgb-8-rgba-8 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgb8, rgba8.

[Macro]interleaved-array-format enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

v2f, v3f, c4ub-v2f, c4ub-v3f, c3f-v3f, n3f-v3f, c4f-n3f-v3f, t2f-v3f, t4f-v4f,
t2f-c4ub-v3f, t2f-c3f-v3f, t2f-n3f-v3f, t2f-c4f-n3f-v3f, t4f-c4f-n3f-v4f.

[Macro]vertex-pointer-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

short, int, float, double.

[Macro]clip-plane-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

clip-plane0, clip-plane1, clip-plane2, clip-plane3, clip-plane4,
clip-plane5.

[Macro]light-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

light0, light1, light2, light3, light4, light5, light6, light7,
fragment-light0-sgix, fragment-light1-sgix, fragment-light2-sgix,
fragment-light3-sgix, fragment-light4-sgix, fragment-light5-sgix,
fragment-light6-sgix, fragment-light7-sgix.

[Macro]ext-abgr enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

abgr-ext.

[Macro]version-1-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 45

constant-color, one-minus-constant-color, constant-alpha, one-minus-

constant-alpha, blend-color, func-add, func-add-ext, min, min-ext,
max, max-ext, blend-equation, blend-equation-ext, func-subtract,
func-subtract-ext, func-reverse-subtract, func-reverse-subtract-ext,
convolution-1d, convolution-2d, separable-2d, convolution-border-

mode, convolution-filter-scale, convolution-filter-bias, reduce,
convolution-format, convolution-width, convolution-height,
max-convolution-width, max-convolution-height, post-convolution-

red-scale, post-convolution-green-scale, post-convolution-

blue-scale, post-convolution-alpha-scale, post-convolution-red-

bias, post-convolution-green-bias, post-convolution-blue-bias,
post-convolution-alpha-bias, histogram, proxy-histogram, histogram-width,
histogram-format, histogram-red-size, histogram-green-size,
histogram-blue-size, histogram-alpha-size, histogram-sink, minmax,
minmax-format, minmax-sink, table-too-large, unsigned-byte-3-3-2,
unsigned-short-4-4-4-4, unsigned-short-5-5-5-1, unsigned-int-8-8-8-8,
unsigned-int-10-10-10-2, unsigned-byte-2-3-3-rev, unsigned-short-5-6-5,
unsigned-short-5-6-5-rev, unsigned-short-4-4-4-4-rev, unsigned-short-

1-5-5-5-rev, unsigned-int-8-8-8-8-rev, unsigned-int-2-10-10-10-rev,
rescale-normal, pack-skip-images, pack-image-height, unpack-skip-images,
unpack-image-height, texture-3d, proxy-texture-3d, texture-depth,
texture-wrap-r, max-3d-texture-size, color-matrix, color-matrix-stack-

depth, max-color-matrix-stack-depth, post-color-matrix-red-scale,
post-color-matrix-green-scale, post-color-matrix-blue-scale, post-color-
matrix-alpha-scale, post-color-matrix-red-bias, post-color-matrix-

green-bias, post-color-matrix-blue-bias, post-color-matrix-alpha-bias,
color-table, post-convolution-color-table, post-color-matrix-

color-table, proxy-color-table, proxy-post-convolution-color-table,
proxy-post-color-matrix-color-table, color-table-scale, color-table-

bias, color-table-format, color-table-width, color-table-red-size,
color-table-green-size, color-table-blue-size, color-table-alpha-

size, color-table-luminance-size, color-table-intensity-size, bgr,
bgra, max-elements-vertices, max-elements-indices, clamp-to-edge,
texture-min-lod, texture-max-lod, texture-base-level, texture-max-

level, constant-border, replicate-border, convolution-border-color,
light-model-color-control, single-color, separate-specular-color,
smooth-point-size-range, smooth-point-size-granularity, smooth-line-

width-range, smooth-line-width-granularity, aliased-point-size-range,
aliased-line-width-range.

[Macro]ext-blend-color enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

constant-color-ext, one-minus-constant-color-ext, constant-alpha-ext,
one-minus-constant-alpha-ext, blend-color-ext.

Chapter 3: GL 46

[Macro]ext-blend-minmax enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

func-add, func-add-ext, min, min-ext, max, max-ext, blend-equation,
blend-equation-ext.

[Macro]version-2-0 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

blend-equation-rgb, vertex-attrib-array-enabled, vertex-attrib-

array-size, vertex-attrib-array-stride, vertex-attrib-array-type,
current-vertex-attrib, vertex-program-point-size, vertex-program-two-

side, vertex-attrib-array-pointer, stencil-back-func, stencil-back-

fail, stencil-back-pass-depth-fail, stencil-back-pass-depth-pass,
stencil-back-fail-ati, max-draw-buffers, draw-buffer0, draw-buffer1,
draw-buffer2, draw-buffer3, draw-buffer4, draw-buffer5, draw-buffer6,
draw-buffer7, draw-buffer8, draw-buffer9, draw-buffer10, draw-buffer11,
draw-buffer12, draw-buffer13, draw-buffer14, draw-buffer15,
blend-equation-alpha, point-sprite, coord-replace, max-vertex-attribs,
vertex-attrib-array-normalized, max-texture-coords, max-texture-

image-units, fragment-shader, fragment-shader-arb, vertex-shader,
vertex-shader-arb, program-object-arb, shader-object-arb, max-fragment-

uniform-components, max-fragment-uniform-components-arb, max-vertex-

uniform-components, max-vertex-uniform-components-arb, max-varying-

floats, max-varying-floats-arb, max-vertex-texture-image-units,
max-vertex-texture-image-units-arb, max-combined-texture-image-units,
max-combined-texture-image-units-arb, object-type-arb, shader-type,
object-subtype-arb, float-vec2, float-vec2-arb, float-vec3, float-vec3-

arb, float-vec4, float-vec4-arb, int-vec2, int-vec2-arb, int-vec3, int-vec3-
arb, int-vec4, int-vec4-arb, bool, bool-arb, bool-vec2, bool-vec2-arb,
bool-vec3, bool-vec3-arb, bool-vec4, bool-vec4-arb, float-mat2, float-mat2-
arb, float-mat3, float-mat3-arb, float-mat4, float-mat4-arb, sampler-1d,
sampler-1d-arb, sampler-2d, sampler-2d-arb, sampler-3d, sampler-3d-arb,
sampler-cube, sampler-cube-arb, sampler-1d-shadow, sampler-1d-shadow-

arb, sampler-2d-shadow, sampler-2d-shadow-arb, sampler-2d-rect-

arb, sampler-2d-rect-shadow-arb, float-mat-2x-3, float-mat-2x-4,
float-mat-3x-2, float-mat-3x-4, float-mat-4x-2, float-mat-4x-3,
delete-status, object-delete-status-arb, compile-status, object-compile-
status-arb, link-status, object-link-status-arb, validate-status,
object-validate-status-arb, info-log-length, object-info-log-length-

arb, attached-shaders, object-attached-objects-arb, active-uniforms,
object-active-uniforms-arb, active-uniform-max-length, object-active-

uniform-max-length-arb, shader-source-length, object-shader-

source-length-arb, active-attributes, object-active-attributes-arb,
active-attribute-max-length, object-active-attribute-max-length-arb,

Chapter 3: GL 47

fragment-shader-derivative-hint, fragment-shader-derivative-hint-arb,
shading-language-version, shading-language-version-arb, current-program,
point-sprite-coord-origin, lower-left, upper-left, stencil-back-ref,
stencil-back-value-mask, stencil-back-writemask.

[Macro]ext-blend-equation-separate enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

blend-equation-rgb-ext, blend-equation-alpha-ext.

[Macro]oes-blend-equation-separate enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

blend-equation-rgb-oes, blend-equation-alpha-oes.

[Macro]ext-blend-subtract enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

func-subtract, func-subtract-ext, func-reverse-subtract, func-reverse-

subtract-ext.

[Macro]oes-blend-subtract enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

func-add-oes, blend-equation-oes, func-subtract-oes, func-reverse-

subtract-oes.

[Macro]ext-cmyka enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

cmyk-ext, cmyka-ext, pack-cmyk-hint-ext, unpack-cmyk-hint-ext.

[Macro]ext-convolution enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

convolution-1d-ext, convolution-2d-ext, separable-2d-ext, convolution-border-
mode-ext, convolution-filter-scale-ext, convolution-filter-bias-

ext, reduce-ext, convolution-format-ext, convolution-width-ext,
convolution-height-ext, max-convolution-width-ext, max-convolution-

height-ext, post-convolution-red-scale-ext, post-convolution-green-

scale-ext, post-convolution-blue-scale-ext, post-convolution-alpha-

scale-ext, post-convolution-red-bias-ext, post-convolution-green-bias-

ext, post-convolution-blue-bias-ext, post-convolution-alpha-bias-ext.

Chapter 3: GL 48

[Macro]ext-histogram enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

histogram-ext, proxy-histogram-ext, histogram-width-ext, histogram-format-
ext, histogram-red-size-ext, histogram-green-size-ext, histogram-blue-

size-ext, histogram-alpha-size-ext, histogram-luminance-size,
histogram-luminance-size-ext, histogram-sink-ext, minmax-ext,
minmax-format-ext, minmax-sink-ext, table-too-large-ext.

[Macro]ext-packed-pixels enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unsigned-byte-3-3-2-ext, unsigned-short-4-4-4-4-ext, unsigned-short-

5-5-5-1-ext, unsigned-int-8-8-8-8-ext, unsigned-int-10-10-10-2-ext,
unsigned-byte-2-3-3-rev-ext, unsigned-short-5-6-5-ext, unsigned-short-5-
6-5-rev-ext, unsigned-short-4-4-4-4-rev-ext, unsigned-short-1-5-5-5-rev-
ext, unsigned-int-8-8-8-8-rev-ext, unsigned-int-2-10-10-10-rev-ext.

[Macro]ext-texture-type-2-10-10-10-rev enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

polygon-offset-ext, polygon-offset-factor-ext, polygon-offset-bias-ext.

[Macro]ext-polygon-offset enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

polygon-offset-ext, polygon-offset-factor-ext, polygon-offset-bias-ext.

[Macro]ext-rescale-normal enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rescale-normal-ext.

[Macro]ext-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

alpha4-ext, alpha8-ext, alpha12-ext, alpha16-ext, luminance4-ext,
luminance8-ext, luminance12-ext, luminance16-ext, luminance4-alpha4-ext,
luminance6-alpha2-ext, luminance8-alpha8-ext, luminance12-alpha4-ext,
luminance12-alpha12-ext, luminance16-alpha16-ext, intensity-ext,
intensity4-ext, intensity8-ext, intensity12-ext, intensity16-ext,

Chapter 3: GL 49

rgb2-ext, rgb4-ext, rgb5-ext, rgb8-ext, rgb10-ext, rgb12-ext, rgb16-ext,
rgba2-ext, rgba4-ext, rgb5-a1-ext, rgba8-ext, rgb10-a2-ext, rgba12-ext,
rgba16-ext, texture-red-size-ext, texture-green-size-ext, texture-blue-

size-ext, texture-alpha-size-ext, texture-luminance-size-ext,
texture-intensity-size-ext, replace-ext, proxy-texture-1d-ext,
proxy-texture-2d-ext, texture-too-large-ext.

[Macro]ext-texture-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-priority-ext, texture-resident-ext, texture-1d-binding-ext,
texture-2d-binding-ext, texture-3d-binding-ext.

[Macro]ext-texture-3d enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pack-skip-images-ext, pack-image-height-ext, unpack-skip-images-

ext, unpack-image-height-ext, texture-3d-ext, proxy-texture-3d-ext,
texture-depth-ext, texture-wrap-r-ext, max-3d-texture-size-ext.

[Macro]oes-texture-3d enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-3d-binding-oes, texture-3d-oes, texture-wrap-r-oes, max-3d-

texture-size-oes, sampler-3d-oes, framebuffer-attachment-texture-3d-

zoffset-oes.

[Macro]ext-vertex-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-array-ext, normal-array-ext, color-array-ext, index-array-ext,
texture-coord-array-ext, edge-flag-array-ext, vertex-array-size-ext,
vertex-array-type-ext, vertex-array-stride-ext, vertex-array-count-ext,
normal-array-type-ext, normal-array-stride-ext, normal-array-count-ext,
color-array-size-ext, color-array-type-ext, color-array-stride-ext,
color-array-count-ext, index-array-type-ext, index-array-stride-ext,
index-array-count-ext, texture-coord-array-size-ext, texture-coord-

array-type-ext, texture-coord-array-stride-ext, texture-coord-array-

count-ext, edge-flag-array-stride-ext, edge-flag-array-count-ext,
vertex-array-pointer-ext, normal-array-pointer-ext, color-array-

pointer-ext, index-array-pointer-ext, texture-coord-array-pointer-ext,
edge-flag-array-pointer-ext.

Chapter 3: GL 50

[Macro]sgix-interlace enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

interlace-sgix.

[Macro]sgis-detail-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

detail-texture-2d-sgis, detail-texture-2d-binding-sgis, linear-detail-

sgis, linear-detail-alpha-sgis, linear-detail-color-sgis, detail-texture-
level-sgis, detail-texture-mode-sgis, detail-texture-func-points-sgis.

[Macro]sgis-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

multisample-sgis, sample-alpha-to-mask-sgis, sample-alpha-to-one-sgis,
sample-mask-sgis, 1pass-sgis, 2pass-0-sgis, 2pass-1-sgis, 4pass-0-

sgis, 4pass-1-sgis, 4pass-2-sgis, 4pass-3-sgis, sample-buffers-sgis,
samples-sgis, sample-mask-value-sgis, sample-mask-invert-sgis,
sample-pattern-sgis.

[Macro]nv-multisample-coverage enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

coverage-samples-nv, color-samples-nv.

[Macro]sgis-sharpen-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

linear-sharpen-sgis, linear-sharpen-alpha-sgis, linear-sharpen-color-

sgis, sharpen-texture-func-points-sgis.

[Macro]sgi-color-matrix enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-matrix-sgi, color-matrix-stack-depth-sgi, max-color-matrix-stack-

depth-sgi, post-color-matrix-red-scale-sgi, post-color-matrix-green-

scale-sgi, post-color-matrix-blue-scale-sgi, post-color-matrix-alpha-

scale-sgi, post-color-matrix-red-bias-sgi, post-color-matrix-green-bias-
sgi, post-color-matrix-blue-bias-sgi, post-color-matrix-alpha-bias-sgi.

Chapter 3: GL 51

[Macro]sgi-texture-color-table enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-color-table-sgi, proxy-texture-color-table-sgi.

[Macro]sgix-texture-add-env enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-env-bias-sgix.

[Macro]sgix-shadow-ambient enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

shadow-ambient-sgix.

[Macro]version-1-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

blend-dst-rgb, blend-src-rgb, blend-dst-alpha, blend-src-alpha,
point-size-min, point-size-max, point-fade-threshold-size,
point-distance-attenuation, generate-mipmap, generate-mipmap-hint,
depth-component16, depth-component24, depth-component32, mirrored-repeat,
fog-coordinate-source, fog-coordinate, fragment-depth, current-fog-

coordinate, fog-coordinate-array-type, fog-coordinate-array-stride,
fog-coordinate-array-pointer, fog-coordinate-array, color-sum,
current-secondary-color, secondary-color-array-size, secondary-color-

array-type, secondary-color-array-stride, secondary-color-array-pointer,
secondary-color-array, max-texture-lod-bias, texture-filter-control,
texture-lod-bias, incr-wrap, decr-wrap, texture-depth-size, depth-texture-
mode, texture-compare-mode, texture-compare-func, compare-r-to-texture.

[Macro]ext-blend-func-separate enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

blend-dst-rgb-ext, blend-src-rgb-ext, blend-dst-alpha-ext, blend-src-

alpha-ext.

[Macro]oes-blend-func-separate enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

blend-dst-rgb-oes, blend-src-rgb-oes, blend-dst-alpha-oes, blend-src-

alpha-oes.

Chapter 3: GL 52

[Macro]ext-422-pixels enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

422-ext, 422-rev-ext, 422-average-ext, 422-rev-average-ext.

[Macro]sgi-color-table enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-table-sgi, post-convolution-color-table-sgi, post-color-matrix-

color-table-sgi, proxy-color-table-sgi, proxy-post-convolution-color-

table-sgi, proxy-post-color-matrix-color-table-sgi, color-table-scale-

sgi, color-table-bias-sgi, color-table-format-sgi, color-table-width-sgi,
color-table-red-size-sgi, color-table-green-size-sgi, color-table-blue-

size-sgi, color-table-alpha-size-sgi, color-table-luminance-size-sgi,
color-table-intensity-size-sgi.

[Macro]arb-vertex-array-bgra enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

bgr-ext, bgra-ext.

[Macro]ext-bgra enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

bgr-ext, bgra-ext.

[Macro]sgis-texture-select enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

dual-alpha4-sgis, dual-alpha8-sgis, dual-alpha12-sgis, dual-alpha16-sgis,
dual-luminance4-sgis, dual-luminance8-sgis, dual-luminance12-sgis,
dual-luminance16-sgis, dual-intensity4-sgis, dual-intensity8-sgis,
dual-intensity12-sgis, dual-intensity16-sgis, dual-luminance-alpha4-

sgis, dual-luminance-alpha8-sgis, quad-alpha4-sgis, quad-alpha8-sgis,
quad-luminance4-sgis, quad-luminance8-sgis, quad-intensity4-sgis,
quad-intensity8-sgis, dual-texture-select-sgis, quad-texture-select-

sgis.

[Macro]arb-point-parameters enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 53

point-size-min-arb, point-size-max-arb, point-fade-threshold-size-arb,
point-distance-attenuation-arb.

[Macro]ext-point-parameters enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point-size-min-ext, point-size-max-ext, point-fade-threshold-size-ext,
distance-attenuation-ext.

[Macro]sgis-point-parameters enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point-size-min-sgis, point-size-max-sgis, point-fade-threshold-size-

sgis, distance-attenuation-sgis.

[Macro]sgis-fog-function enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fog-func-sgis, fog-func-points-sgis, max-fog-func-points-sgis.

[Macro]arb-texture-border-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

clamp-to-border-arb.

[Macro]sgis-texture-border-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

clamp-to-border-sgis.

[Macro]sgix-texture-multi-buffer enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-multi-buffer-hint-sgix.

[Macro]sgis-texture-edge-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

clamp-to-edge-sgis.

Chapter 3: GL 54

[Macro]sgis-texture-4d enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pack-skip-volumes-sgis, pack-image-depth-sgis, unpack-skip-volumes-sgis,
unpack-image-depth-sgis, texture-4d-sgis, proxy-texture-4d-sgis,
texture-4dsize-sgis, texture-wrap-q-sgis, max-4d-texture-size-sgis,
texture-4d-binding-sgis.

[Macro]sgix-pixel-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-tex-gen-sgix, pixel-tex-gen-mode-sgix.

[Macro]sgis-texture-lod enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-min-lod-sgis, texture-max-lod-sgis, texture-base-level-sgis,
texture-max-level-sgis.

[Macro]sgix-pixel-tiles enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-tile-best-alignment-sgix, pixel-tile-cache-increment-sgix,
pixel-tile-width-sgix, pixel-tile-height-sgix, pixel-tile-grid-

width-sgix, pixel-tile-grid-height-sgix, pixel-tile-grid-depth-sgix,
pixel-tile-cache-size-sgix.

[Macro]sgis-texture-filter-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

filter4-sgis, texture-filter4-size-sgis.

[Macro]sgix-sprite enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sprite-sgix, sprite-mode-sgix, sprite-axis-sgix, sprite-translation-sgix,
sprite-axial-sgix, sprite-object-aligned-sgix, sprite-eye-aligned-sgix.

[Macro]hp-convolution-border-modes enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 55

ignore-border-hp, constant-border-hp, replicate-border-hp,
convolution-border-color-hp.

[Macro]sgix-clipmap enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

linear-clipmap-linear-sgix, texture-clipmap-center-sgix, texture-clipmap-
frame-sgix, texture-clipmap-offset-sgix, texture-clipmap-virtual-depth-

sgix, texture-clipmap-lod-offset-sgix, texture-clipmap-depth-sgix,
max-clipmap-depth-sgix, max-clipmap-virtual-depth-sgix, nearest-clipmap-
nearest-sgix, nearest-clipmap-linear-sgix, linear-clipmap-nearest-sgix.

[Macro]sgix-texture-scale-bias enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

post-texture-filter-bias-sgix, post-texture-filter-scale-sgix,
post-texture-filter-bias-range-sgix, post-texture-filter-scale-range-

sgix.

[Macro]sgix-reference-plane enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

reference-plane-sgix, reference-plane-equation-sgix.

[Macro]sgix-ir-instrument-1 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

ir-instrument1-sgix.

[Macro]sgix-instruments enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

instrument-buffer-pointer-sgix, instrument-measurements-sgix.

[Macro]sgix-list-priority enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

list-priority-sgix.

[Macro]sgix-calligraphic-fragment enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 56

calligraphic-fragment-sgix.

[Macro]sgix-impact-pixel-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-tex-gen-q-ceiling-sgix, pixel-tex-gen-q-round-sgix, pixel-tex-gen-
q-floor-sgix, pixel-tex-gen-alpha-replace-sgix, pixel-tex-gen-alpha-no-

replace-sgix, pixel-tex-gen-alpha-ls-sgix, pixel-tex-gen-alpha-ms-sgix.

[Macro]sgix-framezoom enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

framezoom-sgix, framezoom-factor-sgix, max-framezoom-factor-sgix.

[Macro]sgix-texture-lod-bias enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-lod-bias-s-sgix, texture-lod-bias-t-sgix, texture-lod-bias-r-

sgix.

[Macro]sgis-generate-mipmap enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

generate-mipmap-sgis, generate-mipmap-hint-sgis.

[Macro]sgix-polynomial-ffd enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

geometry-deformation-sgix, texture-deformation-sgix, deformations-mask-

sgix, max-deformation-order-sgix.

[Macro]sgix-fog-offset enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fog-offset-sgix, fog-offset-value-sgix.

[Macro]sgix-shadow enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-compare-sgix, texture-compare-operator-sgix, texture-lequal-r-

sgix, texture-gequal-r-sgix.

Chapter 3: GL 57

[Macro]arb-depth-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-component16-arb, depth-component24-arb, depth-component32-arb,
texture-depth-size-arb, depth-texture-mode-arb.

[Macro]sgix-depth-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-component16-sgix, depth-component24-sgix, depth-component32-sgix.

[Macro]oes-depth-24 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-component24-oes.

[Macro]oes-depth-32 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-component32-oes.

[Macro]ext-compiled-vertex-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

array-element-lock-first-ext, array-element-lock-count-ext.

[Macro]ext-cull-vertex enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

cull-vertex-ext, cull-vertex-eye-position-ext, cull-vertex-object-

position-ext.

[Macro]ext-index-array-formats enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

iui-v2f-ext, iui-v3f-ext, iui-n3f-v2f-ext, iui-n3f-v3f-ext, t2f-iui-v2f-

ext, t2f-iui-v3f-ext, t2f-iui-n3f-v2f-ext, t2f-iui-n3f-v3f-ext.

[Macro]ext-index-func enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 58

index-test-ext, index-test-func-ext, index-test-ref-ext.

[Macro]ext-index-material enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

index-material-ext, index-material-parameter-ext, index-material-face-

ext.

[Macro]sgix-ycrcb enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

ycrcb-422-sgix, ycrcb-444-sgix.

[Macro]sunx-general-triangle-list enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

restart-sun, replace-middle-sun, replace-oldest-sun, wrap-border-sun,
triangle-list-sun, replacement-code-sun, replacement-code-array-sun,
replacement-code-array-type-sun, replacement-code-array-stride-sun,
replacement-code-array-pointer-sun, r1ui-v3f-sun, r1ui-c4ub-v3f-sun,
r1ui-c3f-v3f-sun, r1ui-n3f-v3f-sun, r1ui-c4f-n3f-v3f-sun, r1ui-t2f-v3f-

sun, r1ui-t2f-n3f-v3f-sun, r1ui-t2f-c4f-n3f-v3f-sun.

[Macro]sunx-constant-data enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unpack-constant-data-sunx, texture-constant-data-sunx.

[Macro]sun-global-alpha enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

global-alpha-sun, global-alpha-factor-sun.

[Macro]sgis-texture-color-mask enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-color-writemask-sgis.

[Macro]sgis-point-line-texgen enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 59

eye-distance-to-point-sgis, object-distance-to-point-sgis, eye-distance-
to-line-sgis, object-distance-to-line-sgis, eye-point-sgis, object-point-
sgis, eye-line-sgis, object-line-sgis.

[Macro]ext-separate-specular-color enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

light-model-color-control-ext, single-color-ext, separate-specular-

color-ext.

[Macro]ext-shared-texture-palette enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

shared-texture-palette-ext.

[Macro]ati-text-fragment-shader enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

text-fragment-shader-ati.

[Macro]ext-color-buffer-half-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

framebuffer-attachment-component-type-ext, r16f-ext, rg16f-ext,
rgba16f-ext, rgb16f-ext, unsigned-normalized-ext.

[Macro]oes-surfaceless-context enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

framebuffer-undefined-oes.

[Macro]arb-texture-rg enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rg, rg-integer, r8, r16, rg8, rg16, r16f, r32f, rg16f, rg32f, r8i, r8ui, r16i,
r16ui, r32i, r32ui, rg8i, rg8ui, rg16i, rg16ui, rg32i, rg32ui.

[Macro]arb-cl-event enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sync-cl-event-arb, sync-cl-event-complete-arb.

Chapter 3: GL 60

[Macro]arb-debug-output enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

debug-output-synchronous-arb, debug-next-logged-message-length-

arb, debug-callback-function-arb, debug-callback-user-param-arb,
debug-source-api-arb, debug-source-window-system-arb, debug-source-

shader-compiler-arb, debug-source-third-party-arb, debug-source-

application-arb, debug-source-other-arb, debug-type-error-arb,
debug-type-deprecated-behavior-arb, debug-type-undefined-behavior-arb,
debug-type-portability-arb, debug-type-performance-arb, debug-type-

other-arb, max-debug-message-length-arb, max-debug-logged-messages-arb,
debug-logged-messages-arb, debug-severity-high-arb, debug-severity-

medium-arb, debug-severity-low-arb.

[Macro]arb-get-program-binary enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

program-binary-retrievable-hint, program-binary-length, num-program-

binary-formats, program-binary-formats.

[Macro]arb-viewport-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-viewports, viewport-subpixel-bits, viewport-bounds-range,
layer-provoking-vertex, viewport-index-provoking-vertex, undefined-vertex,
first-vertex-convention, last-vertex-convention, provoking-vertex.

[Macro]arb-explicit-uniform-location enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-uniform-locations.

[Macro]arb-internalformat-query-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

internalformat-supported, internalformat-preferred, internalformat-red-

size, internalformat-green-size, internalformat-blue-size,
internalformat-alpha-size, internalformat-depth-size, internalformat-stencil-
size, internalformat-shared-size, internalformat-red-type,
internalformat-green-type, internalformat-blue-type, internalformat-alpha-
type, internalformat-depth-type, internalformat-stencil-type,
max-width, max-height, max-depth, max-layers, max-combined-dimensions,

Chapter 3: GL 61

color-components, depth-components, stencil-components, color-renderable,
depth-renderable, stencil-renderable, framebuffer-renderable,
framebuffer-renderable-layered, framebuffer-blend, read-pixels,
read-pixels-format, read-pixels-type, texture-image-format,
texture-image-type, get-texture-image-format, get-texture-image-type,
mipmap, manual-generate-mipmap, auto-generate-mipmap, color-encoding,
srgb-read, srgb-write, srgb-decode-arb, filter, vertex-texture,
tess-control-texture, tess-evaluation-texture, geometry-texture,
fragment-texture, compute-texture, texture-shadow, texture-gather,
texture-gather-shadow, shader-image-load, shader-image-store,
shader-image-atomic, image-texel-size, image-compatibility-class,
image-pixel-format, image-pixel-type, simultaneous-texture-and-depth-

test, simultaneous-texture-and-stencil-test, simultaneous-texture-and-

depth-write, simultaneous-texture-and-stencil-write, texture-compressed-
block-width, texture-compressed-block-height, texture-compressed-

block-size, clear-buffer, texture-view, view-compatibility-class,
full-support, caveat-support, image-class-4-x-32, image-class-2-x-32,
image-class-1-x-32, image-class-4-x-16, image-class-2-x-16, image-class-
1-x-16, image-class-4-x-8, image-class-2-x-8, image-class-1-x-8,
image-class-11-11-10, image-class-10-10-10-2, view-class-128-bits,
view-class-96-bits, view-class-64-bits, view-class-48-bits, view-class-

32-bits, view-class-24-bits, view-class-16-bits, view-class-8-bits,
view-class-s3tc-dxt1-rgb, view-class-s3tc-dxt1-rgba, view-class-

s3tc-dxt3-rgba, view-class-s3tc-dxt5-rgba, view-class-rgtc1-red,
view-class-rgtc2-rg, view-class-bptc-unorm, view-class-bptc-float.

[Macro]arb-vertex-attrib-binding enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-binding, vertex-attrib-relative-offset, vertex-binding-

divisor, vertex-binding-offset, vertex-binding-stride, max-vertex-attrib-
relative-offset, max-vertex-attrib-bindings.

[Macro]arb-texture-view enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-view-min-level, texture-view-num-levels, texture-view-min-layer,
texture-view-num-layers, texture-immutable-levels.

[Macro]sgix-depth-pass-instrument enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-pass-instrument-sgix, depth-pass-instrument-counters-sgix,
depth-pass-instrument-max-sgix.

Chapter 3: GL 62

[Macro]sgix-fragments-instrument enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragments-instrument-sgix, fragments-instrument-counters-sgix,
fragments-instrument-max-sgix.

[Macro]sgix-convolution-accuracy enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

convolution-hint-sgix.

[Macro]sgix-ycrcba enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

ycrcb-sgix, ycrcba-sgix.

[Macro]sgix-slim enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unpack-compressed-size-sgix, pack-max-compressed-size-sgix,
pack-compressed-size-sgix, slim8u-sgix, slim10u-sgix, slim12s-sgix.

[Macro]sgix-blend-alpha-minmax enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

alpha-min-sgix, alpha-max-sgix.

[Macro]sgix-scalebias-hint enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

scalebias-hint-sgix.

[Macro]sgix-async enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

async-marker-sgix.

[Macro]sgix-async-histogram enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

async-histogram-sgix, max-async-histogram-sgix.

Chapter 3: GL 63

[Macro]ext-pixel-transform enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-transform-2d-ext, pixel-mag-filter-ext, pixel-min-filter-ext,
pixel-cubic-weight-ext, cubic-ext, average-ext, pixel-transform-2d-stack-
depth-ext, max-pixel-transform-2d-stack-depth-ext, pixel-transform-2d-

matrix-ext.

[Macro]ext-light-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-material-ext, fragment-normal-ext, fragment-color-ext,
attenuation-ext, shadow-attenuation-ext, texture-application-mode-ext,
texture-light-ext, texture-material-face-ext, texture-material-

parameter-ext, fragment-depth-ext.

[Macro]sgis-pixel-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-texture-sgis, pixel-fragment-rgb-source-sgis, pixel-fragment-

alpha-source-sgis, pixel-group-color-sgis.

[Macro]sgix-line-quality-hint enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

line-quality-hint-sgix.

[Macro]sgix-async-pixel enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

async-tex-image-sgix, async-draw-pixels-sgix, async-read-pixels-sgix,
max-async-tex-image-sgix, max-async-draw-pixels-sgix, max-async-read-

pixels-sgix.

[Macro]sgix-texture-coordinate-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-max-clamp-s-sgix, texture-max-clamp-t-sgix, texture-max-clamp-r-
sgix, fog-factor-to-alpha-sgix.

Chapter 3: GL 64

[Macro]arb-texture-mirrored-repeat enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

mirrored-repeat-arb.

[Macro]ibm-texture-mirrored-repeat enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

mirrored-repeat-ibm.

[Macro]oes-texture-mirrored-repeat enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

mirrored-repeat-oes.

[Macro]s3-s-3-tc enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgb-s3tc, rgb4-s3tc, rgba-s3tc, rgba4-s3tc, rgba-dxt5-s3tc, rgba4-dxt5-

s3tc.

[Macro]sgix-vertex-preclip enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-preclip-sgix, vertex-preclip-hint-sgix.

[Macro]ext-texture-compression-s-3-tc enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-rgb-s3tc-dxt1-ext, compressed-rgba-s3tc-dxt1-ext,
compressed-rgba-s3tc-dxt3-ext, compressed-rgba-s3tc-dxt5-ext.

[Macro]angle-texture-compression-dxt-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-rgba-s3tc-dxt3-angle.

[Macro]angle-texture-compression-dxt-5 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-rgba-s3tc-dxt5-angle.

Chapter 3: GL 65

[Macro]intel-parallel-arrays enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

parallel-arrays-intel, vertex-array-parallel-pointers-intel,
normal-array-parallel-pointers-intel, color-array-parallel-pointers-

intel, texture-coord-array-parallel-pointers-intel.

[Macro]sgix-fragment-lighting enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-lighting-sgix, fragment-color-material-sgix, fragment-color-

material-face-sgix, fragment-color-material-parameter-sgix,
max-fragment-lights-sgix, max-active-lights-sgix, current-raster-normal-
sgix, light-env-mode-sgix, fragment-light-model-local-viewer-sgix,
fragment-light-model-two-side-sgix, fragment-light-model-ambient-sgix,
fragment-light-model-normal-interpolation-sgix, fragment-light0-sgix,
fragment-light1-sgix, fragment-light2-sgix, fragment-light3-sgix,
fragment-light4-sgix, fragment-light5-sgix, fragment-light6-sgix,
fragment-light7-sgix.

[Macro]sgix-resample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pack-resample-sgix, unpack-resample-sgix, resample-replicate-sgix,
resample-zero-fill-sgix, resample-decimate-sgix.

[Macro]version-1-5 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fog-coord-src, fog-coord, current-fog-coord, fog-coord-array-type,
fog-coord-array-stride, fog-coord-array-pointer, fog-coord-array,
src0-rgb, src1-rgb, src2-rgb, src0-alpha, src1-alpha, src2-alpha,
buffer-size, buffer-usage, query-counter-bits, current-query,
query-result, query-result-available, array-buffer, element-array-buffer,
array-buffer-binding, element-array-buffer-binding, vertex-array-

buffer-binding, normal-array-buffer-binding, color-array-buffer-binding,
index-array-buffer-binding, texture-coord-array-buffer-binding,
edge-flag-array-buffer-binding, secondary-color-array-buffer-binding,
fog-coord-array-buffer-binding, fog-coordinate-array-buffer-binding,
weight-array-buffer-binding, vertex-attrib-array-buffer-binding,
read-only, write-only, read-write, buffer-access, buffer-mapped,
buffer-map-pointer, stream-draw, stream-read, stream-copy, static-draw,
static-read, static-copy, dynamic-draw, dynamic-read, dynamic-copy,
samples-passed.

Chapter 3: GL 66

[Macro]ext-fog-coord enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fog-coordinate-source-ext, fog-coordinate-ext, fragment-depth-

ext, current-fog-coordinate-ext, fog-coordinate-array-type-ext,
fog-coordinate-array-stride-ext, fog-coordinate-array-pointer-ext,
fog-coordinate-array-ext.

[Macro]ext-secondary-color enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-sum-ext, current-secondary-color-ext, secondary-color-array-size-

ext, secondary-color-array-type-ext, secondary-color-array-stride-ext,
secondary-color-array-pointer-ext, secondary-color-array-ext.

[Macro]arb-vertex-program enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

color-sum-arb, vertex-program-arb, vertex-attrib-array-enabled-

arb, vertex-attrib-array-size-arb, vertex-attrib-array-stride-

arb, vertex-attrib-array-type-arb, current-vertex-attrib-arb,
program-length-arb, program-string-arb, max-program-matrix-stack-

depth-arb, max-program-matrices-arb, current-matrix-stack-depth-arb,
current-matrix-arb, vertex-program-point-size-arb, vertex-program-two-

side-arb, vertex-attrib-array-pointer-arb, program-error-position-arb,
program-binding-arb, max-vertex-attribs-arb, vertex-attrib-array-

normalized-arb, max-texture-coords-arb, max-texture-image-units-arb,
program-error-string-arb, program-format-ascii-arb, program-format-

arb, program-instructions-arb, max-program-instructions-arb,
program-native-instructions-arb, max-program-native-instructions-arb,
program-temporaries-arb, max-program-temporaries-arb, program-native-

temporaries-arb, max-program-native-temporaries-arb, program-parameters-
arb, max-program-parameters-arb, program-native-parameters-arb,
max-program-native-parameters-arb, program-attribs-arb, max-program-

attribs-arb, program-native-attribs-arb, max-program-native-attribs-arb,
program-address-registers-arb, max-program-address-registers-arb,
program-native-address-registers-arb, max-program-native-address-

registers-arb, max-program-local-parameters-arb, max-program-env-

parameters-arb, program-under-native-limits-arb, transpose-current-

matrix-arb, matrix0-arb, matrix1-arb, matrix2-arb, matrix3-arb,
matrix4-arb, matrix5-arb, matrix6-arb, matrix7-arb, matrix8-arb,
matrix9-arb, matrix10-arb, matrix11-arb, matrix12-arb, matrix13-arb,
matrix14-arb, matrix15-arb, matrix16-arb, matrix17-arb, matrix18-arb,
matrix19-arb, matrix20-arb, matrix21-arb, matrix22-arb, matrix23-arb,

Chapter 3: GL 67

matrix24-arb, matrix25-arb, matrix26-arb, matrix27-arb, matrix28-arb,
matrix29-arb, matrix30-arb, matrix31-arb.

[Macro]version-2-1 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

current-raster-secondary-color, pixel-pack-buffer, pixel-unpack-

buffer, pixel-pack-buffer-binding, pixel-unpack-buffer-binding, srgb,
srgb8, srgb-alpha, srgb8-alpha8, sluminance-alpha, sluminance8-alpha8,
sluminance, sluminance8, compressed-srgb, compressed-srgb-alpha,
compressed-sluminance, compressed-sluminance-alpha.

[Macro]sgix-icc-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

smooth-point-size-range, smooth-point-size-granularity, smooth-line-

width-range, smooth-line-width-granularity, aliased-point-size-range,
aliased-line-width-range.

[Macro]rend-screen-coordinates enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

screen-coordinates-rend, inverted-screen-w-rend.

[Macro]arb-multitexture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture0-arb, texture1-arb, texture2-arb, texture3-arb, texture4-arb,
texture5-arb, texture6-arb, texture7-arb, texture8-arb, texture9-arb,
texture10-arb, texture11-arb, texture12-arb, texture13-arb, texture14-arb,
texture15-arb, texture16-arb, texture17-arb, texture18-arb, texture19-arb,
texture20-arb, texture21-arb, texture22-arb, texture23-arb, texture24-arb,
texture25-arb, texture26-arb, texture27-arb, texture28-arb, texture29-arb,
texture30-arb, texture31-arb, active-texture-arb, client-active-texture-
arb, max-texture-units-arb.

[Macro]oes-texture-env-crossbar enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture0, texture1, texture2, texture3, texture4, texture5, texture6,
texture7, texture8, texture9, texture10, texture11, texture12, texture13,
texture14, texture15, texture16, texture17, texture18, texture19, texture20,

Chapter 3: GL 68

texture21, texture22, texture23, texture24, texture25, texture26, texture27,
texture28, texture29, texture30, texture31.

[Macro]arb-transpose-matrix enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

transpose-modelview-matrix-arb, transpose-projection-matrix-arb,
transpose-texture-matrix-arb, transpose-color-matrix-arb.

[Macro]arb-texture-env-combine enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

subtract-arb.

[Macro]arb-texture-compression enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-alpha-arb, compressed-luminance-arb, compressed-luminance-

alpha-arb, compressed-intensity-arb, compressed-rgb-arb, compressed-rgba-
arb, texture-compression-hint-arb, texture-compressed-image-size-

arb, texture-compressed-arb, num-compressed-texture-formats-arb,
compressed-texture-formats-arb.

[Macro]nv-fence enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

all-completed-nv, fence-status-nv, fence-condition-nv.

[Macro]version-3-1 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-rectangle, texture-binding-rectangle, proxy-texture-rectangle,
max-rectangle-texture-size, uniform-buffer, uniform-buffer-binding,
uniform-buffer-start, uniform-buffer-size, max-vertex-uniform-blocks,
max-geometry-uniform-blocks, max-fragment-uniform-blocks, max-combined-

uniform-blocks, max-uniform-buffer-bindings, max-uniform-block-size,
max-combined-vertex-uniform-components, max-combined-geometry-

uniform-components, max-combined-fragment-uniform-components,
uniform-buffer-offset-alignment, active-uniform-block-max-name-length,
active-uniform-blocks, uniform-type, uniform-size, uniform-name-

length, uniform-block-index, uniform-offset, uniform-array-stride,
uniform-matrix-stride, uniform-is-row-major, uniform-block-binding,

Chapter 3: GL 69

uniform-block-data-size, uniform-block-name-length, uniform-block-

active-uniforms, uniform-block-active-uniform-indices, uniform-block-

referenced-by-vertex-shader, uniform-block-referenced-by-geometry-

shader, uniform-block-referenced-by-fragment-shader, invalid-index,
sampler-2d-rect, sampler-2d-rect-shadow, texture-buffer, max-texture-

buffer-size, texture-binding-buffer, texture-buffer-data-store-binding,
sampler-buffer, int-sampler-2d-rect, int-sampler-buffer, unsigned-int-

sampler-2d-rect, unsigned-int-sampler-buffer, copy-read-buffer,
copy-write-buffer, red-snorm, rg-snorm, rgb-snorm, rgba-snorm, r8-snorm,
rg8-snorm, rgb8-snorm, rgba8-snorm, r16-snorm, rg16-snorm, rgb16-snorm,
rgba16-snorm, signed-normalized, primitive-restart, primitive-restart-

index.

[Macro]arb-texture-rectangle enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-rectangle-arb, texture-binding-rectangle-arb, proxy-texture-

rectangle-arb, max-rectangle-texture-size-arb.

[Macro]nv-texture-rectangle enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-rectangle-nv, texture-binding-rectangle-nv, proxy-texture-

rectangle-nv, max-rectangle-texture-size-nv.

[Macro]ext-packed-depth-stencil enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-stencil-ext, unsigned-int-24-8-ext, depth24-stencil8-ext,
texture-stencil-size-ext.

[Macro]nv-packed-depth-stencil enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-stencil-nv, unsigned-int-24-8-nv.

[Macro]oes-packed-depth-stencil enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-stencil-oes, unsigned-int-24-8-oes, depth24-stencil8-oes.

Chapter 3: GL 70

[Macro]ext-texture-lod-bias enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-texture-lod-bias-ext, texture-filter-control-ext, texture-lod-bias-

ext.

[Macro]ext-texture-filter-anisotropic enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-max-anisotropy-ext, max-texture-max-anisotropy-ext.

[Macro]ext-vertex-weighting enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

modelview1-stack-depth-ext, modelview-matrix1-ext, vertex-weighting-ext,
modelview1-ext, current-vertex-weight-ext, vertex-weight-array-

ext, vertex-weight-array-size-ext, vertex-weight-array-type-ext,
vertex-weight-array-stride-ext, vertex-weight-array-pointer-ext.

[Macro]nv-light-max-exponent enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-shininess-nv, max-spot-exponent-nv.

[Macro]ext-stencil-wrap enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

incr-wrap-ext, decr-wrap-ext.

[Macro]oes-stencil-wrap enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

incr-wrap-oes, decr-wrap-oes.

[Macro]ext-texture-cube-map enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

normal-map-ext, reflection-map-ext, texture-cube-map-ext, texture-binding-
cube-map-ext, texture-cube-map-positive-x-ext, texture-cube-map-

negative-x-ext, texture-cube-map-positive-y-ext, texture-cube-map-

Chapter 3: GL 71

negative-y-ext, texture-cube-map-positive-z-ext, texture-cube-map-

negative-z-ext, proxy-texture-cube-map-ext, max-cube-map-texture-size-

ext.

[Macro]nv-texgen-reflection enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

normal-map, reflection-map.

[Macro]arb-texture-cube-map enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

normal-map-arb, reflection-map-arb, texture-cube-map-arb, texture-binding-
cube-map-arb, texture-cube-map-positive-x-arb, texture-cube-map-

negative-x-arb, texture-cube-map-positive-y-arb, texture-cube-map-

negative-y-arb, texture-cube-map-positive-z-arb, texture-cube-map-

negative-z-arb, proxy-texture-cube-map-arb, max-cube-map-texture-size-

arb.

[Macro]nv-vertex-array-range enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-array-range-nv, vertex-array-range-length-nv, vertex-array-range-
valid-nv, max-vertex-array-range-element-nv, vertex-array-range-pointer-
nv.

[Macro]apple-vertex-array-range enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-array-range-apple, vertex-array-range-length-apple, vertex-array-
storage-hint-apple, vertex-array-range-pointer-apple, storage-client-

apple, storage-cached-apple, storage-shared-apple.

[Macro]nv-register-combiners enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

register-combiners-nv, variable-a-nv, variable-b-nv, variable-c-

nv, variable-d-nv, variable-e-nv, variable-f-nv, variable-g-

nv, constant-color0-nv, constant-color1-nv, primary-color-nv,
secondary-color-nv, spare0-nv, spare1-nv, discard-nv, e-times-f-nv,
spare0-plus-secondary-color-nv, vertex-array-range-without-flush-nv,
multisample-filter-hint-nv, unsigned-identity-nv, unsigned-invert-nv,

Chapter 3: GL 72

expand-normal-nv, expand-negate-nv, half-bias-normal-nv, half-bias-

negate-nv, signed-identity-nv, unsigned-negate-nv, scale-by-two-nv,
scale-by-four-nv, scale-by-one-half-nv, bias-by-negative-one-half-nv,
combiner-input-nv, combiner-mapping-nv, combiner-component-usage-nv,
combiner-ab-dot-product-nv, combiner-cd-dot-product-nv, combiner-mux-

sum-nv, combiner-scale-nv, combiner-bias-nv, combiner-ab-output-nv,
combiner-cd-output-nv, combiner-sum-output-nv, max-general-combiners-nv,
num-general-combiners-nv, color-sum-clamp-nv, combiner0-nv, combiner1-nv,
combiner2-nv, combiner3-nv, combiner4-nv, combiner5-nv, combiner6-nv,
combiner7-nv.

[Macro]nv-register-combiners-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

per-stage-constants-nv.

[Macro]nv-primitive-restart enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

primitive-restart-nv, primitive-restart-index-nv.

[Macro]nv-fog-distance enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fog-gen-mode-nv, eye-radial-nv, eye-plane-absolute-nv.

[Macro]nv-texgen-emboss enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

emboss-light-nv, emboss-constant-nv, emboss-map-nv.

[Macro]ingr-color-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

red-min-clamp-ingr, green-min-clamp-ingr, blue-min-clamp-ingr,
alpha-min-clamp-ingr, red-max-clamp-ingr, green-max-clamp-ingr,
blue-max-clamp-ingr, alpha-max-clamp-ingr.

[Macro]ingr-interlace-read enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

interlace-read-ingr.

Chapter 3: GL 73

[Macro]ext-texture-env-combine enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

combine-ext, combine-rgb-ext, combine-alpha-ext, rgb-scale-ext,
add-signed-ext, interpolate-ext, constant-ext, primary-color-ext,
previous-ext, source0-rgb-ext, source1-rgb-ext, source2-rgb-

ext, source0-alpha-ext, source1-alpha-ext, source2-alpha-ext,
operand0-rgb-ext, operand1-rgb-ext, operand2-rgb-ext, operand0-alpha-ext,
operand1-alpha-ext, operand2-alpha-ext.

[Macro]nv-texture-env-combine-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

combine4-nv, source3-rgb-nv, source3-alpha-nv, operand3-rgb-nv,
operand3-alpha-nv.

[Macro]sgix-subsample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pack-subsample-rate-sgix, unpack-subsample-rate-sgix, pixel-subsample-

4444-sgix, pixel-subsample-2424-sgix, pixel-subsample-4242-sgix.

[Macro]ext-texture-perturb-normal enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

perturb-ext, texture-normal-ext.

[Macro]apple-specular-vector enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

light-model-specular-vector-apple.

[Macro]apple-transform-hint enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

transform-hint-apple.

[Macro]apple-client-storage enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unpack-client-storage-apple.

Chapter 3: GL 74

[Macro]apple-object-purgeable enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

buffer-object-apple, released-apple, volatile-apple, retained-apple,
undefined-apple, purgeable-apple.

[Macro]arb-vertex-array-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-array-binding.

[Macro]apple-vertex-array-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-array-binding-apple.

[Macro]apple-texture-range enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-range-length-apple, texture-range-pointer-apple, texture-storage-
hint-apple, storage-private-apple, storage-cached-apple, storage-shared-
apple.

[Macro]apple-ycbcr-422 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

ycbcr-422-apple, unsigned-short-8-8-apple, unsigned-short-8-8-rev-apple.

[Macro]mesa-ycbcr-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unsigned-short-8-8-mesa, unsigned-short-8-8-rev-mesa, ycbcr-mesa.

[Macro]sun-slice-accum enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

slice-accum-sun.

[Macro]sun-mesh-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 75

quad-mesh-sun, triangle-mesh-sun.

[Macro]nv-vertex-program enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-program-nv, vertex-state-program-nv, attrib-array-size-nv,
attrib-array-stride-nv, attrib-array-type-nv, current-attrib-nv,
program-length-nv, program-string-nv, modelview-projection-nv,
identity-nv, inverse-nv, transpose-nv, inverse-transpose-nv, max-track-

matrix-stack-depth-nv, max-track-matrices-nv, matrix0-nv, matrix1-nv,
matrix2-nv, matrix3-nv, matrix4-nv, matrix5-nv, matrix6-nv, matrix7-nv,
current-matrix-stack-depth-nv, current-matrix-nv, vertex-program-point-

size-nv, vertex-program-two-side-nv, program-parameter-nv, attrib-array-
pointer-nv, program-target-nv, program-resident-nv, track-matrix-nv,
track-matrix-transform-nv, vertex-program-binding-nv, program-error-

position-nv, vertex-attrib-array0-nv, vertex-attrib-array1-nv,
vertex-attrib-array2-nv, vertex-attrib-array3-nv, vertex-attrib-

array4-nv, vertex-attrib-array5-nv, vertex-attrib-array6-nv,
vertex-attrib-array7-nv, vertex-attrib-array8-nv, vertex-attrib-

array9-nv, vertex-attrib-array10-nv, vertex-attrib-array11-nv,
vertex-attrib-array12-nv, vertex-attrib-array13-nv, vertex-attrib-

array14-nv, vertex-attrib-array15-nv, map1-vertex-attrib0-4-nv,
map1-vertex-attrib1-4-nv, map1-vertex-attrib2-4-nv, map1-vertex-

attrib3-4-nv, map1-vertex-attrib4-4-nv, map1-vertex-attrib5-4-nv,
map1-vertex-attrib6-4-nv, map1-vertex-attrib7-4-nv, map1-vertex-

attrib8-4-nv, map1-vertex-attrib9-4-nv, map1-vertex-attrib10-4-nv,
map1-vertex-attrib11-4-nv, map1-vertex-attrib12-4-nv, map1-vertex-

attrib13-4-nv, map1-vertex-attrib14-4-nv, map1-vertex-attrib15-4-nv,
map2-vertex-attrib0-4-nv, map2-vertex-attrib1-4-nv, map2-vertex-

attrib2-4-nv, map2-vertex-attrib3-4-nv, map2-vertex-attrib4-4-nv,
map2-vertex-attrib5-4-nv, map2-vertex-attrib6-4-nv, map2-vertex-

attrib7-4-nv, map2-vertex-attrib8-4-nv, map2-vertex-attrib9-4-nv,
map2-vertex-attrib10-4-nv, map2-vertex-attrib11-4-nv, map2-vertex-

attrib12-4-nv, map2-vertex-attrib13-4-nv, map2-vertex-attrib14-4-nv,
map2-vertex-attrib15-4-nv.

[Macro]arb-depth-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-clamp.

[Macro]nv-depth-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-clamp-nv.

Chapter 3: GL 76

[Macro]arb-fragment-program enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-program-arb, vertex-attrib-array-enabled-arb, vertex-attrib-

array-size-arb, vertex-attrib-array-stride-arb, vertex-attrib-array-

type-arb, current-vertex-attrib-arb, program-length-arb, program-string-
arb, max-program-matrix-stack-depth-arb, max-program-matrices-arb,
current-matrix-stack-depth-arb, current-matrix-arb, vertex-program-

point-size-arb, vertex-program-two-side-arb, vertex-attrib-array-

pointer-arb, program-error-position-arb, program-binding-arb,
fragment-program-arb, program-alu-instructions-arb, program-tex-

instructions-arb, program-tex-indirections-arb, program-native-alu-

instructions-arb, program-native-tex-instructions-arb, program-native-

tex-indirections-arb, max-program-alu-instructions-arb, max-program-

tex-instructions-arb, max-program-tex-indirections-arb, max-program-

native-alu-instructions-arb, max-program-native-tex-instructions-arb,
max-program-native-tex-indirections-arb, max-texture-coords-arb,
max-texture-image-units-arb, program-error-string-arb, program-format-

ascii-arb, program-format-arb, program-instructions-arb, max-program-

instructions-arb, program-native-instructions-arb, max-program-native-

instructions-arb, program-temporaries-arb, max-program-temporaries-arb,
program-native-temporaries-arb, max-program-native-temporaries-arb,
program-parameters-arb, max-program-parameters-arb, program-native-

parameters-arb, max-program-native-parameters-arb, program-attribs-arb,
max-program-attribs-arb, program-native-attribs-arb, max-program-

native-attribs-arb, program-address-registers-arb, max-program-

address-registers-arb, program-native-address-registers-arb,
max-program-native-address-registers-arb, max-program-local-parameters-
arb, max-program-env-parameters-arb, program-under-native-limits-arb,
transpose-current-matrix-arb, matrix0-arb, matrix1-arb, matrix2-arb,
matrix3-arb, matrix4-arb, matrix5-arb, matrix6-arb, matrix7-arb,
matrix8-arb, matrix9-arb, matrix10-arb, matrix11-arb, matrix12-arb,
matrix13-arb, matrix14-arb, matrix15-arb, matrix16-arb, matrix17-arb,
matrix18-arb, matrix19-arb, matrix20-arb, matrix21-arb, matrix22-arb,
matrix23-arb, matrix24-arb, matrix25-arb, matrix26-arb, matrix27-arb,
matrix28-arb, matrix29-arb, matrix30-arb, matrix31-arb.

[Macro]arb-vertex-blend enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-vertex-units-arb, active-vertex-units-arb, weight-sum-unity-

arb, vertex-blend-arb, current-weight-arb, weight-array-type-arb,
weight-array-stride-arb, weight-array-size-arb, weight-array-pointer-

arb, weight-array-arb, modelview0-arb, modelview1-arb, modelview2-arb,
modelview3-arb, modelview4-arb, modelview5-arb, modelview6-arb,

Chapter 3: GL 77

modelview7-arb, modelview8-arb, modelview9-arb, modelview10-arb,
modelview11-arb, modelview12-arb, modelview13-arb, modelview14-arb,
modelview15-arb, modelview16-arb, modelview17-arb, modelview18-arb,
modelview19-arb, modelview20-arb, modelview21-arb, modelview22-arb,
modelview23-arb, modelview24-arb, modelview25-arb, modelview26-arb,
modelview27-arb, modelview28-arb, modelview29-arb, modelview30-arb,
modelview31-arb.

[Macro]oes-matrix-palette enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-vertex-units-oes, weight-array-oes, weight-array-type-oes,
weight-array-stride-oes, weight-array-size-oes, weight-array-pointer-

oes, matrix-palette-oes, max-palette-matrices-oes, current-palette-

matrix-oes, matrix-index-array-oes, matrix-index-array-size-oes,
matrix-index-array-type-oes, matrix-index-array-stride-oes,
matrix-index-array-pointer-oes, weight-array-buffer-binding-oes,
matrix-index-array-buffer-binding-oes.

[Macro]arb-texture-env-dot-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

dot3-rgb-arb, dot3-rgba-arb.

[Macro]img-texture-env-enhanced-fixed-function enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

dot3-rgba-img, modulate-color-img, recip-add-signed-alpha-img,
texture-alpha-modulate-img, factor-alpha-modulate-img, fragment-alpha-

modulate-img, add-blend-img.

[Macro]3dfx-texture-compression-fxt1 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-rgb-fxt1-3dfx, compressed-rgba-fxt1-3dfx.

[Macro]nv-evaluators enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

eval-2d-nv, eval-triangular-2d-nv, map-tessellation-nv, map-attrib-

u-order-nv, map-attrib-v-order-nv, eval-fractional-tessellation-nv,
eval-vertex-atrrib0-nv, eval-vertex-atrrib1-nv, eval-vertex-atrrib2-nv,

Chapter 3: GL 78

eval-vertex-atrrib3-nv, eval-vertex-atrrib4-nv, eval-vertex-atrrib5-nv,
eval-vertex-atrrib6-nv, eval-vertex-atrrib7-nv, eval-vertex-atrrib8-nv,
eval-vertex-atrrib9-nv, eval-vertex-atrrib10-nv, eval-vertex-atrrib11-

nv, eval-vertex-atrrib12-nv, eval-vertex-atrrib13-nv, eval-vertex-

atrrib14-nv, eval-vertex-atrrib15-nv, max-map-tessellation-nv,
max-rational-eval-order-nv.

[Macro]nv-tessellation-program-5 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-program-patch-attribs-nv, tess-control-program-nv, tess-evaluation-

program-nv, tess-control-program-parameter-buffer-nv, tess-evaluation-

program-parameter-buffer-nv.

[Macro]nv-texture-shader enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

offset-texture-rectangle-nv, offset-texture-rectangle-scale-nv,
dot-product-texture-rectangle-nv, rgba-unsigned-dot-product-mapping-nv,
unsigned-int-s8-s8-8-8-nv, unsigned-int-8-8-s8-s8-rev-nv, dsdt-mag-

intensity-nv, shader-consistent-nv, texture-shader-nv, shader-operation-
nv, cull-modes-nv, offset-texture-matrix-nv, offset-texture-scale-nv,
offset-texture-bias-nv, offset-texture-2d-matrix-nv, offset-texture-

2d-scale-nv, offset-texture-2d-bias-nv, previous-texture-input-nv,
const-eye-nv, pass-through-nv, cull-fragment-nv, offset-texture-

2d-nv, dependent-ar-texture-2d-nv, dependent-gb-texture-2d-nv,
dot-product-nv, dot-product-depth-replace-nv, dot-product-texture-2d-nv,
dot-product-texture-cube-map-nv, dot-product-diffuse-cube-map-nv,
dot-product-reflect-cube-map-nv, dot-product-const-eye-reflect-cube-

map-nv, hilo-nv, dsdt-nv, dsdt-mag-nv, dsdt-mag-vib-nv, hilo16-nv,
signed-hilo-nv, signed-hilo16-nv, signed-rgba-nv, signed-rgba8-nv,
signed-rgb-nv, signed-rgb8-nv, signed-luminance-nv, signed-luminance8-nv,
signed-luminance-alpha-nv, signed-luminance8-alpha8-nv, signed-alpha-nv,
signed-alpha8-nv, signed-intensity-nv, signed-intensity8-nv, dsdt8-nv,
dsdt8-mag8-nv, dsdt8-mag8-intensity8-nv, signed-rgb-unsigned-alpha-nv,
signed-rgb8-unsigned-alpha8-nv, hi-scale-nv, lo-scale-nv, ds-scale-

nv, dt-scale-nv, magnitude-scale-nv, vibrance-scale-nv, hi-bias-nv,
lo-bias-nv, ds-bias-nv, dt-bias-nv, magnitude-bias-nv, vibrance-bias-nv,
texture-border-values-nv, texture-hi-size-nv, texture-lo-size-nv,
texture-ds-size-nv, texture-dt-size-nv, texture-mag-size-nv.

[Macro]nv-vdpau-interop enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 79

surface-state-nv, surface-registered-nv, surface-mapped-nv,
write-discard-nv.

[Macro]nv-texture-shader-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

dot-product-texture-3d-nv.

[Macro]ext-texture-env-dot-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

dot3-rgb-ext, dot3-rgba-ext.

[Macro]amd-program-binary-z400 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

z400-binary-amd.

[Macro]oes-get-program-binary enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

program-binary-length-oes, num-program-binary-formats-oes,
program-binary-formats-oes.

[Macro]ati-texture-mirror-once enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

mirror-clamp-ati, mirror-clamp-to-edge-ati.

[Macro]ext-texture-mirror-clamp enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

mirror-clamp-ext, mirror-clamp-to-edge-ext, mirror-clamp-to-border-ext.

[Macro]ati-texture-env-combine-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

modulate-add-ati, modulate-signed-add-ati, modulate-subtract-ati.

Chapter 3: GL 80

[Macro]amd-stencil-operation-extended enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

set-amd, replace-value-amd, stencil-op-value-amd, stencil-back-op-value-
amd.

[Macro]mesa-packed-depth-stencil enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-stencil-mesa, unsigned-int-24-8-mesa, unsigned-int-8-24-rev-mesa,
unsigned-short-15-1-mesa, unsigned-short-1-15-rev-mesa.

[Macro]mesa-trace enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

trace-all-bits-mesa, trace-operations-bit-mesa, trace-primitives-bit-

mesa, trace-arrays-bit-mesa, trace-textures-bit-mesa, trace-pixels-bit-

mesa, trace-errors-bit-mesa, trace-mask-mesa, trace-name-mesa.

[Macro]mesa-pack-invert enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pack-invert-mesa.

[Macro]mesax-texture-stack enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-1d-stack-mesax, texture-2d-stack-mesax, proxy-texture-1d-stack-

mesax, proxy-texture-2d-stack-mesax, texture-1d-stack-binding-mesax,
texture-2d-stack-binding-mesax.

[Macro]mesa-shader-debug enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

debug-object-mesa, debug-print-mesa, debug-assert-mesa.

[Macro]ati-vertex-array-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

static-ati, dynamic-ati, preserve-ati, discard-ati, object-buffer-size-

ati, object-buffer-usage-ati, array-object-buffer-ati, array-object-

offset-ati.

Chapter 3: GL 81

[Macro]arb-vertex-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

buffer-size-arb, buffer-usage-arb, array-buffer-arb, element-array-

buffer-arb, array-buffer-binding-arb, element-array-buffer-binding-arb,
vertex-array-buffer-binding-arb, normal-array-buffer-binding-arb,
color-array-buffer-binding-arb, index-array-buffer-binding-arb,
texture-coord-array-buffer-binding-arb, edge-flag-array-buffer-binding-
arb, secondary-color-array-buffer-binding-arb, fog-coordinate-array-

buffer-binding-arb, weight-array-buffer-binding-arb, vertex-attrib-

array-buffer-binding-arb, read-only-arb, write-only-arb, read-write-arb,
buffer-access-arb, buffer-mapped-arb, buffer-map-pointer-arb,
stream-draw-arb, stream-read-arb, stream-copy-arb, static-draw-arb,
static-read-arb, static-copy-arb, dynamic-draw-arb, dynamic-read-arb,
dynamic-copy-arb.

[Macro]ati-element-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

element-array-ati, element-array-type-ati, element-array-pointer-ati.

[Macro]ati-vertex-streams enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-vertex-streams-ati, vertex-stream0-ati, vertex-stream1-ati,
vertex-stream2-ati, vertex-stream3-ati, vertex-stream4-ati,
vertex-stream5-ati, vertex-stream6-ati, vertex-stream7-ati,
vertex-source-ati.

[Macro]ati-envmap-bumpmap enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

bump-rot-matrix-ati, bump-rot-matrix-size-ati, bump-num-tex-units-ati,
bump-tex-units-ati, dudv-ati, du8dv8-ati, bump-envmap-ati, bump-target-

ati.

[Macro]ext-vertex-shader enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-shader-ext, vertex-shader-binding-ext, op-index-ext, op-negate-

ext, op-dot3-ext, op-dot4-ext, op-mul-ext, op-add-ext, op-madd-ext,

Chapter 3: GL 82

op-frac-ext, op-max-ext, op-min-ext, op-set-ge-ext, op-set-lt-

ext, op-clamp-ext, op-floor-ext, op-round-ext, op-exp-base-2-ext,
op-log-base-2-ext, op-power-ext, op-recip-ext, op-recip-sqrt-ext,
op-sub-ext, op-cross-product-ext, op-multiply-matrix-ext, op-mov-

ext, output-vertex-ext, output-color0-ext, output-color1-ext,
output-texture-coord0-ext, output-texture-coord1-ext, output-texture-

coord2-ext, output-texture-coord3-ext, output-texture-coord4-ext,
output-texture-coord5-ext, output-texture-coord6-ext, output-texture-

coord7-ext, output-texture-coord8-ext, output-texture-coord9-ext,
output-texture-coord10-ext, output-texture-coord11-ext, output-texture-

coord12-ext, output-texture-coord13-ext, output-texture-coord14-ext,
output-texture-coord15-ext, output-texture-coord16-ext, output-texture-

coord17-ext, output-texture-coord18-ext, output-texture-coord19-ext,
output-texture-coord20-ext, output-texture-coord21-ext, output-texture-

coord22-ext, output-texture-coord23-ext, output-texture-coord24-ext,
output-texture-coord25-ext, output-texture-coord26-ext, output-texture-

coord27-ext, output-texture-coord28-ext, output-texture-coord29-ext,
output-texture-coord30-ext, output-texture-coord31-ext, output-fog-

ext, scalar-ext, vector-ext, matrix-ext, variant-ext, invariant-ext,
local-constant-ext, local-ext, max-vertex-shader-instructions-ext,
max-vertex-shader-variants-ext, max-vertex-shader-invariants-ext,
max-vertex-shader-local-constants-ext, max-vertex-shader-locals-ext,
max-optimized-vertex-shader-instructions-ext, max-optimized-vertex-

shader-variants-ext, max-optimized-vertex-shader-local-constants-ext,
max-optimized-vertex-shader-invariants-ext, max-optimized-vertex-

shader-locals-ext, vertex-shader-instructions-ext, vertex-shader-

variants-ext, vertex-shader-invariants-ext, vertex-shader-local-

constants-ext, vertex-shader-locals-ext, vertex-shader-optimized-ext,
x-ext, y-ext, z-ext, w-ext, negative-x-ext, negative-y-ext, negative-z-ext,
negative-w-ext, zero-ext, one-ext, negative-one-ext, normalized-range-ext,
full-range-ext, current-vertex-ext, mvp-matrix-ext, variant-value-ext,
variant-datatype-ext, variant-array-stride-ext, variant-array-type-ext,
variant-array-ext, variant-array-pointer-ext, invariant-value-ext,
invariant-datatype-ext, local-constant-value-ext, local-constant-

datatype-ext.

[Macro]amd-compressed-atc-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

atc-rgba-interpolated-alpha-amd, atc-rgb-amd, atc-rgba-explicit-alpha-

amd.

[Macro]ati-pn-triangles enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 83

pn-triangles-ati, max-pn-triangles-tesselation-level-ati, pn-triangles-

point-mode-ati, pn-triangles-normal-mode-ati, pn-triangles-tesselation-

level-ati, pn-triangles-point-mode-linear-ati, pn-triangles-point-mode-

cubic-ati, pn-triangles-normal-mode-linear-ati, pn-triangles-normal-

mode-quadratic-ati.

[Macro]amd-compressed-3dc-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

3dc-x-amd, 3dc-xy-amd.

[Macro]ati-meminfo enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vbo-free-memory-ati, texture-free-memory-ati, renderbuffer-free-memory-

ati.

[Macro]ati-separate-stencil enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

stencil-back-func-ati, stencil-back-pass-depth-fail-ati, stencil-back-

pass-depth-pass-ati.

[Macro]arb-texture-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgba32f-arb, rgb32f-arb, alpha32f-arb, intensity32f-arb, luminance32f-arb,
luminance-alpha32f-arb, rgba16f-arb, rgb16f-arb, alpha16f-arb,
intensity16f-arb, luminance16f-arb, luminance-alpha16f-arb, texture-red-
type-arb, texture-green-type-arb, texture-blue-type-arb, texture-alpha-

type-arb, texture-luminance-type-arb, texture-intensity-type-arb,
texture-depth-type-arb, unsigned-normalized-arb.

[Macro]ati-texture-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgba-float32-ati, rgb-float32-ati, alpha-float32-ati, intensity-float32-
ati, luminance-float32-ati, luminance-alpha-float32-ati, rgba-float16-

ati, rgb-float16-ati, alpha-float16-ati, intensity-float16-ati,
luminance-float16-ati, luminance-alpha-float16-ati.

Chapter 3: GL 84

[Macro]arb-color-buffer-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgba-float-mode-arb, clamp-vertex-color-arb, clamp-fragment-color-arb,
clamp-read-color-arb, fixed-only-arb.

[Macro]ati-pixel-format-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

type-rgba-float-ati, color-clear-unclamped-value-ati.

[Macro]qcom-writeonly-rendering enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

writeonly-rendering-qcom.

[Macro]arb-draw-buffers enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-draw-buffers-arb, draw-buffer0-arb, draw-buffer1-arb, draw-buffer2-

arb, draw-buffer3-arb, draw-buffer4-arb, draw-buffer5-arb, draw-buffer6-

arb, draw-buffer7-arb, draw-buffer8-arb, draw-buffer9-arb, draw-buffer10-
arb, draw-buffer11-arb, draw-buffer12-arb, draw-buffer13-arb,
draw-buffer14-arb, draw-buffer15-arb.

[Macro]ati-draw-buffers enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-draw-buffers-ati, draw-buffer0-ati, draw-buffer1-ati, draw-buffer2-

ati, draw-buffer3-ati, draw-buffer4-ati, draw-buffer5-ati, draw-buffer6-

ati, draw-buffer7-ati, draw-buffer8-ati, draw-buffer9-ati, draw-buffer10-
ati, draw-buffer11-ati, draw-buffer12-ati, draw-buffer13-ati,
draw-buffer14-ati, draw-buffer15-ati.

[Macro]nv-draw-buffers enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-draw-buffers-nv, draw-buffer0-nv, draw-buffer1-nv, draw-buffer2-nv,
draw-buffer3-nv, draw-buffer4-nv, draw-buffer5-nv, draw-buffer6-nv,
draw-buffer7-nv, draw-buffer8-nv, draw-buffer9-nv, draw-buffer10-nv,
draw-buffer11-nv, draw-buffer12-nv, draw-buffer13-nv, draw-buffer14-

nv, draw-buffer15-nv, color-attachment0-nv, color-attachment1-nv,

Chapter 3: GL 85

color-attachment2-nv, color-attachment3-nv, color-attachment4-nv,
color-attachment5-nv, color-attachment6-nv, color-attachment7-nv,
color-attachment8-nv, color-attachment9-nv, color-attachment10-nv,
color-attachment11-nv, color-attachment12-nv, color-attachment13-nv,
color-attachment14-nv, color-attachment15-nv.

[Macro]amd-sample-positions enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

subsample-distance-amd.

[Macro]arb-matrix-palette enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

matrix-palette-arb, max-matrix-palette-stack-depth-arb, max-palette-

matrices-arb, current-palette-matrix-arb, matrix-index-array-arb,
current-matrix-index-arb, matrix-index-array-size-arb, matrix-index-

array-type-arb, matrix-index-array-stride-arb, matrix-index-array-

pointer-arb.

[Macro]arb-shadow enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-compare-mode-arb, texture-compare-func-arb, compare-r-to-

texture-arb.

[Macro]ext-shadow-samplers enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-compare-mode-ext, texture-compare-func-ext, compare-ref-to-

texture-ext, sampler-2d-shadow-ext.

[Macro]ext-texture-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compare-ref-depth-to-texture-ext, max-array-texture-layers-ext,
texture-1d-array-ext, proxy-texture-1d-array-ext, texture-2d-array-

ext, proxy-texture-2d-array-ext, texture-binding-1d-array-ext,
texture-binding-2d-array-ext.

[Macro]arb-seamless-cube-map enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 86

texture-cube-map-seamless.

[Macro]nv-texture-shader-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

offset-projective-texture-2d-nv, offset-projective-texture-2d-scale-nv,
offset-projective-texture-rectangle-nv, offset-projective-texture-

rectangle-scale-nv, offset-hilo-texture-2d-nv, offset-hilo-texture-

rectangle-nv, offset-hilo-projective-texture-2d-nv, offset-hilo-

projective-texture-rectangle-nv, dependent-hilo-texture-2d-nv,
dependent-rgb-texture-3d-nv, dependent-rgb-texture-cube-map-nv,
dot-product-pass-through-nv, dot-product-texture-1d-nv, dot-product-

affine-depth-replace-nv, hilo8-nv, signed-hilo8-nv, force-blue-to-one-nv.

[Macro]arb-point-sprite enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point-sprite-arb, coord-replace-arb.

[Macro]nv-point-sprite enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point-sprite-nv, coord-replace-nv, point-sprite-r-mode-nv.

[Macro]oes-point-sprite enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point-sprite-arb, coord-replace-arb.

[Macro]arb-occlusion-query enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

query-counter-bits-arb, current-query-arb, query-result-arb,
query-result-available-arb, samples-passed-arb.

[Macro]nv-occlusion-query enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-counter-bits-nv, current-occlusion-query-id-nv, pixel-count-nv,
pixel-count-available-nv.

Chapter 3: GL 87

[Macro]ext-occlusion-query-boolean enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

current-query-ext, query-result-ext, query-result-available-ext,
any-samples-passed-ext, any-samples-passed-conservative-ext.

[Macro]nv-fragment-program enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-fragment-program-local-parameters-nv, fragment-program-nv,
max-texture-coords-nv, max-texture-image-units-nv, fragment-program-

binding-nv, program-error-string-nv.

[Macro]nv-copy-depth-to-color enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-stencil-to-rgba-nv, depth-stencil-to-bgra-nv.

[Macro]nv-pixel-data-range enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

write-pixel-data-range-nv, read-pixel-data-range-nv, write-pixel-data-

range-length-nv, read-pixel-data-range-length-nv, write-pixel-data-

range-pointer-nv, read-pixel-data-range-pointer-nv.

[Macro]arb-gpu-shader-5 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

geometry-shader-invocations, max-geometry-shader-invocations,
min-fragment-interpolation-offset, max-fragment-interpolation-offset,
fragment-interpolation-offset-bits.

[Macro]nv-float-buffer enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

float-r-nv, float-rg-nv, float-rgb-nv, float-rgba-nv, float-r16-nv,
float-r32-nv, float-rg16-nv, float-rg32-nv, float-rgb16-nv, float-rgb32-

nv, float-rgba16-nv, float-rgba32-nv, texture-float-components-nv,
float-clear-color-value-nv, float-rgba-mode-nv.

Chapter 3: GL 88

[Macro]nv-texture-expand-normal enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-unsigned-remap-mode-nv.

[Macro]ext-depth-bounds-test enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-bounds-test-ext, depth-bounds-ext.

[Macro]oes-mapbuffer enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

write-only-oes, buffer-access-oes, buffer-mapped-oes, buffer-map-pointer-
oes.

[Macro]nv-shader-buffer-store enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

read-write, write-only, shader-global-access-barrier-bit-nv.

[Macro]arb-timer-query enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

time-elapsed, timestamp.

[Macro]ext-timer-query enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

time-elapsed-ext.

[Macro]arb-pixel-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pixel-pack-buffer-arb, pixel-unpack-buffer-arb, pixel-pack-buffer-

binding-arb, pixel-unpack-buffer-binding-arb.

[Macro]ext-pixel-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 89

pixel-pack-buffer-ext, pixel-unpack-buffer-ext, pixel-pack-buffer-

binding-ext, pixel-unpack-buffer-binding-ext.

[Macro]nv-s-rgb-formats enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

etc1-srgb8-nv, srgb8-nv, sluminance-alpha-nv, sluminance8-alpha8-

nv, sluminance-nv, sluminance8-nv, compressed-srgb-s3tc-dxt1-nv,
compressed-srgb-alpha-s3tc-dxt1-nv, compressed-srgb-alpha-s3tc-dxt3-nv,
compressed-srgb-alpha-s3tc-dxt5-nv.

[Macro]ext-stencil-clear-tag enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

stencil-tag-bits-ext, stencil-clear-tag-value-ext.

[Macro]nv-vertex-program-2-option enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-program-exec-instructions-nv, max-program-call-depth-nv.

[Macro]nv-fragment-program-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-program-exec-instructions-nv, max-program-call-depth-nv,
max-program-if-depth-nv, max-program-loop-depth-nv, max-program-loop-

count-nv.

[Macro]arb-blend-func-extended enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

src1-color, one-minus-src1-color, one-minus-src1-alpha, max-dual-source-
draw-buffers.

[Macro]nv-vertex-program-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-array-integer-nv.

[Macro]version-3-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 90

vertex-attrib-array-divisor.

[Macro]arb-instanced-arrays enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-array-divisor-arb.

[Macro]angle-instanced-arrays enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-array-divisor-angle.

[Macro]nv-instanced-arrays enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-array-divisor-nv.

[Macro]nv-gpu-program-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

min-program-texel-offset-nv, max-program-texel-offset-nv,
program-attrib-components-nv, program-result-components-nv,
max-program-attrib-components-nv, max-program-result-components-

nv, max-program-generic-attribs-nv, max-program-generic-results-nv.

[Macro]ext-stencil-two-side enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

stencil-test-two-side-ext, active-stencil-face-ext.

[Macro]arb-sampler-objects enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sampler-binding.

[Macro]ati-fragment-shader enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-shader-ati, reg-0-ati, reg-1-ati, reg-2-ati, reg-3-ati, reg-4-ati,
reg-5-ati, reg-6-ati, reg-7-ati, reg-8-ati, reg-9-ati, reg-10-ati,
reg-11-ati, reg-12-ati, reg-13-ati, reg-14-ati, reg-15-ati, reg-16-ati,

Chapter 3: GL 91

reg-17-ati, reg-18-ati, reg-19-ati, reg-20-ati, reg-21-ati, reg-22-ati,
reg-23-ati, reg-24-ati, reg-25-ati, reg-26-ati, reg-27-ati, reg-28-ati,
reg-29-ati, reg-30-ati, reg-31-ati, con-0-ati, con-1-ati, con-2-ati,
con-3-ati, con-4-ati, con-5-ati, con-6-ati, con-7-ati, con-8-ati, con-9-ati,
con-10-ati, con-11-ati, con-12-ati, con-13-ati, con-14-ati, con-15-ati,
con-16-ati, con-17-ati, con-18-ati, con-19-ati, con-20-ati, con-21-ati,
con-22-ati, con-23-ati, con-24-ati, con-25-ati, con-26-ati, con-27-ati,
con-28-ati, con-29-ati, con-30-ati, con-31-ati, mov-ati, add-ati, mul-ati,
sub-ati, dot3-ati, dot4-ati, mad-ati, lerp-ati, cnd-ati, cnd0-ati,
dot2-add-ati, secondary-interpolator-ati, num-fragment-registers-ati,
num-fragment-constants-ati, num-passes-ati, num-instructions-per-pass-

ati, num-instructions-total-ati, num-input-interpolator-components-ati,
num-loopback-components-ati, color-alpha-pairing-ati, swizzle-str-ati,
swizzle-stq-ati, swizzle-str-dr-ati, swizzle-stq-dq-ati, swizzle-strq-

ati, swizzle-strq-dq-ati, red-bit-ati, green-bit-ati, blue-bit-ati,
2x-bit-ati, 4x-bit-ati, 8x-bit-ati, half-bit-ati, quarter-bit-ati,
eighth-bit-ati, saturate-bit-ati, 2x-bit-ati, comp-bit-ati, negate-bit-

ati, bias-bit-ati.

[Macro]oml-interlace enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

interlace-oml, interlace-read-oml.

[Macro]oml-subsample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

format-subsample-24-24-oml, format-subsample-244-244-oml.

[Macro]oml-resample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pack-resample-oml, unpack-resample-oml, resample-replicate-oml,
resample-zero-fill-oml, resample-average-oml, resample-decimate-oml.

[Macro]oes-point-size-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

point-size-array-type-oes, point-size-array-stride-oes, point-size-

array-pointer-oes, point-size-array-oes, point-size-array-buffer-

binding-oes.

Chapter 3: GL 92

[Macro]oes-matrix-get enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

modelview-matrix-float-as-int-bits-oes, projection-matrix-float-as-int-
bits-oes, texture-matrix-float-as-int-bits-oes.

[Macro]apple-vertex-program-evaluators enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-map1-apple, vertex-attrib-map2-apple, vertex-attrib-map1-

size-apple, vertex-attrib-map1-coeff-apple, vertex-attrib-map1-order-

apple, vertex-attrib-map1-domain-apple, vertex-attrib-map2-size-apple,
vertex-attrib-map2-coeff-apple, vertex-attrib-map2-order-apple,
vertex-attrib-map2-domain-apple.

[Macro]apple-fence enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

draw-pixels-apple, fence-apple.

[Macro]apple-element-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

element-array-apple, element-array-type-apple, element-array-pointer-

apple.

[Macro]arb-uniform-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

uniform-buffer, uniform-buffer-binding, uniform-buffer-start,
uniform-buffer-size, max-vertex-uniform-blocks, max-geometry-uniform-

blocks, max-fragment-uniform-blocks, max-combined-uniform-blocks,
max-uniform-buffer-bindings, max-uniform-block-size, max-combined-

vertex-uniform-components, max-combined-geometry-uniform-components,
max-combined-fragment-uniform-components, uniform-buffer-offset-

alignment, active-uniform-block-max-name-length, active-uniform-blocks,
uniform-type, uniform-size, uniform-name-length, uniform-block-

index, uniform-offset, uniform-array-stride, uniform-matrix-stride,
uniform-is-row-major, uniform-block-binding, uniform-block-data-size,
uniform-block-name-length, uniform-block-active-uniforms, uniform-block-
active-uniform-indices, uniform-block-referenced-by-vertex-shader,
uniform-block-referenced-by-geometry-shader, uniform-block-referenced-

by-fragment-shader, invalid-index.

Chapter 3: GL 93

[Macro]apple-flush-buffer-range enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

buffer-serialized-modify-apple, buffer-flushing-unmap-apple.

[Macro]apple-aux-depth-stencil enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

aux-depth-stencil-apple.

[Macro]apple-row-bytes enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pack-row-bytes-apple, unpack-row-bytes-apple.

[Macro]apple-rgb-422 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgb-422-apple, unsigned-short-8-8-apple, unsigned-short-8-8-rev-apple.

[Macro]ext-texture-s-rgb-decode enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-srgb-decode-ext, decode-ext, skip-decode-ext.

[Macro]ext-debug-label enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

program-pipeline-object-ext, program-object-ext, shader-object-ext,
buffer-object-ext, query-object-ext, vertex-array-object-ext.

[Macro]ext-shader-framebuffer-fetch enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-shader-discards-samples-ext.

[Macro]apple-sync enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 94

sync-object-apple, max-server-wait-timeout-apple, object-type-

apple, sync-condition-apple, sync-status-apple, sync-flags-apple,
sync-fence-apple, sync-gpu-commands-complete-apple, unsignaled-apple,
signaled-apple, already-signaled-apple, timeout-expired-apple,
condition-satisfied-apple, wait-failed-apple, sync-flush-commands-bit-

apple, timeout-ignored-apple.

[Macro]arb-shader-objects enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-shader, fragment-shader-arb, vertex-shader, vertex-shader-arb,
program-object-arb, shader-object-arb, max-fragment-uniform-components,
max-fragment-uniform-components-arb, max-vertex-uniform-components,
max-vertex-uniform-components-arb, max-varying-floats, max-varying-

floats-arb, max-vertex-texture-image-units, max-vertex-texture-image-

units-arb, max-combined-texture-image-units, max-combined-texture-

image-units-arb, object-type-arb, shader-type, object-subtype-arb,
float-vec2, float-vec2-arb, float-vec3, float-vec3-arb, float-vec4,
float-vec4-arb, int-vec2, int-vec2-arb, int-vec3, int-vec3-arb, int-vec4,
int-vec4-arb, bool, bool-arb, bool-vec2, bool-vec2-arb, bool-vec3,
bool-vec3-arb, bool-vec4, bool-vec4-arb, float-mat2, float-mat2-arb,
float-mat3, float-mat3-arb, float-mat4, float-mat4-arb, sampler-1d,
sampler-1d-arb, sampler-2d, sampler-2d-arb, sampler-3d, sampler-3d-arb,
sampler-cube, sampler-cube-arb, sampler-1d-shadow, sampler-1d-shadow-

arb, sampler-2d-shadow, sampler-2d-shadow-arb, sampler-2d-rect-

arb, sampler-2d-rect-shadow-arb, float-mat-2x-3, float-mat-2x-4,
float-mat-3x-2, float-mat-3x-4, float-mat-4x-2, float-mat-4x-3,
delete-status, object-delete-status-arb, compile-status, object-compile-
status-arb, link-status, object-link-status-arb, validate-status,
object-validate-status-arb, info-log-length, object-info-log-length-

arb, attached-shaders, object-attached-objects-arb, active-uniforms,
object-active-uniforms-arb, active-uniform-max-length, object-active-

uniform-max-length-arb, shader-source-length, object-shader-

source-length-arb, active-attributes, object-active-attributes-arb,
active-attribute-max-length, object-active-attribute-max-length-arb,
fragment-shader-derivative-hint, fragment-shader-derivative-hint-arb,
shading-language-version, shading-language-version-arb.

[Macro]arb-vertex-shader enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-shader, fragment-shader-arb, vertex-shader, vertex-shader-arb,
program-object-arb, shader-object-arb, max-fragment-uniform-components,
max-fragment-uniform-components-arb, max-vertex-uniform-components,
max-vertex-uniform-components-arb, max-varying-floats, max-varying-

Chapter 3: GL 95

floats-arb, max-vertex-texture-image-units, max-vertex-texture-image-

units-arb, max-combined-texture-image-units, max-combined-texture-

image-units-arb, object-type-arb, shader-type, object-subtype-arb,
float-vec2, float-vec2-arb, float-vec3, float-vec3-arb, float-vec4,
float-vec4-arb, int-vec2, int-vec2-arb, int-vec3, int-vec3-arb, int-vec4,
int-vec4-arb, bool, bool-arb, bool-vec2, bool-vec2-arb, bool-vec3,
bool-vec3-arb, bool-vec4, bool-vec4-arb, float-mat2, float-mat2-arb,
float-mat3, float-mat3-arb, float-mat4, float-mat4-arb, sampler-1d,
sampler-1d-arb, sampler-2d, sampler-2d-arb, sampler-3d, sampler-3d-arb,
sampler-cube, sampler-cube-arb, sampler-1d-shadow, sampler-1d-shadow-

arb, sampler-2d-shadow, sampler-2d-shadow-arb, sampler-2d-rect-

arb, sampler-2d-rect-shadow-arb, float-mat-2x-3, float-mat-2x-4,
float-mat-3x-2, float-mat-3x-4, float-mat-4x-2, float-mat-4x-3,
delete-status, object-delete-status-arb, compile-status, object-compile-
status-arb, link-status, object-link-status-arb, validate-status,
object-validate-status-arb, info-log-length, object-info-log-length-

arb, attached-shaders, object-attached-objects-arb, active-uniforms,
object-active-uniforms-arb, active-uniform-max-length, object-active-

uniform-max-length-arb, shader-source-length, object-shader-

source-length-arb, active-attributes, object-active-attributes-arb,
active-attribute-max-length, object-active-attribute-max-length-arb,
fragment-shader-derivative-hint, fragment-shader-derivative-hint-arb,
shading-language-version, shading-language-version-arb.

[Macro]arb-fragment-shader enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-shader, fragment-shader-arb, vertex-shader, vertex-shader-arb,
program-object-arb, shader-object-arb, max-fragment-uniform-components,
max-fragment-uniform-components-arb, max-vertex-uniform-components,
max-vertex-uniform-components-arb, max-varying-floats, max-varying-

floats-arb, max-vertex-texture-image-units, max-vertex-texture-image-

units-arb, max-combined-texture-image-units, max-combined-texture-

image-units-arb, object-type-arb, shader-type, object-subtype-arb,
float-vec2, float-vec2-arb, float-vec3, float-vec3-arb, float-vec4,
float-vec4-arb, int-vec2, int-vec2-arb, int-vec3, int-vec3-arb, int-vec4,
int-vec4-arb, bool, bool-arb, bool-vec2, bool-vec2-arb, bool-vec3,
bool-vec3-arb, bool-vec4, bool-vec4-arb, float-mat2, float-mat2-arb,
float-mat3, float-mat3-arb, float-mat4, float-mat4-arb, sampler-1d,
sampler-1d-arb, sampler-2d, sampler-2d-arb, sampler-3d, sampler-3d-arb,
sampler-cube, sampler-cube-arb, sampler-1d-shadow, sampler-1d-shadow-

arb, sampler-2d-shadow, sampler-2d-shadow-arb, sampler-2d-rect-

arb, sampler-2d-rect-shadow-arb, float-mat-2x-3, float-mat-2x-4,
float-mat-3x-2, float-mat-3x-4, float-mat-4x-2, float-mat-4x-3,
delete-status, object-delete-status-arb, compile-status, object-compile-
status-arb, link-status, object-link-status-arb, validate-status,

Chapter 3: GL 96

object-validate-status-arb, info-log-length, object-info-log-length-

arb, attached-shaders, object-attached-objects-arb, active-uniforms,
object-active-uniforms-arb, active-uniform-max-length, object-active-

uniform-max-length-arb, shader-source-length, object-shader-

source-length-arb, active-attributes, object-active-attributes-arb,
active-attribute-max-length, object-active-attribute-max-length-arb,
fragment-shader-derivative-hint, fragment-shader-derivative-hint-arb,
shading-language-version, shading-language-version-arb.

[Macro]nv-vertex-program-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-shader, fragment-shader-arb, vertex-shader, vertex-shader-arb,
program-object-arb, shader-object-arb, max-fragment-uniform-components,
max-fragment-uniform-components-arb, max-vertex-uniform-components,
max-vertex-uniform-components-arb, max-varying-floats, max-varying-

floats-arb, max-vertex-texture-image-units, max-vertex-texture-image-

units-arb, max-combined-texture-image-units, max-combined-texture-

image-units-arb, object-type-arb, shader-type, object-subtype-arb,
float-vec2, float-vec2-arb, float-vec3, float-vec3-arb, float-vec4,
float-vec4-arb, int-vec2, int-vec2-arb, int-vec3, int-vec3-arb, int-vec4,
int-vec4-arb, bool, bool-arb, bool-vec2, bool-vec2-arb, bool-vec3,
bool-vec3-arb, bool-vec4, bool-vec4-arb, float-mat2, float-mat2-arb,
float-mat3, float-mat3-arb, float-mat4, float-mat4-arb, sampler-1d,
sampler-1d-arb, sampler-2d, sampler-2d-arb, sampler-3d, sampler-3d-arb,
sampler-cube, sampler-cube-arb, sampler-1d-shadow, sampler-1d-shadow-

arb, sampler-2d-shadow, sampler-2d-shadow-arb, sampler-2d-rect-

arb, sampler-2d-rect-shadow-arb, float-mat-2x-3, float-mat-2x-4,
float-mat-3x-2, float-mat-3x-4, float-mat-4x-2, float-mat-4x-3,
delete-status, object-delete-status-arb, compile-status, object-compile-
status-arb, link-status, object-link-status-arb, validate-status,
object-validate-status-arb, info-log-length, object-info-log-length-

arb, attached-shaders, object-attached-objects-arb, active-uniforms,
object-active-uniforms-arb, active-uniform-max-length, object-active-

uniform-max-length-arb, shader-source-length, object-shader-

source-length-arb, active-attributes, object-active-attributes-arb,
active-attribute-max-length, object-active-attribute-max-length-arb,
fragment-shader-derivative-hint, fragment-shader-derivative-hint-arb,
shading-language-version, shading-language-version-arb.

[Macro]oes-standard-derivatives enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-shader-derivative-hint-oes.

Chapter 3: GL 97

[Macro]ext-geometry-shader-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-varying-components-ext, geometry-shader-ext, max-geometry-varying-

components-ext, max-vertex-varying-components-ext, max-geometry-uniform-
components-ext, max-geometry-output-vertices-ext, max-geometry-total-

output-components-ext.

[Macro]oes-compressed-paletted-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

palette4-rgb8-oes, palette4-rgba8-oes, palette4-r5-g6-b5-oes,
palette4-rgba4-oes, palette4-rgb5-a1-oes, palette8-rgb8-oes,
palette8-rgba8-oes, palette8-r5-g6-b5-oes, palette8-rgba4-oes,
palette8-rgb5-a1-oes.

[Macro]oes-read-format enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

implementation-color-read-type-oes, implementation-color-read-format-

oes.

[Macro]oes-draw-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-crop-rect-oes.

[Macro]mesa-program-debug enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

fragment-program-position-mesa, fragment-program-callback-mesa,
fragment-program-callback-func-mesa, fragment-program-callback-data-

mesa, vertex-program-callback-mesa, vertex-program-position-mesa,
vertex-program-callback-func-mesa, vertex-program-callback-data-mesa.

[Macro]amd-performance-monitor enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

counter-type-amd, counter-range-amd, unsigned-int64-amd, percentage-amd,
perfmon-result-available-amd, perfmon-result-size-amd, perfmon-result-

amd.

Chapter 3: GL 98

[Macro]qcom-extended-get enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-width-qcom, texture-height-qcom, texture-depth-qcom,
texture-internal-format-qcom, texture-format-qcom, texture-type-qcom,
texture-image-valid-qcom, texture-num-levels-qcom, texture-target-qcom,
texture-object-valid-qcom, state-restore.

[Macro]img-texture-compression-pvrtc enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-rgb-pvrtc-4bppv1-img, compressed-rgb-pvrtc-2bppv1-img,
compressed-rgba-pvrtc-4bppv1-img, compressed-rgba-pvrtc-2bppv1-img.

[Macro]img-shader-binary enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sgx-binary-img.

[Macro]arb-texture-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-buffer-arb, max-texture-buffer-size-arb, texture-binding-buffer-
arb, texture-buffer-data-store-binding-arb, texture-buffer-format-arb.

[Macro]ext-texture-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-buffer-ext, max-texture-buffer-size-ext, texture-binding-buffer-
ext, texture-buffer-data-store-binding-ext, texture-buffer-format-ext.

[Macro]arb-occlusion-query-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

any-samples-passed.

[Macro]arb-sample-shading enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sample-shading-arb, min-sample-shading-value-arb.

Chapter 3: GL 99

[Macro]ext-packed-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

r11f-g11f-b10f-ext, unsigned-int-10f-11f-11f-rev-ext, rgba-signed-

components-ext.

[Macro]ext-texture-shared-exponent enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgb9-e5-ext, unsigned-int-5-9-9-9-rev-ext, texture-shared-size-ext.

[Macro]ext-texture-s-rgb enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

srgb-ext, srgb8-ext, srgb-alpha-ext, srgb8-alpha8-ext, sluminance-alpha-

ext, sluminance8-alpha8-ext, sluminance-ext, sluminance8-ext,
compressed-srgb-ext, compressed-srgb-alpha-ext, compressed-sluminance-

ext, compressed-sluminance-alpha-ext, compressed-srgb-s3tc-dxt1-ext,
compressed-srgb-alpha-s3tc-dxt1-ext, compressed-srgb-alpha-s3tc-dxt3-

ext, compressed-srgb-alpha-s3tc-dxt5-ext.

[Macro]ext-texture-compression-latc enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-luminance-latc1-ext, compressed-signed-luminance-latc1-ext,
compressed-luminance-alpha-latc2-ext, compressed-signed-luminance-

alpha-latc2-ext.

[Macro]ext-transform-feedback enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

transform-feedback-varying-max-length, transform-feedback-varying-

max-length-ext, back-primary-color-nv, back-secondary-color-nv,
texture-coord-nv, clip-distance-nv, vertex-id-nv, primitive-id-nv,
generic-attrib-nv, transform-feedback-attribs-nv, transform-feedback-

buffer-mode, transform-feedback-buffer-mode-ext, transform-feedback-

buffer-mode-nv, max-transform-feedback-separate-components,
max-transform-feedback-separate-components-ext, max-transform-

feedback-separate-components-nv, active-varyings-nv, active-varying-max-
length-nv, transform-feedback-varyings, transform-feedback-varyings-ext,
transform-feedback-varyings-nv, transform-feedback-buffer-start,

Chapter 3: GL 100

transform-feedback-buffer-start-ext, transform-feedback-buffer-start-

nv, transform-feedback-buffer-size, transform-feedback-buffer-size-ext,
transform-feedback-buffer-size-nv, transform-feedback-record-nv,
primitives-generated, primitives-generated-ext, primitives-generated-

nv, transform-feedback-primitives-written, transform-feedback-

primitives-written-ext, transform-feedback-primitives-written-nv,
rasterizer-discard, rasterizer-discard-ext, rasterizer-discard-nv,
max-transform-feedback-interleaved-components, max-transform-

feedback-interleaved-components-ext, max-transform-feedback-

interleaved-components-nv, max-transform-feedback-separate-attribs,
max-transform-feedback-separate-attribs-ext, max-transform-feedback-

separate-attribs-nv, interleaved-attribs, interleaved-attribs-ext,
interleaved-attribs-nv, separate-attribs, separate-attribs-ext,
separate-attribs-nv, transform-feedback-buffer, transform-feedback-

buffer-ext, transform-feedback-buffer-nv, transform-feedback-buffer-

binding, transform-feedback-buffer-binding-ext, transform-feedback-

buffer-binding-nv.

[Macro]nv-transform-feedback enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

transform-feedback-varying-max-length, transform-feedback-varying-

max-length-ext, back-primary-color-nv, back-secondary-color-nv,
texture-coord-nv, clip-distance-nv, vertex-id-nv, primitive-id-nv,
generic-attrib-nv, transform-feedback-attribs-nv, transform-feedback-

buffer-mode, transform-feedback-buffer-mode-ext, transform-feedback-

buffer-mode-nv, max-transform-feedback-separate-components,
max-transform-feedback-separate-components-ext, max-transform-

feedback-separate-components-nv, active-varyings-nv, active-varying-max-
length-nv, transform-feedback-varyings, transform-feedback-varyings-ext,
transform-feedback-varyings-nv, transform-feedback-buffer-start,
transform-feedback-buffer-start-ext, transform-feedback-buffer-start-

nv, transform-feedback-buffer-size, transform-feedback-buffer-size-ext,
transform-feedback-buffer-size-nv, transform-feedback-record-nv,
primitives-generated, primitives-generated-ext, primitives-generated-

nv, transform-feedback-primitives-written, transform-feedback-

primitives-written-ext, transform-feedback-primitives-written-nv,
rasterizer-discard, rasterizer-discard-ext, rasterizer-discard-nv,
max-transform-feedback-interleaved-components, max-transform-

feedback-interleaved-components-ext, max-transform-feedback-

interleaved-components-nv, max-transform-feedback-separate-attribs,
max-transform-feedback-separate-attribs-ext, max-transform-feedback-

separate-attribs-nv, interleaved-attribs, interleaved-attribs-ext,
interleaved-attribs-nv, separate-attribs, separate-attribs-ext,
separate-attribs-nv, transform-feedback-buffer, transform-feedback-

buffer-ext, transform-feedback-buffer-nv, transform-feedback-buffer-

Chapter 3: GL 101

binding, transform-feedback-buffer-binding-ext, transform-feedback-

buffer-binding-nv, layer-nv, next-buffer-nv, skip-components4-nv,
skip-components3-nv, skip-components2-nv, skip-components1-nv.

[Macro]ext-framebuffer-blit enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

draw-framebuffer-binding-ext, read-framebuffer-ext, draw-framebuffer-

ext, draw-framebuffer-binding-ext, read-framebuffer-binding-ext.

[Macro]angle-framebuffer-blit enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

framebuffer-binding-angle, renderbuffer-binding-angle, read-framebuffer-
angle, draw-framebuffer-angle.

[Macro]nv-framebuffer-blit enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

read-framebuffer-nv, draw-framebuffer-nv, draw-framebuffer-binding-nv,
read-framebuffer-binding-nv.

[Macro]angle-framebuffer-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

renderbuffer-samples-angle, framebuffer-incomplete-multisample-angle,
max-samples-angle.

[Macro]ext-framebuffer-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

renderbuffer-samples-ext, framebuffer-incomplete-multisample-ext,
max-samples-ext.

[Macro]nv-framebuffer-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

renderbuffer-samples-nv, framebuffer-incomplete-multisample-nv,
max-samples-nv.

Chapter 3: GL 102

[Macro]nv-framebuffer-multisample-coverage enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

renderbuffer-coverage-samples-nv, renderbuffer-color-samples-nv,
max-multisample-coverage-modes-nv, multisample-coverage-modes-nv.

[Macro]arb-depth-buffer-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-component32f, depth32f-stencil8, float-32-unsigned-int-24-8-rev.

[Macro]nv-fbo-color-attachments enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-color-attachments-nv.

[Macro]oes-stencil-1 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

stencil-index1-oes.

[Macro]oes-stencil-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

stencil-index4-oes.

[Macro]oes-stencil-8 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

stencil-index8-oes.

[Macro]oes-vertex-half-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

half-float-oes.

[Macro]version-4-1 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgb565.

Chapter 3: GL 103

[Macro]oes-compressed-etc1-rgb8-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

etc1-rgb8-oes.

[Macro]oes-egl-image-external enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-external-oes, sampler-external-oes, texture-binding-external-

oes, required-texture-image-units-oes.

[Macro]arb-es3-compatibility enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

primitive-restart-fixed-index, any-samples-passed-conservative,
max-element-index, compressed-r11-eac, compressed-signed-r11-eac,
compressed-rg11-eac, compressed-signed-rg11-eac, compressed-rgb8-etc2,
compressed-srgb8-etc2, compressed-rgb8-punchthrough-alpha1-etc2,
compressed-srgb8-punchthrough-alpha1-etc2, compressed-rgba8-etc2-eac,
compressed-srgb8-alpha8-etc2-eac.

[Macro]ext-multisampled-render-to-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

framebuffer-attachment-texture-samples-ext.

[Macro]ext-texture-integer enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgba32ui, rgba32ui-ext, rgb32ui, rgb32ui-ext, alpha32ui-ext,
intensity32ui-ext, luminance32ui-ext, luminance-alpha32ui-ext, rgba16ui,
rgba16ui-ext, rgb16ui, rgb16ui-ext, alpha16ui-ext, intensity16ui-ext,
luminance16ui-ext, luminance-alpha16ui-ext, rgba8ui, rgba8ui-ext,
rgb8ui, rgb8ui-ext, alpha8ui-ext, intensity8ui-ext, luminance8ui-ext,
luminance-alpha8ui-ext, rgba32i, rgba32i-ext, rgb32i, rgb32i-ext,
alpha32i-ext, intensity32i-ext, luminance32i-ext, luminance-alpha32i-ext,
rgba16i, rgba16i-ext, rgb16i, rgb16i-ext, alpha16i-ext, intensity16i-ext,
luminance16i-ext, luminance-alpha16i-ext, rgba8i, rgba8i-ext,
rgb8i, rgb8i-ext, alpha8i-ext, intensity8i-ext, luminance8i-ext,
luminance-alpha8i-ext, red-integer, red-integer-ext, green-integer,
green-integer-ext, blue-integer, blue-integer-ext, alpha-integer,
alpha-integer-ext, rgb-integer, rgb-integer-ext, rgba-integer,

Chapter 3: GL 104

rgba-integer-ext, bgr-integer, bgr-integer-ext, bgra-integer,
bgra-integer-ext, luminance-integer-ext, luminance-alpha-integer-ext,
rgba-integer-mode-ext.

[Macro]arb-vertex-type-2-10-10-10-rev enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

int-2-10-10-10-rev.

[Macro]nv-parameter-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-program-parameter-buffer-bindings-nv, max-program-parameter-buffer-
size-nv, vertex-program-parameter-buffer-nv, geometry-program-parameter-
buffer-nv, fragment-program-parameter-buffer-nv.

[Macro]nv-depth-buffer-float enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-component32f-nv, depth32f-stencil8-nv, float-32-unsigned-int-24-8-
rev-nv, depth-buffer-float-mode-nv.

[Macro]arb-shading-language-include enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

shader-include-arb, named-string-length-arb, named-string-type-arb.

[Macro]arb-framebuffer-s-rgb enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

framebuffer-srgb.

[Macro]ext-framebuffer-s-rgb enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

framebuffer-srgb-ext, framebuffer-srgb-capable-ext.

[Macro]arb-texture-compression-rgtc enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-red-rgtc1, compressed-signed-red-rgtc1, compressed-rg-rgtc2,
compressed-signed-rg-rgtc2.

Chapter 3: GL 105

[Macro]ext-texture-compression-rgtc enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-red-rgtc1-ext, compressed-signed-red-rgtc1-ext,
compressed-red-green-rgtc2-ext, compressed-signed-red-green-rgtc2-ext.

[Macro]ext-gpu-shader-4 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sampler-1d-array-ext, sampler-2d-array-ext, sampler-buffer-ext,
sampler-1d-array-shadow-ext, sampler-2d-array-shadow-ext, sampler-cube-

shadow-ext, unsigned-int-vec2-ext, unsigned-int-vec3-ext, unsigned-int-

vec4-ext, int-sampler-1d-ext, int-sampler-2d-ext, int-sampler-3d-ext,
int-sampler-cube-ext, int-sampler-2d-rect-ext, int-sampler-1d-array-ext,
int-sampler-2d-array-ext, int-sampler-buffer-ext, unsigned-int-sampler-

1d-ext, unsigned-int-sampler-2d-ext, unsigned-int-sampler-3d-ext,
unsigned-int-sampler-cube-ext, unsigned-int-sampler-2d-rect-ext,
unsigned-int-sampler-1d-array-ext, unsigned-int-sampler-2d-array-ext,
unsigned-int-sampler-buffer-ext.

[Macro]nv-shadow-samplers-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sampler-2d-array-shadow-nv.

[Macro]nv-shadow-samplers-cube enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sampler-cube-shadow-nv.

[Macro]ext-bindable-uniform enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-vertex-bindable-uniforms-ext, max-fragment-bindable-uniforms-ext,
max-geometry-bindable-uniforms-ext, max-bindable-uniform-size-ext,
uniform-buffer-ext, uniform-buffer-binding-ext.

[Macro]arb-shader-subroutine enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

active-subroutines, active-subroutine-uniforms, max-subroutines,
max-subroutine-uniform-locations, active-subroutine-uniform-locations,

Chapter 3: GL 106

active-subroutine-max-length, active-subroutine-uniform-max-length,
num-compatible-subroutines, compatible-subroutines.

[Macro]oes-vertex-type-10-10-10-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unsigned-int-10-10-10-2-oes, int-10-10-10-2-oes.

[Macro]nv-conditional-render enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

query-wait-nv, query-no-wait-nv, query-by-region-wait-nv, query-by-

region-no-wait-nv.

[Macro]arb-transform-feedback-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

transform-feedback, transform-feedback-paused, transform-feedback-

buffer-paused, transform-feedback-active, transform-feedback-buffer-

active, transform-feedback-binding.

[Macro]nv-transform-feedback-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

transform-feedback-nv, transform-feedback-buffer-paused-nv,
transform-feedback-buffer-active-nv, transform-feedback-binding-

nv.

[Macro]nv-present-video enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

frame-nv, fields-nv, current-time-nv, num-fill-streams-nv, present-time-

nv, present-duration-nv.

[Macro]nv-depth-nonlinear enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-component16-nonlinear-nv.

[Macro]ext-direct-state-access enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 107

program-matrix-ext, transpose-program-matrix-ext, program-matrix-stack-

depth-ext.

[Macro]arb-texture-swizzle enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-swizzle-r, texture-swizzle-g, texture-swizzle-b, texture-swizzle-
a, texture-swizzle-rgba.

[Macro]ext-texture-swizzle enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-swizzle-r-ext, texture-swizzle-g-ext, texture-swizzle-b-ext,
texture-swizzle-a-ext, texture-swizzle-rgba-ext.

[Macro]arb-provoking-vertex enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

quads-follow-provoking-vertex-convention, first-vertex-convention,
last-vertex-convention, provoking-vertex.

[Macro]ext-provoking-vertex enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

quads-follow-provoking-vertex-convention-ext, first-vertex-convention-

ext, last-vertex-convention-ext, provoking-vertex-ext.

[Macro]arb-texture-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sample-position, sample-mask, sample-mask-value, max-sample-mask-

words, texture-2d-multisample, proxy-texture-2d-multisample,
texture-2d-multisample-array, proxy-texture-2d-multisample-array,
texture-binding-2d-multisample, texture-binding-2d-multisample-array,
texture-samples, texture-fixed-sample-locations, sampler-2d-multisample,
int-sampler-2d-multisample, unsigned-int-sampler-2d-multisample,
sampler-2d-multisample-array, int-sampler-2d-multisample-array,
unsigned-int-sampler-2d-multisample-array, max-color-texture-samples,
max-depth-texture-samples, max-integer-samples.

[Macro]nv-explicit-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 108

sample-position-nv, sample-mask-nv, sample-mask-value-nv, texture-binding-
renderbuffer-nv, texture-renderbuffer-data-store-binding-nv,
texture-renderbuffer-nv, sampler-renderbuffer-nv, int-sampler-

renderbuffer-nv, unsigned-int-sampler-renderbuffer-nv, max-sample-mask-

words-nv.

[Macro]nv-gpu-program-5 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-geometry-program-invocations-nv, min-fragment-interpolation-

offset-nv, max-fragment-interpolation-offset-nv, fragment-program-

interpolation-offset-bits-nv, min-program-texture-gather-offset-nv,
max-program-texture-gather-offset-nv, max-program-subroutine-

parameters-nv, max-program-subroutine-num-nv.

[Macro]arb-texture-gather enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

min-program-texture-gather-offset, max-program-texture-gather-offset,
max-program-texture-gather-components-arb, max-program-texture-gather-

components.

[Macro]arb-transform-feedback-3 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-transform-feedback-buffers, max-vertex-streams.

[Macro]arb-texture-compression-bptc enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-rgba-bptc-unorm-arb, compressed-srgb-alpha-bptc-unorm-arb,
compressed-rgb-bptc-signed-float-arb, compressed-rgb-bptc-unsigned-

float-arb.

[Macro]nv-coverage-sample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

coverage-component-nv, coverage-component4-nv, coverage-attachment-nv,
coverage-buffers-nv, coverage-samples-nv, coverage-all-fragments-nv,
coverage-edge-fragments-nv, coverage-automatic-nv, coverage-buffer-bit-

nv.

Chapter 3: GL 109

[Macro]nv-shader-buffer-load enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

buffer-gpu-address-nv, gpu-address-nv, max-shader-buffer-address-nv.

[Macro]nv-vertex-buffer-unified-memory enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vertex-attrib-array-unified-nv, element-array-unified-nv, vertex-attrib-
array-address-nv, vertex-array-address-nv, normal-array-address-nv,
color-array-address-nv, index-array-address-nv, texture-coord-array-

address-nv, edge-flag-array-address-nv, secondary-color-array-address-

nv, fog-coord-array-address-nv, element-array-address-nv, vertex-attrib-
array-length-nv, vertex-array-length-nv, normal-array-length-nv,
color-array-length-nv, index-array-length-nv, texture-coord-array-

length-nv, edge-flag-array-length-nv, secondary-color-array-length-nv,
fog-coord-array-length-nv, element-array-length-nv, draw-indirect-

unified-nv, draw-indirect-address-nv, draw-indirect-length-nv.

[Macro]arb-copy-buffer enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

copy-read-buffer-binding, copy-read-buffer, copy-write-buffer-binding,
copy-write-buffer.

[Macro]arb-draw-indirect enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

draw-indirect-buffer, draw-indirect-buffer-binding.

[Macro]arb-gpu-shader-fp-64 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

double-mat2, double-mat3, double-mat4, double-mat-2x-3, double-mat-2x-4,
double-mat-3x-2, double-mat-3x-4, double-mat-4x-2, double-mat-4x-3,
double-vec2, double-vec3, double-vec4.

[Macro]arm-mali-shader-binary enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

mali-shader-binary-arm.

Chapter 3: GL 110

[Macro]qcom-driver-control enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

perfmon-global-mode-qcom.

[Macro]qcom-binning-control enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

binning-control-hint-qcom, cpu-optimized-qcom, gpu-optimized-qcom,
render-direct-to-framebuffer-qcom.

[Macro]viv-shader-binary enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

shader-binary-viv.

[Macro]amd-vertex-shader-tesselator enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sampler-buffer-amd, int-sampler-buffer-amd, unsigned-int-sampler-

buffer-amd, tessellation-mode-amd, tessellation-factor-amd, discrete-amd,
continuous-amd.

[Macro]arb-texture-cube-map-array enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-cube-map-array, texture-binding-cube-map-array, proxy-texture-

cube-map-array, sampler-cube-map-array, sampler-cube-map-array-shadow,
int-sampler-cube-map-array, unsigned-int-sampler-cube-map-array.

[Macro]ext-texture-snorm enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

alpha-snorm, luminance-snorm, luminance-alpha-snorm, intensity-snorm,
alpha8-snorm, luminance8-snorm, luminance8-alpha8-snorm, intensity8-snorm,
alpha16-snorm, luminance16-snorm, luminance16-alpha16-snorm,
intensity16-snorm.

[Macro]amd-blend-minmax-factor enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

factor-min-amd, factor-max-amd.

Chapter 3: GL 111

[Macro]amd-depth-clamp-separate enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-clamp-near-amd, depth-clamp-far-amd.

[Macro]nv-video-capture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

video-buffer-nv, video-buffer-binding-nv, field-upper-nv, field-lower-nv,
num-video-capture-streams-nv, next-video-capture-buffer-status-nv,
video-capture-to-422-supported-nv, last-video-capture-status-nv,
video-buffer-pitch-nv, video-color-conversion-matrix-nv, video-color-

conversion-max-nv, video-color-conversion-min-nv, video-color-

conversion-offset-nv, video-buffer-internal-format-nv, partial-success-

nv, success-nv, failure-nv, ycbycr8-422-nv, ycbaycr8a-4224-nv,
z6y10z6cb10z6y10z6cr10-422-nv, z6y10z6cb10z6a10z6y10z6cr10z6a10-4224-

nv, z4y12z4cb12z4y12z4cr12-422-nv, z4y12z4cb12z4a12z4y12z4cr12z4a12-4224-
nv, z4y12z4cb12z4cr12-444-nv, video-capture-frame-width-nv,
video-capture-frame-height-nv, video-capture-field-upper-height-nv,
video-capture-field-lower-height-nv, video-capture-surface-origin-nv.

[Macro]nv-texture-multisample enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-coverage-samples-nv, texture-color-samples-nv.

[Macro]arb-texture-rgb-10-a-2-ui enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgb10-a2ui.

[Macro]nv-path-rendering enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

path-format-svg-nv, path-format-ps-nv, standard-font-name-nv,
system-font-name-nv, file-name-nv, path-stroke-width-nv, path-end-caps-

nv, path-initial-end-cap-nv, path-terminal-end-cap-nv, path-join-style-

nv, path-miter-limit-nv, path-dash-caps-nv, path-initial-dash-cap-nv,
path-terminal-dash-cap-nv, path-dash-offset-nv, path-client-length-

nv, path-fill-mode-nv, path-fill-mask-nv, path-fill-cover-mode-nv,
path-stroke-cover-mode-nv, path-stroke-mask-nv, count-up-nv, count-down-
nv, path-object-bounding-box-nv, convex-hull-nv, bounding-box-nv,

Chapter 3: GL 112

translate-x-nv, translate-y-nv, translate-2d-nv, translate-3d-nv,
affine-2d-nv, affine-3d-nv, transpose-affine-2d-nv, transpose-affine-3d-
nv, utf8-nv, utf16-nv, bounding-box-of-bounding-boxes-nv, path-command-

count-nv, path-coord-count-nv, path-dash-array-count-nv, path-computed-

length-nv, path-fill-bounding-box-nv, path-stroke-bounding-box-nv,
square-nv, round-nv, triangular-nv, bevel-nv, miter-revert-nv,
miter-truncate-nv, skip-missing-glyph-nv, use-missing-glyph-nv,
path-error-position-nv, path-fog-gen-mode-nv, accum-adjacent-

pairs-nv, adjacent-pairs-nv, first-to-rest-nv, path-gen-mode-nv,
path-gen-coeff-nv, path-gen-color-format-nv, path-gen-components-nv,
path-dash-offset-reset-nv, move-to-resets-nv, move-to-continues-nv,
path-stencil-func-nv, path-stencil-ref-nv, path-stencil-value-

mask-nv, close-path-nv, move-to-nv, relative-move-to-nv, line-to-nv,
relative-line-to-nv, horizontal-line-to-nv, relative-horizontal-

line-to-nv, vertical-line-to-nv, relative-vertical-line-to-nv,
quadratic-curve-to-nv, relative-quadratic-curve-to-nv, cubic-curve-

to-nv, relative-cubic-curve-to-nv, smooth-quadratic-curve-to-nv,
relative-smooth-quadratic-curve-to-nv, smooth-cubic-curve-to-nv,
relative-smooth-cubic-curve-to-nv, small-ccw-arc-to-nv, relative-small-

ccw-arc-to-nv, small-cw-arc-to-nv, relative-small-cw-arc-to-nv,
large-ccw-arc-to-nv, relative-large-ccw-arc-to-nv, large-cw-arc-to-nv,
relative-large-cw-arc-to-nv, restart-path-nv, dup-first-cubic-curve-

to-nv, dup-last-cubic-curve-to-nv, rect-nv, circular-ccw-arc-to-nv,
circular-cw-arc-to-nv, circular-tangent-arc-to-nv, arc-to-nv,
relative-arc-to-nv, bold-bit-nv, italic-bit-nv, glyph-width-

bit-nv, glyph-height-bit-nv, glyph-horizontal-bearing-x-bit-nv,
glyph-horizontal-bearing-y-bit-nv, glyph-horizontal-bearing-advance-

bit-nv, glyph-vertical-bearing-x-bit-nv, glyph-vertical-bearing-y-bit-

nv, glyph-vertical-bearing-advance-bit-nv, glyph-has-kerning-bit-nv,
font-x-min-bounds-bit-nv, font-y-min-bounds-bit-nv, font-x-max-

bounds-bit-nv, font-y-max-bounds-bit-nv, font-units-per-em-bit-nv,
font-ascender-bit-nv, font-descender-bit-nv, font-height-bit-nv,
font-max-advance-width-bit-nv, font-max-advance-height-bit-nv,
font-underline-position-bit-nv, font-underline-thickness-bit-nv,
font-has-kerning-bit-nv, path-stencil-depth-offset-factor-nv,
path-stencil-depth-offset-units-nv, path-cover-depth-func-nv.

[Macro]ext-framebuffer-multisample-blit-scaled enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

scaled-resolve-fastest-ext, scaled-resolve-nicest-ext.

[Macro]arb-map-buffer-alignment enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 113

min-map-buffer-alignment.

[Macro]nv-deep-texture-3d enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-deep-3d-texture-width-height-nv, max-deep-3d-texture-depth-nv.

[Macro]ext-x-11-sync-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sync-x11-fence-ext.

[Macro]arb-stencil-texturing enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

depth-stencil-texture-mode.

[Macro]nv-compute-program-5 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compute-program-nv, compute-program-parameter-buffer-nv.

[Macro]arb-sync enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-server-wait-timeout, object-type, sync-condition, sync-status,
sync-flags, sync-fence, sync-gpu-commands-complete, unsignaled, signaled,
already-signaled, timeout-expired, condition-satisfied, wait-failed,
sync-flush-commands-bit, timeout-ignored.

[Macro]arb-compressed-texture-pixel-storage enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

unpack-compressed-block-width, unpack-compressed-block-height,
unpack-compressed-block-depth, unpack-compressed-block-size,
pack-compressed-block-width, pack-compressed-block-height,
pack-compressed-block-depth, pack-compressed-block-size.

[Macro]arb-texture-storage enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-immutable-format.

Chapter 3: GL 114

[Macro]img-program-binary enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sgx-program-binary-img.

[Macro]img-multisampled-render-to-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

renderbuffer-samples-img, framebuffer-incomplete-multisample-img,
max-samples-img, texture-samples-img.

[Macro]img-texture-compression-pvrtc-2 enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-rgba-pvrtc-2bppv2-img, compressed-rgba-pvrtc-4bppv2-img.

[Macro]amd-debug-output enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

max-debug-message-length-amd, max-debug-logged-messages-amd,
debug-logged-messages-amd, debug-severity-high-amd, debug-severity-

medium-amd, debug-severity-low-amd, debug-category-api-error-amd,
debug-category-window-system-amd, debug-category-deprecation-amd,
debug-category-undefined-behavior-amd, debug-category-performance-amd,
debug-category-shader-compiler-amd, debug-category-application-amd,
debug-category-other-amd.

[Macro]amd-name-gen-delete enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

data-buffer-amd, performance-monitor-amd, query-object-amd, vertex-array-
object-amd, sampler-object-amd.

[Macro]amd-pinned-memory enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

external-virtual-memory-buffer-amd.

[Macro]amd-query-buffer-object enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

query-buffer-amd, query-buffer-binding-amd, query-result-no-wait-amd.

Chapter 3: GL 115

[Macro]amd-sparse-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

virtual-page-size-x-amd, virtual-page-size-y-amd, virtual-page-size-

z-amd, max-sparse-texture-size-amd, max-sparse-3d-texture-size-amd,
max-sparse-array-texture-layers, min-sparse-level-amd, min-lod-warning-

amd, texture-storage-sparse-bit-amd.

[Macro]arb-texture-buffer-range enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-buffer-offset, texture-buffer-size, texture-buffer-offset-

alignment.

[Macro]dmp-shader-binary enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

shader-binary-dmp.

[Macro]fj-shader-binary-gccso enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

gccso-shader-binary-fj.

[Macro]arb-shader-atomic-counters enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

atomic-counter-buffer, atomic-counter-buffer-binding, atomic-counter-

buffer-start, atomic-counter-buffer-size, atomic-counter-buffer-data-

size, atomic-counter-buffer-active-atomic-counters, atomic-counter-

buffer-active-atomic-counter-indices, atomic-counter-buffer-referenced-
by-vertex-shader, atomic-counter-buffer-referenced-by-tess-control-

shader, atomic-counter-buffer-referenced-by-tess-evaluation-shader,
atomic-counter-buffer-referenced-by-geometry-shader, atomic-counter-

buffer-referenced-by-fragment-shader, max-vertex-atomic-counter-

buffers, max-tess-control-atomic-counter-buffers, max-tess-evaluation-

atomic-counter-buffers, max-geometry-atomic-counter-buffers,
max-fragment-atomic-counter-buffers, max-combined-atomic-counter-

buffers, max-vertex-atomic-counters, max-tess-control-atomic-

counters, max-tess-evaluation-atomic-counters, max-geometry-atomic-

counters, max-fragment-atomic-counters, max-combined-atomic-counters,
max-atomic-counter-buffer-size, max-atomic-counter-buffer-bindings,

Chapter 3: GL 116

active-atomic-counter-buffers, uniform-atomic-counter-buffer-index,
unsigned-int-atomic-counter.

[Macro]arb-program-interface-query enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

uniform, uniform-block, program-input, program-output, buffer-variable,
shader-storage-block, is-per-patch, vertex-subroutine, tess-control-

subroutine, tess-evaluation-subroutine, geometry-subroutine,
fragment-subroutine, compute-subroutine, vertex-subroutine-uniform,
tess-control-subroutine-uniform, tess-evaluation-subroutine-

uniform, geometry-subroutine-uniform, fragment-subroutine-

uniform, compute-subroutine-uniform, transform-feedback-varying,
active-resources, max-name-length, max-num-active-variables, max-num-

compatible-subroutines, name-length, type, array-size, offset, block-index,
array-stride, matrix-stride, is-row-major, atomic-counter-buffer-index,
buffer-binding, buffer-data-size, num-active-variables, active-variables,
referenced-by-vertex-shader, referenced-by-tess-control-shader,
referenced-by-tess-evaluation-shader, referenced-by-geometry-shader,
referenced-by-fragment-shader, referenced-by-compute-shader, top-level-

array-size, top-level-array-stride, location, location-index.

[Macro]arb-framebuffer-no-attachments enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

framebuffer-default-width, framebuffer-default-height, framebuffer-default-
layers, framebuffer-default-samples, framebuffer-default-fixed-

sample-locations, max-framebuffer-width, max-framebuffer-height,
max-framebuffer-layers, max-framebuffer-samples.

[Macro]arb-internalformat-query enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

num-sample-counts.

[Macro]angle-translated-shader-source enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

translated-shader-source-length-angle.

[Macro]angle-texture-usage enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

Chapter 3: GL 117

texture-usage-angle, framebuffer-attachment-angle, none.

[Macro]angle-pack-reverse-row-order enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pack-reverse-row-order-angle.

[Macro]angle-depth-texture enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

program-binary-angle.

[Macro]gl-khr-texture-compression-astc-ldr enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

compressed-rgba-astc-4x4-khr, compressed-rgba-astc-5x4-khr,
compressed-rgba-astc-5x5-khr, compressed-rgba-astc-6x5-khr,
compressed-rgba-astc-6x6-khr, compressed-rgba-astc-8x5-khr,
compressed-rgba-astc-8x6-khr, compressed-rgba-astc-8x8-khr,
compressed-rgba-astc-10x5-khr, compressed-rgba-astc-10x6-khr,
compressed-rgba-astc-10x8-khr, compressed-rgba-astc-10x10-khr,
compressed-rgba-astc-12x10-khr, compressed-rgba-astc-12x12-khr,
compressed-srgb8-alpha8-astc-4x4-khr, compressed-srgb8-alpha8-astc-5x4-
khr, compressed-srgb8-alpha8-astc-5x5-khr, compressed-srgb8-alpha8-astc-
6x5-khr, compressed-srgb8-alpha8-astc-6x6-khr, compressed-srgb8-alpha8-

astc-8x5-khr, compressed-srgb8-alpha8-astc-8x6-khr, compressed-srgb8-

alpha8-astc-8x8-khr, compressed-srgb8-alpha8-astc-10x5-khr,
compressed-srgb8-alpha8-astc-10x6-khr, compressed-srgb8-alpha8-

astc-10x8-khr, compressed-srgb8-alpha8-astc-10x10-khr, compressed-srgb8-
alpha8-astc-12x10-khr, compressed-srgb8-alpha8-astc-12x12-khr.

3.6 Low-Level GL

The functions from this section may be had by loading the module:

(use-modules (gl low-level)

This section of the manual was derived from the upstream OpenGL documentation.
Each function’s documentation has its own copyright statement; for full details, see the
upstream documentation. The copyright notices and licenses present in this section are as
follows.

Copyright c© 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI
Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

Copyright c© 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to
the terms and conditions set forth in the Open Publication License, v 1.0, 8 June 1999.
http://opencontent.org/openpub/.

http://oss.sgi.com/projects/FreeB/
http://opencontent.org/openpub/

Chapter 3: GL 118

Copyright c© 2005 Addison-Wesley. This material may be distributed subject to the
terms and conditions set forth in the Open Publication License, v 1.0, 8 June 1999.
http://opencontent.org/openpub/.

Copyright c© 2006 Khronos Group. This material may be distributed subject to the
terms and conditions set forth in the Open Publication License, v 1.0, 8 June 1999.
http://opencontent.org/openpub/.

[Function]void glAccum op value
Operate on the accumulation buffer.

op Specifies the accumulation buffer operation. Symbolic constants GL_

ACCUM, GL_LOAD, GL_ADD, GL_MULT, and GL_RETURN are accepted.

value Specifies a floating-point value used in the accumulation buffer operation.
op determines how value is used.

The accumulation buffer is an extended-range color buffer. Images are not rendered
into it. Rather, images rendered into one of the color buffers are added to the contents
of the accumulation buffer after rendering. Effects such as antialiasing (of points,
lines, and polygons), motion blur, and depth of field can be created by accumulating
images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values.
The number of bits per component in the accumulation buffer depends on the im-
plementation. You can examine this number by calling glGetIntegerv four times,
with arguments GL_ACCUM_RED_BITS, GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS,
and GL_ACCUM_ALPHA_BITS. Regardless of the number of bits per component, the
range of values stored by each component is [-1,1]. The accumulation buffer pixels
are mapped one-to-one with frame buffer pixels.

glAccum operates on the accumulation buffer. The first argument, op, is a symbolic
constant that selects an accumulation buffer operation. The second argument, value,
is a floating-point value to be used in that operation. Five operations are specified:
GL_ACCUM, GL_LOAD, GL_ADD, GL_MULT, and GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box
and applied identically to the red, green, blue, and alpha components of each pixel.
If a glAccum operation results in a value outside the range [-1,1], the contents of an
accumulation buffer pixel component are undefined.

The operations are as follows:

GL_ACCUM Obtains R, G, B, and A values from the buffer currently selected for
reading (see glReadBuffer). Each component value is divided by 2^n-1,
where n is the number of bits allocated to each color component in the
currently selected buffer. The result is a floating-point value in the range
[0,1], which is multiplied by value and added to the corresponding pixel
component in the accumulation buffer, thereby updating the accumula-
tion buffer.

GL_LOAD Similar to GL_ACCUM, except that the current value in the accumulation
buffer is not used in the calculation of the new value. That is, the R, G,
B, and A values from the currently selected buffer are divided by 2^n-1,

http://opencontent.org/openpub/
http://opencontent.org/openpub/

Chapter 3: GL 119

multiplied by value, and then stored in the corresponding accumulation
buffer cell, overwriting the current value.

GL_ADD Adds value to each R, G, B, and A in the accumulation buffer.

GL_MULT Multiplies each R, G, B, and A in the accumulation buffer by value and
returns the scaled component to its corresponding accumulation buffer
location.

GL_RETURN

Transfers accumulation buffer values to the color buffer or buffers cur-
rently selected for writing. Each R, G, B, and A component is multiplied
by value, then multiplied by 2^n-1, clamped to the range [0,2^n-1], and
stored in the corresponding display buffer cell. The only fragment op-
erations that are applied to this transfer are pixel ownership, scissor,
dithering, and color writemasks.

To clear the accumulation buffer, call glClearAccum with R, G, B, and A values to
set it to, then call glClear with the accumulation buffer enabled.

GL_INVALID_ENUM is generated if op is not an accepted value.

GL_INVALID_OPERATION is generated if there is no accumulation buffer.

GL_INVALID_OPERATION is generated if glAccum is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glActiveTexture texture
Select active texture unit.

texture Specifies which texture unit to make active. The number of texture units
is implementation dependent, but must be at least two. texture must
be one of GL_TEXTUREi, where i ranges from 0 to the larger of (GL_MAX_
TEXTURE_COORDS - 1) and (GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS -
1). The initial value is GL_TEXTURE0.

glActiveTexture selects which texture unit subsequent texture state calls will af-
fect. The number of texture units an implementation supports is implementation
dependent, but must be at least 2.

Vertex arrays are client-side GL resources, which are selected by the
glClientActiveTexture routine.

GL_INVALID_ENUM is generated if texture is not one of GL_TEXTUREi, where i ranges
from 0 to the larger of (GL_MAX_TEXTURE_COORDS - 1) and (GL_MAX_COMBINED_
TEXTURE_IMAGE_UNITS - 1).

[Function]void glAlphaFunc func ref
Specify the alpha test function.

func Specifies the alpha comparison function. Symbolic constants GL_NEVER,
GL_LESS, GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL,
and GL_ALWAYS are accepted. The initial value is GL_ALWAYS.

ref Specifies the reference value that incoming alpha values are compared to.
This value is clamped to the range [0,1], where 0 represents the lowest

Chapter 3: GL 120

possible alpha value and 1 the highest possible value. The initial reference
value is 0.

The alpha test discards fragments depending on the outcome of a comparison between
an incoming fragment’s alpha value and a constant reference value. glAlphaFunc

specifies the reference value and the comparison function. The comparison is per-
formed only if alpha testing is enabled. By default, it is not enabled. (See glEnable
and glDisable of GL_ALPHA_TEST.)

func and ref specify the conditions under which the pixel is drawn. The incoming
alpha value is compared to ref using the function specified by func. If the value passes
the comparison, the incoming fragment is drawn if it also passes subsequent stencil
and depth buffer tests. If the value fails the comparison, no change is made to the
frame buffer at that pixel location. The comparison functions are as follows:

GL_NEVER Never passes.

GL_LESS Passes if the incoming alpha value is less than the reference value.

GL_EQUAL Passes if the incoming alpha value is equal to the reference value.

GL_LEQUAL

Passes if the incoming alpha value is less than or equal to the reference
value.

GL_GREATER

Passes if the incoming alpha value is greater than the reference value.

GL_NOTEQUAL

Passes if the incoming alpha value is not equal to the reference value.

GL_GEQUAL

Passes if the incoming alpha value is greater than or equal to the reference
value.

GL_ALWAYS

Always passes (initial value).

glAlphaFunc operates on all pixel write operations, including those resulting from
the scan conversion of points, lines, polygons, and bitmaps, and from pixel draw and
copy operations. glAlphaFunc does not affect screen clear operations.

GL_INVALID_ENUM is generated if func is not an accepted value.

GL_INVALID_OPERATION is generated if glAlphaFunc is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]GLboolean glAreTexturesResident n textures residences
Determine if textures are loaded in texture memory.

n Specifies the number of textures to be queried.

textures Specifies an array containing the names of the textures to be queried.

residences Specifies an array in which the texture residence status is returned. The
residence status of a texture named by an element of textures is returned
in the corresponding element of residences.

Chapter 3: GL 121

GL establishes a “working set” of textures that are resident in texture memory. These
textures can be bound to a texture target much more efficiently than textures that
are not resident.

glAreTexturesResident queries the texture residence status of the n textures
named by the elements of textures. If all the named textures are resident,
glAreTexturesResident returns GL_TRUE, and the contents of residences are
undisturbed. If not all the named textures are resident, glAreTexturesResident
returns GL_FALSE, and detailed status is returned in the n elements of residences. If
an element of residences is GL_TRUE, then the texture named by the corresponding
element of textures is resident.

The residence status of a single bound texture may also be queried by calling
glGetTexParameter with the target argument set to the target to which the texture
is bound, and the pname argument set to GL_TEXTURE_RESIDENT. This is the only
way that the residence status of a default texture can be queried.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_VALUE is generated if any element in textures is 0 or does not name a
texture. In that case, the function returns GL_FALSE and the contents of residences
is indeterminate.

GL_INVALID_OPERATION is generated if glAreTexturesResident is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glArrayElement i
Render a vertex using the specified vertex array element.

i Specifies an index into the enabled vertex data arrays.

glArrayElement commands are used within glBegin/glEnd pairs to specify vertex
and attribute data for point, line, and polygon primitives. If GL_VERTEX_ARRAY is
enabled when glArrayElement is called, a single vertex is drawn, using vertex and
attribute data taken from location i of the enabled arrays. If GL_VERTEX_ARRAY is not
enabled, no drawing occurs but the attributes corresponding to the enabled arrays
are modified.

Use glArrayElement to construct primitives by indexing vertex data, rather than
by streaming through arrays of data in first-to-last order. Because each call specifies
only a single vertex, it is possible to explicitly specify per-primitive attributes such
as a single normal for each triangle.

Changes made to array data between the execution of glBegin and the corresponding
execution of glEndmay affect calls to glArrayElement that are made within the same
glBegin/glEnd period in nonsequential ways. That is, a call to glArrayElement that
precedes a change to array data may access the changed data, and a call that follows
a change to array data may access original data.

GL_INVALID_VALUE may be generated if i is negative.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an
enabled array and the buffer object’s data store is currently mapped.

[Function]void glAttachShader program shader
Attaches a shader object to a program object.

Chapter 3: GL 122

program Specifies the program object to which a shader object will be attached.

shader Specifies the shader object that is to be attached.

In order to create an executable, there must be a way to specify the list of things that
will be linked together. Program objects provide this mechanism. Shaders that are to
be linked together in a program object must first be attached to that program object.
glAttachShader attaches the shader object specified by shader to the program object
specified by program. This indicates that shader will be included in link operations
that will be performed on program.

All operations that can be performed on a shader object are valid whether or not the
shader object is attached to a program object. It is permissible to attach a shader
object to a program object before source code has been loaded into the shader object
or before the shader object has been compiled. It is permissible to attach multiple
shader objects of the same type because each may contain a portion of the complete
shader. It is also permissible to attach a shader object to more than one program
object. If a shader object is deleted while it is attached to a program object, it will
be flagged for deletion, and deletion will not occur until glDetachShader is called to
detach it from all program objects to which it is attached.

GL_INVALID_VALUE is generated if either program or shader is not a value generated
by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_OPERATION is generated if shader is not a shader object.

GL_INVALID_OPERATION is generated if shader is already attached to program.

GL_INVALID_OPERATION is generated if glAttachShader is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glBeginQuery target id
[Function]void glEndQuery target

Delimit the boundaries of a query object.

target Specifies the target type of query object established between
glBeginQuery and the subsequent glEndQuery. The symbolic constant
must be GL_SAMPLES_PASSED.

id Specifies the name of a query object.

glBeginQuery and glEndQuery delimit the boundaries of a query object. If a query
object with name id does not yet exist it is created.

When glBeginQuery is executed, the query object’s samples-passed counter is reset
to 0. Subsequent rendering will increment the counter once for every sample that
passes the depth test. When glEndQuery is executed, the samples-passed counter
is assigned to the query object’s result value. This value can be queried by calling
glGetQueryObject with pnameGL_QUERY_RESULT.

Querying the GL_QUERY_RESULT implicitly flushes the GL pipeline until the rendering
delimited by the query object has completed and the result is available. GL_QUERY_

RESULT_AVAILABLE can be queried to determine if the result is immediately available
or if the rendering is not yet complete.

Chapter 3: GL 123

GL_INVALID_ENUM is generated if target is not GL_SAMPLES_PASSED.

GL_INVALID_OPERATION is generated if glBeginQuery is executed while a query object
of the same target is already active.

GL_INVALID_OPERATION is generated if glEndQuery is executed when a query object
of the same target is not active.

GL_INVALID_OPERATION is generated if id is 0.

GL_INVALID_OPERATION is generated if id is the name of an already active query
object.

GL_INVALID_OPERATION is generated if glBeginQuery or glEndQuery is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glBegin mode
[Function]void glEnd

Delimit the vertices of a primitive or a group of like primitives.

mode Specifies the primitive or primitives that will be created from vertices
presented between glBegin and the subsequent glEnd. Ten symbolic
constants are accepted: GL_POINTS, GL_LINES, GL_LINE_STRIP,
GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

glBegin and glEnd delimit the vertices that define a primitive or a group of like
primitives. glBegin accepts a single argument that specifies in which of ten ways the
vertices are interpreted. Taking n as an integer count starting at one, and N as the
total number of vertices specified, the interpretations are as follows:

GL_POINTS

Treats each vertex as a single point. Vertex n defines point n. N points
are drawn.

GL_LINES Treats each pair of vertices as an independent line segment. Vertices 2n-1
and 2n define line n. N/2 lines are drawn.

GL_LINE_STRIP

Draws a connected group of line segments from the first vertex to the
last. Vertices n and n+1 define line n. N-1 lines are drawn.

GL_LINE_LOOP

Draws a connected group of line segments from the first vertex to the
last, then back to the first. Vertices n and n+1 define line n. The last
line, however, is defined by vertices N and 1. N lines are drawn.

GL_TRIANGLES

Treats each triplet of vertices as an independent triangle. Vertices 3n-2,
3n-1, and 3n define triangle n. N/3 triangles are drawn.

GL_TRIANGLE_STRIP

Draws a connected group of triangles. One triangle is defined for each
vertex presented after the first two vertices. For odd n, vertices n, n+1,
and n+2 define triangle n. For even n, vertices n+1, n, and n+2 define
triangle n. N-2 triangles are drawn.

Chapter 3: GL 124

GL_TRIANGLE_FAN

Draws a connected group of triangles. One triangle is defined for each
vertex presented after the first two vertices. Vertices 1, n+1, and n+2
define triangle n. N-2 triangles are drawn.

GL_QUADS Treats each group of four vertices as an independent quadrilateral. Ver-
tices 4n-3, 4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals
are drawn.

GL_QUAD_STRIP

Draws a connected group of quadrilaterals. One quadrilateral is defined
for each pair of vertices presented after the first pair. Vertices 2n-1, 2n,
2n+2, and 2n+1 define quadrilateral n. N/2-1 quadrilaterals are drawn.
Note that the order in which vertices are used to construct a quadrilateral
from strip data is different from that used with independent data.

GL_POLYGON

Draws a single, convex polygon. Vertices 1 through N define this polygon.

Only a subset of GL commands can be used between glBegin and glEnd. The
commands are glVertex, glColor, glSecondaryColor, glIndex, glNormal,
glFogCoord, glTexCoord, glMultiTexCoord, glVertexAttrib, glEvalCoord,
glEvalPoint, glArrayElement, glMaterial, and glEdgeFlag. Also, it is acceptable
to use glCallList or glCallLists to execute display lists that include only the
preceding commands. If any other GL command is executed between glBegin and
glEnd, the error flag is set and the command is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices
that can be defined between glBegin and glEnd. Lines, triangles, quadrilaterals,
and polygons that are incompletely specified are not drawn. Incomplete specification
results when either too few vertices are provided to specify even a single primitive
or when an incorrect multiple of vertices is specified. The incomplete primitive is
ignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point,
2 for a line, 3 for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that
require a certain multiple of vertices are GL_LINES (2), GL_TRIANGLES (3), GL_QUADS
(4), and GL_QUAD_STRIP (2).

GL_INVALID_ENUM is generated if mode is set to an unaccepted value.

GL_INVALID_OPERATION is generated if glBegin is executed between a glBegin and
the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if glEnd is executed without being preceded by
a glBegin.

GL_INVALID_OPERATION is generated if a command other than glVertex,
glColor, glSecondaryColor, glIndex, glNormal, glFogCoord, glTexCoord,
glMultiTexCoord, glVertexAttrib, glEvalCoord, glEvalPoint, glArrayElement,
glMaterial, glEdgeFlag, glCallList, or glCallLists is executed between the
execution of glBegin and the corresponding execution glEnd.

Execution of glEnableClientState, glDisableClientState, glEdgeFlagPointer,
glFogCoordPointer, glTexCoordPointer, glColorPointer, glSecondaryColorPointer,

Chapter 3: GL 125

glIndexPointer, glNormalPointer, glVertexPointer, glVertexAttribPointer,
glInterleavedArrays, or glPixelStore is not allowed after a call to glBegin and
before the corresponding call to glEnd, but an error may or may not be generated.

[Function]void glBindAttribLocation program index name
Associates a generic vertex attribute index with a named attribute variable.

program Specifies the handle of the program object in which the association is to
be made.

index Specifies the index of the generic vertex attribute to be bound.

name Specifies a null terminated string containing the name of the vertex shader
attribute variable to which index is to be bound.

glBindAttribLocation is used to associate a user-defined attribute variable in the
program object specified by program with a generic vertex attribute index. The name
of the user-defined attribute variable is passed as a null terminated string in name.
The generic vertex attribute index to be bound to this variable is specified by index.
When program is made part of current state, values provided via the generic vertex
attribute index will modify the value of the user-defined attribute variable specified
by name.

If name refers to a matrix attribute variable, index refers to the first column of the
matrix. Other matrix columns are then automatically bound to locations index+1 for
a matrix of type mat2; index+1 and index+2 for a matrix of type mat3; and index+1,
index+2, and index+3 for a matrix of type mat4.

This command makes it possible for vertex shaders to use descriptive names for at-
tribute variables rather than generic variables that are numbered from 0 to GL_MAX_

VERTEX_ATTRIBS -1. The values sent to each generic attribute index are part of current
state, just like standard vertex attributes such as color, normal, and vertex position.
If a different program object is made current by calling glUseProgram, the generic
vertex attributes are tracked in such a way that the same values will be observed by
attributes in the new program object that are also bound to index.

Attribute variable name-to-generic attribute index bindings for a program object
can be explicitly assigned at any time by calling glBindAttribLocation. Attribute
bindings do not go into effect until glLinkProgram is called. After a program object
has been linked successfully, the index values for generic attributes remain fixed (and
their values can be queried) until the next link command occurs.

Applications are not allowed to bind any of the standard OpenGL vertex attributes
using this command, as they are bound automatically when needed. Any attribute
binding that occurs after the program object has been linked will not take effect until
the next time the program object is linked.

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_

ATTRIBS.

GL_INVALID_OPERATION is generated if name starts with the reserved prefix "gl ".

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

Chapter 3: GL 126

GL_INVALID_OPERATION is generated if glBindAttribLocation is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glBindBuffer target buffer
Bind a named buffer object.

target Specifies the target to which the buffer object is bound. The sym-
bolic constant must be GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

buffer Specifies the name of a buffer object.

glBindBuffer lets you create or use a named buffer object. Calling glBindBuffer

with target set to GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_
BUFFER or GL_PIXEL_UNPACK_BUFFER and buffer set to the name of the new buffer
object binds the buffer object name to the target. When a buffer object is bound to
a target, the previous binding for that target is automatically broken.

Buffer object names are unsigned integers. The value zero is reserved, but there is
no default buffer object for each buffer object target. Instead, buffer set to zero
effectively unbinds any buffer object previously bound, and restores client memory
usage for that buffer object target. Buffer object names and the corresponding buffer
object contents are local to the shared display-list space (see glXCreateContext) of
the current GL rendering context; two rendering contexts share buffer object names
only if they also share display lists.

You may use glGenBuffers to generate a set of new buffer object names.

The state of a buffer object immediately after it is first bound is an unmapped zero-
sized memory buffer with GL_READ_WRITE access and GL_STATIC_DRAW usage.

While a non-zero buffer object name is bound, GL operations on the target to which
it is bound affect the bound buffer object, and queries of the target to which it is
bound return state from the bound buffer object. While buffer object name zero is
bound, as in the initial state, attempts to modify or query state on the target to
which it is bound generates an GL_INVALID_OPERATION error.

When vertex array pointer state is changed, for example by a call to
glNormalPointer, the current buffer object binding (GL_ARRAY_BUFFER_BINDING) is
copied into the corresponding client state for the vertex array type being changed,
for example GL_NORMAL_ARRAY_BUFFER_BINDING. While a non-zero buffer object is
bound to the GL_ARRAY_BUFFER target, the vertex array pointer parameter that is
traditionally interpreted as a pointer to client-side memory is instead interpreted as
an offset within the buffer object measured in basic machine units.

While a non-zero buffer object is bound to the GL_ELEMENT_ARRAY_BUFFER

target, the indices parameter of glDrawElements, glDrawRangeElements, or
glMultiDrawElements that is traditionally interpreted as a pointer to client-side
memory is instead interpreted as an offset within the buffer object measured in basic
machine units.

While a non-zero buffer object is bound to the GL_PIXEL_PACK_BUFFER

target, the following commands are affected: glGetCompressedTexImage,
glGetConvolutionFilter, glGetHistogram, glGetMinmax, glGetPixelMap,

Chapter 3: GL 127

glGetPolygonStipple, glGetSeparableFilter, glGetTexImage, and
glReadPixels. The pointer parameter that is traditionally interpreted as a pointer
to client-side memory where the pixels are to be packed is instead interpreted as an
offset within the buffer object measured in basic machine units.

While a non-zero buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target,
the following commands are affected: glBitmap, glColorSubTable, glColorTable,
glCompressedTexImage1D, glCompressedTexImage2D, glCompressedTexImage3D,
glCompressedTexSubImage1D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glConvolutionFilter1D, glConvolutionFilter2D, glDrawPixels, glPixelMap,
glPolygonStipple, glSeparableFilter2D, glTexImage1D, glTexImage2D,
glTexImage3D, glTexSubImage1D, glTexSubImage2D, and glTexSubImage3D. The
pointer parameter that is traditionally interpreted as a pointer to client-side memory
from which the pixels are to be unpacked is instead interpreted as an offset within
the buffer object measured in basic machine units.

A buffer object binding created with glBindBuffer remains active until a different
buffer object name is bound to the same target, or until the bound buffer object is
deleted with glDeleteBuffers.

Once created, a named buffer object may be re-bound to any target as often as
needed. However, the GL implementation may make choices about how to optimize
the storage of a buffer object based on its initial binding target.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_OPERATION is generated if glBindBuffer is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glBindTexture target texture
Bind a named texture to a texturing target.

target Specifies the target to which the texture is bound. Must be
either GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or
GL_TEXTURE_CUBE_MAP.

texture Specifies the name of a texture.

glBindTexture lets you create or use a named texture. Calling glBindTexture with
target set to GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D or GL_TEXTURE_CUBE_
MAP and texture set to the name of the new texture binds the texture name to the
target. When a texture is bound to a target, the previous binding for that target is
automatically broken.

Texture names are unsigned integers. The value zero is reserved to represent the
default texture for each texture target. Texture names and the corresponding texture
contents are local to the shared display-list space (see glXCreateContext) of the
current GL rendering context; two rendering contexts share texture names only if
they also share display lists.

You may use glGenTextures to generate a set of new texture names.

When a texture is first bound, it assumes the specified target: A texture first bound
to GL_TEXTURE_1D becomes one-dimensional texture, a texture first bound to GL_

TEXTURE_2D becomes two-dimensional texture, a texture first bound to GL_TEXTURE_

Chapter 3: GL 128

3D becomes three-dimensional texture, and a texture first bound to GL_TEXTURE_

CUBE_MAP becomes a cube-mapped texture. The state of a one-dimensional texture
immediately after it is first bound is equivalent to the state of the default GL_TEXTURE_
1D at GL initialization, and similarly for two- and three-dimensional textures and
cube-mapped textures.

While a texture is bound, GL operations on the target to which it is bound affect
the bound texture, and queries of the target to which it is bound return state from
the bound texture. If texture mapping is active on the target to which a texture is
bound, the bound texture is used. In effect, the texture targets become aliases for
the textures currently bound to them, and the texture name zero refers to the default
textures that were bound to them at initialization.

A texture binding created with glBindTexture remains active until a different
texture is bound to the same target, or until the bound texture is deleted with
glDeleteTextures.

Once created, a named texture may be re-bound to its same original target as of-
ten as needed. It is usually much faster to use glBindTexture to bind an existing
named texture to one of the texture targets than it is to reload the texture image
using glTexImage1D, glTexImage2D, or glTexImage3D. For additional control over
performance, use glPrioritizeTextures.

glBindTexture is included in display lists.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_OPERATION is generated if texture was previously created with a target
that doesn’t match that of target.

GL_INVALID_OPERATION is generated if glBindTexture is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glBitmap width height xorig yorig xmove ymove bitmap
Draw a bitmap.

width
height Specify the pixel width and height of the bitmap image.

xorig
yorig Specify the location of the origin in the bitmap image. The origin is

measured from the lower left corner of the bitmap, with right and up
being the positive axes.

xmove
ymove Specify the x and y offsets to be added to the current raster position

after the bitmap is drawn.

bitmap Specifies the address of the bitmap image.

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the
current raster position, and frame buffer pixels corresponding to 1’s in the bitmap are
written using the current raster color or index. Frame buffer pixels corresponding to
0’s in the bitmap are not modified.

glBitmap takes seven arguments. The first pair specifies the width and height of the
bitmap image. The second pair specifies the location of the bitmap origin relative

Chapter 3: GL 129

to the lower left corner of the bitmap image. The third pair of arguments specifies
x and y offsets to be added to the current raster position after the bitmap has been
drawn. The final argument is a pointer to the bitmap image itself.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a bitmap image is specified, bitmap is treated as a byte
offset into the buffer object’s data store.

The bitmap image is interpreted like image data for the glDrawPixels command, with
width and height corresponding to the width and height arguments of that command,
and with type set to GL_BITMAP and format set to GL_COLOR_INDEX. Modes specified
using glPixelStore affect the interpretation of bitmap image data; modes specified
using glPixelTransfer do not.

If the current raster position is invalid, glBitmap is ignored. Otherwise, the lower
left corner of the bitmap image is positioned at the window coordinates

x w=x r-x o,

y w=y r-y o,

where (x r,y r) is the raster position and (x o,y o) is the bitmap origin. Fragments
are then generated for each pixel corresponding to a 1 (one) in the bitmap image.
These fragments are generated using the current raster z coordinate, color or color
index, and current raster texture coordinates. They are then treated just as if they
had been generated by a point, line, or polygon, including texture mapping, fogging,
and all per-fragment operations such as alpha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster
position are offset by xmove and ymove. No change is made to the z coordinate
of the current raster position, or to the current raster color, texture coordinates, or
index.

GL_INVALID_VALUE is generated if width or height is negative.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glBitmap is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glBlendColor red green blue alpha
Set the blend color.

red
green
blue
alpha specify the components of GL_BLEND_COLOR

The GL_BLEND_COLOR may be used to calculate the source and destination blending
factors. The color components are clamped to the range [0,1] before being stored.

Chapter 3: GL 130

See glBlendFunc for a complete description of the blending operations. Initially the
GL_BLEND_COLOR is set to (0, 0, 0, 0).

GL_INVALID_OPERATION is generated if glBlendColor is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glBlendEquationSeparate modeRGB modeAlpha
Set the RGB blend equation and the alpha blend equation separately.

modeRGB
specifies the RGB blend equation, how the red, green, and blue com-
ponents of the source and destination colors are combined. It must
be GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_
MIN, GL_MAX.

modeAlpha
specifies the alpha blend equation, how the alpha component of the source
and destination colors are combined. It must be GL_FUNC_ADD, GL_FUNC_
SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX.

The blend equations determines how a new pixel (the ”source” color) is combined with
a pixel already in the framebuffer (the ”destination” color). This function specifies
one blend equation for the RGB-color components and one blend equation for the
alpha component.

The blend equations use the source and destination blend factors specified by either
glBlendFunc or glBlendFuncSeparate. See glBlendFunc or glBlendFuncSeparate
for a description of the various blend factors.

In the equations that follow, source and destination color components are referred
to as (R s,G sB sA s) and (R d,G dB dA d), respectively. The result color is re-
ferred to as (R r,G rB rA r). The source and destination blend factors are denoted
(s R,s Gs Bs A) and (d R,d Gd Bd A), respectively. For these equations all color
components are understood to have values in the range [0,1].

Mode RGB Components, Alpha Component

GL_FUNC_ADD

Rr=R ss R+R dd RGr=G ss G+G dd GBr=B ss B+B dd B,
Ar=A ss A+A dd A

GL_FUNC_SUBTRACT

Rr=R ss R-R dd RGr=G ss G-G dd GBr=B ss B-B dd B,
Ar=A ss A-A dd A

GL_FUNC_REVERSE_SUBTRACT

Rr=R dd R-R ss RGr=G dd G-G ss GBr=B dd B-B ss B,
Ar=A dd A-A ss A

GL_MIN Rr=min(R s,R d)Gr=min(G s,G d)Br=min(B s,B d),
Ar=min(A s,A d)

GL_MAX Rr=max(R s,R d)Gr=max(G s,G d)Br=max(B s,B d),
Ar=max(A s,A d)

Chapter 3: GL 131

The results of these equations are clamped to the range [0,1].

The GL_MIN and GL_MAX equations are useful for applications that analyze image
data (image thresholding against a constant color, for example). The GL_FUNC_ADD

equation is useful for antialiasing and transparency, among other things.

Initially, both the RGB blend equation and the alpha blend equation are set to GL_

FUNC_ADD.

GL_INVALID_ENUM is generated if either modeRGB or modeAlpha is not one of GL_
FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MAX, or GL_MIN.

GL_INVALID_OPERATION is generated if glBlendEquationSeparate is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glBlendEquation mode
Specify the equation used for both the RGB blend equation and the Alpha blend
equation.

mode specifies how source and destination colors are combined. It must
be GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT,
GL_MIN, GL_MAX.

The blend equations determine how a new pixel (the ”source” color) is combined with
a pixel already in the framebuffer (the ”destination” color). This function sets both
the RGB blend equation and the alpha blend equation to a single equation.

These equations use the source and destination blend factors specified by either
glBlendFunc or glBlendFuncSeparate. See glBlendFunc or glBlendFuncSeparate
for a description of the various blend factors.

In the equations that follow, source and destination color components are referred
to as (R s,G sB sA s) and (R d,G dB dA d), respectively. The result color is re-
ferred to as (R r,G rB rA r). The source and destination blend factors are denoted
(s R,s Gs Bs A) and (d R,d Gd Bd A), respectively. For these equations all color
components are understood to have values in the range [0,1].

Mode RGB Components, Alpha Component

GL_FUNC_ADD

Rr=R ss R+R dd RGr=G ss G+G dd GBr=B ss B+B dd B,
Ar=A ss A+A dd A

GL_FUNC_SUBTRACT

Rr=R ss R-R dd RGr=G ss G-G dd GBr=B ss B-B dd B,
Ar=A ss A-A dd A

GL_FUNC_REVERSE_SUBTRACT

Rr=R dd R-R ss RGr=G dd G-G ss GBr=B dd B-B ss B,
Ar=A dd A-A ss A

GL_MIN Rr=min(R s,R d)Gr=min(G s,G d)Br=min(B s,B d),
Ar=min(A s,A d)

GL_MAX Rr=max(R s,R d)Gr=max(G s,G d)Br=max(B s,B d),
Ar=max(A s,A d)

Chapter 3: GL 132

The results of these equations are clamped to the range [0,1].

The GL_MIN and GL_MAX equations are useful for applications that analyze image
data (image thresholding against a constant color, for example). The GL_FUNC_ADD

equation is useful for antialiasing and transparency, among other things.

Initially, both the RGB blend equation and the alpha blend equation are set to GL_

FUNC_ADD.

GL_INVALID_ENUM is generated if mode is not one of GL_FUNC_ADD, GL_FUNC_

SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MAX, or GL_MIN.

GL_INVALID_OPERATION is generated if glBlendEquation is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glBlendFuncSeparate srcRGB dstRGB srcAlpha dstAlpha
Specify pixel arithmetic for RGB and alpha components separately.

srcRGB Specifies how the red, green, and blue blending factors are computed. The
following symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_
COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_
COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, GL_

ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_
COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA, and GL_

SRC_ALPHA_SATURATE. The initial value is GL_ONE.

dstRGB Specifies how the red, green, and blue destination blending factors are
computed. The following symbolic constants are accepted: GL_ZERO, GL_
ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_
MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_
ALPHA, GL_ONE_MINUS_DST_ALPHA. GL_CONSTANT_COLOR, GL_ONE_MINUS_
CONSTANT_COLOR, GL_CONSTANT_ALPHA, and GL_ONE_MINUS_CONSTANT_

ALPHA. The initial value is GL_ZERO.

srcAlpha Specified how the alpha source blending factor is computed. The same
symbolic constants are accepted as for srcRGB. The initial value is GL_
ONE.

dstAlpha Specified how the alpha destination blending factor is computed. The
same symbolic constants are accepted as for dstRGB. The initial value
is GL_ZERO.

In RGBA mode, pixels can be drawn using a function that blends the incoming
(source) RGBA values with the RGBA values that are already in the frame buffer
(the destination values). Blending is initially disabled. Use glEnable and glDisable

with argument GL_BLEND to enable and disable blending.

glBlendFuncSeparate defines the operation of blending when it is enabled. srcRGB
specifies which method is used to scale the source RGB-color components. dstRGB
specifies which method is used to scale the destination RGB-color components. Like-
wise, srcAlpha specifies which method is used to scale the source alpha color com-
ponent, and dstAlpha specifies which method is used to scale the destination alpha
component. The possible methods are described in the following table. Each method
defines four scale factors, one each for red, green, blue, and alpha.

Chapter 3: GL 133

In the table and in subsequent equations, source and destination color components
are referred to as (R s,G sB sA s) and (R d,G dB dA d). The color specified by
glBlendColor is referred to as (R c,G cB cA c). They are understood to have
integer values between 0 and (k R,k Gk Bk A), where

k c=2^m c,-1

and (m R,m Gm Bm A) is the number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred to as (s R,s Gs Bs A) and
(d R,d Gd Bd A). All scale factors have range [0,1].

Parameter
RGB Factor, Alpha Factor

GL_ZERO (0,00), 0

GL_ONE (1,11), 1

GL_SRC_COLOR

(R s/k R,G s/k GB s/k B), A s/k A

GL_ONE_MINUS_SRC_COLOR

(1,111)-(R s/k R,G s/k GB s/k B), 1-A s/k A

GL_DST_COLOR

(R d/k R,G d/k GB d/k B), A d/k A

GL_ONE_MINUS_DST_COLOR

(1,11)-(R d/k R,G d/k GB d/k B), 1-A d/k A

GL_SRC_ALPHA

(A s/k A,A s/k AA s/k A), A s/k A

GL_ONE_MINUS_SRC_ALPHA

(1,11)-(A s/k A,A s/k AA s/k A), 1-A s/k A

GL_DST_ALPHA

(A d/k A,A d/k AA d/k A), A d/k A

GL_ONE_MINUS_DST_ALPHA

(1,11)-(A d/k A,A d/k AA d/k A), 1-A d/k A

GL_CONSTANT_COLOR

(R c,G cB c), A c

GL_ONE_MINUS_CONSTANT_COLOR

(1,11)-(R c,G cB c), 1-A c

GL_CONSTANT_ALPHA

(A c,A cA c), A c

GL_ONE_MINUS_CONSTANT_ALPHA

(1,11)-(A c,A cA c), 1-A c

GL_SRC_ALPHA_SATURATE

(i,ii), 1

Chapter 3: GL 134

In the table,

i=min(A s,1-A d,)

To determine the blended RGBA values of a pixel when drawing in RGBA mode, the
system uses the following equations:

R d=min(k R,R ss R+R dd R)G d=min(k G,G ss G+G dd G)B d=min(k B,B ss B+B dd B)A d=min(k A,A ss A+A dd A)

Despite the apparent precision of the above equations, blending arithmetic is not ex-
actly specified, because blending operates with imprecise integer color values. How-
ever, a blend factor that should be equal to 1 is guaranteed not to modify its multipli-
cand, and a blend factor equal to 0 reduces its multiplicand to 0. For example, when
srcRGB is GL_SRC_ALPHA, dstRGB is GL_ONE_MINUS_SRC_ALPHA, and A s is equal to
k A, the equations reduce to simple replacement:

R d=R sG d=G sB d=B sA d=A s

GL_INVALID_ENUM is generated if either srcRGB or dstRGB is not an accepted value.

GL_INVALID_OPERATION is generated if glBlendFuncSeparate is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glBlendFunc sfactor dfactor
Specify pixel arithmetic.

sfactor Specifies how the red, green, blue, and alpha source blending factors are
computed. The following symbolic constants are accepted: GL_ZERO,
GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_

CONSTANT_ALPHA, and GL_SRC_ALPHA_SATURATE. The initial value is
GL_ONE.

dfactor Specifies how the red, green, blue, and alpha destination blending factors
are computed. The following symbolic constants are accepted: GL_ZERO,
GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA. GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, and
GL_ONE_MINUS_CONSTANT_ALPHA. The initial value is GL_ZERO.

In RGBA mode, pixels can be drawn using a function that blends the incoming
(source) RGBA values with the RGBA values that are already in the frame buffer
(the destination values). Blending is initially disabled. Use glEnable and glDisable

with argument GL_BLEND to enable and disable blending.

glBlendFunc defines the operation of blending when it is enabled. sfactor specifies
which method is used to scale the source color components. dfactor specifies which
method is used to scale the destination color components. The possible methods are
described in the following table. Each method defines four scale factors, one each for
red, green, blue, and alpha. In the table and in subsequent equations, source and des-
tination color components are referred to as (R s,G sB sA s) and (R d,G dB dA d).

Chapter 3: GL 135

The color specified by glBlendColor is referred to as (R c,G cB cA c). They are
understood to have integer values between 0 and (k R,k Gk Bk A), where

k c=2^m c,-1

and (m R,m Gm Bm A) is the number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred to as (s R,s Gs Bs A)
and (d R,d Gd Bd A). The scale factors described in the table, denoted
(f R,f Gf Bf A), represent either source or destination factors. All scale factors
have range [0,1].

Parameter
(f R,f Gf Bf A)

GL_ZERO (0,000)

GL_ONE (1,111)

GL_SRC_COLOR

(R s/k R,G s/k GB s/k BA s/k A)

GL_ONE_MINUS_SRC_COLOR

(1,111)-(R s/k R,G s/k GB s/k BA s/k A)

GL_DST_COLOR

(R d/k R,G d/k GB d/k BA d/k A)

GL_ONE_MINUS_DST_COLOR

(1,111)-(R d/k R,G d/k GB d/k BA d/k A)

GL_SRC_ALPHA

(A s/k A,A s/k AA s/k AA s/k A)

GL_ONE_MINUS_SRC_ALPHA

(1,111)-(A s/k A,A s/k AA s/k AA s/k A)

GL_DST_ALPHA

(A d/k A,A d/k AA d/k AA d/k A)

GL_ONE_MINUS_DST_ALPHA

(1,111)-(A d/k A,A d/k AA d/k AA d/k A)

GL_CONSTANT_COLOR

(R c,G cB cA c)

GL_ONE_MINUS_CONSTANT_COLOR

(1,111)-(R c,G cB cA c)

GL_CONSTANT_ALPHA

(A c,A cA cA c)

GL_ONE_MINUS_CONSTANT_ALPHA

(1,111)-(A c,A cA cA c)

GL_SRC_ALPHA_SATURATE

(i,ii1)

Chapter 3: GL 136

In the table,

i=min(A s,k A-A d)/k A

To determine the blended RGBA values of a pixel when drawing in RGBA mode, the
system uses the following equations:

R d=min(k R,R ss R+R dd R)G d=min(k G,G ss G+G dd G)B d=min(k B,B ss B+B dd B)A d=min(k A,A ss A+A dd A)

Despite the apparent precision of the above equations, blending arithmetic is not ex-
actly specified, because blending operates with imprecise integer color values. How-
ever, a blend factor that should be equal to 1 is guaranteed not to modify its multipli-
cand, and a blend factor equal to 0 reduces its multiplicand to 0. For example, when
sfactor is GL_SRC_ALPHA, dfactor is GL_ONE_MINUS_SRC_ALPHA, and A s is equal to
k A, the equations reduce to simple replacement:

R d=R sG d=G sB d=B sA d=A s

GL_INVALID_ENUM is generated if either sfactor or dfactor is not an accepted value.

GL_INVALID_OPERATION is generated if glBlendFunc is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glBufferData target size data usage
Creates and initializes a buffer object’s data store.

target Specifies the target buffer object. The symbolic constant must be GL_

ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

size Specifies the size in bytes of the buffer object’s new data store.

data Specifies a pointer to data that will be copied into the data store for
initialization, or NULL if no data is to be copied.

usage Specifies the expected usage pattern of the data store. The
symbolic constant must be GL_STREAM_DRAW, GL_STREAM_READ,
GL_STREAM_COPY, GL_STATIC_DRAW, GL_STATIC_READ, GL_STATIC_COPY,
GL_DYNAMIC_DRAW, GL_DYNAMIC_READ, or GL_DYNAMIC_COPY.

glBufferData creates a new data store for the buffer object currently bound to target.
Any pre-existing data store is deleted. The new data store is created with the specified
size in bytes and usage. If data is not NULL, the data store is initialized with data
from this pointer. In its initial state, the new data store is not mapped, it has a NULL

mapped pointer, and its mapped access is GL_READ_WRITE.

usage is a hint to the GL implementation as to how a buffer object’s data store will be
accessed. This enables the GL implementation to make more intelligent decisions that
may significantly impact buffer object performance. It does not, however, constrain
the actual usage of the data store. usage can be broken down into two parts: first, the
frequency of access (modification and usage), and second, the nature of that access.
The frequency of access may be one of these:

STREAM The data store contents will be modified once and used at most a few
times.

STATIC The data store contents will be modified once and used many times.

Chapter 3: GL 137

DYNAMIC
The data store contents will be modified repeatedly and used many times.

The nature of access may be one of these:

DRAW The data store contents are modified by the application, and used as the
source for GL drawing and image specification commands.

READ The data store contents are modified by reading data from the GL, and
used to return that data when queried by the application.

COPY The data store contents are modified by reading data from the GL, and
used as the source for GL drawing and image specification commands.

GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER, GL_ELEMENT_

ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

GL_INVALID_ENUM is generated if usage is not GL_STREAM_DRAW, GL_STREAM_READ, GL_
STREAM_COPY, GL_STATIC_DRAW, GL_STATIC_READ, GL_STATIC_COPY, GL_DYNAMIC_

DRAW, GL_DYNAMIC_READ, or GL_DYNAMIC_COPY.

GL_INVALID_VALUE is generated if size is negative.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to
target.

GL_OUT_OF_MEMORY is generated if the GL is unable to create a data store with the
specified size.

GL_INVALID_OPERATION is generated if glBufferData is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glBufferSubData target offset size data
Updates a subset of a buffer object’s data store.

target Specifies the target buffer object. The symbolic constant must be GL_

ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

offset Specifies the offset into the buffer object’s data store where data replace-
ment will begin, measured in bytes.

size Specifies the size in bytes of the data store region being replaced.

data Specifies a pointer to the new data that will be copied into the data store.

glBufferSubData redefines some or all of the data store for the buffer object currently
bound to target. Data starting at byte offset offset and extending for size bytes is
copied to the data store from the memory pointed to by data. An error is thrown if
offset and size together define a range beyond the bounds of the buffer object’s data
store.

GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER, GL_ELEMENT_

ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

GL_INVALID_VALUE is generated if offset or size is negative, or if together they define
a region of memory that extends beyond the buffer object’s allocated data store.

Chapter 3: GL 138

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to
target.

GL_INVALID_OPERATION is generated if the buffer object being updated is mapped.

GL_INVALID_OPERATION is generated if glBufferSubData is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glCallLists n type lists
Execute a list of display lists.

n Specifies the number of display lists to be executed.

type Specifies the type of values in lists. Symbolic constants GL_BYTE, GL_
UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_
INT, GL_FLOAT, GL_2_BYTES, GL_3_BYTES, and GL_4_BYTES are accepted.

lists Specifies the address of an array of name offsets in the display list. The
pointer type is void because the offsets can be bytes, shorts, ints, or floats,
depending on the value of type.

glCallLists causes each display list in the list of names passed as lists to be executed.
As a result, the commands saved in each display list are executed in order, just as
if they were called without using a display list. Names of display lists that have not
been defined are ignored.

glCallLists provides an efficient means for executing more than one display list.
type allows lists with various name formats to be accepted. The formats are as
follows:

GL_BYTE lists is treated as an array of signed bytes, each in the range -128 through
127.

GL_UNSIGNED_BYTE

lists is treated as an array of unsigned bytes, each in the range 0 through
255.

GL_SHORT lists is treated as an array of signed two-byte integers, each in the range
-32768 through 32767.

GL_UNSIGNED_SHORT

lists is treated as an array of unsigned two-byte integers, each in the range
0 through 65535.

GL_INT lists is treated as an array of signed four-byte integers.

GL_UNSIGNED_INT

lists is treated as an array of unsigned four-byte integers.

GL_FLOAT lists is treated as an array of four-byte floating-point values.

GL_2_BYTES

lists is treated as an array of unsigned bytes. Each pair of bytes specifies
a single display-list name. The value of the pair is computed as 256 times
the unsigned value of the first byte plus the unsigned value of the second
byte.

Chapter 3: GL 139

GL_3_BYTES

lists is treated as an array of unsigned bytes. Each triplet of bytes specifies
a single display-list name. The value of the triplet is computed as 65536
times the unsigned value of the first byte, plus 256 times the unsigned
value of the second byte, plus the unsigned value of the third byte.

GL_4_BYTES

lists is treated as an array of unsigned bytes. Each quadruplet of bytes
specifies a single display-list name. The value of the quadruplet is com-
puted as 16777216 times the unsigned value of the first byte, plus 65536
times the unsigned value of the second byte, plus 256 times the unsigned
value of the third byte, plus the unsigned value of the fourth byte.

The list of display-list names is not null-terminated. Rather, n specifies how many
names are to be taken from lists.

An additional level of indirection is made available with the glListBase command,
which specifies an unsigned offset that is added to each display-list name specified in
lists before that display list is executed.

glCallLists can appear inside a display list. To avoid the possibility of infinite
recursion resulting from display lists calling one another, a limit is placed on the
nesting level of display lists during display-list execution. This limit must be at least
64, and it depends on the implementation.

GL state is not saved and restored across a call to glCallLists. Thus, changes
made to GL state during the execution of the display lists remain after execution is
completed. Use glPushAttrib, glPopAttrib, glPushMatrix, and glPopMatrix to
preserve GL state across glCallLists calls.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_ENUM is generated if type is not one of GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, GL_2_BYTES,
GL_3_BYTES, GL_4_BYTES.

[Function]void glCallList list
Execute a display list.

list Specifies the integer name of the display list to be executed.

glCallList causes the named display list to be executed. The commands saved in
the display list are executed in order, just as if they were called without using a
display list. If list has not been defined as a display list, glCallList is ignored.

glCallList can appear inside a display list. To avoid the possibility of infinite
recursion resulting from display lists calling one another, a limit is placed on the
nesting level of display lists during display-list execution. This limit is at least 64,
and it depends on the implementation.

GL state is not saved and restored across a call to glCallList. Thus, changes made to
GL state during the execution of a display list remain after execution of the display list
is completed. Use glPushAttrib, glPopAttrib, glPushMatrix, and glPopMatrix to
preserve GL state across glCallList calls.

Chapter 3: GL 140

[Function]void glClearAccum red green blue alpha
Specify clear values for the accumulation buffer.

red
green
blue
alpha Specify the red, green, blue, and alpha values used when the accumulation

buffer is cleared. The initial values are all 0.

glClearAccum specifies the red, green, blue, and alpha values used by glClear to
clear the accumulation buffer.

Values specified by glClearAccum are clamped to the range [-1,1].

GL_INVALID_OPERATION is generated if glClearAccum is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glClearColor red green blue alpha
Specify clear values for the color buffers.

red
green
blue
alpha Specify the red, green, blue, and alpha values used when the color buffers

are cleared. The initial values are all 0.

glClearColor specifies the red, green, blue, and alpha values used by glClear to
clear the color buffers. Values specified by glClearColor are clamped to the range
[0,1].

GL_INVALID_OPERATION is generated if glClearColor is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glClearDepth depth
Specify the clear value for the depth buffer.

depth Specifies the depth value used when the depth buffer is cleared. The
initial value is 1.

glClearDepth specifies the depth value used by glClear to clear the depth buffer.
Values specified by glClearDepth are clamped to the range [0,1].

GL_INVALID_OPERATION is generated if glClearDepth is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glClearIndex c
Specify the clear value for the color index buffers.

c Specifies the index used when the color index buffers are cleared. The
initial value is 0.

glClearIndex specifies the index used by glClear to clear the color index buffers. c
is not clamped. Rather, c is converted to a fixed-point value with unspecified precision
to the right of the binary point. The integer part of this value is then masked with
2^m-1, where m is the number of bits in a color index stored in the frame buffer.

GL_INVALID_OPERATION is generated if glClearIndex is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 141

[Function]void glClearStencil s
Specify the clear value for the stencil buffer.

s Specifies the index used when the stencil buffer is cleared. The initial
value is 0.

glClearStencil specifies the index used by glClear to clear the stencil buffer. s is
masked with 2^m-1, where m is the number of bits in the stencil buffer.

GL_INVALID_OPERATION is generated if glClearStencil is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glClear mask
Clear buffers to preset values.

mask Bitwise OR of masks that indicate the buffers to be cleared. The
four masks are GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT,
GL_ACCUM_BUFFER_BIT, and GL_STENCIL_BUFFER_BIT.

glClear sets the bitplane area of the window to values previously selected by
glClearColor, glClearIndex, glClearDepth, glClearStencil, and glClearAccum.
Multiple color buffers can be cleared simultaneously by selecting more than one
buffer at a time using glDrawBuffer.

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect
the operation of glClear. The scissor box bounds the cleared region. Alpha function,
blend function, logical operation, stenciling, texture mapping, and depth-buffering are
ignored by glClear.

glClear takes a single argument that is the bitwise OR of several values indicating
which buffer is to be cleared.

The values are as follows:

GL_COLOR_BUFFER_BIT

Indicates the buffers currently enabled for color writing.

GL_DEPTH_BUFFER_BIT

Indicates the depth buffer.

GL_ACCUM_BUFFER_BIT

Indicates the accumulation buffer.

GL_STENCIL_BUFFER_BIT

Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for
that buffer.

GL_INVALID_VALUE is generated if any bit other than the four defined bits is set in
mask.

GL_INVALID_OPERATION is generated if glClear is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glClientActiveTexture texture
Select active texture unit.

Chapter 3: GL 142

texture Specifies which texture unit to make active. The number of texture units
is implementation dependent, but must be at least two. texture must
be one of GL_TEXTUREi, where i ranges from 0 to the value of GL_MAX_
TEXTURE_COORDS - 1, which is an implementation-dependent value. The
initial value is GL_TEXTURE0.

glClientActiveTexture selects the vertex array client state parameters to be modi-
fied by glTexCoordPointer, and enabled or disabled with glEnableClientState or
glDisableClientState, respectively, when called with a parameter of GL_TEXTURE_
COORD_ARRAY.

GL_INVALID_ENUM is generated if texture is not one of GL_TEXTUREi, where i ranges
from 0 to the value of GL_MAX_TEXTURE_COORDS - 1.

[Function]void glClipPlane plane equation
Specify a plane against which all geometry is clipped.

plane Specifies which clipping plane is being positioned. Symbolic names of the
form GL_CLIP_PLANEi, where i is an integer between 0 and GL_MAX_CLIP_

PLANES-1, are accepted.

equation Specifies the address of an array of four double-precision floating-point
values. These values are interpreted as a plane equation.

Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and
z. glClipPlane allows the specification of additional planes, not necessarily perpen-
dicular to the x, y, or z axis, against which all geometry is clipped. To determine the
maximum number of additional clipping planes, call glGetIntegerv with argument
GL_MAX_CLIP_PLANES. All implementations support at least six such clipping planes.
Because the resulting clipping region is the intersection of the defined half-spaces, it
is always convex.

glClipPlane specifies a half-space using a four-component plane equation. When
glClipPlane is called, equation is transformed by the inverse of the modelview matrix
and stored in the resulting eye coordinates. Subsequent changes to the modelview
matrix have no effect on the stored plane-equation components. If the dot product of
the eye coordinates of a vertex with the stored plane equation components is positive
or zero, the vertex is in with respect to that clipping plane. Otherwise, it is out.

To enable and disable clipping planes, call glEnable and glDisable with the argu-
ment GL_CLIP_PLANEi, where i is the plane number.

All clipping planes are initially defined as (0, 0, 0, 0) in eye coordinates and are
disabled.

GL_INVALID_ENUM is generated if plane is not an accepted value.

GL_INVALID_OPERATION is generated if glClipPlane is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glColorMask red green blue alpha
Enable and disable writing of frame buffer color components.

Chapter 3: GL 143

red
green
blue
alpha Specify whether red, green, blue, and alpha can or cannot be written into

the frame buffer. The initial values are all GL_TRUE, indicating that the
color components can be written.

glColorMask specifies whether the individual color components in the frame buffer
can or cannot be written. If red is GL_FALSE, for example, no change is made to
the red component of any pixel in any of the color buffers, regardless of the drawing
operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are
either enabled or disabled for entire color components.

GL_INVALID_OPERATION is generated if glColorMask is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glColorMaterial face mode
Cause a material color to track the current color.

face Specifies whether front, back, or both front and back material parameters
should track the current color. Accepted values are GL_FRONT, GL_BACK,
and GL_FRONT_AND_BACK. The initial value is GL_FRONT_AND_BACK.

mode Specifies which of several material parameters track the current color. Ac-
cepted values are GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
and GL_AMBIENT_AND_DIFFUSE. The initial value is GL_AMBIENT_AND_

DIFFUSE.

glColorMaterial specifies which material parameters track the current color. When
GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by
mode, of the material or materials specified by face, track the current color at all
times.

To enable and disable GL_COLOR_MATERIAL, call glEnable and glDisable with argu-
ment GL_COLOR_MATERIAL. GL_COLOR_MATERIAL is initially disabled.

GL_INVALID_ENUM is generated if face or mode is not an accepted value.

GL_INVALID_OPERATION is generated if glColorMaterial is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glColorPointer size type stride pointer
Define an array of colors.

size Specifies the number of components per color. Must be 3 or 4. The initial
value is 4.

type Specifies the data type of each color component in the array. Symbolic
constants GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT,
GL_INT, GL_UNSIGNED_INT, GL_FLOAT, and GL_DOUBLE are accepted. The
initial value is GL_FLOAT.

Chapter 3: GL 144

stride Specifies the byte offset between consecutive colors. If stride is 0, the
colors are understood to be tightly packed in the array. The initial value
is 0.

pointer Specifies a pointer to the first component of the first color element in the
array. The initial value is 0.

glColorPointer specifies the location and data format of an array of color compo-
nents to use when rendering. size specifies the number of components per color, and
must be 3 or 4. type specifies the data type of each color component, and stride
specifies the byte stride from one color to the next, allowing vertices and attributes
to be packed into a single array or stored in separate arrays. (Single-array storage
may be more efficient on some implementations; see glInterleavedArrays.)

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) while a color array is specified, pointer is treated as a byte offset into
the buffer object’s data store. Also, the buffer object binding (GL_ARRAY_BUFFER_
BINDING) is saved as color vertex array client-side state (GL_COLOR_ARRAY_BUFFER_
BINDING).

When a color array is specified, size, type, stride, and pointer are saved as client-side
state, in addition to the current vertex array buffer object binding.

To enable and disable the color array, call glEnableClientState and
glDisableClientState with the argument GL_COLOR_ARRAY. If enabled, the
color array is used when glDrawArrays, glMultiDrawArrays, glDrawElements,
glMultiDrawElements, glDrawRangeElements, or glArrayElement is called.

GL_INVALID_VALUE is generated if size is not 3 or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

[Function]void glColorSubTable target start count format type data
Respecify a portion of a color table.

target Must be one of GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE,
or GL_POST_COLOR_MATRIX_COLOR_TABLE.

start The starting index of the portion of the color table to be replaced.

count The number of table entries to replace.

format The format of the pixel data in data. The allowable values are GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type The type of the pixel data in data. The allowable values are
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_

2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

Chapter 3: GL 145

data Pointer to a one-dimensional array of pixel data that is processed to
replace the specified region of the color table.

glColorSubTable is used to respecify a contiguous portion of a color table previously
defined using glColorTable. The pixels referenced by data replace the portion of
the existing table from indices start to start+count-1, inclusive. This region may not
include any entries outside the range of the color table as it was originally specified.
It is not an error to specify a subtexture with width of 0, but such a specification has
no effect.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a portion of a color table is respecified, data is treated as
a byte offset into the buffer object’s data store.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_VALUE is generated if start+count>width.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glColorSubTable is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glColorTableParameterfv target pname params
[Function]void glColorTableParameteriv target pname params

Set color lookup table parameters.

target The target color table. Must be GL_COLOR_TABLE, GL_POST_

CONVOLUTION_COLOR_TABLE, or GL_POST_COLOR_MATRIX_COLOR_TABLE.

pname The symbolic name of a texture color lookup table parameter. Must be
one of GL_COLOR_TABLE_SCALE or GL_COLOR_TABLE_BIAS.

params A pointer to an array where the values of the parameters are stored.

glColorTableParameter is used to specify the scale factors and bias terms applied
to color components when they are loaded into a color table. target indicates which
color table the scale and bias terms apply to; it must be set to GL_COLOR_TABLE,
GL_POST_CONVOLUTION_COLOR_TABLE, or GL_POST_COLOR_MATRIX_COLOR_TABLE.

pname must be GL_COLOR_TABLE_SCALE to set the scale factors. In this case, params
points to an array of four values, which are the scale factors for red, green, blue, and
alpha, in that order.

Chapter 3: GL 146

pname must be GL_COLOR_TABLE_BIAS to set the bias terms. In this case, params
points to an array of four values, which are the bias terms for red, green, blue, and
alpha, in that order.

The color tables themselves are specified by calling glColorTable.

GL_INVALID_ENUM is generated if target or pname is not an acceptable value.

GL_INVALID_OPERATION is generated if glColorTableParameter is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glColorTable target internalformat width format type data
Define a color lookup table.

target Must be one of GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE,
GL_POST_COLOR_MATRIX_COLOR_TABLE, GL_PROXY_COLOR_TABLE,
GL_PROXY_POST_CONVOLUTION_COLOR_TABLE, or GL_PROXY_POST_COLOR_
MATRIX_COLOR_TABLE.

internalformat
The internal format of the color table. The allowable values
are GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, and GL_RGBA16.

width The number of entries in the color lookup table specified by data.

format The format of the pixel data in data. The allowable values are GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type The type of the pixel data in data. The allowable values are
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_

2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data Pointer to a one-dimensional array of pixel data that is processed to build
the color table.

glColorTable may be used in two ways: to test the actual size and color resolution of
a lookup table given a particular set of parameters, or to load the contents of a color
lookup table. Use the targets GL_PROXY_* for the first case and the other targets for
the second case.

Chapter 3: GL 147

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a color table is specified, data is treated as a byte offset
into the buffer object’s data store.

If target is GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, or GL_POST_

COLOR_MATRIX_COLOR_TABLE, glColorTable builds a color lookup table from an
array of pixels. The pixel array specified by width, format, type, and data is
extracted from memory and processed just as if glDrawPixels were called, but
processing stops after the final expansion to RGBA is completed.

The four scale parameters and the four bias parameters that are defined for the table
are then used to scale and bias the R, G, B, and A components of each pixel. (Use
glColorTableParameter to set these scale and bias parameters.)

Next, the R, G, B, and A values are clamped to the range [0,1]. Each pixel is then
converted to the internal format specified by internalformat. This conversion simply
maps the component values of the pixel (R, G, B, and A) to the values included in
the internal format (red, green, blue, alpha, luminance, and intensity). The mapping
is as follows:

Internal Format
Red, Green, Blue, Alpha, Luminance, Intensity

GL_ALPHA , , , A , ,

GL_LUMINANCE

, , , , R ,

GL_LUMINANCE_ALPHA

, , , A , R ,

GL_INTENSITY

, , , , , R

GL_RGB R , G , B , , ,

GL_RGBA R , G , B , A , ,

Finally, the red, green, blue, alpha, luminance, and/or intensity components of the
resulting pixels are stored in the color table. They form a one-dimensional table with
indices in the range [0,width-1].

If target is GL_PROXY_*, glColorTable recomputes and stores the values of the proxy
color table’s state variables GL_COLOR_TABLE_FORMAT, GL_COLOR_TABLE_WIDTH,
GL_COLOR_TABLE_RED_SIZE, GL_COLOR_TABLE_GREEN_SIZE, GL_COLOR_TABLE_

BLUE_SIZE, GL_COLOR_TABLE_ALPHA_SIZE, GL_COLOR_TABLE_LUMINANCE_SIZE, and
GL_COLOR_TABLE_INTENSITY_SIZE. There is no effect on the image or state of any
actual color table. If the specified color table is too large to be supported, then all
the proxy state variables listed above are set to zero. Otherwise, the color table
could be supported by glColorTable using the corresponding non-proxy target, and
the proxy state variables are set as if that target were being defined.

The proxy state variables can be retrieved by calling glGetColorTableParameter

with a target of GL_PROXY_*. This allows the application to decide if a particular
glColorTable command would succeed, and to determine what the resulting color
table attributes would be.

Chapter 3: GL 148

If a color table is enabled, and its width is non-zero, then its contents are used to
replace a subset of the components of each RGBA pixel group, based on the internal
format of the table.

Each pixel group has color components (R, G, B, A) that are in the range [0.0,1.0].
The color components are rescaled to the size of the color lookup table to form an
index. Then a subset of the components based on the internal format of the table
are replaced by the table entry selected by that index. If the color components and
contents of the table are represented as follows:

Representation
Meaning

r Table index computed from R

g Table index computed from G

b Table index computed from B

a Table index computed from A

L[i] Luminance value at table index i

I[i] Intensity value at table index i

R[i] Red value at table index i

G[i] Green value at table index i

B[i] Blue value at table index i

A[i] Alpha value at table index i

then the result of color table lookup is as follows:

Resulting Texture Components

Table Internal Format
R, G, B, A

GL_ALPHA R, G, B, A[a]

GL_LUMINANCE

L[r], L[g], L[b], At

GL_LUMINANCE_ALPHA

L[r], L[g], L[b], A[a]

GL_INTENSITY

I[r], I[g], I[b], I[a]

GL_RGB R[r], G[g], B[b], A

GL_RGBA R[r], G[g], B[b], A[a]

When GL_COLOR_TABLE is enabled, the colors resulting from the pixel map opera-
tion (if it is enabled) are mapped by the color lookup table before being passed to
the convolution operation. The colors resulting from the convolution operation are
modified by the post convolution color lookup table when GL_POST_CONVOLUTION_

COLOR_TABLE is enabled. These modified colors are then sent to the color matrix

Chapter 3: GL 149

operation. Finally, if GL_POST_COLOR_MATRIX_COLOR_TABLE is enabled, the colors re-
sulting from the color matrix operation are mapped by the post color matrix color
lookup table before being used by the histogram operation.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero.

GL_TABLE_TOO_LARGE is generated if the requested color table is too large to be sup-
ported by the implementation, and target is not a GL_PROXY_* target.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glColorTable is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glColor3b red green blue
[Function]void glColor3s red green blue
[Function]void glColor3i red green blue
[Function]void glColor3f red green blue
[Function]void glColor3d red green blue
[Function]void glColor3ub red green blue
[Function]void glColor3us red green blue
[Function]void glColor3ui red green blue
[Function]void glColor4b red green blue alpha
[Function]void glColor4s red green blue alpha
[Function]void glColor4i red green blue alpha
[Function]void glColor4f red green blue alpha
[Function]void glColor4d red green blue alpha
[Function]void glColor4ub red green blue alpha
[Function]void glColor4us red green blue alpha
[Function]void glColor4ui red green blue alpha
[Function]void glColor3bv v
[Function]void glColor3sv v
[Function]void glColor3iv v
[Function]void glColor3fv v
[Function]void glColor3dv v
[Function]void glColor3ubv v
[Function]void glColor3usv v

Chapter 3: GL 150

[Function]void glColor3uiv v
[Function]void glColor4bv v
[Function]void glColor4sv v
[Function]void glColor4iv v
[Function]void glColor4fv v
[Function]void glColor4dv v
[Function]void glColor4ubv v
[Function]void glColor4usv v
[Function]void glColor4uiv v

Set the current color.

red
green
blue Specify new red, green, and blue values for the current color.

alpha Specifies a new alpha value for the current color. Included only in the
four-argument glColor4 commands.

The GL stores both a current single-valued color index and a current four-valued
RGBA color. glColor sets a new four-valued RGBA color. glColor has two major
variants: glColor3 and glColor4. glColor3 variants specify new red, green, and
blue values explicitly and set the current alpha value to 1.0 (full intensity) implicitly.
glColor4 variants specify all four color components explicitly.

glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, and glColor4i take
three or four signed byte, short, or long integers as arguments. When v is appended
to the name, the color commands can take a pointer to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa
and exponent sizes. Unsigned integer color components, when specified, are linearly
mapped to floating-point values such that the largest representable value maps to 1.0
(full intensity), and 0 maps to 0.0 (zero intensity). Signed integer color components,
when specified, are linearly mapped to floating-point values such that the most posi-
tive representable value maps to 1.0, and the most negative representable value maps
to -1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Floating-point
values are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0,1] before
the current color is updated. However, color components are clamped to this range
before they are interpolated or written into a color buffer.

[Function]void glCompileShader shader
Compiles a shader object.

shader Specifies the shader object to be compiled.

glCompileShader compiles the source code strings that have been stored in the shader
object specified by shader.

The compilation status will be stored as part of the shader object’s state. This value
will be set to GL_TRUE if the shader was compiled without errors and is ready for use,
and GL_FALSE otherwise. It can be queried by calling glGetShader with arguments
shader and GL_COMPILE_STATUS.

Chapter 3: GL 151

Compilation of a shader can fail for a number of reasons as specified by the OpenGL
Shading Language Specification. Whether or not the compilation was successful, in-
formation about the compilation can be obtained from the shader object’s information
log by calling glGetShaderInfoLog.

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if shader is not a shader object.

GL_INVALID_OPERATION is generated if glCompileShader is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glCompressedTexImage1D target level internalformat width border
imageSize data

Specify a one-dimensional texture image in a compressed format.

target Specifies the target texture. Must be GL_TEXTURE_1D or GL_PROXY_

TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

internalformat
Specifies the format of the compressed image data stored at address data.

width Specifies the width of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2^n+2(border,) for some integer n. All implementations support texture
images that are at least 64 texels wide. The height of the 1D texture
image is 1.

border Specifies the width of the border. Must be either 0 or 1.

imageSize Specifies the number of unsigned bytes of image data starting at the
address specified by data.

data Specifies a pointer to the compressed image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable one-dimensional texturing, call
glEnable and glDisable with argument GL_TEXTURE_1D.

glCompressedTexImage1D loads a previously defined, and retrieved, compressed one-
dimensional texture image if target is GL_TEXTURE_1D (see glTexImage1D).

If target is GL_PROXY_TEXTURE_1D, no data is read from data, but all of the tex-
ture image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the
requested texture size, it sets all of the image state to 0, but does not generate an
error (see glGetError). To query for an entire mipmap array, use an image array
level greater than or equal to 1.

internalformat must be extension-specified compressed-texture format. When a
texture is loaded with glTexImage1D using a generic compressed texture format
(e.g., GL_COMPRESSED_RGB) the GL selects from one of its extensions supporting
compressed textures. In order to load the compressed texture image using

Chapter 3: GL 152

glCompressedTexImage1D, query the compressed texture image’s size and format
using glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

GL_INVALID_ENUM is generated if internalformat is one of the generic compressed
internal formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_

COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
or GL_COMPRESSED_RGBA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, di-
mensions, and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by
the specific compressed internal format as specified in the specific texture compression
extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexImage1D is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data
is not encoded in a manner consistent with the extension specification defining the
internal compression format.

[Function]void glCompressedTexImage2D target level internalformat width height
border imageSize data

Specify a two-dimensional texture image in a compressed format.

target Specifies the target texture. Must be GL_TEXTURE_2D, GL_PROXY_

TEXTURE_2D, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_

CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_

TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

internalformat
Specifies the format of the compressed image data stored at address data.

width Specifies the width of the texture image including the border if any. If
the GL version does not support non-power-of-two sizes, this value must
be 2^n+2(border,) for some integer n. All implementations support 2D
texture images that are at least 64 texels wide and cube-mapped texture
images that are at least 16 texels wide.

Chapter 3: GL 153

height Specifies the height of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
Must be 2^n+2(border,) for some integer n. All implementations support
2D texture images that are at least 64 texels high and cube-mapped
texture images that are at least 16 texels high.

border Specifies the width of the border. Must be either 0 or 1.

imageSize Specifies the number of unsigned bytes of image data starting at the
address specified by data.

data Specifies a pointer to the compressed image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable two-dimensional texturing,
call glEnable and glDisable with argument GL_TEXTURE_2D. To enable and disable
texturing using cube-mapped textures, call glEnable and glDisable with argument
GL_TEXTURE_CUBE_MAP.

glCompressedTexImage2D loads a previously defined, and retrieved, compressed two-
dimensional texture image if target is GL_TEXTURE_2D (see glTexImage2D).

If target is GL_PROXY_TEXTURE_2D, no data is read from data, but all of the tex-
ture image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the
requested texture size, it sets all of the image state to 0, but does not generate an
error (see glGetError). To query for an entire mipmap array, use an image array
level greater than or equal to 1.

internalformat must be an extension-specified compressed-texture format. When a
texture is loaded with glTexImage2D using a generic compressed texture format
(e.g., GL_COMPRESSED_RGB), the GL selects from one of its extensions supporting
compressed textures. In order to load the compressed texture image using
glCompressedTexImage2D, query the compressed texture image’s size and format
using glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

GL_INVALID_ENUM is generated if internalformat is one of the generic compressed
internal formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_

COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
or GL_COMPRESSED_RGBA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, di-
mensions, and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by
the specific compressed internal format as specified in the specific texture compression
extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

Chapter 3: GL 154

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexImage2D is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data
is not encoded in a manner consistent with the extension specification defining the
internal compression format.

[Function]void glCompressedTexImage3D target level internalformat width height
depth border imageSize data

Specify a three-dimensional texture image in a compressed format.

target Specifies the target texture. Must be GL_TEXTURE_3D or GL_PROXY_

TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

internalformat
Specifies the format of the compressed image data stored at address data.

width Specifies the width of the texture image including the border if any. If
the GL version does not support non-power-of-two sizes, this value must
be 2^n+2(border,) for some integer n. All implementations support 3D
texture images that are at least 16 texels wide.

height Specifies the height of the texture image including the border if any. If
the GL version does not support non-power-of-two sizes, this value must
be 2^n+2(border,) for some integer n. All implementations support 3D
texture images that are at least 16 texels high.

depth Specifies the depth of the texture image including the border if any. If
the GL version does not support non-power-of-two sizes, this value must
be 2^n+2(border,) for some integer n. All implementations support 3D
texture images that are at least 16 texels deep.

border Specifies the width of the border. Must be either 0 or 1.

imageSize Specifies the number of unsigned bytes of image data starting at the
address specified by data.

data Specifies a pointer to the compressed image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable three-dimensional texturing,
call glEnable and glDisable with argument GL_TEXTURE_3D.

glCompressedTexImage3D loads a previously defined, and retrieved, compressed
three-dimensional texture image if target is GL_TEXTURE_3D (see glTexImage3D).

If target is GL_PROXY_TEXTURE_3D, no data is read from data, but all of the tex-
ture image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the

Chapter 3: GL 155

requested texture size, it sets all of the image state to 0, but does not generate an
error (see glGetError). To query for an entire mipmap array, use an image array
level greater than or equal to 1.

internalformat must be an extension-specified compressed-texture format. When a
texture is loaded with glTexImage2D using a generic compressed texture format
(e.g., GL_COMPRESSED_RGB), the GL selects from one of its extensions supporting
compressed textures. In order to load the compressed texture image using
glCompressedTexImage3D, query the compressed texture image’s size and format
using glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

GL_INVALID_ENUM is generated if internalformat is one of the generic compressed
internal formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_

COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
or GL_COMPRESSED_RGBA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, di-
mensions, and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by
the specific compressed internal format as specified in the specific texture compression
extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexImage3D is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data
is not encoded in a manner consistent with the extension specification defining the
internal compression format.

[Function]void glCompressedTexSubImage1D target level xoffset width format
imageSize data

Specify a one-dimensional texture subimage in a compressed format.

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

width Specifies the width of the texture subimage.

format Specifies the format of the compressed image data stored at address data.

Chapter 3: GL 156

imageSize Specifies the number of unsigned bytes of image data starting at the
address specified by data.

data Specifies a pointer to the compressed image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable one-dimensional texturing, call
glEnable and glDisable with argument GL_TEXTURE_1D.

glCompressedTexSubImage1D redefines a contiguous subregion of an existing one-
dimensional texture image. The texels referenced by data replace the portion of
the existing texture array with x indices xoffset and xoffset+width-1, inclusive. This
region may not include any texels outside the range of the texture array as it was
originally specified. It is not an error to specify a subtexture with width of 0, but
such a specification has no effect.

format must be an extension-specified compressed-texture format. The format of the
compressed texture image is selected by the GL implementation that compressed it
(see glTexImage1D), and should be queried at the time the texture was compressed
with glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

GL_INVALID_ENUM is generated if format is one of these generic compressed
internal formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_

COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SLUMINANCE, GL_COMPRESSED_SLUMINANCE_

ALPHA, GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA, or GL_COMPRESSED_SRGB_

ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, di-
mensions, and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by
the specific compressed internal format as specified in the specific texture compression
extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexSubImage1D is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data
is not encoded in a manner consistent with the extension specification defining the
internal compression format.

[Function]void glCompressedTexSubImage2D target level xoffset yoffset width
height format imageSize data

Specify a two-dimensional texture subimage in a compressed format.

Chapter 3: GL 157

target Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_

CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_

TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_

NEGATIVE_Z.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

format Specifies the format of the compressed image data stored at address data.

imageSize Specifies the number of unsigned bytes of image data starting at the
address specified by data.

data Specifies a pointer to the compressed image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable two-dimensional texturing,
call glEnable and glDisable with argument GL_TEXTURE_2D. To enable and disable
texturing using cube-mapped texture, call glEnable and glDisable with argument
GL_TEXTURE_CUBE_MAP.

glCompressedTexSubImage2D redefines a contiguous subregion of an existing two-
dimensional texture image. The texels referenced by data replace the portion of the
existing texture array with x indices xoffset and xoffset+width-1, and the y indices
yoffset and yoffset+height-1, inclusive. This region may not include any texels outside
the range of the texture array as it was originally specified. It is not an error to specify
a subtexture with width of 0, but such a specification has no effect.

format must be an extension-specified compressed-texture format. The format of the
compressed texture image is selected by the GL implementation that compressed it
(see glTexImage2D) and should be queried at the time the texture was compressed
with glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

GL_INVALID_ENUM is generated if format is one of these generic compressed
internal formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_

COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SLUMINANCE, GL_COMPRESSED_SLUMINANCE_

ALPHA, GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA, or GL_COMPRESSED_SRGB_

ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, di-
mensions, and contents of the specified compressed image data.

Chapter 3: GL 158

GL_INVALID_OPERATION is generated if parameter combinations are not supported by
the specific compressed internal format as specified in the specific texture compression
extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexSubImage2D is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data
is not encoded in a manner consistent with the extension specification defining the
internal compression format.

[Function]void glCompressedTexSubImage3D target level xoffset yoffset zoffset
width height depth format imageSize data

Specify a three-dimensional texture subimage in a compressed format.

target Specifies the target texture. Must be GL_TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

depth Specifies the depth of the texture subimage.

format Specifies the format of the compressed image data stored at address data.

imageSize Specifies the number of unsigned bytes of image data starting at the
address specified by data.

data Specifies a pointer to the compressed image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable three-dimensional texturing,
call glEnable and glDisable with argument GL_TEXTURE_3D.

glCompressedTexSubImage3D redefines a contiguous subregion of an existing three-
dimensional texture image. The texels referenced by data replace the portion of the
existing texture array with x indices xoffset and xoffset+width-1, and the y indices
yoffset and yoffset+height-1, and the z indices zoffset and zoffset+depth-1, inclusive.
This region may not include any texels outside the range of the texture array as it
was originally specified. It is not an error to specify a subtexture with width of 0,
but such a specification has no effect.

Chapter 3: GL 159

format must be an extension-specified compressed-texture format. The format of the
compressed texture image is selected by the GL implementation that compressed it
(see glTexImage3D) and should be queried at the time the texture was compressed
with glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

GL_INVALID_ENUM is generated if format is one of these generic compressed
internal formats: GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_

COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SLUMINANCE, GL_COMPRESSED_SLUMINANCE_

ALPHA, GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGBA, or GL_COMPRESSED_SRGB_

ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, di-
mensions, and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by
the specific compressed internal format as specified in the specific texture compression
extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glCompressedTexSubImage3D is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

Undefined results, including abnormal program termination, are generated if data
is not encoded in a manner consistent with the extension specification defining the
internal compression format.

[Function]void glConvolutionFilter1D target internalformat width format type
data

Define a one-dimensional convolution filter.

target Must be GL_CONVOLUTION_1D.

internalformat
The internal format of the convolution filter kernel. The allowable
values are GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

Chapter 3: GL 160

width The width of the pixel array referenced by data.

format The format of the pixel data in data. The allowable values are GL_ALPHA,
GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_INTENSITY, GL_RGB, and GL_

RGBA.

type The type of the pixel data in data. Symbolic constants GL_

UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_

2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

data Pointer to a one-dimensional array of pixel data that is processed to build
the convolution filter kernel.

glConvolutionFilter1D builds a one-dimensional convolution filter kernel from an
array of pixels.

The pixel array specified by width, format, type, and data is extracted from memory
and processed just as if glDrawPixels were called, but processing stops after the final
expansion to RGBA is completed.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a convolution filter is specified, data is treated as a byte
offset into the buffer object’s data store.

The R, G, B, and A components of each pixel are next scaled by the four
1D GL_CONVOLUTION_FILTER_SCALE parameters and biased by the four 1D
GL_CONVOLUTION_FILTER_BIAS parameters. (The scale and bias parameters are
set by glConvolutionParameter using the GL_CONVOLUTION_1D target and the
names GL_CONVOLUTION_FILTER_SCALE and GL_CONVOLUTION_FILTER_BIAS. The
parameters themselves are vectors of four values that are applied to red, green, blue,
and alpha, in that order.) The R, G, B, and A values are not clamped to [0,1] at
any time during this process.

Each pixel is then converted to the internal format specified by internalformat. This
conversion simply maps the component values of the pixel (R, G, B, and A) to the val-
ues included in the internal format (red, green, blue, alpha, luminance, and intensity).
The mapping is as follows:

Internal Format
Red, Green, Blue, Alpha, Luminance, Intensity

GL_ALPHA , , , A , ,

GL_LUMINANCE

, , , , R ,

GL_LUMINANCE_ALPHA

, , , A , R ,

Chapter 3: GL 161

GL_INTENSITY

, , , , , R

GL_RGB R , G , B , , ,

GL_RGBA R , G , B , A , ,

The red, green, blue, alpha, luminance, and/or intensity components of the resulting
pixels are stored in floating-point rather than integer format. They form a one-
dimensional filter kernel image indexed with coordinate i such that i starts at 0 and
increases from left to right. Kernel location i is derived from the ith pixel, counting
from 0.

Note that after a convolution is performed, the resulting color components are also
scaled by their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased
by their corresponding GL_POST_CONVOLUTION_c_BIAS parameters (where c takes
on the values RED, GREEN, BLUE, and ALPHA). These parameters are set by
glPixelTransfer.

GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_1D.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum
supported value. This value may be queried with glGetConvolutionParameter using
target GL_CONVOLUTION_1D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_OPERATION is generated if format is one of GL_UNSIGNED_

BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and type is not GL_RGB.

GL_INVALID_OPERATION is generated if format is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and type is
neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glConvolutionFilter1D is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glConvolutionFilter2D target internalformat width height
format type data

Define a two-dimensional convolution filter.

Chapter 3: GL 162

target Must be GL_CONVOLUTION_2D.

internalformat
The internal format of the convolution filter kernel. The allowable
values are GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width The width of the pixel array referenced by data.

height The height of the pixel array referenced by data.

format The format of the pixel data in data. The allowable values are GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_
LUMINANCE, and GL_LUMINANCE_ALPHA.

type The type of the pixel data in data. Symbolic constants GL_

UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_

2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

data Pointer to a two-dimensional array of pixel data that is processed to build
the convolution filter kernel.

glConvolutionFilter2D builds a two-dimensional convolution filter kernel from an
array of pixels.

The pixel array specified by width, height, format, type, and data is extracted from
memory and processed just as if glDrawPixels were called, but processing stops after
the final expansion to RGBA is completed.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a convolution filter is specified, data is treated as a byte
offset into the buffer object’s data store.

The R, G, B, and A components of each pixel are next scaled by the four
2D GL_CONVOLUTION_FILTER_SCALE parameters and biased by the four 2D
GL_CONVOLUTION_FILTER_BIAS parameters. (The scale and bias parameters are
set by glConvolutionParameter using the GL_CONVOLUTION_2D target and the
names GL_CONVOLUTION_FILTER_SCALE and GL_CONVOLUTION_FILTER_BIAS. The
parameters themselves are vectors of four values that are applied to red, green, blue,
and alpha, in that order.) The R, G, B, and A values are not clamped to [0,1] at
any time during this process.

Chapter 3: GL 163

Each pixel is then converted to the internal format specified by internalformat. This
conversion simply maps the component values of the pixel (R, G, B, and A) to the val-
ues included in the internal format (red, green, blue, alpha, luminance, and intensity).
The mapping is as follows:

Internal Format
Red, Green, Blue, Alpha, Luminance, Intensity

GL_ALPHA , , , A , ,

GL_LUMINANCE

, , , , R ,

GL_LUMINANCE_ALPHA

, , , A , R ,

GL_INTENSITY

, , , , , R

GL_RGB R , G , B , , ,

GL_RGBA R , G , B , A , ,

The red, green, blue, alpha, luminance, and/or intensity components of the resulting
pixels are stored in floating-point rather than integer format. They form a two-
dimensional filter kernel image indexed with coordinates i and j such that i starts at
zero and increases from left to right, and j starts at zero and increases from bottom
to top. Kernel location i,j is derived from the Nth pixel, where N is i+j*width.

Note that after a convolution is performed, the resulting color components are also
scaled by their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased
by their corresponding GL_POST_CONVOLUTION_c_BIAS parameters (where c takes
on the values RED, GREEN, BLUE, and ALPHA). These parameters are set by
glPixelTransfer.

GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_2D.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum
supported value. This value may be queried with glGetConvolutionParameter using
target GL_CONVOLUTION_2D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_VALUE is generated if height is less than zero or greater than the maxi-
mum supported value. This value may be queried with glGetConvolutionParameter

using target GL_CONVOLUTION_2D and name GL_MAX_CONVOLUTION_HEIGHT.

GL_INVALID_OPERATION is generated if height is one of GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_

SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if height is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,

Chapter 3: GL 164

GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glConvolutionFilter2D is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glConvolutionParameterf target pname params
[Function]void glConvolutionParameteri target pname params
[Function]void glConvolutionParameterfv target pname params
[Function]void glConvolutionParameteriv target pname params

Set convolution parameters.

target The target for the convolution parameter. Must be one of
GL_CONVOLUTION_1D, GL_CONVOLUTION_2D, or GL_SEPARABLE_2D.

pname The parameter to be set. Must be GL_CONVOLUTION_BORDER_MODE.

params The parameter value. Must be one of GL_REDUCE, GL_CONSTANT_BORDER,
GL_REPLICATE_BORDER.

glConvolutionParameter sets the value of a convolution parameter.

target selects the convolution filter to be affected: GL_CONVOLUTION_1D,
GL_CONVOLUTION_2D, or GL_SEPARABLE_2D for the 1D, 2D, or separable 2D filter,
respectively.

pname selects the parameter to be changed. GL_CONVOLUTION_FILTER_SCALE and
GL_CONVOLUTION_FILTER_BIAS affect the definition of the convolution filter kernel;
see glConvolutionFilter1D, glConvolutionFilter2D, and glSeparableFilter2D

for details. In these cases, paramsv is an array of four values to be applied to red,
green, blue, and alpha values, respectively. The initial value for GL_CONVOLUTION_

FILTER_SCALE is (1, 1, 1, 1), and the initial value for GL_CONVOLUTION_FILTER_BIAS
is (0, 0, 0, 0).

A pname value of GL_CONVOLUTION_BORDER_MODE controls the convolution border
mode. The accepted modes are:

GL_REDUCE

The image resulting from convolution is smaller than the source image.
If the filter width is Wf and height is Hf , and the source image width is
Ws and height is Hs, then the convolved image width will be Ws-Wf +1
and height will be Hs-Hf +1. (If this reduction would generate an image
with zero or negative width and/or height, the output is simply null,

Chapter 3: GL 165

with no error generated.) The coordinates of the image resulting from
convolution are zero through Ws-Wf in width and zero through Hs-Hf
in height.

GL_CONSTANT_BORDER

The image resulting from convolution is the same size as the source image,
and processed as if the source image were surrounded by pixels with their
color specified by the GL_CONVOLUTION_BORDER_COLOR.

GL_REPLICATE_BORDER

The image resulting from convolution is the same size as the source image,
and processed as if the outermost pixel on the border of the source image
were replicated.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is GL_CONVOLUTION_BORDER_MODE and
params is not one of GL_REDUCE, GL_CONSTANT_BORDER, or GL_REPLICATE_BORDER.

GL_INVALID_OPERATION is generated if glConvolutionParameter is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glCopyColorSubTable target start x y width
Respecify a portion of a color table.

target Must be one of GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE,
or GL_POST_COLOR_MATRIX_COLOR_TABLE.

start The starting index of the portion of the color table to be replaced.

x
y The window coordinates of the left corner of the row of pixels to be copied.

width The number of table entries to replace.

glCopyColorSubTable is used to respecify a contiguous portion of a color table pre-
viously defined using glColorTable. The pixels copied from the framebuffer replace
the portion of the existing table from indices start to start+x-1, inclusive. This region
may not include any entries outside the range of the color table, as was originally
specified. It is not an error to specify a subtexture with width of 0, but such a
specification has no effect.

GL_INVALID_VALUE is generated if target is not a previously defined color table.

GL_INVALID_VALUE is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if start+x>width.

GL_INVALID_OPERATION is generated if glCopyColorSubTable is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glCopyColorTable target internalformat x y width
Copy pixels into a color table.

target The color table target. Must be GL_COLOR_TABLE, GL_POST_

CONVOLUTION_COLOR_TABLE, or GL_POST_COLOR_MATRIX_COLOR_TABLE.

Chapter 3: GL 166

internalformat
The internal storage format of the texture image. Must be one of
the following symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8,
GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_

LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA,
GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_

ALPHA8, GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4, GL_

INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_R3_G3_B2, GL_RGB,
GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA,
GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12,
or GL_RGBA16.

x The x coordinate of the lower-left corner of the pixel rectangle to be
transferred to the color table.

y The y coordinate of the lower-left corner of the pixel rectangle to be
transferred to the color table.

width The width of the pixel rectangle.

glCopyColorTable loads a color table with pixels from the current GL_READ_BUFFER
(rather than from main memory, as is the case for glColorTable).

The screen-aligned pixel rectangle with lower-left corner at (x,\ y) having width width
and height 1 is loaded into the color table. If any pixels within this region are outside
the window that is associated with the GL context, the values obtained for those
pixels are undefined.

The pixels in the rectangle are processed just as if glReadPixels were called, with
internalformat set to RGBA, but processing stops after the final conversion to RGBA.

The four scale parameters and the four bias parameters that are defined for the table
are then used to scale and bias the R, G, B, and A components of each pixel. The
scale and bias parameters are set by calling glColorTableParameter.

Next, the R, G, B, and A values are clamped to the range [0,1]. Each pixel is then
converted to the internal format specified by internalformat. This conversion simply
maps the component values of the pixel (R, G, B, and A) to the values included in
the internal format (red, green, blue, alpha, luminance, and intensity). The mapping
is as follows:

Internal Format
Red, Green, Blue, Alpha, Luminance, Intensity

GL_ALPHA , , , A , ,

GL_LUMINANCE

, , , , R ,

GL_LUMINANCE_ALPHA

, , , A , R ,

GL_INTENSITY

, , , , , R

Chapter 3: GL 167

GL_RGB R , G , B , , ,

GL_RGBA R , G , B , A , ,

Finally, the red, green, blue, alpha, luminance, and/or intensity components of the
resulting pixels are stored in the color table. They form a one-dimensional table with
indices in the range [0,width-1].

GL_INVALID_ENUM is generated when target is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero.

GL_INVALID_VALUE is generated if internalformat is not one of the allowable values.

GL_TABLE_TOO_LARGE is generated if the requested color table is too large to be sup-
ported by the implementation.

GL_INVALID_OPERATION is generated if glCopyColorTable is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glCopyConvolutionFilter1D target internalformat x y width
Copy pixels into a one-dimensional convolution filter.

target Must be GL_CONVOLUTION_1D.

internalformat
The internal format of the convolution filter kernel. The allowable
values are GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

x
y The window space coordinates of the lower-left coordinate of the pixel

array to copy.

width The width of the pixel array to copy.

glCopyConvolutionFilter1D defines a one-dimensional convolution filter kernel with
pixels from the current GL_READ_BUFFER (rather than from main memory, as is the
case for glConvolutionFilter1D).

The screen-aligned pixel rectangle with lower-left corner at (x,\ y), width width and
height 1 is used to define the convolution filter. If any pixels within this region are
outside the window that is associated with the GL context, the values obtained for
those pixels are undefined.

The pixels in the rectangle are processed exactly as if glReadPixels had been called
with format set to RGBA, but the process stops just before final conversion. The R, G,
B, and A components of each pixel are next scaled by the four 1D GL_CONVOLUTION_

FILTER_SCALE parameters and biased by the four 1D GL_CONVOLUTION_FILTER_BIAS

Chapter 3: GL 168

parameters. (The scale and bias parameters are set by glConvolutionParameter

using the GL_CONVOLUTION_1D target and the names GL_CONVOLUTION_FILTER_SCALE
and GL_CONVOLUTION_FILTER_BIAS. The parameters themselves are vectors of four
values that are applied to red, green, blue, and alpha, in that order.) The R, G, B,
and A values are not clamped to [0,1] at any time during this process.

Each pixel is then converted to the internal format specified by internalformat. This
conversion simply maps the component values of the pixel (R, G, B, and A) to the val-
ues included in the internal format (red, green, blue, alpha, luminance, and intensity).
The mapping is as follows:

Internal Format
Red, Green, Blue, Alpha, Luminance, Intensity

GL_ALPHA , , , A , ,

GL_LUMINANCE

, , , , R ,

GL_LUMINANCE_ALPHA

, , , A , R ,

GL_INTENSITY

, , , , , R

GL_RGB R , G , B , , ,

GL_RGBA R , G , B , A , ,

The red, green, blue, alpha, luminance, and/or intensity components of the resulting
pixels are stored in floating-point rather than integer format.

Pixel ordering is such that lower x screen coordinates correspond to lower i filter
image coordinates.

Note that after a convolution is performed, the resulting color components are also
scaled by their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased
by their corresponding GL_POST_CONVOLUTION_c_BIAS parameters (where c takes
on the values RED, GREEN, BLUE, and ALPHA). These parameters are set by
glPixelTransfer.

GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_1D.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum
supported value. This value may be queried with glGetConvolutionParameter using
target GL_CONVOLUTION_1D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_OPERATION is generated if glCopyConvolutionFilter1D is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glCopyConvolutionFilter2D target internalformat x y width
height

Copy pixels into a two-dimensional convolution filter.

target Must be GL_CONVOLUTION_2D.

Chapter 3: GL 169

internalformat
The internal format of the convolution filter kernel. The allowable
values are GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

x
y The window space coordinates of the lower-left coordinate of the pixel

array to copy.

width The width of the pixel array to copy.

height The height of the pixel array to copy.

glCopyConvolutionFilter2D defines a two-dimensional convolution filter kernel with
pixels from the current GL_READ_BUFFER (rather than from main memory, as is the
case for glConvolutionFilter2D).

The screen-aligned pixel rectangle with lower-left corner at (x,\ y), width width and
height height is used to define the convolution filter. If any pixels within this region
are outside the window that is associated with the GL context, the values obtained
for those pixels are undefined.

The pixels in the rectangle are processed exactly as if glReadPixels had been called
with format set to RGBA, but the process stops just before final conversion. The R, G,
B, and A components of each pixel are next scaled by the four 2D GL_CONVOLUTION_

FILTER_SCALE parameters and biased by the four 2D GL_CONVOLUTION_FILTER_BIAS

parameters. (The scale and bias parameters are set by glConvolutionParameter

using the GL_CONVOLUTION_2D target and the names GL_CONVOLUTION_FILTER_SCALE
and GL_CONVOLUTION_FILTER_BIAS. The parameters themselves are vectors of four
values that are applied to red, green, blue, and alpha, in that order.) The R, G, B,
and A values are not clamped to [0,1] at any time during this process.

Each pixel is then converted to the internal format specified by internalformat. This
conversion simply maps the component values of the pixel (R, G, B, and A) to the val-
ues included in the internal format (red, green, blue, alpha, luminance, and intensity).
The mapping is as follows:

Internal Format
Red, Green, Blue, Alpha, Luminance, Intensity

GL_ALPHA , , , A , ,

GL_LUMINANCE

, , , , R ,

GL_LUMINANCE_ALPHA

, , , A , R ,

Chapter 3: GL 170

GL_INTENSITY

, , , , , R

GL_RGB R , G , B , , ,

GL_RGBA R , G , B , A , ,

The red, green, blue, alpha, luminance, and/or intensity components of the resulting
pixels are stored in floating-point rather than integer format.

Pixel ordering is such that lower x screen coordinates correspond to lower i filter
image coordinates, and lower y screen coordinates correspond to lower j filter image
coordinates.

Note that after a convolution is performed, the resulting color components are also
scaled by their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased
by their corresponding GL_POST_CONVOLUTION_c_BIAS parameters (where c takes
on the values RED, GREEN, BLUE, and ALPHA). These parameters are set by
glPixelTransfer.

GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_2D.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum
supported value. This value may be queried with glGetConvolutionParameter using
target GL_CONVOLUTION_2D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_VALUE is generated if height is less than zero or greater than the maxi-
mum supported value. This value may be queried with glGetConvolutionParameter

using target GL_CONVOLUTION_2D and name GL_MAX_CONVOLUTION_HEIGHT.

GL_INVALID_OPERATION is generated if glCopyConvolutionFilter2D is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glCopyPixels x y width height type
Copy pixels in the frame buffer.

x
y Specify the window coordinates of the lower left corner of the rectangular

region of pixels to be copied.

width
height Specify the dimensions of the rectangular region of pixels to be copied.

Both must be nonnegative.

type Specifies whether color values, depth values, or stencil values are to be
copied. Symbolic constants GL_COLOR, GL_DEPTH, and GL_STENCIL are
accepted.

glCopyPixels copies a screen-aligned rectangle of pixels from the specified frame
buffer location to a region relative to the current raster position. Its operation is
well defined only if the entire pixel source region is within the exposed portion of the
window. Results of copies from outside the window, or from regions of the window
that are not exposed, are hardware dependent and undefined.

Chapter 3: GL 171

x and y specify the window coordinates of the lower left corner of the rectangular
region to be copied. width and height specify the dimensions of the rectangular region
to be copied. Both width and height must not be negative.

Several parameters control the processing of the pixel data while it is being copied.
These parameters are set with three commands: glPixelTransfer, glPixelMap, and
glPixelZoom. This reference page describes the effects on glCopyPixels of most, but
not all, of the parameters specified by these three commands.

glCopyPixels copies values from each pixel with the lower left-hand corner at
(x+i,y+j) for 0<=i<width and 0<=j<height. This pixel is said to be the ith pixel in
the jth row. Pixels are copied in row order from the lowest to the highest row, left
to right in each row.

type specifies whether color, depth, or stencil data is to be copied. The details of the
transfer for each data type are as follows:

GL_COLOR Indices or RGBA colors are read from the buffer currently specified as
the read source buffer (see glReadBuffer). If the GL is in color index
mode, each index that is read from this buffer is converted to a fixed-
point format with an unspecified number of bits to the right of the binary
point. Each index is then shifted left by GL_INDEX_SHIFT bits, and added
to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the
right. In either case, zero bits fill otherwise unspecified bit locations in
the result. If GL_MAP_COLOR is true, the index is replaced with the value
that it references in lookup table GL_PIXEL_MAP_I_TO_I. Whether the
lookup replacement of the index is done or not, the integer part of the
index is then ANDed with 2^b-1, where b is the number of bits in a color
index buffer.

If the GL is in RGBA mode, the red, green, blue, and alpha components
of each pixel that is read are converted to an internal floating-point format
with unspecified precision. The conversion maps the largest representable
component value to 1.0, and component value 0 to 0.0. The resulting
floating-point color values are then multiplied by GL_c_SCALE and added
to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the
respective color components. The results are clamped to the range [0,1].
If GL_MAP_COLOR is true, each color component is scaled by the size of
lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value that it
references in that table. c is R, G, B, or A.

If the ARB_imaging extension is supported, the color values may be addi-
tionally processed by color-table lookups, color-matrix transformations,
and convolution filters.

The GL then converts the resulting indices or RGBA colors to fragments
by attaching the current raster position z coordinate and texture coor-
dinates to each pixel, then assigning window coordinates (x r+i,y r+j),
where (x r,y r) is the current raster position, and the pixel was the ith
pixel in the jth row. These pixel fragments are then treated just like
the fragments generated by rasterizing points, lines, or polygons. Tex-

Chapter 3: GL 172

ture mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

GL_DEPTH Depth values are read from the depth buffer and converted directly to an
internal floating-point format with unspecified precision. The resulting
floating-point depth value is then multiplied by GL_DEPTH_SCALE and
added to GL_DEPTH_BIAS. The result is clamped to the range [0,1].

The GL then converts the resulting depth components to fragments by
attaching the current raster position color or color index and texture co-
ordinates to each pixel, then assigning window coordinates (x r+i,y r+j),
where (x r,y r) is the current raster position, and the pixel was the ith
pixel in the jth row. These pixel fragments are then treated just like
the fragments generated by rasterizing points, lines, or polygons. Tex-
ture mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

GL_STENCIL

Stencil indices are read from the stencil buffer and converted to an in-
ternal fixed-point format with an unspecified number of bits to the right
of the binary point. Each fixed-point index is then shifted left by GL_

INDEX_SHIFT bits, and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT
is negative, the shift is to the right. In either case, zero bits fill other-
wise unspecified bit locations in the result. If GL_MAP_STENCIL is true,
the index is replaced with the value that it references in lookup table
GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is
done or not, the integer part of the index is then ANDed with 2^b-1,
where b is the number of bits in the stencil buffer. The resulting stencil
indices are then written to the stencil buffer such that the index read from
the ith location of the jth row is written to location (x r+i,y r+j), where
(x r,y r) is the current raster position. Only the pixel ownership test,
the scissor test, and the stencil writemask affect these write operations.

The rasterization described thus far assumes pixel zoom factors of 1.0. If glPixelZoom
is used to change the x and y pixel zoom factors, pixels are converted to fragments
as follows. If (x r,y r) is the current raster position, and a given pixel is in the ith
location in the jth row of the source pixel rectangle, then fragments are generated for
pixels whose centers are in the rectangle with corners at

(x r+zoom x,i,y r+zoom y,j)

and

(x r+zoom x,(i+1,),y r+zoom y,(j+1,))

where zoom x is the value of GL_ZOOM_X and zoom y is the value of GL_ZOOM_Y.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if type is GL_DEPTH and there is no depth buffer.

GL_INVALID_OPERATION is generated if type is GL_STENCIL and there is no stencil
buffer.

Chapter 3: GL 173

GL_INVALID_OPERATION is generated if glCopyPixels is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glCopyTexImage1D target level internalformat x y width border
Copy pixels into a 1D texture image.

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

internalformat
Specifies the internal format of the texture. Must be one of the following
symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,
GL_ALPHA16, GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY,
GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT, GL_
DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, GL_RGBA16,
GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, GL_

SLUMINANCE8_ALPHA8, GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or
GL_SRGB8_ALPHA8.

x
y Specify the window coordinates of the left corner of the row of pixels to

be copied.

width Specifies the width of the texture image. Must be 0 or 2^n+2(border,)
for some integer n. The height of the texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

glCopyTexImage1D defines a one-dimensional texture image with pixels from the cur-
rent GL_READ_BUFFER.

The screen-aligned pixel row with left corner at (x,y) and with a length of
width+2(border,) defines the texture array at the mipmap level specified by level.
internalformat specifies the internal format of the texture array.

The pixels in the row are processed exactly as if glCopyPixels had been called, but
the process stops just before final conversion. At this point all pixel component values
are clamped to the range [0,1] and then converted to the texture’s internal format for
storage in the texel array.

Pixel ordering is such that lower x screen coordinates correspond to lower texture
coordinates.

Chapter 3: GL 174

If any of the pixels within the specified row of the current GL_READ_BUFFER are outside
the window associated with the current rendering context, then the values obtained
for those pixels are undefined.

glCopyTexImage1D defines a one-dimensional texture image with pixels from the cur-
rent GL_READ_BUFFER.

When internalformat is one of the sRGB types, the GL does not automatically convert
the source pixels to the sRGB color space. In this case, the glPixelMap function can
be used to accomplish the conversion.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not an allowable value.

GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 + GL_MAX_

TEXTURE_SIZE.

GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and
the width cannot be represented as 2^n+2(border,) for some integer value of n.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glCopyTexImage1D is executed between the
execution of glBegin and the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if internalformat is GL_DEPTH_COMPONENT, GL_
DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32 and there
is no depth buffer.

[Function]void glCopyTexImage2D target level internalformat x y width height
border

Copy pixels into a 2D texture image.

target Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_

CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_

TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_

NEGATIVE_Z.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

internalformat
Specifies the internal format of the texture. Must be one of the following
symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,
GL_ALPHA16, GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY,
GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT, GL_
DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,

Chapter 3: GL 175

GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, GL_RGBA16,
GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, GL_

SLUMINANCE8_ALPHA8, GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or
GL_SRGB8_ALPHA8.

x
y Specify the window coordinates of the lower left corner of the rectangular

region of pixels to be copied.

width Specifies the width of the texture image. Must be 0 or 2^n+2(border,)
for some integer n.

height Specifies the height of the texture image. Must be 0 or 2^m+2(border,)
for some integer m.

border Specifies the width of the border. Must be either 0 or 1.

glCopyTexImage2D defines a two-dimensional texture image, or cube-map texture
image with pixels from the current GL_READ_BUFFER.

The screen-aligned pixel rectangle with lower left corner at (x, y) and with a width of
width+2(border,) and a height of height+2(border,) defines the texture array at the
mipmap level specified by level. internalformat specifies the internal format of the
texture array.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called,
but the process stops just before final conversion. At this point all pixel component
values are clamped to the range [0,1] and then converted to the texture’s internal
format for storage in the texel array.

Pixel ordering is such that lower x and y screen coordinates correspond to lower s
and t texture coordinates.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are
outside the window associated with the current rendering context, then the values
obtained for those pixels are undefined.

When internalformat is one of the sRGB types, the GL does not automatically convert
the source pixels to the sRGB color space. In this case, the glPixelMap function can
be used to accomplish the conversion.

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D, GL_TEXTURE_

CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_

MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_

POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2max, where max
is the returned value of GL_MAX_TEXTURE_SIZE.

Chapter 3: GL 176

GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 + GL_MAX_

TEXTURE_SIZE.

GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and
the width or depth cannot be represented as 2^k+2(border,) for some integer k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_VALUE is generated if internalformat is not an accepted format.

GL_INVALID_OPERATION is generated if glCopyTexImage2D is executed between the
execution of glBegin and the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if internalformat is GL_DEPTH_COMPONENT, GL_
DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32 and there
is no depth buffer.

[Function]void glCopyTexSubImage1D target level xoffset x y width
Copy a one-dimensional texture subimage.

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

xoffset Specifies the texel offset within the texture array.

x
y Specify the window coordinates of the left corner of the row of pixels to

be copied.

width Specifies the width of the texture subimage.

glCopyTexSubImage1D replaces a portion of a one-dimensional texture image with
pixels from the current GL_READ_BUFFER (rather than from main memory, as is the
case for glTexSubImage1D).

The screen-aligned pixel row with left corner at (x,\ y), and with length width re-
places the portion of the texture array with x indices xoffset through xoffset+width-1,
inclusive. The destination in the texture array may not include any texels outside the
texture array as it was originally specified.

The pixels in the row are processed exactly as if glCopyPixels had been called, but
the process stops just before final conversion. At this point, all pixel component
values are clamped to the range [0,1] and then converted to the texture’s internal
format for storage in the texel array.

It is not an error to specify a subtexture with zero width, but such a specification has
no effect. If any of the pixels within the specified row of the current GL_READ_BUFFER
are outside the read window associated with the current rendering context, then the
values obtained for those pixels are undefined.

No change is made to the internalformat, width, or border parameters of the specified
texture array or to texel values outside the specified subregion.

GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_1D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous glTexImage1D or glCopyTexImage1D operation.

Chapter 3: GL 177

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level>log 2(max,), where max is the returned
value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if xoffset<-b, or (xoffset+width,)>(w-b,), where w is
the GL_TEXTURE_WIDTH and b is the GL_TEXTURE_BORDER of the texture image being
modified. Note that w includes twice the border width.

[Function]void glCopyTexSubImage2D target level xoffset yoffset x y width height
Copy a two-dimensional texture subimage.

target Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_

CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_

TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_

NEGATIVE_Z.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

x
y Specify the window coordinates of the lower left corner of the rectangular

region of pixels to be copied.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

glCopyTexSubImage2D replaces a rectangular portion of a two-dimensional texture
image or cube-map texture image with pixels from the current GL_READ_BUFFER

(rather than from main memory, as is the case for glTexSubImage2D).

The screen-aligned pixel rectangle with lower left corner at (x,y) and with width width
and height height replaces the portion of the texture array with x indices xoffset
through xoffset+width-1, inclusive, and y indices yoffset through yoffset+height-1,
inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called,
but the process stops just before final conversion. At this point, all pixel component
values are clamped to the range [0,1] and then converted to the texture’s internal
format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the
texture array as it was originally specified. It is not an error to specify a subtexture
with zero width or height, but such a specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER

are outside the read window associated with the current rendering context, then the
values obtained for those pixels are undefined.

No change is made to the internalformat, width, height, or border parameters of the
specified texture array or to texel values outside the specified subregion.

Chapter 3: GL 178

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D, GL_TEXTURE_

CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_

MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_

POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous glTexImage2D or glCopyTexImage2D operation.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level>log 2(max,), where max is the returned
value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if xoffset<-b, (xoffset+width,)>(w-b,), yoffset<-b, or
(yoffset+height,)>(h-b,), where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_

HEIGHT, and b is the GL_TEXTURE_BORDER of the texture image being modified. Note
that w and h include twice the border width.

GL_INVALID_OPERATION is generated if glCopyTexSubImage2D is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glCopyTexSubImage3D target level xoffset yoffset zoffset x y width
height

Copy a three-dimensional texture subimage.

target Specifies the target texture. Must be GL_TEXTURE_3D

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

x
y Specify the window coordinates of the lower left corner of the rectangular

region of pixels to be copied.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

glCopyTexSubImage3D replaces a rectangular portion of a three-dimensional texture
image with pixels from the current GL_READ_BUFFER (rather than from main memory,
as is the case for glTexSubImage3D).

The screen-aligned pixel rectangle with lower left corner at (x,\ y) and with width
width and height height replaces the portion of the texture array with x indices xoffset
through xoffset+width-1, inclusive, and y indices yoffset through yoffset+height-1,
inclusive, at z index zoffset and at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called,
but the process stops just before final conversion. At this point, all pixel component
values are clamped to the range [0,1] and then converted to the texture’s internal
format for storage in the texel array.

Chapter 3: GL 179

The destination rectangle in the texture array may not include any texels outside the
texture array as it was originally specified. It is not an error to specify a subtexture
with zero width or height, but such a specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER

are outside the read window associated with the current rendering context, then the
values obtained for those pixels are undefined.

No change is made to the internalformat, width, height, depth, or border parameters
of the specified texture array or to texel values outside the specified subregion.

GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_3D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous glTexImage3D operation.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level>log 2(max,), where max is the returned
value of GL_MAX_3D_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if xoffset<-b, (xoffset+width,)>(w-b,), yoffset<-b,
(yoffset+height,)>(h-b,), zoffset<-b, or (zoffset+1,)>(d-b,), where w is the
GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH, and
b is the GL_TEXTURE_BORDER of the texture image being modified. Note that w , h,
and d include twice the border width.

GL_INVALID_OPERATION is generated if glCopyTexSubImage3D is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]GLuint glCreateProgram
Creates a program object.

glCreateProgram creates an empty program object and returns a non-zero value by
which it can be referenced. A program object is an object to which shader objects
can be attached. This provides a mechanism to specify the shader objects that will
be linked to create a program. It also provides a means for checking the compatibility
of the shaders that will be used to create a program (for instance, checking the
compatibility between a vertex shader and a fragment shader). When no longer
needed as part of a program object, shader objects can be detached.

One or more executables are created in a program object by successfully
attaching shader objects to it with glAttachShader, successfully compiling the
shader objects with glCompileShader, and successfully linking the program
object with glLinkProgram. These executables are made part of current state
when glUseProgram is called. Program objects can be deleted by calling
glDeleteProgram. The memory associated with the program object will be deleted
when it is no longer part of current rendering state for any context.

This function returns 0 if an error occurs creating the program object.

GL_INVALID_OPERATION is generated if glCreateProgram is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]GLuint glCreateShader shaderType
Creates a shader object.

Chapter 3: GL 180

shaderType
Specifies the type of shader to be created. Must be either GL_VERTEX_

SHADER or GL_FRAGMENT_SHADER.

glCreateShader creates an empty shader object and returns a non-zero value by
which it can be referenced. A shader object is used to maintain the source code
strings that define a shader. shaderType indicates the type of shader to be created.
Two types of shaders are supported. A shader of type GL_VERTEX_SHADER is a shader
that is intended to run on the programmable vertex processor and replace the fixed
functionality vertex processing in OpenGL. A shader of type GL_FRAGMENT_SHADER is
a shader that is intended to run on the programmable fragment processor and replace
the fixed functionality fragment processing in OpenGL.

When created, a shader object’s GL_SHADER_TYPE parameter is set to either GL_

VERTEX_SHADER or GL_FRAGMENT_SHADER, depending on the value of shaderType.

This function returns 0 if an error occurs creating the shader object.

GL_INVALID_ENUM is generated if shaderType is not an accepted value.

GL_INVALID_OPERATION is generated if glCreateShader is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glCullFace mode
Specify whether front- or back-facing facets can be culled.

mode Specifies whether front- or back-facing facets are candidates for culling.
Symbolic constants GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK are ac-
cepted. The initial value is GL_BACK.

glCullFace specifies whether front- or back-facing facets are culled (as specified by
mode) when facet culling is enabled. Facet culling is initially disabled. To enable and
disable facet culling, call the glEnable and glDisable commands with the argument
GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons, and rectangles.

glFrontFace specifies which of the clockwise and counterclockwise facets are front-
facing and back-facing. See glFrontFace.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glCullFace is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glDeleteBuffers n buffers
Delete named buffer objects.

n Specifies the number of buffer objects to be deleted.

buffers Specifies an array of buffer objects to be deleted.

glDeleteBuffers deletes n buffer objects named by the elements of the array buffers.
After a buffer object is deleted, it has no contents, and its name is free for reuse (for
example by glGenBuffers). If a buffer object that is currently bound is deleted, the
binding reverts to 0 (the absence of any buffer object, which reverts to client memory
usage).

Chapter 3: GL 181

glDeleteBuffers silently ignores 0’s and names that do not correspond to existing
buffer objects.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glDeleteBuffers is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glDeleteLists list range
Delete a contiguous group of display lists.

list Specifies the integer name of the first display list to delete.

range Specifies the number of display lists to delete.

glDeleteLists causes a contiguous group of display lists to be deleted. list is the
name of the first display list to be deleted, and range is the number of display lists
to delete. All display lists d with list<=d<=list+range-1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names
are available for reuse at a later time. Names within the range that do not have an
associated display list are ignored. If range is 0, nothing happens.

GL_INVALID_VALUE is generated if range is negative.

GL_INVALID_OPERATION is generated if glDeleteLists is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glDeleteProgram program
Deletes a program object.

program Specifies the program object to be deleted.

glDeleteProgram frees the memory and invalidates the name associated with the
program object specified by program. This command effectively undoes the effects of
a call to glCreateProgram.

If a program object is in use as part of current rendering state, it will be flagged for
deletion, but it will not be deleted until it is no longer part of current state for any
rendering context. If a program object to be deleted has shader objects attached to
it, those shader objects will be automatically detached but not deleted unless they
have already been flagged for deletion by a previous call to glDeleteShader. A value
of 0 for program will be silently ignored.

To determine whether a program object has been flagged for deletion, call
glGetProgram with arguments program and GL_DELETE_STATUS.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if glDeleteProgram is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glDeleteQueries n ids
Delete named query objects.

n Specifies the number of query objects to be deleted.

ids Specifies an array of query objects to be deleted.

Chapter 3: GL 182

glDeleteQueries deletes n query objects named by the elements of the array ids.
After a query object is deleted, it has no contents, and its name is free for reuse (for
example by glGenQueries).

glDeleteQueries silently ignores 0’s and names that do not correspond to existing
query objects.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glDeleteQueries is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glDeleteShader shader
Deletes a shader object.

shader Specifies the shader object to be deleted.

glDeleteShader frees the memory and invalidates the name associated with the
shader object specified by shader. This command effectively undoes the effects of a
call to glCreateShader.

If a shader object to be deleted is attached to a program object, it will be flagged for
deletion, but it will not be deleted until it is no longer attached to any program object,
for any rendering context (i.e., it must be detached from wherever it was attached
before it will be deleted). A value of 0 for shader will be silently ignored.

To determine whether an object has been flagged for deletion, call glGetShader with
arguments shader and GL_DELETE_STATUS.

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if glDeleteShader is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glDeleteTextures n textures
Delete named textures.

n Specifies the number of textures to be deleted.

textures Specifies an array of textures to be deleted.

glDeleteTextures deletes n textures named by the elements of the array textures.
After a texture is deleted, it has no contents or dimensionality, and its name is free
for reuse (for example by glGenTextures). If a texture that is currently bound is
deleted, the binding reverts to 0 (the default texture).

glDeleteTextures silently ignores 0’s and names that do not correspond to existing
textures.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glDeleteTextures is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glDepthFunc func
Specify the value used for depth buffer comparisons.

func Specifies the depth comparison function. Symbolic constants GL_NEVER,
GL_LESS, GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL,
and GL_ALWAYS are accepted. The initial value is GL_LESS.

Chapter 3: GL 183

glDepthFunc specifies the function used to compare each incoming pixel depth value
with the depth value present in the depth buffer. The comparison is performed only
if depth testing is enabled. (See glEnable and glDisable of GL_DEPTH_TEST.)

func specifies the conditions under which the pixel will be drawn. The comparison
functions are as follows:

GL_NEVER Never passes.

GL_LESS Passes if the incoming depth value is less than the stored depth value.

GL_EQUAL Passes if the incoming depth value is equal to the stored depth value.

GL_LEQUAL

Passes if the incoming depth value is less than or equal to the stored
depth value.

GL_GREATER

Passes if the incoming depth value is greater than the stored depth value.

GL_NOTEQUAL

Passes if the incoming depth value is not equal to the stored depth value.

GL_GEQUAL

Passes if the incoming depth value is greater than or equal to the stored
depth value.

GL_ALWAYS

Always passes.

The initial value of func is GL_LESS. Initially, depth testing is disabled. If depth
testing is disabled or if no depth buffer exists, it is as if the depth test always passes.

GL_INVALID_ENUM is generated if func is not an accepted value.

GL_INVALID_OPERATION is generated if glDepthFunc is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glDepthMask flag
Enable or disable writing into the depth buffer.

flag Specifies whether the depth buffer is enabled for writing. If flag is GL_

FALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially,
depth buffer writing is enabled.

glDepthMask specifies whether the depth buffer is enabled for writing. If flag is GL_
FALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth
buffer writing is enabled.

GL_INVALID_OPERATION is generated if glDepthMask is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glDepthRange nearVal farVal
Specify mapping of depth values from normalized device coordinates to window co-
ordinates.

nearVal Specifies the mapping of the near clipping plane to window coordinates.
The initial value is 0.

Chapter 3: GL 184

farVal Specifies the mapping of the far clipping plane to window coordinates.
The initial value is 1.

After clipping and division by w, depth coordinates range from -1 to 1, corresponding
to the near and far clipping planes. glDepthRange specifies a linear mapping of the
normalized depth coordinates in this range to window depth coordinates. Regardless
of the actual depth buffer implementation, window coordinate depth values are treated
as though they range from 0 through 1 (like color components). Thus, the values
accepted by glDepthRange are both clamped to this range before they are accepted.

The setting of (0,1) maps the near plane to 0 and the far plane to 1. With this
mapping, the depth buffer range is fully utilized.

GL_INVALID_OPERATION is generated if glDepthRange is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glDetachShader program shader
Detaches a shader object from a program object to which it is attached.

program Specifies the program object from which to detach the shader object.

shader Specifies the shader object to be detached.

glDetachShader detaches the shader object specified by shader from the program
object specified by program. This command can be used to undo the effect of the
command glAttachShader.

If shader has already been flagged for deletion by a call to glDeleteShader and it is
not attached to any other program object, it will be deleted after it has been detached.

GL_INVALID_VALUE is generated if either program or shader is a value that was not
generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_OPERATION is generated if shader is not a shader object.

GL_INVALID_OPERATION is generated if shader is not attached to program.

GL_INVALID_OPERATION is generated if glDetachShader is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glDrawArrays mode first count
Render primitives from array data.

mode Specifies what kind of primitives to render. Symbolic constants
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_

STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS,
and GL_POLYGON are accepted.

first Specifies the starting index in the enabled arrays.

count Specifies the number of indices to be rendered.

glDrawArrays specifies multiple geometric primitives with very few subroutine calls.
Instead of calling a GL procedure to pass each individual vertex, normal, texture
coordinate, edge flag, or color, you can prespecify separate arrays of vertices, normals,

Chapter 3: GL 185

and colors and use them to construct a sequence of primitives with a single call to
glDrawArrays.

When glDrawArrays is called, it uses count sequential elements from each enabled
array to construct a sequence of geometric primitives, beginning with element first.
mode specifies what kind of primitives are constructed and how the array elements
construct those primitives. If GL_VERTEX_ARRAY is not enabled, no geometric primi-
tives are generated.

Vertex attributes that are modified by glDrawArrays have an unspecified value after
glDrawArrays returns. For example, if GL_COLOR_ARRAY is enabled, the value of
the current color is undefined after glDrawArrays executes. Attributes that aren’t
modified remain well defined.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an
enabled array and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if glDrawArrays is executed between the exe-
cution of glBegin and the corresponding glEnd.

[Function]void glDrawBuffers n bufs
Specifies a list of color buffers to be drawn into.

n Specifies the number of buffers in bufs.

bufs Points to an array of symbolic constants specifying the buffers into which
fragment colors or data values will be written.

glDrawBuffers defines an array of buffers into which fragment color values or frag-
ment data will be written. If no fragment shader is active, rendering operations will
generate only one fragment color per fragment and it will be written into each of
the buffers specified by bufs. If a fragment shader is active and it writes a value
to the output variable gl_FragColor, then that value will be written into each of
the buffers specified by bufs. If a fragment shader is active and it writes a value to
one or more elements of the output array variable gl_FragData[], then the value of
gl_FragData[0] will be written into the first buffer specified by bufs, the value of
gl_FragData[1] will be written into the second buffer specified by bufs, and so on
up to gl_FragData[n-1]. The draw buffer used for gl_FragData[n] and beyond is
implicitly set to be GL_NONE.

The symbolic constants contained in bufs may be any of the following:

GL_NONE The fragment color/data value is not written into any color buffer.

GL_FRONT_LEFT

The fragment color/data value is written into the front left color buffer.

GL_FRONT_RIGHT

The fragment color/data value is written into the front right color buffer.

GL_BACK_LEFT

The fragment color/data value is written into the back left color buffer.

Chapter 3: GL 186

GL_BACK_RIGHT

The fragment color/data value is written into the back right color buffer.

GL_AUXi The fragment color/data value is written into auxiliary buffer i.

Except for GL_NONE, the preceding symbolic constants may not appear more than
once in bufs. The maximum number of draw buffers supported is implementation
dependent and can be queried by calling glGet with the argument GL_MAX_DRAW_

BUFFERS. The number of auxiliary buffers can be queried by calling glGet with the
argument GL_AUX_BUFFERS.

GL_INVALID_ENUM is generated if one of the values in bufs is not an accepted value.

GL_INVALID_ENUM is generated if n is less than 0.

GL_INVALID_OPERATION is generated if a symbolic constant other than GL_NONE ap-
pears more than once in bufs.

GL_INVALID_OPERATION is generated if any of the entries in bufs (other than GL_NONE

) indicates a color buffer that does not exist in the current GL context.

GL_INVALID_VALUE is generated if n is greater than GL_MAX_DRAW_BUFFERS.

GL_INVALID_OPERATION is generated if glDrawBuffers is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glDrawBuffer mode
Specify which color buffers are to be drawn into.

mode Specifies up to four color buffers to be drawn into. Symbolic constants
GL_NONE, GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_

RIGHT, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, GL_FRONT_AND_BACK,
and GL_AUXi, where i is between 0 and the value of GL_AUX_BUFFERS

minus 1, are accepted. (GL_AUX_BUFFERS is not the upper limit; use
glGet to query the number of available aux buffers.) The initial value is
GL_FRONT for single-buffered contexts, and GL_BACK for double-buffered
contexts.

When colors are written to the frame buffer, they are written into the color buffers
specified by glDrawBuffer. The specifications are as follows:

GL_NONE No color buffers are written.

GL_FRONT_LEFT

Only the front left color buffer is written.

GL_FRONT_RIGHT

Only the front right color buffer is written.

GL_BACK_LEFT

Only the back left color buffer is written.

GL_BACK_RIGHT

Only the back right color buffer is written.

GL_FRONT Only the front left and front right color buffers are written. If there is no
front right color buffer, only the front left color buffer is written.

Chapter 3: GL 187

GL_BACK Only the back left and back right color buffers are written. If there is no
back right color buffer, only the back left color buffer is written.

GL_LEFT Only the front left and back left color buffers are written. If there is no
back left color buffer, only the front left color buffer is written.

GL_RIGHT Only the front right and back right color buffers are written. If there is
no back right color buffer, only the front right color buffer is written.

GL_FRONT_AND_BACK

All the front and back color buffers (front left, front right, back left, back
right) are written. If there are no back color buffers, only the front left
and front right color buffers are written. If there are no right color buffers,
only the front left and back left color buffers are written. If there are no
right or back color buffers, only the front left color buffer is written.

GL_AUXi Only auxiliary color buffer i is written.

If more than one color buffer is selected for drawing, then blending or logical opera-
tions are computed and applied independently for each color buffer and can produce
different results in each buffer.

Monoscopic contexts include only left buffers, and stereoscopic contexts include both
left and right buffers. Likewise, single-buffered contexts include only front buffers,
and double-buffered contexts include both front and back buffers. The context is
selected at GL initialization.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if none of the buffers indicated by mode exists.

GL_INVALID_OPERATION is generated if glDrawBuffer is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glDrawElements mode count type indices
Render primitives from array data.

mode Specifies what kind of primitives to render. Symbolic constants
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_

STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS,
and GL_POLYGON are accepted.

count Specifies the number of elements to be rendered.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_
BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

glDrawElements specifies multiple geometric primitives with very few subroutine
calls. Instead of calling a GL function to pass each individual vertex, normal, texture
coordinate, edge flag, or color, you can prespecify separate arrays of vertices, normals,
and so on, and use them to construct a sequence of primitives with a single call to
glDrawElements.

When glDrawElements is called, it uses count sequential elements from an enabled
array, starting at indices to construct a sequence of geometric primitives. mode

Chapter 3: GL 188

specifies what kind of primitives are constructed and how the array elements construct
these primitives. If more than one array is enabled, each is used. If GL_VERTEX_ARRAY
is not enabled, no geometric primitives are constructed.

Vertex attributes that are modified by glDrawElements have an unspecified value
after glDrawElements returns. For example, if GL_COLOR_ARRAY is enabled, the value
of the current color is undefined after glDrawElements executes. Attributes that
aren’t modified maintain their previous values.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
an enabled array or the element array and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if glDrawElements is executed between the ex-
ecution of glBegin and the corresponding glEnd.

[Function]void glDrawPixels width height format type data
Write a block of pixels to the frame buffer.

width
height Specify the dimensions of the pixel rectangle to be written into the frame

buffer.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_

INDEX, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RGB, GL_BGR, GL_
RGBA, GL_BGRA, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE,
and GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for data. Symbolic constants GL_UNSIGNED_

BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_

2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

data Specifies a pointer to the pixel data.

glDrawPixels reads pixel data from memory and writes it into the frame buffer
relative to the current raster position, provided that the raster position is valid.
Use glRasterPos or glWindowPos to set the current raster position; use glGet with
argument GL_CURRENT_RASTER_POSITION_VALID to determine if the specified raster
position is valid, and glGet with argument GL_CURRENT_RASTER_POSITION to query
the raster position.

Several parameters define the encoding of pixel data in memory and control the
processing of the pixel data before it is placed in the frame buffer. These parameters
are set with four commands: glPixelStore, glPixelTransfer, glPixelMap, and

Chapter 3: GL 189

glPixelZoom. This reference page describes the effects on glDrawPixels of many,
but not all, of the parameters specified by these four commands.

Data is read from data as a sequence of signed or unsigned bytes, signed or
unsigned shorts, signed or unsigned integers, or single-precision floating-point
values, depending on type. When type is one of GL_UNSIGNED_BYTE, GL_BYTE,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, or GL_FLOAT each
of these bytes, shorts, integers, or floating-point values is interpreted as one
color or depth component, or one index, depending on format. When type is
one of GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_

SHORT_4_4_4_4, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_INT_8_8_8_8, or
GL_UNSIGNED_INT_10_10_10_2, each unsigned value is interpreted as containing all
the components for a single pixel, with the color components arranged according to
format. When type is one of GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_
5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8_REV, or GL_UNSIGNED_INT_2_10_10_10_REV, each
unsigned value is interpreted as containing all color components, specified by format,
for a single pixel in a reversed order. Indices are always treated individually. Color
components are treated as groups of one, two, three, or four values, again based on
format. Both individual indices and groups of components are referred to as pixels.
If type is GL_BITMAP, the data must be unsigned bytes, and format must be either
GL_COLOR_INDEX or GL_STENCIL_INDEX. Each unsigned byte is treated as eight 1-bit
pixels, with bit ordering determined by GL_UNPACK_LSB_FIRST (see glPixelStore).

widthheight pixels are read from memory, starting at location data. By default, these
pixels are taken from adjacent memory locations, except that after all width pixels
are read, the read pointer is advanced to the next four-byte boundary. The four-byte
row alignment is specified by glPixelStore with argument GL_UNPACK_ALIGNMENT,
and it can be set to one, two, four, or eight bytes. Other pixel store parameters
specify different read pointer advancements, both before the first pixel is read and
after all width pixels are read. See the glPixelStore reference page for details on
these options.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a block of pixels is specified, data is treated as a byte offset
into the buffer object’s data store.

The widthheight pixels that are read from memory are each operated on in the same
way, based on the values of several parameters specified by glPixelTransfer and
glPixelMap. The details of these operations, as well as the target buffer into which
the pixels are drawn, are specific to the format of the pixels, as specified by format.
format can assume one of 13 symbolic values:

GL_COLOR_INDEX

Each pixel is a single value, a color index. It is converted to fixed-point
format, with an unspecified number of bits to the right of the binary
point, regardless of the memory data type. Floating-point values convert
to true fixed-point values. Signed and unsigned integer data is converted
with all fraction bits set to 0. Bitmap data convert to either 0 or 1.

Chapter 3: GL 190

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and
added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to
the right. In either case, zero bits fill otherwise unspecified bit locations
in the result.

If the GL is in RGBA mode, the resulting index is converted to an RGBA
pixel with the help of the GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_
G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables. If the GL
is in color index mode, and if GL_MAP_COLOR is true, the index is replaced
with the value that it references in lookup table GL_PIXEL_MAP_I_TO_I.
Whether the lookup replacement of the index is done or not, the integer
part of the index is then ANDed with 2^b-1, where b is the number of
bits in a color index buffer.

The GL then converts the resulting indices or RGBA colors to fragments
by attaching the current raster position z coordinate and texture coor-
dinates to each pixel, then assigning x and y window coordinates to the
nth fragment such that x n=x r+n%widthy n=y r+n/width,

where (x r,y r) is the current raster position. These pixel fragments are
then treated just like the fragments generated by rasterizing points, lines,
or polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

GL_STENCIL_INDEX

Each pixel is a single value, a stencil index. It is converted to fixed-point
format, with an unspecified number of bits to the right of the binary
point, regardless of the memory data type. Floating-point values convert
to true fixed-point values. Signed and unsigned integer data is converted
with all fraction bits set to 0. Bitmap data convert to either 0 or 1.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits, and
added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to
the right. In either case, zero bits fill otherwise unspecified bit locations
in the result. If GL_MAP_STENCIL is true, the index is replaced with the
value that it references in lookup table GL_PIXEL_MAP_S_TO_S. Whether
the lookup replacement of the index is done or not, the integer part of
the index is then ANDed with 2^b-1, where b is the number of bits in
the stencil buffer. The resulting stencil indices are then written to the
stencil buffer such that the nth index is written to location

x n=x r+n%widthy n=y r+n/width,

where (x r,y r) is the current raster position. Only the pixel ownership
test, the scissor test, and the stencil writemask affect these write opera-
tions.

GL_DEPTH_COMPONENT

Each pixel is a single-depth component. Floating-point data is converted
directly to an internal floating-point format with unspecified precision.
Signed integer data is mapped linearly to the internal floating-point for-
mat such that the most positive representable integer value maps to 1.0,
and the most negative representable value maps to -1.0. Unsigned integer

Chapter 3: GL 191

data is mapped similarly: the largest integer value maps to 1.0, and 0
maps to 0.0. The resulting floating-point depth value is then multiplied
by GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped
to the range [0,1].

The GL then converts the resulting depth components to fragments by
attaching the current raster position color or color index and texture
coordinates to each pixel, then assigning x and y window coordinates to
the nth fragment such that

x n=x r+n%widthy n=y r+n/width,

where (x r,y r) is the current raster position. These pixel fragments are
then treated just like the fragments generated by rasterizing points, lines,
or polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

GL_RGBA

GL_BGRA Each pixel is a four-component group: For GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha; for GL_

BGRA the order is blue, green, red and then alpha. Floating-point values
are converted directly to an internal floating-point format with unspeci-
fied precision. Signed integer values are mapped linearly to the internal
floating-point format such that the most positive representable integer
value maps to 1.0, and the most negative representable value maps to
-1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Un-
signed integer data is mapped similarly: The largest integer value maps
to 1.0, and 0 maps to 0.0. The resulting floating-point color values are
then multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,
GREEN, BLUE, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size of
lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value that it
references in that table. c is R, G, B, or A respectively.

The GL then converts the resulting RGBA colors to fragments by at-
taching the current raster position z coordinate and texture coordinates
to each pixel, then assigning x and y window coordinates to the nth
fragment such that

x n=x r+n%widthy n=y r+n/width,

where (x r,y r) is the current raster position. These pixel fragments are
then treated just like the fragments generated by rasterizing points, lines,
or polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

GL_RED Each pixel is a single red component. This component is converted to
the internal floating-point format in the same way the red component of
an RGBA pixel is. It is then converted to an RGBA pixel with green
and blue set to 0, and alpha set to 1. After this conversion, the pixel is
treated as if it had been read as an RGBA pixel.

Chapter 3: GL 192

GL_GREEN Each pixel is a single green component. This component is converted to
the internal floating-point format in the same way the green component
of an RGBA pixel is. It is then converted to an RGBA pixel with red
and blue set to 0, and alpha set to 1. After this conversion, the pixel is
treated as if it had been read as an RGBA pixel.

GL_BLUE Each pixel is a single blue component. This component is converted to
the internal floating-point format in the same way the blue component
of an RGBA pixel is. It is then converted to an RGBA pixel with red
and green set to 0, and alpha set to 1. After this conversion, the pixel is
treated as if it had been read as an RGBA pixel.

GL_ALPHA Each pixel is a single alpha component. This component is converted to
the internal floating-point format in the same way the alpha component
of an RGBA pixel is. It is then converted to an RGBA pixel with red,
green, and blue set to 0. After this conversion, the pixel is treated as if
it had been read as an RGBA pixel.

GL_RGB

GL_BGR Each pixel is a three-component group: red first, followed by green, fol-
lowed by blue; for GL_BGR, the first component is blue, followed by green
and then red. Each component is converted to the internal floating-point
format in the same way the red, green, and blue components of an RGBA
pixel are. The color triple is converted to an RGBA pixel with alpha set
to 1. After this conversion, the pixel is treated as if it had been read as
an RGBA pixel.

GL_LUMINANCE

Each pixel is a single luminance component. This component is converted
to the internal floating-point format in the same way the red component
of an RGBA pixel is. It is then converted to an RGBA pixel with red,
green, and blue set to the converted luminance value, and alpha set to
1. After this conversion, the pixel is treated as if it had been read as an
RGBA pixel.

GL_LUMINANCE_ALPHA

Each pixel is a two-component group: luminance first, followed by alpha.
The two components are converted to the internal floating-point format
in the same way the red component of an RGBA pixel is. They are then
converted to an RGBA pixel with red, green, and blue set to the converted
luminance value, and alpha set to the converted alpha value. After this
conversion, the pixel is treated as if it had been read as an RGBA pixel.

The following table summarizes the meaning of the valid constants for the type pa-
rameter:

Type Corresponding Type

GL_UNSIGNED_BYTE

unsigned 8-bit integer

GL_BYTE signed 8-bit integer

Chapter 3: GL 193

GL_BITMAP

single bits in unsigned 8-bit integers

GL_UNSIGNED_SHORT

unsigned 16-bit integer

GL_SHORT signed 16-bit integer

GL_UNSIGNED_INT

unsigned 32-bit integer

GL_INT 32-bit integer

GL_FLOAT single-precision floating-point

GL_UNSIGNED_BYTE_3_3_2

unsigned 8-bit integer

GL_UNSIGNED_BYTE_2_3_3_REV

unsigned 8-bit integer with reversed component ordering

GL_UNSIGNED_SHORT_5_6_5

unsigned 16-bit integer

GL_UNSIGNED_SHORT_5_6_5_REV

unsigned 16-bit integer with reversed component ordering

GL_UNSIGNED_SHORT_4_4_4_4

unsigned 16-bit integer

GL_UNSIGNED_SHORT_4_4_4_4_REV

unsigned 16-bit integer with reversed component ordering

GL_UNSIGNED_SHORT_5_5_5_1

unsigned 16-bit integer

GL_UNSIGNED_SHORT_1_5_5_5_REV

unsigned 16-bit integer with reversed component ordering

GL_UNSIGNED_INT_8_8_8_8

unsigned 32-bit integer

GL_UNSIGNED_INT_8_8_8_8_REV

unsigned 32-bit integer with reversed component ordering

GL_UNSIGNED_INT_10_10_10_2

unsigned 32-bit integer

GL_UNSIGNED_INT_2_10_10_10_REV

unsigned 32-bit integer with reversed component ordering

The rasterization described so far assumes pixel zoom factors of 1. If glPixelZoom
is used to change the x and y pixel zoom factors, pixels are converted to fragments
as follows. If (x r,y r) is the current raster position, and a given pixel is in the nth
column and mth row of the pixel rectangle, then fragments are generated for pixels
whose centers are in the rectangle with corners at

(x r+zoom x,n,y r+zoom y,m)(x r+zoom x,(n+1,),y r+zoom y,(m+1,))

Chapter 3: GL 194

where zoom x is the value of GL_ZOOM_X and zoom y is the value of GL_ZOOM_Y.

GL_INVALID_ENUM is generated if format or type is not one of the accepted values.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not either GL_

COLOR_INDEX or GL_STENCIL_INDEX.

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no
stencil buffer.

GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE, GL_
ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA,
and the GL is in color index mode.

GL_INVALID_OPERATION is generated if format is one of GL_UNSIGNED_

BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if format is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glDrawPixels is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glDrawRangeElements mode start end count type indices
Render primitives from array data.

mode Specifies what kind of primitives to render. Symbolic constants
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_

STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS,
and GL_POLYGON are accepted.

start Specifies the minimum array index contained in indices.

end Specifies the maximum array index contained in indices.

count Specifies the number of elements to be rendered.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_
BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

Chapter 3: GL 195

glDrawRangeElements is a restricted form of glDrawElements. mode, start, end, and
count match the corresponding arguments to glDrawElements, with the additional
constraint that all values in the arrays count must lie between start and end, inclusive.

Implementations denote recommended maximum amounts of vertex and index data,
which may be queried by calling glGet with argument GL_MAX_ELEMENTS_VERTICES
and GL_MAX_ELEMENTS_INDICES. If end-start+1 is greater than the value of GL_

MAX_ELEMENTS_VERTICES, or if count is greater than the value of GL_MAX_ELEMENTS_
INDICES, then the call may operate at reduced performance. There is no requirement
that all vertices in the range [start,end] be referenced. However, the implementa-
tion may partially process unused vertices, reducing performance from what could be
achieved with an optimal index set.

When glDrawRangeElements is called, it uses count sequential elements from an en-
abled array, starting at start to construct a sequence of geometric primitives. mode
specifies what kind of primitives are constructed, and how the array elements con-
struct these primitives. If more than one array is enabled, each is used. If GL_VERTEX_
ARRAY is not enabled, no geometric primitives are constructed.

Vertex attributes that are modified by glDrawRangeElements have an unspecified
value after glDrawRangeElements returns. For example, if GL_COLOR_ARRAY is en-
abled, the value of the current color is undefined after glDrawRangeElements exe-
cutes. Attributes that aren’t modified maintain their previous values.

It is an error for indices to lie outside the range [start,end], but implementations may
not check for this situation. Such indices cause implementation-dependent behavior.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_VALUE is generated if end<start.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
an enabled array or the element array and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if glDrawRangeElements is executed between
the execution of glBegin and the corresponding glEnd.

[Function]void glEdgeFlagPointer stride pointer
Define an array of edge flags.

stride Specifies the byte offset between consecutive edge flags. If stride is 0, the
edge flags are understood to be tightly packed in the array. The initial
value is 0.

pointer Specifies a pointer to the first edge flag in the array. The initial value is
0.

glEdgeFlagPointer specifies the location and data format of an array of boolean
edge flags to use when rendering. stride specifies the byte stride from one edge flag
to the next, allowing vertices and attributes to be packed into a single array or stored
in separate arrays.

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) while an edge flag array is specified, pointer is treated as a byte

Chapter 3: GL 196

offset into the buffer object’s data store. Also, the buffer object binding (GL_ARRAY_
BUFFER_BINDING) is saved as edge flag vertex array client-side state (GL_EDGE_FLAG_
ARRAY_BUFFER_BINDING).

When an edge flag array is specified, stride and pointer are saved as client-side state,
in addition to the current vertex array buffer object binding.

To enable and disable the edge flag array, call glEnableClientState and
glDisableClientState with the argument GL_EDGE_FLAG_ARRAY. If enabled, the
edge flag array is used when glDrawArrays, glMultiDrawArrays, glDrawElements,
glMultiDrawElements, glDrawRangeElements, or glArrayElement is called.

GL_INVALID_ENUM is generated if stride is negative.

[Function]void glEdgeFlag flag
[Function]void glEdgeFlagv flag

Flag edges as either boundary or nonboundary.

flag Specifies the current edge flag value, either GL_TRUE or GL_FALSE. The
initial value is GL_TRUE.

Each vertex of a polygon, separate triangle, or separate quadrilateral specified between
a glBegin/glEnd pair is marked as the start of either a boundary or nonboundary
edge. If the current edge flag is true when the vertex is specified, the vertex is marked
as the start of a boundary edge. Otherwise, the vertex is marked as the start of a
nonboundary edge. glEdgeFlag sets the edge flag bit to GL_TRUE if flag is GL_TRUE
and to GL_FALSE otherwise.

The vertices of connected triangles and connected quadrilaterals are always marked
as boundary, regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if GL_POLYGON_
MODE is set to GL_POINT or GL_LINE. See glPolygonMode.

[Function]void glEnableClientState cap
[Function]void glDisableClientState cap

Enable or disable client-side capability.

cap Specifies the capability to enable. Symbolic constants GL_COLOR_ARRAY,
GL_EDGE_FLAG_ARRAY, GL_FOG_COORD_ARRAY, GL_INDEX_ARRAY,
GL_NORMAL_ARRAY, GL_SECONDARY_COLOR_ARRAY, GL_TEXTURE_COORD_

ARRAY, and GL_VERTEX_ARRAY are accepted.

glEnableClientState and glDisableClientState enable or disable individual
client-side capabilities. By default, all client-side capabilities are disabled. Both
glEnableClientState and glDisableClientState take a single argument, cap,
which can assume one of the following values:

GL_COLOR_ARRAY

If enabled, the color array is enabled for writing and used during
rendering when glArrayElement, glDrawArrays, glDrawElements,
glDrawRangeElementsglMultiDrawArrays, or glMultiDrawElements is
called. See glColorPointer.

Chapter 3: GL 197

GL_EDGE_FLAG_ARRAY

If enabled, the edge flag array is enabled for writing and used dur-
ing rendering when glArrayElement, glDrawArrays, glDrawElements,
glDrawRangeElementsglMultiDrawArrays, or glMultiDrawElements is
called. See glEdgeFlagPointer.

GL_FOG_COORD_ARRAY

If enabled, the fog coordinate array is enabled for writing and used dur-
ing rendering when glArrayElement, glDrawArrays, glDrawElements,
glDrawRangeElementsglMultiDrawArrays, or glMultiDrawElements is
called. See glFogCoordPointer.

GL_INDEX_ARRAY

If enabled, the index array is enabled for writing and used during
rendering when glArrayElement, glDrawArrays, glDrawElements,
glDrawRangeElementsglMultiDrawArrays, or glMultiDrawElements is
called. See glIndexPointer.

GL_NORMAL_ARRAY

If enabled, the normal array is enabled for writing and used during
rendering when glArrayElement, glDrawArrays, glDrawElements,
glDrawRangeElementsglMultiDrawArrays, or glMultiDrawElements is
called. See glNormalPointer.

GL_SECONDARY_COLOR_ARRAY

If enabled, the secondary color array is enabled for writing and used dur-
ing rendering when glArrayElement, glDrawArrays, glDrawElements,
glDrawRangeElementsglMultiDrawArrays, or glMultiDrawElements is
called. See glColorPointer.

GL_TEXTURE_COORD_ARRAY

If enabled, the texture coordinate array is enabled for writing
and used during rendering when glArrayElement, glDrawArrays,
glDrawElements, glDrawRangeElementsglMultiDrawArrays, or
glMultiDrawElements is called. See glTexCoordPointer.

GL_VERTEX_ARRAY

If enabled, the vertex array is enabled for writing and used during
rendering when glArrayElement, glDrawArrays, glDrawElements,
glDrawRangeElementsglMultiDrawArrays, or glMultiDrawElements is
called. See glVertexPointer.

GL_INVALID_ENUM is generated if cap is not an accepted value.

glEnableClientState is not allowed between the execution of glBegin and the cor-
responding glEnd, but an error may or may not be generated. If no error is generated,
the behavior is undefined.

[Function]void glEnableVertexAttribArray index
[Function]void glDisableVertexAttribArray index

Enable or disable a generic vertex attribute array.

Chapter 3: GL 198

index Specifies the index of the generic vertex attribute to be enabled or dis-
abled.

glEnableVertexAttribArray enables the generic vertex attribute array specified by
index. glDisableVertexAttribArray disables the generic vertex attribute array
specified by index. By default, all client-side capabilities are disabled, including
all generic vertex attribute arrays. If enabled, the values in the generic vertex at-
tribute array will be accessed and used for rendering when calls are made to vertex
array commands such as glDrawArrays, glDrawElements, glDrawRangeElements,
glArrayElement, glMultiDrawElements, or glMultiDrawArrays.

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_

ATTRIBS.

GL_INVALID_OPERATION is generated if either glEnableVertexAttribArray or
glDisableVertexAttribArray is executed between the execution of glBegin and
the corresponding execution of glEnd.

[Function]void glEnable cap
[Function]void glDisable cap

Enable or disable server-side GL capabilities.

cap Specifies a symbolic constant indicating a GL capability.

glEnable and glDisable enable and disable various capabilities. Use glIsEnabled

or glGet to determine the current setting of any capability. The initial value for each
capability with the exception of GL_DITHER and GL_MULTISAMPLE is GL_FALSE. The
initial value for GL_DITHER and GL_MULTISAMPLE is GL_TRUE.

Both glEnable and glDisable take a single argument, cap, which can assume one
of the following values:

GL_ALPHA_TEST

If enabled, do alpha testing. See glAlphaFunc.

GL_AUTO_NORMAL

If enabled, generate normal vectors when either GL_MAP2_VERTEX_3 or
GL_MAP2_VERTEX_4 is used to generate vertices. See glMap2.

GL_BLEND

If enabled, blend the computed fragment color values with the values in
the color buffers. See glBlendFunc.

GL_CLIP_PLANEi
If enabled, clip geometry against user-defined clipping plane i. See
glClipPlane.

GL_COLOR_LOGIC_OP

If enabled, apply the currently selected logical operation to the computed
fragment color and color buffer values. See glLogicOp.

GL_COLOR_MATERIAL

If enabled, have one or more material parameters track the current color.
See glColorMaterial.

Chapter 3: GL 199

GL_COLOR_SUM

If enabled and no fragment shader is active, add the secondary color value
to the computed fragment color. See glSecondaryColor.

GL_COLOR_TABLE

If enabled, perform a color table lookup on the incoming RGBA color
values. See glColorTable.

GL_CONVOLUTION_1D

If enabled, perform a 1D convolution operation on incoming RGBA color
values. See glConvolutionFilter1D.

GL_CONVOLUTION_2D

If enabled, perform a 2D convolution operation on incoming RGBA color
values. See glConvolutionFilter2D.

GL_CULL_FACE

If enabled, cull polygons based on their winding in window coordinates.
See glCullFace.

GL_DEPTH_TEST

If enabled, do depth comparisons and update the depth buffer. Note that
even if the depth buffer exists and the depth mask is non-zero, the depth
buffer is not updated if the depth test is disabled. See glDepthFunc and
glDepthRange.

GL_DITHER

If enabled, dither color components or indices before they are written to
the color buffer.

GL_FOG

If enabled and no fragment shader is active, blend a fog color into the
post-texturing color. See glFog.

GL_HISTOGRAM

If enabled, histogram incoming RGBA color values. See glHistogram.

GL_INDEX_LOGIC_OP

If enabled, apply the currently selected logical operation to the incoming
index and color buffer indices. See glLogicOp.

GL_LIGHTi

If enabled, include light i in the evaluation of the lighting equation. See
glLightModel and glLight.

GL_LIGHTING

If enabled and no vertex shader is active, use the current lighting parame-
ters to compute the vertex color or index. Otherwise, simply associate the
current color or index with each vertex. See glMaterial, glLightModel,
and glLight.

GL_LINE_SMOOTH

If enabled, draw lines with correct filtering. Otherwise, draw aliased lines.
See glLineWidth.

Chapter 3: GL 200

GL_LINE_STIPPLE

If enabled, use the current line stipple pattern when drawing lines. See
glLineStipple.

GL_MAP1_COLOR_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate RGBA values. See glMap1.

GL_MAP1_INDEX

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate color indices. See glMap1.

GL_MAP1_NORMAL

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate normals. See glMap1.

GL_MAP1_TEXTURE_COORD_1

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate s texture coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_2

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate s and t texture coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_3

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate s, t, and r texture coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate s, t, r, and q texture coordinates. See glMap1.

GL_MAP1_VERTEX_3

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate x, y, and z vertex coordinates. See glMap1.

GL_MAP1_VERTEX_4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 gen-
erate homogeneous x, y, z, and w vertex coordinates. See glMap1.

GL_MAP2_COLOR_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate RGBA values. See glMap2.

GL_MAP2_INDEX

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate color indices. See glMap2.

GL_MAP2_NORMAL

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate normals. See glMap2.

GL_MAP2_TEXTURE_COORD_1

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate s texture coordinates. See glMap2.

Chapter 3: GL 201

GL_MAP2_TEXTURE_COORD_2

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate s and t texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_3

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate s, t, and r texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate s, t, r, and q texture coordinates. See glMap2.

GL_MAP2_VERTEX_3

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate x, y, and z vertex coordinates. See glMap2.

GL_MAP2_VERTEX_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 gen-
erate homogeneous x, y, z, and w vertex coordinates. See glMap2.

GL_MINMAX

If enabled, compute the minimum and maximum values of incoming
RGBA color values. See glMinmax.

GL_MULTISAMPLE

If enabled, use multiple fragment samples in computing the final color of
a pixel. See glSampleCoverage.

GL_NORMALIZE

If enabled and no vertex shader is active, normal vectors are normalized
to unit length after transformation and before lighting. This method
is generally less efficient than GL_RESCALE_NORMAL. See glNormal and
glNormalPointer.

GL_POINT_SMOOTH

If enabled, draw points with proper filtering. Otherwise, draw aliased
points. See glPointSize.

GL_POINT_SPRITE

If enabled, calculate texture coordinates for points based on texture en-
vironment and point parameter settings. Otherwise texture coordinates
are constant across points.

GL_POLYGON_OFFSET_FILL

If enabled, and if the polygon is rendered in GL_FILL mode, an offset is
added to depth values of a polygon’s fragments before the depth compar-
ison is performed. See glPolygonOffset.

GL_POLYGON_OFFSET_LINE

If enabled, and if the polygon is rendered in GL_LINE mode, an offset is
added to depth values of a polygon’s fragments before the depth compar-
ison is performed. See glPolygonOffset.

Chapter 3: GL 202

GL_POLYGON_OFFSET_POINT

If enabled, an offset is added to depth values of a polygon’s fragments
before the depth comparison is performed, if the polygon is rendered in
GL_POINT mode. See glPolygonOffset.

GL_POLYGON_SMOOTH

If enabled, draw polygons with proper filtering. Otherwise, draw aliased
polygons. For correct antialiased polygons, an alpha buffer is needed and
the polygons must be sorted front to back.

GL_POLYGON_STIPPLE

If enabled, use the current polygon stipple pattern when rendering poly-
gons. See glPolygonStipple.

GL_POST_COLOR_MATRIX_COLOR_TABLE

If enabled, perform a color table lookup on RGBA color values after color
matrix transformation. See glColorTable.

GL_POST_CONVOLUTION_COLOR_TABLE

If enabled, perform a color table lookup on RGBA color values after
convolution. See glColorTable.

GL_RESCALE_NORMAL

If enabled and no vertex shader is active, normal vectors are scaled af-
ter transformation and before lighting by a factor computed from the
modelview matrix. If the modelview matrix scales space uniformly, this
has the effect of restoring the transformed normal to unit length. This
method is generally more efficient than GL_NORMALIZE. See glNormal and
glNormalPointer.

GL_SAMPLE_ALPHA_TO_COVERAGE

If enabled, compute a temporary coverage value where each bit is de-
termined by the alpha value at the corresponding sample location. The
temporary coverage value is then ANDed with the fragment coverage
value.

GL_SAMPLE_ALPHA_TO_ONE

If enabled, each sample alpha value is replaced by the maximum repre-
sentable alpha value.

GL_SAMPLE_COVERAGE

If enabled, the fragment’s coverage is ANDed with the temporary cover-
age value. If GL_SAMPLE_COVERAGE_INVERT is set to GL_TRUE, invert the
coverage value. See glSampleCoverage.

GL_SEPARABLE_2D

If enabled, perform a two-dimensional convolution operation using
a separable convolution filter on incoming RGBA color values. See
glSeparableFilter2D.

GL_SCISSOR_TEST

If enabled, discard fragments that are outside the scissor rectangle. See
glScissor.

Chapter 3: GL 203

GL_STENCIL_TEST

If enabled, do stencil testing and update the stencil buffer. See
glStencilFunc and glStencilOp.

GL_TEXTURE_1D

If enabled and no fragment shader is active, one-dimensional texturing is
performed (unless two- or three-dimensional or cube-mapped texturing is
also enabled). See glTexImage1D.

GL_TEXTURE_2D

If enabled and no fragment shader is active, two-dimensional texturing
is performed (unless three-dimensional or cube-mapped texturing is also
enabled). See glTexImage2D.

GL_TEXTURE_3D

If enabled and no fragment shader is active, three-dimensional textur-
ing is performed (unless cube-mapped texturing is also enabled). See
glTexImage3D.

GL_TEXTURE_CUBE_MAP

If enabled and no fragment shader is active, cube-mapped texturing is
performed. See glTexImage2D.

GL_TEXTURE_GEN_Q

If enabled and no vertex shader is active, the q texture coordinate is
computed using the texture generation function defined with glTexGen.
Otherwise, the current q texture coordinate is used. See glTexGen.

GL_TEXTURE_GEN_R

If enabled and no vertex shader is active, the r texture coordinate is
computed using the texture generation function defined with glTexGen.
Otherwise, the current r texture coordinate is used. See glTexGen.

GL_TEXTURE_GEN_S

If enabled and no vertex shader is active, the s texture coordinate is
computed using the texture generation function defined with glTexGen.
Otherwise, the current s texture coordinate is used. See glTexGen.

GL_TEXTURE_GEN_T

If enabled and no vertex shader is active, the t texture coordinate is
computed using the texture generation function defined with glTexGen.
Otherwise, the current t texture coordinate is used. See glTexGen.

GL_VERTEX_PROGRAM_POINT_SIZE

If enabled and a vertex shader is active, then the derived point size is
taken from the (potentially clipped) shader builtin gl_PointSize and
clamped to the implementation-dependent point size range.

GL_VERTEX_PROGRAM_TWO_SIDE

If enabled and a vertex shader is active, it specifies that the GL will choose
between front and back colors based on the polygon’s face direction of
which the vertex being shaded is a part. It has no effect on points or
lines.

Chapter 3: GL 204

GL_INVALID_ENUM is generated if cap is not one of the values listed previously.

GL_INVALID_OPERATION is generated if glEnable or glDisable is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glEvalCoord1f u
[Function]void glEvalCoord1d u
[Function]void glEvalCoord2f u v
[Function]void glEvalCoord2d u v
[Function]void glEvalCoord1fv u
[Function]void glEvalCoord1dv u
[Function]void glEvalCoord2fv u
[Function]void glEvalCoord2dv u

Evaluate enabled one- and two-dimensional maps.

u Specifies a value that is the domain coordinate u to the basis function
defined in a previous glMap1 or glMap2 command.

v Specifies a value that is the domain coordinate v to the basis function
defined in a previous glMap2 command. This argument is not present in
a glEvalCoord1 command.

glEvalCoord1 evaluates enabled one-dimensional maps at argument u.
glEvalCoord2 does the same for two-dimensional maps using two domain values,
u and v. To define a map, call glMap1 and glMap2; to enable and disable it, call
glEnable and glDisable.

When one of the glEvalCoord commands is issued, all currently enabled maps of
the indicated dimension are evaluated. Then, for each enabled map, it is as if
the corresponding GL command had been issued with the computed value. That
is, if GL_MAP1_INDEX or GL_MAP2_INDEX is enabled, a glIndex command is simu-
lated. If GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4 is enabled, a glColor command
is simulated. If GL_MAP1_NORMAL or GL_MAP2_NORMAL is enabled, a normal vector
is produced, and if any of GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4, GL_MAP2_TEXTURE_COORD_
1, GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, or GL_MAP2_TEXTURE_

COORD_4 is enabled, then an appropriate glTexCoord command is simulated.

For color, color index, normal, and texture coordinates the GL uses evaluated values
instead of current values for those evaluations that are enabled, and current values
otherwise, However, the evaluated values do not update the current values. Thus, if
glVertex commands are interspersed with glEvalCoord commands, the color, nor-
mal, and texture coordinates associated with the glVertex commands are not affected
by the values generated by the glEvalCoord commands, but only by the most recent
glColor, glIndex, glNormal, and glTexCoord commands.

No commands are issued for maps that are not enabled. If more than one texture
evaluation is enabled for a particular dimension (for example, GL_MAP2_TEXTURE_

COORD_1 and GL_MAP2_TEXTURE_COORD_2), then only the evaluation of the map that
produces the larger number of coordinates (in this case, GL_MAP2_TEXTURE_COORD_
2) is carried out. GL_MAP1_VERTEX_4 overrides GL_MAP1_VERTEX_3, and GL_MAP2_

VERTEX_4 overrides GL_MAP2_VERTEX_3, in the same manner. If neither a three- nor a

Chapter 3: GL 205

four-component vertex map is enabled for the specified dimension, the glEvalCoord

command is ignored.

If you have enabled automatic normal generation, by calling glEnable with argument
GL_AUTO_NORMAL, glEvalCoord2 generates surface normals analytically, regardless of
the contents or enabling of the GL_MAP2_NORMAL map. Let

m=p,/u,,p,/v,,

Then the generated normal n is n=m/m,,

If automatic normal generation is disabled, the corresponding normal map GL_MAP2_

NORMAL, if enabled, is used to produce a normal. If neither automatic normal gener-
ation nor a normal map is enabled, no normal is generated for glEvalCoord2 com-
mands.

[Function]void glEvalMesh1 mode i1 i2
[Function]void glEvalMesh2 mode i1 i2 j1 j2

Compute a one- or two-dimensional grid of points or lines.

mode In glEvalMesh1, specifies whether to compute a one-dimensional mesh of
points or lines. Symbolic constants GL_POINT and GL_LINE are accepted.

i1
i2 Specify the first and last integer values for grid domain variable i.

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate
a series of evenly-spaced map domain values. glEvalMesh steps through the integer
domain of a one- or two-dimensional grid, whose range is the domain of the evalua-
tion maps specified by glMap1 and glMap2. mode determines whether the resulting
vertices are connected as points, lines, or filled polygons.

In the one-dimensional case, glEvalMesh1, the mesh is generated as if the following
code fragment were executed:

where

glBegin(type);

for (i = i1; i <= i2; i += 1)

glEvalCoord1(iu+u 1);

glEnd();

u=(u 2-u 1,)/n

and n, u 1, and u 2 are the arguments to the most recent glMapGrid1 command.
type is GL_POINTS if mode is GL_POINT, or GL_LINES if mode is GL_LINE.

The one absolute numeric requirement is that if i=n, then the value computed from
iu+u 1 is exactly u 2.

In the two-dimensional case, glEvalMesh2, let .cp u=(u 2-u 1,)/n

v=(v 2-v 1,)/m

where n, u 1, u 2, m, v 1, and v 2 are the arguments to the most recent glMapGrid2
command. Then, if mode is GL_FILL, the glEvalMesh2 command is equivalent to:

Chapter 3: GL 206

for (j = j1; j < j2; j += 1) {

glBegin(GL_QUAD_STRIP);

for (i = i1; i <= i2; i += 1) {

glEvalCoord2(iu+u 1,jv+v 1);

glEvalCoord2(iu+u 1,(j+1,)v+v 1);

}

glEnd();

}

If mode is GL_LINE, then a call to glEvalMesh2 is equivalent to:

for (j = j1; j <= j2; j += 1) {

glBegin(GL_LINE_STRIP);

for (i = i1; i <= i2; i += 1)

glEvalCoord2(iu+u 1,jv+v 1);

glEnd();

}

for (i = i1; i <= i2; i += 1) {

glBegin(GL_LINE_STRIP);

for (j = j1; j <= j1; j += 1)

glEvalCoord2(iu+u 1,jv+v 1);

glEnd();

}

And finally, if mode is GL_POINT, then a call to glEvalMesh2 is equivalent to:

glBegin(GL_POINTS);

for (j = j1; j <= j2; j += 1)

for (i = i1; i <= i2; i += 1)

glEvalCoord2(iu+u 1,jv+v 1);

glEnd();

In all three cases, the only absolute numeric requirements are that if i=n, then the
value computed from iu+u 1 is exactly u 2, and if j=m, then the value computed
from jv+v 1 is exactly v 2.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glEvalMesh is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glEvalPoint1 i
[Function]void glEvalPoint2 i j

Generate and evaluate a single point in a mesh.

i Specifies the integer value for grid domain variable i.

j Specifies the integer value for grid domain variable j (glEvalPoint2 only).

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate
a series of evenly spaced map domain values. glEvalPoint can be used to evaluate

Chapter 3: GL 207

a single grid point in the same gridspace that is traversed by glEvalMesh. Calling
glEvalPoint1 is equivalent to calling where u=(u 2-u 1,)/n

glEvalCoord1(iu+u 1);

and n, u 1, and u 2 are the arguments to the most recent glMapGrid1 command.
The one absolute numeric requirement is that if i=n, then the value computed from
iu+u 1 is exactly u 2.

In the two-dimensional case, glEvalPoint2, let

u=(u 2-u 1,)/nv=(v 2-v 1,)/m

where n, u 1, u 2, m, v 1, and v 2 are the arguments to the most recent glMapGrid2
command. Then the glEvalPoint2 command is equivalent to calling The only abso-
lute numeric requirements are that if i=n, then the value computed from iu+u 1 is
exactly u 2, and if j=m, then the value computed from jv+v 1 is exactly v 2.

glEvalCoord2(iu+u 1,jv+v 1);

[Function]void glFeedbackBuffer size type buffer
Controls feedback mode.

size Specifies the maximum number of values that can be written into buffer.

type Specifies a symbolic constant that describes the information that will be
returned for each vertex. GL_2D, GL_3D, GL_3D_COLOR, GL_3D_COLOR_
TEXTURE, and GL_4D_COLOR_TEXTURE are accepted.

buffer Returns the feedback data.

The glFeedbackBuffer function controls feedback. Feedback, like selection, is a GL
mode. The mode is selected by calling glRenderMode with GL_FEEDBACK. When the
GL is in feedback mode, no pixels are produced by rasterization. Instead, information
about primitives that would have been rasterized is fed back to the application using
the GL.

glFeedbackBuffer has three arguments: buffer is a pointer to an array of floating-
point values into which feedback information is placed. size indicates the size of the
array. type is a symbolic constant describing the information that is fed back for
each vertex. glFeedbackBuffer must be issued before feedback mode is enabled (by
calling glRenderMode with argument GL_FEEDBACK). Setting GL_FEEDBACK without
establishing the feedback buffer, or calling glFeedbackBuffer while the GL is in
feedback mode, is an error.

When glRenderMode is called while in feedback mode, it returns the number of entries
placed in the feedback array and resets the feedback array pointer to the base of the
feedback buffer. The returned value never exceeds size. If the feedback data required
more room than was available in buffer, glRenderMode returns a negative value. To
take the GL out of feedback mode, call glRenderMode with a parameter value other
than GL_FEEDBACK.

While in feedback mode, each primitive, bitmap, or pixel rectangle that would be
rasterized generates a block of values that are copied into the feedback array. If doing

Chapter 3: GL 208

so would cause the number of entries to exceed the maximum, the block is partially
written so as to fill the array (if there is any room left at all), and an overflow
flag is set. Each block begins with a code indicating the primitive type, followed
by values that describe the primitive’s vertices and associated data. Entries are
also written for bitmaps and pixel rectangles. Feedback occurs after polygon culling
and glPolygonMode interpretation of polygons has taken place, so polygons that are
culled are not returned in the feedback buffer. It can also occur after polygons with
more than three edges are broken up into triangles, if the GL implementation renders
polygons by performing this decomposition.

The glPassThrough command can be used to insert a marker into the feedback buffer.
See glPassThrough.

Following is the grammar for the blocks of values written into the feedback buffer.
Each primitive is indicated with a unique identifying value followed by some number
of vertices. Polygon entries include an integer value indicating how many vertices
follow. A vertex is fed back as some number of floating-point values, as determined
by type. Colors are fed back as four values in RGBA mode and one value in color
index mode.

feedbackList feedbackItem feedbackList | feedbackItem feedbackItem point | line-
Segment | polygon | bitmap | pixelRectangle | passThru point GL_POINT_TOKEN ver-
tex lineSegment GL_LINE_TOKEN vertex vertex | GL_LINE_RESET_TOKEN vertex vertex
polygon GL_POLYGON_TOKEN n polySpec polySpec polySpec vertex | vertex vertex
vertex bitmap GL_BITMAP_TOKEN vertex pixelRectangle GL_DRAW_PIXEL_TOKEN ver-
tex | GL_COPY_PIXEL_TOKEN vertex passThru GL_PASS_THROUGH_TOKEN value vertex
2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture 2d value value 3d value value
value 3dColor value value value color 3dColorTexture value value value color tex
4dColorTexture value value value value color tex color rgba | index rgba value value
value value index value tex value value value value

value is a floating-point number, and n is a floating-point integer giving the
number of vertices in the polygon. GL_POINT_TOKEN, GL_LINE_TOKEN, GL_LINE_

RESET_TOKEN, GL_POLYGON_TOKEN, GL_BITMAP_TOKEN, GL_DRAW_PIXEL_TOKEN,
GL_COPY_PIXEL_TOKEN and GL_PASS_THROUGH_TOKEN are symbolic floating-point
constants. GL_LINE_RESET_TOKEN is returned whenever the line stipple pattern is
reset. The data returned as a vertex depends on the feedback type.

The following table gives the correspondence between type and the number of values
per vertex. k is 1 in color index mode and 4 in RGBA mode.

Type Coordinates, Color, Texture, Total Number of Values

GL_2D x, y, , , 2

GL_3D x, y, z, , , 3

GL_3D_COLOR

x, y, z, k, , 3+k

GL_3D_COLOR_TEXTURE

x, y, z, k, 4 , 7+k

GL_4D_COLOR_TEXTURE

x, y, z, w, k, 4 , 8+k

Chapter 3: GL 209

Feedback vertex coordinates are in window coordinates, except w, which is in clip
coordinates. Feedback colors are lighted, if lighting is enabled. Feedback texture
coordinates are generated, if texture coordinate generation is enabled. They are
always transformed by the texture matrix.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if size is negative.

GL_INVALID_OPERATION is generated if glFeedbackBuffer is called while the ren-
der mode is GL_FEEDBACK, or if glRenderMode is called with argument GL_FEEDBACK
before glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION is generated if glFeedbackBuffer is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glFinish
Block until all GL execution is complete.

glFinish does not return until the effects of all previously called GL commands are
complete. Such effects include all changes to GL state, all changes to connection
state, and all changes to the frame buffer contents.

GL_INVALID_OPERATION is generated if glFinish is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glFlush
Force execution of GL commands in finite time.

Different GL implementations buffer commands in several different locations, includ-
ing network buffers and the graphics accelerator itself. glFlush empties all of these
buffers, causing all issued commands to be executed as quickly as they are accepted
by the actual rendering engine. Though this execution may not be completed in any
particular time period, it does complete in finite time.

Because any GL program might be executed over a network, or on an accelerator that
buffers commands, all programs should call glFlush whenever they count on having
all of their previously issued commands completed. For example, call glFlush before
waiting for user input that depends on the generated image.

GL_INVALID_OPERATION is generated if glFlush is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glFogCoordPointer type stride pointer
Define an array of fog coordinates.

type Specifies the data type of each fog coordinate. Symbolic constants GL_

FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive fog coordinates. If stride is
0, the array elements are understood to be tightly packed. The initial
value is 0.

pointer Specifies a pointer to the first coordinate of the first fog coordinate in the
array. The initial value is 0.

Chapter 3: GL 210

glFogCoordPointer specifies the location and data format of an array of fog coordi-
nates to use when rendering. type specifies the data type of each fog coordinate, and
stride specifies the byte stride from one fog coordinate to the next, allowing vertices
and attributes to be packed into a single array or stored in separate arrays.

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) while a fog coordinate array is specified, pointer is treated as a byte
offset into the buffer object’s data store. Also, the buffer object binding (GL_ARRAY_
BUFFER_BINDING) is saved as fog coordinate vertex array client-side state (GL_FOG_
COORD_ARRAY_BUFFER_BINDING).

When a fog coordinate array is specified, type, stride, and pointer are saved as client-
side state, in addition to the current vertex array buffer object binding.

To enable and disable the fog coordinate array, call glEnableClientState and
glDisableClientState with the argument GL_FOG_COORD_ARRAY. If enabled, the fog
coordinate array is used when glDrawArrays, glMultiDrawArrays, glDrawElements,
glMultiDrawElements, glDrawRangeElements, or glArrayElement is called.

GL_INVALID_ENUM is generated if type is not either GL_FLOAT or GL_DOUBLE.

GL_INVALID_VALUE is generated if stride is negative.

[Function]void glFogCoordd coord
[Function]void glFogCoordf coord
[Function]void glFogCoorddv coord
[Function]void glFogCoordfv coord

Set the current fog coordinates.

coord Specify the fog distance.

glFogCoord specifies the fog coordinate that is associated with each vertex and the
current raster position. The value specified is interpolated and used in computing the
fog color (see glFog).

[Function]void glFogf pname param
[Function]void glFogi pname param
[Function]void glFogfv pname params
[Function]void glFogiv pname params

Specify fog parameters.

pname Specifies a single-valued fog parameter. GL_FOG_MODE, GL_FOG_DENSITY,
GL_FOG_START, GL_FOG_END, GL_FOG_INDEX, and GL_FOG_COORD_SRC are
accepted.

param Specifies the value that pname will be set to.

Fog is initially disabled. While enabled, fog affects rasterized geometry, bitmaps, and
pixel blocks, but not buffer clear operations. To enable and disable fog, call glEnable
and glDisable with argument GL_FOG.

glFog assigns the value or values in params to the fog parameter specified by pname.
The following values are accepted for pname:

Chapter 3: GL 211

GL_FOG_MODE

params is a single integer or floating-point value that specifies the equa-
tion to be used to compute the fog blend factor, f . Three symbolic con-
stants are accepted: GL_LINEAR, GL_EXP, and GL_EXP2. The equations
corresponding to these symbolic constants are defined below. The initial
fog mode is GL_EXP.

GL_FOG_DENSITY

params is a single integer or floating-point value that specifies density ,
the fog density used in both exponential fog equations. Only nonnegative
densities are accepted. The initial fog density is 1.

GL_FOG_START

params is a single integer or floating-point value that specifies start, the
near distance used in the linear fog equation. The initial near distance is
0.

GL_FOG_END

params is a single integer or floating-point value that specifies end, the
far distance used in the linear fog equation. The initial far distance is 1.

GL_FOG_INDEX

params is a single integer or floating-point value that specifies i f , the
fog color index. The initial fog index is 0.

GL_FOG_COLOR

params contains four integer or floating-point values that specify C f , the
fog color. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable
value maps to -1.0. Floating-point values are mapped directly. After
conversion, all color components are clamped to the range [0,1]. The
initial fog color is (0, 0, 0, 0).

GL_FOG_COORD_SRC

params contains either of the following symbolic constants: GL_FOG_

COORD or GL_FRAGMENT_DEPTH. GL_FOG_COORD specifies that the current
fog coordinate should be used as distance value in the fog color compu-
tation. GL_FRAGMENT_DEPTH specifies that the current fragment depth
should be used as distance value in the fog computation.

Fog blends a fog color with each rasterized pixel fragment’s post-texturing color using
a blending factor f . Factor f is computed in one of three ways, depending on the fog
mode. Let c be either the distance in eye coordinate from the origin (in the case that
the GL_FOG_COORD_SRC is GL_FRAGMENT_DEPTH) or the current fog coordinate (in the
case that GL_FOG_COORD_SRC is GL_FOG_COORD). The equation for GL_LINEAR fog is
f=end-c,/end-start,

The equation for GL_EXP fog is f=e^-(densityc,),

The equation for GL_EXP2 fog is f=e^-(densityc,),^2

Regardless of the fog mode, f is clamped to the range [0,1] after it is computed.
Then, if the GL is in RGBA color mode, the fragment’s red, green, and blue colors,
represented by C r, are replaced by

Chapter 3: GL 212

C r,^=f C r+(1-f,)C f

Fog does not affect a fragment’s alpha component.

In color index mode, the fragment’s color index i r is replaced by

i r,^=i r+(1-f,)i f

GL_INVALID_ENUM is generated if pname is not an accepted value, or if pname is
GL_FOG_MODE and params is not an accepted value.

GL_INVALID_VALUE is generated if pname is GL_FOG_DENSITY and params is negative.

GL_INVALID_OPERATION is generated if glFog is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glFrontFace mode
Define front- and back-facing polygons.

mode Specifies the orientation of front-facing polygons. GL_CW and GL_CCW are
accepted. The initial value is GL_CCW.

In a scene composed entirely of opaque closed surfaces, back-facing polygons are never
visible. Eliminating these invisible polygons has the obvious benefit of speeding up
the rendering of the image. To enable and disable elimination of back-facing polygons,
call glEnable and glDisable with argument GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise wind-
ing if an imaginary object following the path from its first vertex, its second vertex,
and so on, to its last vertex, and finally back to its first vertex, moves in a clock-
wise direction about the interior of the polygon. The polygon’s winding is said to be
counterclockwise if the imaginary object following the same path moves in a counter-
clockwise direction about the interior of the polygon. glFrontFace specifies whether
polygons with clockwise winding in window coordinates, or counterclockwise wind-
ing in window coordinates, are taken to be front-facing. Passing GL_CCW to mode
selects counterclockwise polygons as front-facing; GL_CW selects clockwise polygons as
front-facing. By default, counterclockwise polygons are taken to be front-facing.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glFrontFace is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glFrustum left right bottom top nearVal farVal
Multiply the current matrix by a perspective matrix.

left
right Specify the coordinates for the left and right vertical clipping planes.

bottom
top Specify the coordinates for the bottom and top horizontal clipping planes.

nearVal
farVal Specify the distances to the near and far depth clipping planes. Both

distances must be positive.

Chapter 3: GL 213

glFrustum describes a perspective matrix that produces a perspective projection.
The current matrix (see glMatrixMode) is multiplied by this matrix and the result
replaces the current matrix, as if glMultMatrix were called with the following matrix
as its argument:

[(2nearVal,/right-left,, 0 A 0), (0 2nearVal,/top-bottom,, B 0), (0 0 C D), (0 0 -1 0),]

A=right+left,/right-left,

B=top+bottom,/top-bottom,

C=-farVal+nearVal,/farVal-nearVal,,

D=-2farValnearVal,/farVal-nearVal,,

Typically, the matrix mode is GL_PROJECTION, and (left,bottom-nearVal) and
(right,top-nearVal) specify the points on the near clipping plane that are mapped
to the lower left and upper right corners of the window, assuming that the eye is
located at (0, 0, 0). -farVal specifies the location of the far clipping plane. Both
nearVal and farVal must be positive.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

GL_INVALID_VALUE is generated if nearVal or farVal is not positive, or if left = right,
or bottom = top, or near = far.

GL_INVALID_OPERATION is generated if glFrustum is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glGenBuffers n buffers
Generate buffer object names.

n Specifies the number of buffer object names to be generated.

buffers Specifies an array in which the generated buffer object names are stored.

glGenBuffers returns n buffer object names in buffers. There is no guarantee that
the names form a contiguous set of integers; however, it is guaranteed that none of
the returned names was in use immediately before the call to glGenBuffers.

Buffer object names returned by a call to glGenBuffers are not returned by subse-
quent calls, unless they are first deleted with glDeleteBuffers.

No buffer objects are associated with the returned buffer object names until they are
first bound by calling glBindBuffer.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glGenBuffers is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]GLuint glGenLists range
Generate a contiguous set of empty display lists.

range Specifies the number of contiguous empty display lists to be generated.

glGenLists has one argument, range. It returns an integer n such that range con-
tiguous empty display lists, named n, n+1, ..., n+range-1, are created. If range is 0,
if there is no group of range contiguous names available, or if any error is generated,
no display lists are generated, and 0 is returned.

Chapter 3: GL 214

GL_INVALID_VALUE is generated if range is negative.

GL_INVALID_OPERATION is generated if glGenLists is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glGenQueries n ids
Generate query object names.

n Specifies the number of query object names to be generated.

ids Specifies an array in which the generated query object names are stored.

glGenQueries returns n query object names in ids. There is no guarantee that the
names form a contiguous set of integers; however, it is guaranteed that none of the
returned names was in use immediately before the call to glGenQueries.

Query object names returned by a call to glGenQueries are not returned by subse-
quent calls, unless they are first deleted with glDeleteQueries.

No query objects are associated with the returned query object names until they are
first used by calling glBeginQuery.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glGenQueries is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glGenTextures n textures
Generate texture names.

n Specifies the number of texture names to be generated.

textures Specifies an array in which the generated texture names are stored.

glGenTextures returns n texture names in textures. There is no guarantee that the
names form a contiguous set of integers; however, it is guaranteed that none of the
returned names was in use immediately before the call to glGenTextures.

The generated textures have no dimensionality; they assume the dimensionality of
the texture target to which they are first bound (see glBindTexture).

Texture names returned by a call to glGenTextures are not returned by subsequent
calls, unless they are first deleted with glDeleteTextures.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glGenTextures is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glGetActiveAttrib program index bufSize length size type name
Returns information about an active attribute variable for the specified program
object.

program Specifies the program object to be queried.

index Specifies the index of the attribute variable to be queried.

bufSize Specifies the maximum number of characters OpenGL is allowed to write
in the character buffer indicated by name.

Chapter 3: GL 215

length Returns the number of characters actually written by OpenGL in the
string indicated by name (excluding the null terminator) if a value other
than NULL is passed.

size Returns the size of the attribute variable.

type Returns the data type of the attribute variable.

name Returns a null terminated string containing the name of the attribute
variable.

glGetActiveAttrib returns information about an active attribute variable in the
program object specified by program. The number of active attributes can be obtained
by calling glGetProgram with the value GL_ACTIVE_ATTRIBUTES. A value of 0 for
index selects the first active attribute variable. Permissible values for index range
from 0 to the number of active attribute variables minus 1.

A vertex shader may use either built-in attribute variables, user-defined attribute vari-
ables, or both. Built-in attribute variables have a prefix of "gl " and reference con-
ventional OpenGL vertex attribtes (e.g., gl Vertex, gl Normal, etc., see the OpenGL
Shading Language specification for a complete list.) User-defined attribute variables
have arbitrary names and obtain their values through numbered generic vertex at-
tributes. An attribute variable (either built-in or user-defined) is considered active
if it is determined during the link operation that it may be accessed during program
execution. Therefore, program should have previously been the target of a call to
glLinkProgram, but it is not necessary for it to have been linked successfully.

The size of the character buffer required to store the longest attribute variable name
in program can be obtained by calling glGetProgram with the value GL_ACTIVE_

ATTRIBUTE_MAX_LENGTH. This value should be used to allocate a buffer of sufficient
size to store the returned attribute name. The size of this character buffer is passed
in bufSize, and a pointer to this character buffer is passed in name.

glGetActiveAttrib returns the name of the attribute variable indicated by index,
storing it in the character buffer specified by name. The string returned will be null
terminated. The actual number of characters written into this buffer is returned in
length, and this count does not include the null termination character. If the length
of the returned string is not required, a value of NULL can be passed in the length
argument.

The type argument will return a pointer to the attribute variable’s data type.
The symbolic constants GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_

VEC4, GL_FLOAT_MAT2, GL_FLOAT_MAT3, GL_FLOAT_MAT4, GL_FLOAT_MAT2x3,
GL_FLOAT_MAT2x4, GL_FLOAT_MAT3x2, GL_FLOAT_MAT3x4, GL_FLOAT_MAT4x2, or
GL_FLOAT_MAT4x3 may be returned. The size argument will return the size of the
attribute, in units of the type returned in type.

The list of active attribute variables may include both built-in attribute variables
(which begin with the prefix "gl ") as well as user-defined attribute variable names.

This function will return as much information as it can about the specified active
attribute variable. If no information is available, length will be 0, and name will
be an empty string. This situation could occur if this function is called after a link

Chapter 3: GL 216

operation that failed. If an error occurs, the return values length, size, type, and
name will be unmodified.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_VALUE is generated if index is greater than or equal to the number of
active attribute variables in program.

GL_INVALID_OPERATION is generated if glGetActiveAttrib is executed between the
execution of glBegin and the corresponding execution of glEnd.

GL_INVALID_VALUE is generated if bufSize is less than 0.

[Function]void glGetActiveUniform program index bufSize length size type name
Returns information about an active uniform variable for the specified program object.

program Specifies the program object to be queried.

index Specifies the index of the uniform variable to be queried.

bufSize Specifies the maximum number of characters OpenGL is allowed to write
in the character buffer indicated by name.

length Returns the number of characters actually written by OpenGL in the
string indicated by name (excluding the null terminator) if a value other
than NULL is passed.

size Returns the size of the uniform variable.

type Returns the data type of the uniform variable.

name Returns a null terminated string containing the name of the uniform
variable.

glGetActiveUniform returns information about an active uniform variable in the
program object specified by program. The number of active uniform variables can be
obtained by calling glGetProgram with the value GL_ACTIVE_UNIFORMS. A value of 0
for index selects the first active uniform variable. Permissible values for index range
from 0 to the number of active uniform variables minus 1.

Shaders may use either built-in uniform variables, user-defined uniform variables, or
both. Built-in uniform variables have a prefix of "gl " and reference existing OpenGL
state or values derived from such state (e.g., gl Fog, gl ModelViewMatrix, etc., see the
OpenGL Shading Language specification for a complete list.) User-defined uniform
variables have arbitrary names and obtain their values from the application through
calls to glUniform. A uniform variable (either built-in or user-defined) is considered
active if it is determined during the link operation that it may be accessed during
program execution. Therefore, program should have previously been the target of a
call to glLinkProgram, but it is not necessary for it to have been linked successfully.

The size of the character buffer required to store the longest uniform variable name
in program can be obtained by calling glGetProgram with the value GL_ACTIVE_

UNIFORM_MAX_LENGTH. This value should be used to allocate a buffer of sufficient
size to store the returned uniform variable name. The size of this character buffer is
passed in bufSize, and a pointer to this character buffer is passed in name.

Chapter 3: GL 217

glGetActiveUniform returns the name of the uniform variable indicated by index,
storing it in the character buffer specified by name. The string returned will be null
terminated. The actual number of characters written into this buffer is returned in
length, and this count does not include the null termination character. If the length
of the returned string is not required, a value of NULL can be passed in the length
argument.

The type argument will return a pointer to the uniform variable’s data
type. The symbolic constants GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3,
GL_FLOAT_VEC4, GL_INT, GL_INT_VEC2, GL_INT_VEC3, GL_INT_VEC4, GL_BOOL,
GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4, GL_FLOAT_MAT2, GL_FLOAT_MAT3,
GL_FLOAT_MAT4, GL_FLOAT_MAT2x3, GL_FLOAT_MAT2x4, GL_FLOAT_MAT3x2,
GL_FLOAT_MAT3x4, GL_FLOAT_MAT4x2, GL_FLOAT_MAT4x3, GL_SAMPLER_1D,
GL_SAMPLER_2D, GL_SAMPLER_3D, GL_SAMPLER_CUBE, GL_SAMPLER_1D_SHADOW, or
GL_SAMPLER_2D_SHADOW may be returned.

If one or more elements of an array are active, the name of the array is returned in
name, the type is returned in type, and the size parameter returns the highest array
element index used, plus one, as determined by the compiler and/or linker. Only one
active uniform variable will be reported for a uniform array.

Uniform variables that are declared as structures or arrays of structures will not be
returned directly by this function. Instead, each of these uniform variables will be
reduced to its fundamental components containing the "." and "[]" operators such
that each of the names is valid as an argument to glGetUniformLocation. Each
of these reduced uniform variables is counted as one active uniform variable and is
assigned an index. A valid name cannot be a structure, an array of structures, or a
subcomponent of a vector or matrix.

The size of the uniform variable will be returned in size. Uniform variables other
than arrays will have a size of 1. Structures and arrays of structures will be reduced
as described earlier, such that each of the names returned will be a data type in the
earlier list. If this reduction results in an array, the size returned will be as described
for uniform arrays; otherwise, the size returned will be 1.

The list of active uniform variables may include both built-in uniform variables (which
begin with the prefix "gl ") as well as user-defined uniform variable names.

This function will return as much information as it can about the specified active
uniform variable. If no information is available, length will be 0, and name will be an
empty string. This situation could occur if this function is called after a link operation
that failed. If an error occurs, the return values length, size, type, and name will be
unmodified.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_VALUE is generated if index is greater than or equal to the number of
active uniform variables in program.

GL_INVALID_OPERATION is generated if glGetActiveUniform is executed between the
execution of glBegin and the corresponding execution of glEnd.

GL_INVALID_VALUE is generated if bufSize is less than 0.

Chapter 3: GL 218

[Function]void glGetAttachedShaders program maxCount count shaders
Returns the handles of the shader objects attached to a program object.

program Specifies the program object to be queried.

maxCount Specifies the size of the array for storing the returned object names.

count Returns the number of names actually returned in objects.

shaders Specifies an array that is used to return the names of attached shader
objects.

glGetAttachedShaders returns the names of the shader objects attached to program.
The names of shader objects that are attached to program will be returned in shaders.
The actual number of shader names written into shaders is returned in count. If no
shader objects are attached to program, count is set to 0. The maximum number of
shader names that may be returned in shaders is specified by maxCount.

If the number of names actually returned is not required (for instance, if it has just
been obtained by calling glGetProgram), a value of NULL may be passed for count. If
no shader objects are attached to program, a value of 0 will be returned in count. The
actual number of attached shaders can be obtained by calling glGetProgram with the
value GL_ATTACHED_SHADERS.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_VALUE is generated if maxCount is less than 0.

GL_INVALID_OPERATION is generated if glGetAttachedShaders is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]GLint glGetAttribLocation program name
Returns the location of an attribute variable.

program Specifies the program object to be queried.

name Points to a null terminated string containing the name of the attribute
variable whose location is to be queried.

glGetAttribLocation queries the previously linked program object specified by pro-
gram for the attribute variable specified by name and returns the index of the generic
vertex attribute that is bound to that attribute variable. If name is a matrix at-
tribute variable, the index of the first column of the matrix is returned. If the named
attribute variable is not an active attribute in the specified program object or if name
starts with the reserved prefix "gl ", a value of -1 is returned.

The association between an attribute variable name and a generic attribute index can
be specified at any time by calling glBindAttribLocation. Attribute bindings do not
go into effect until glLinkProgram is called. After a program object has been linked
successfully, the index values for attribute variables remain fixed until the next link
command occurs. The attribute values can only be queried after a link if the link was
successful. glGetAttribLocation returns the binding that actually went into effect
the last time glLinkProgram was called for the specified program object. Attribute
bindings that have been specified since the last link operation are not returned by
glGetAttribLocation.

Chapter 3: GL 219

GL_INVALID_OPERATION is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_OPERATION is generated if program has not been successfully linked.

GL_INVALID_OPERATION is generated if glGetAttribLocation is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetBufferParameteriv target value data
Return parameters of a buffer object.

target Specifies the target buffer object. The symbolic constant must be GL_

ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

value Specifies the symbolic name of a buffer object parameter. Accepted val-
ues are GL_BUFFER_ACCESS, GL_BUFFER_MAPPED, GL_BUFFER_SIZE, or GL_
BUFFER_USAGE.

data Returns the requested parameter.

glGetBufferParameteriv returns in data a selected parameter of the buffer object
specified by target.

value names a specific buffer object parameter, as follows:

GL_BUFFER_ACCESS

params returns the access policy set while mapping the buffer object.
The initial value is GL_READ_WRITE.

GL_BUFFER_MAPPED

params returns a flag indicating whether the buffer object is currently
mapped. The initial value is GL_FALSE.

GL_BUFFER_SIZE

params returns the size of the buffer object, measured in bytes. The
initial value is 0.

GL_BUFFER_USAGE

params returns the buffer object’s usage pattern. The initial value is
GL_STATIC_DRAW.

GL_INVALID_ENUM is generated if target or value is not an accepted value.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to
target.

GL_INVALID_OPERATION is generated if glGetBufferParameteriv is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetBufferPointerv target pname params
Return the pointer to a mapped buffer object’s data store.

target Specifies the target buffer object. The symbolic constant must be GL_

ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

Chapter 3: GL 220

pname Specifies the pointer to be returned. The symbolic constant must be
GL_BUFFER_MAP_POINTER.

params Returns the pointer value specified by pname.

glGetBufferPointerv returns pointer information. pname is a symbolic constant
indicating the pointer to be returned, which must be GL_BUFFER_MAP_POINTER, the
pointer to which the buffer object’s data store is mapped. If the data store is not
currently mapped, NULL is returned. params is a pointer to a location in which to
place the returned pointer value.

GL_INVALID_ENUM is generated if target or pname is not an accepted value.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to
target.

GL_INVALID_OPERATION is generated if glGetBufferPointerv is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetBufferSubData target offset size data
Returns a subset of a buffer object’s data store.

target Specifies the target buffer object. The symbolic constant must be GL_

ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or
GL_PIXEL_UNPACK_BUFFER.

offset Specifies the offset into the buffer object’s data store from which data
will be returned, measured in bytes.

size Specifies the size in bytes of the data store region being returned.

data Specifies a pointer to the location where buffer object data is returned.

glGetBufferSubData returns some or all of the data from the buffer object currently
bound to target. Data starting at byte offset offset and extending for size bytes is
copied from the data store to the memory pointed to by data. An error is thrown
if the buffer object is currently mapped, or if offset and size together define a range
beyond the bounds of the buffer object’s data store.

GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER, GL_ELEMENT_

ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

GL_INVALID_VALUE is generated if offset or size is negative, or if together they define
a region of memory that extends beyond the buffer object’s allocated data store.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to
target.

GL_INVALID_OPERATION is generated if the buffer object being queried is mapped.

GL_INVALID_OPERATION is generated if glGetBufferSubData is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetClipPlane plane equation
Return the coefficients of the specified clipping plane.

plane Specifies a clipping plane. The number of clipping planes depends on the
implementation, but at least six clipping planes are supported. They are

Chapter 3: GL 221

identified by symbolic names of the form GL_CLIP_PLANEi where i ranges
from 0 to the value of GL_MAX_CLIP_PLANES - 1.

equation Returns four double-precision values that are the coefficients of the plane
equation of plane in eye coordinates. The initial value is (0, 0, 0, 0).

glGetClipPlane returns in equation the four coefficients of the plane equation for
plane.

GL_INVALID_ENUM is generated if plane is not an accepted value.

GL_INVALID_OPERATION is generated if glGetClipPlane is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glGetColorTableParameterfv target pname params
[Function]void glGetColorTableParameteriv target pname params

Get color lookup table parameters.

target The target color table. Must be GL_COLOR_TABLE, GL_POST_

CONVOLUTION_COLOR_TABLE, GL_POST_COLOR_MATRIX_COLOR_TABLE,
GL_PROXY_COLOR_TABLE, GL_PROXY_POST_CONVOLUTION_COLOR_TABLE,
or GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE.

pname The symbolic name of a color lookup table parameter. Must be
one of GL_COLOR_TABLE_BIAS, GL_COLOR_TABLE_SCALE, GL_COLOR_

TABLE_FORMAT, GL_COLOR_TABLE_WIDTH, GL_COLOR_TABLE_RED_SIZE,
GL_COLOR_TABLE_GREEN_SIZE, GL_COLOR_TABLE_BLUE_SIZE, GL_

COLOR_TABLE_ALPHA_SIZE, GL_COLOR_TABLE_LUMINANCE_SIZE, or
GL_COLOR_TABLE_INTENSITY_SIZE.

params A pointer to an array where the values of the parameter will be stored.

Returns parameters specific to color table target.

When pname is set to GL_COLOR_TABLE_SCALE or GL_COLOR_TABLE_BIAS,
glGetColorTableParameter returns the color table scale or bias parameters for the
table specified by target. For these queries, target must be set to GL_COLOR_TABLE,
GL_POST_CONVOLUTION_COLOR_TABLE, or GL_POST_COLOR_MATRIX_COLOR_TABLE and
params points to an array of four elements, which receive the scale or bias factors
for red, green, blue, and alpha, in that order.

glGetColorTableParameter can also be used to retrieve the format and size parame-
ters for a color table. For these queries, set target to either the color table target or the
proxy color table target. The format and size parameters are set by glColorTable.

The following table lists the format and size parameters that may be queried. For
each symbolic constant listed below for pname, params must point to an array of the
given length and receive the values indicated.

Parameter
N, Meaning

GL_COLOR_TABLE_FORMAT

1 , Internal format (e.g., GL_RGBA)

GL_COLOR_TABLE_WIDTH

1 , Number of elements in table

Chapter 3: GL 222

GL_COLOR_TABLE_RED_SIZE

1 , Size of red component, in bits

GL_COLOR_TABLE_GREEN_SIZE

1 , Size of green component

GL_COLOR_TABLE_BLUE_SIZE

1 , Size of blue component

GL_COLOR_TABLE_ALPHA_SIZE

1 , Size of alpha component

GL_COLOR_TABLE_LUMINANCE_SIZE

1 , Size of luminance component

GL_COLOR_TABLE_INTENSITY_SIZE

1 , Size of intensity component

GL_INVALID_ENUM is generated if target or pname is not an acceptable value.

GL_INVALID_OPERATION is generated if glGetColorTableParameter is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetColorTable target format type table
Retrieve contents of a color lookup table.

target Must be GL_COLOR_TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, or GL_
POST_COLOR_MATRIX_COLOR_TABLE.

format The format of the pixel data in table. The possible values are GL_RED, GL_
GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_
RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type The type of the pixel data in table. Symbolic constants GL_

UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_

2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

table Pointer to a one-dimensional array of pixel data containing the contents
of the color table.

glGetColorTable returns in table the contents of the color table specified by target.
No pixel transfer operations are performed, but pixel storage modes that are appli-
cable to glReadPixels are performed.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a histogram table is requested, table is treated as a byte offset
into the buffer object’s data store.

Color components that are requested in the specified format, but which are not in-
cluded in the internal format of the color lookup table, are returned as zero. The
assignments of internal color components to the components requested by format are

Chapter 3: GL 223

Internal Component
Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance
Red

Intensity Red

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and table is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetColorTable is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetCompressedTexImage target lod img
Return a compressed texture image.

target Specifies which texture is to be obtained. GL_TEXTURE_1D, GL_

TEXTURE_2D, and GL_TEXTURE_3DGL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_

POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_

CUBE_MAP_POSITIVE_Z, and GL_TEXTURE_CUBE_MAP_NEGATIVE_Z are
accepted.

lod Specifies the level-of-detail number of the desired image. Level 0 is the
base image level. Level n is the nth mipmap reduction image.

Chapter 3: GL 224

img Returns the compressed texture image.

glGetCompressedTexImage returns the compressed texture image associated with
target and lod into img. img should be an array of GL_TEXTURE_COMPRESSED_IMAGE_
SIZE bytes. target specifies whether the desired texture image was one specified
by glTexImage1D (GL_TEXTURE_1D), glTexImage2D (GL_TEXTURE_2D or any of GL_
TEXTURE_CUBE_MAP_*), or glTexImage3D (GL_TEXTURE_3D). lod specifies the level-
of-detail number of the desired image.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a texture image is requested, img is treated as a byte offset into
the buffer object’s data store.

To minimize errors, first verify that the texture is compressed by calling
glGetTexLevelParameter with argument GL_TEXTURE_COMPRESSED. If the
texture is compressed, then determine the amount of memory required to store
the compressed texture by calling glGetTexLevelParameter with argument
GL_TEXTURE_COMPRESSED_IMAGE_SIZE. Finally, retrieve the internal format of the
texture by calling glGetTexLevelParameter with argument GL_TEXTURE_INTERNAL_
FORMAT. To store the texture for later use, associate the internal format and size
with the retrieved texture image. These data can be used by the respective texture
or subtexture loading routine used for loading target textures.

GL_INVALID_VALUE is generated if lod is less than zero or greater than the maximum
number of LODs permitted by the implementation.

GL_INVALID_OPERATION is generated if glGetCompressedTexImage is used to retrieve
a texture that is in an uncompressed internal format.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if glGetCompressedTexImage is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetConvolutionFilter target format type image
Get current 1D or 2D convolution filter kernel.

target The filter to be retrieved. Must be one of GL_CONVOLUTION_1D or GL_

CONVOLUTION_2D.

format Format of the output image. Must be one of GL_RED, GL_GREEN, GL_
BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, or
GL_LUMINANCE_ALPHA.

type Data type of components in the output image. Symbolic constants
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_

3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,

Chapter 3: GL 225

GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

image Pointer to storage for the output image.

glGetConvolutionFilter returns the current 1D or 2D convolution filter kernel as
an image. The one- or two-dimensional image is placed in image according to the
specifications in format and type. No pixel transfer operations are performed on this
image, but the relevant pixel storage modes are applied.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a convolution filter is requested, image is treated as a byte offset
into the buffer object’s data store.

Color components that are present in format but not included in the internal format
of the filter are returned as zero. The assignments of internal color components to
the components of format are as follows.

Internal Component
Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance
Red

Intensity Red

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

Chapter 3: GL 226

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and image is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetConvolutionFilter is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetConvolutionParameterfv target pname params
[Function]void glGetConvolutionParameteriv target pname params

Get convolution parameters.

target The filter whose parameters are to be retrieved. Must be one of GL_
CONVOLUTION_1D, GL_CONVOLUTION_2D, or GL_SEPARABLE_2D.

pname The parameter to be retrieved. Must be one of GL_CONVOLUTION_BORDER_
MODE, GL_CONVOLUTION_BORDER_COLOR, GL_CONVOLUTION_FILTER_

SCALE, GL_CONVOLUTION_FILTER_BIAS, GL_CONVOLUTION_FORMAT,
GL_CONVOLUTION_WIDTH, GL_CONVOLUTION_HEIGHT, GL_MAX_

CONVOLUTION_WIDTH, or GL_MAX_CONVOLUTION_HEIGHT.

params Pointer to storage for the parameters to be retrieved.

glGetConvolutionParameter retrieves convolution parameters. target determines
which convolution filter is queried. pname determines which parameter is returned:

GL_CONVOLUTION_BORDER_MODE

The convolution border mode. See glConvolutionParameter for a list
of border modes.

GL_CONVOLUTION_BORDER_COLOR

The current convolution border color. params must be a pointer to an
array of four elements, which will receive the red, green, blue, and alpha
border colors.

GL_CONVOLUTION_FILTER_SCALE

The current filter scale factors. params must be a pointer to an array
of four elements, which will receive the red, green, blue, and alpha filter
scale factors in that order.

GL_CONVOLUTION_FILTER_BIAS

The current filter bias factors. params must be a pointer to an array of
four elements, which will receive the red, green, blue, and alpha filter bias
terms in that order.

GL_CONVOLUTION_FORMAT

The current internal format. See glConvolutionFilter1D,
glConvolutionFilter2D, and glSeparableFilter2D for lists of
allowable formats.

GL_CONVOLUTION_WIDTH

The current filter image width.

GL_CONVOLUTION_HEIGHT

The current filter image height.

Chapter 3: GL 227

GL_MAX_CONVOLUTION_WIDTH

The maximum acceptable filter image width.

GL_MAX_CONVOLUTION_HEIGHT

The maximum acceptable filter image height.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

GL_INVALID_ENUM is generated if target is GL_CONVOLUTION_1D and pname is GL_

CONVOLUTION_HEIGHT or GL_MAX_CONVOLUTION_HEIGHT.

GL_INVALID_OPERATION is generated if glGetConvolutionParameter is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]GLenum glGetError
Return error information.

glGetError returns the value of the error flag. Each detectable error is assigned
a numeric code and symbolic name. When an error occurs, the error flag is set to
the appropriate error code value. No other errors are recorded until glGetError is
called, the error code is returned, and the flag is reset to GL_NO_ERROR. If a call to
glGetError returns GL_NO_ERROR, there has been no detectable error since the last
call to glGetError, or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any
single error flag has recorded an error, the value of that flag is returned and that
flag is reset to GL_NO_ERROR when glGetError is called. If more than one flag has
recorded an error, glGetError returns and clears an arbitrary error flag value. Thus,
glGetError should always be called in a loop, until it returns GL_NO_ERROR, if all
error flags are to be reset.

Initially, all error flags are set to GL_NO_ERROR.

The following errors are currently defined:

GL_NO_ERROR

No error has been recorded. The value of this symbolic constant is guar-
anteed to be 0.

GL_INVALID_ENUM

An unacceptable value is specified for an enumerated argument. The
offending command is ignored and has no other side effect than to set the
error flag.

GL_INVALID_VALUE

A numeric argument is out of range. The offending command is ignored
and has no other side effect than to set the error flag.

GL_INVALID_OPERATION

The specified operation is not allowed in the current state. The offending
command is ignored and has no other side effect than to set the error
flag.

GL_STACK_OVERFLOW

This command would cause a stack overflow. The offending command is
ignored and has no other side effect than to set the error flag.

Chapter 3: GL 228

GL_STACK_UNDERFLOW

This command would cause a stack underflow. The offending command
is ignored and has no other side effect than to set the error flag.

GL_OUT_OF_MEMORY

There is not enough memory left to execute the command. The state of
the GL is undefined, except for the state of the error flags, after this error
is recorded.

GL_TABLE_TOO_LARGE

The specified table exceeds the implementation’s maximum supported
table size. The offending command is ignored and has no other side effect
than to set the error flag.

When an error flag is set, results of a GL operation are undefined only if GL_OUT_
OF_MEMORY has occurred. In all other cases, the command generating the error is
ignored and has no effect on the GL state or frame buffer contents. If the generating
command returns a value, it returns 0. If glGetError itself generates an error, it
returns 0.

GL_INVALID_OPERATION is generated if glGetError is executed between the execution
of glBegin and the corresponding execution of glEnd. In this case, glGetError

returns 0.

[Function]void glGetHistogramParameterfv target pname params
[Function]void glGetHistogramParameteriv target pname params

Get histogram parameters.

target Must be one of GL_HISTOGRAM or GL_PROXY_HISTOGRAM.

pname The name of the parameter to be retrieved. Must be one of
GL_HISTOGRAM_WIDTH, GL_HISTOGRAM_FORMAT, GL_HISTOGRAM_

RED_SIZE, GL_HISTOGRAM_GREEN_SIZE, GL_HISTOGRAM_BLUE_SIZE,
GL_HISTOGRAM_ALPHA_SIZE, GL_HISTOGRAM_LUMINANCE_SIZE, or
GL_HISTOGRAM_SINK.

params Pointer to storage for the returned values.

glGetHistogramParameter is used to query parameter values for the current his-
togram or for a proxy. The histogram state information may be queried by calling
glGetHistogramParameter with a target of GL_HISTOGRAM (to obtain information for
the current histogram table) or GL_PROXY_HISTOGRAM (to obtain information from the
most recent proxy request) and one of the following values for the pname argument:

Parameter
Description

GL_HISTOGRAM_WIDTH

Histogram table width

GL_HISTOGRAM_FORMAT

Internal format

GL_HISTOGRAM_RED_SIZE

Red component counter size, in bits

Chapter 3: GL 229

GL_HISTOGRAM_GREEN_SIZE

Green component counter size, in bits

GL_HISTOGRAM_BLUE_SIZE

Blue component counter size, in bits

GL_HISTOGRAM_ALPHA_SIZE

Alpha component counter size, in bits

GL_HISTOGRAM_LUMINANCE_SIZE

Luminance component counter size, in bits

GL_HISTOGRAM_SINK

Value of the sink parameter

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

GL_INVALID_OPERATION is generated if glGetHistogramParameter is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetHistogram target reset format type values
Get histogram table.

target Must be GL_HISTOGRAM.

reset If GL_TRUE, each component counter that is actually returned is reset to
zero. (Other counters are unaffected.) If GL_FALSE, none of the counters
in the histogram table is modified.

format The format of values to be returned in values. Must be one of GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_
LUMINANCE, or GL_LUMINANCE_ALPHA.

type The type of values to be returned in values. Symbolic constants
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_

3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

values A pointer to storage for the returned histogram table.

glGetHistogram returns the current histogram table as a one-dimensional image with
the same width as the histogram. No pixel transfer operations are performed on this
image, but pixel storage modes that are applicable to 1D images are honored.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a histogram table is requested, values is treated as a byte offset
into the buffer object’s data store.

Color components that are requested in the specified format, but which are not in-
cluded in the internal format of the histogram, are returned as zero. The assignments
of internal color components to the components requested by format are:

Chapter 3: GL 230

Internal Component
Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance
Red

GL_INVALID_ENUM is generated if target is not GL_HISTOGRAM.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and values is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetHistogram is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glGetLightfv light pname params
[Function]void glGetLightiv light pname params

Return light source parameter values.

light Specifies a light source. The number of possible lights depends on the
implementation, but at least eight lights are supported. They are identi-
fied by symbolic names of the form GL_LIGHTi where i ranges from 0 to
the value of GL_MAX_LIGHTS - 1.

pname Specifies a light source parameter for light. Accepted symbolic
names are GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION,
GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION.

Chapter 3: GL 231

params Returns the requested data.

glGetLight returns in params the value or values of a light source parameter. light
names the light and is a symbolic name of the form GL_LIGHTi where i ranges from 0
to the value of GL_MAX_LIGHTS - 1. GL_MAX_LIGHTS is an implementation dependent
constant that is greater than or equal to eight. pname specifies one of ten light source
parameters, again by symbolic name.

The following parameters are defined:

GL_AMBIENT

params returns four integer or floating-point values representing the am-
bient intensity of the light source. Integer values, when requested, are
linearly mapped from the internal floating-point representation such that
1.0 maps to the most positive representable integer value, and -1.0 maps
to the most negative representable integer value. If the internal value is
outside the range [-1,1], the corresponding integer return value is unde-
fined. The initial value is (0, 0, 0, 1).

GL_DIFFUSE

params returns four integer or floating-point values representing the dif-
fuse intensity of the light source. Integer values, when requested, are
linearly mapped from the internal floating-point representation such that
1.0 maps to the most positive representable integer value, and -1.0 maps
to the most negative representable integer value. If the internal value is
outside the range [-1,1], the corresponding integer return value is unde-
fined. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the
initial value is (0, 0, 0, 0).

GL_SPECULAR

params returns four integer or floating-point values representing the spec-
ular intensity of the light source. Integer values, when requested, are
linearly mapped from the internal floating-point representation such that
1.0 maps to the most positive representable integer value, and -1.0 maps
to the most negative representable integer value. If the internal value is
outside the range [-1,1], the corresponding integer return value is unde-
fined. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the
initial value is (0, 0, 0, 0).

GL_POSITION

params returns four integer or floating-point values representing the posi-
tion of the light source. Integer values, when requested, are computed by
rounding the internal floating-point values to the nearest integer value.
The returned values are those maintained in eye coordinates. They will
not be equal to the values specified using glLight, unless the modelview
matrix was identity at the time glLight was called. The initial value is
(0, 0, 1, 0).

GL_SPOT_DIRECTION

params returns three integer or floating-point values representing the di-
rection of the light source. Integer values, when requested, are computed

Chapter 3: GL 232

by rounding the internal floating-point values to the nearest integer value.
The returned values are those maintained in eye coordinates. They will
not be equal to the values specified using glLight, unless the modelview
matrix was identity at the time glLight was called. Although spot direc-
tion is normalized before being used in the lighting equation, the returned
values are the transformed versions of the specified values prior to nor-
malization. The initial value is (0,0-1).

GL_SPOT_EXPONENT

params returns a single integer or floating-point value representing the
spot exponent of the light. An integer value, when requested, is computed
by rounding the internal floating-point representation to the nearest in-
teger. The initial value is 0.

GL_SPOT_CUTOFF

params returns a single integer or floating-point value representing the
spot cutoff angle of the light. An integer value, when requested, is com-
puted by rounding the internal floating-point representation to the near-
est integer. The initial value is 180.

GL_CONSTANT_ATTENUATION

params returns a single integer or floating-point value representing the
constant (not distance-related) attenuation of the light. An integer value,
when requested, is computed by rounding the internal floating-point rep-
resentation to the nearest integer. The initial value is 1.

GL_LINEAR_ATTENUATION

params returns a single integer or floating-point value representing the
linear attenuation of the light. An integer value, when requested, is com-
puted by rounding the internal floating-point representation to the near-
est integer. The initial value is 0.

GL_QUADRATIC_ATTENUATION

params returns a single integer or floating-point value representing the
quadratic attenuation of the light. An integer value, when requested, is
computed by rounding the internal floating-point representation to the
nearest integer. The initial value is 0.

GL_INVALID_ENUM is generated if light or pname is not an accepted value.

GL_INVALID_OPERATION is generated if glGetLight is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glGetMapdv target query v
[Function]void glGetMapfv target query v
[Function]void glGetMapiv target query v

Return evaluator parameters.

target Specifies the symbolic name of a map. Accepted values are GL_

MAP1_COLOR_4, GL_MAP1_INDEX, GL_MAP1_NORMAL, GL_MAP1_TEXTURE_

COORD_1, GL_MAP1_TEXTURE_COORD_2, GL_MAP1_TEXTURE_COORD_3,

Chapter 3: GL 233

GL_MAP1_TEXTURE_COORD_4, GL_MAP1_VERTEX_3, GL_MAP1_

VERTEX_4, GL_MAP2_COLOR_4, GL_MAP2_INDEX, GL_MAP2_NORMAL,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2, GL_MAP2_

TEXTURE_COORD_3, GL_MAP2_TEXTURE_COORD_4, GL_MAP2_VERTEX_3,
and GL_MAP2_VERTEX_4.

query Specifies which parameter to return. Symbolic names GL_COEFF, GL_

ORDER, and GL_DOMAIN are accepted.

v Returns the requested data.

glMap1 and glMap2 define evaluators. glGetMap returns evaluator parameters. target
chooses a map, query selects a specific parameter, and v points to storage where the
values will be returned.

The acceptable values for the target parameter are described in the glMap1 and
glMap2 reference pages.

query can assume the following values:

GL_COEFF v returns the control points for the evaluator function. One-dimensional
evaluators return order control points, and two-dimensional evaluators re-
turn uordervorder control points. Each control point consists of one, two,
three, or four integer, single-precision floating-point, or double-precision
floating-point values, depending on the type of the evaluator. The GL
returns two-dimensional control points in row-major order, incrementing
the uorder index quickly and the vorder index after each row. Integer
values, when requested, are computed by rounding the internal floating-
point values to the nearest integer values.

GL_ORDER v returns the order of the evaluator function. One-dimensional evaluators
return a single value, order. The initial value is 1. Two-dimensional
evaluators return two values, uorder and vorder. The initial value is 1,1.

GL_DOMAIN

v returns the linear u and v mapping parameters. One-dimensional
evaluators return two values, u1 and u2, as specified by glMap1. Two-
dimensional evaluators return four values (u1, u2, v1, and v2) as specified
by glMap2. Integer values, when requested, are computed by rounding
the internal floating-point values to the nearest integer values.

GL_INVALID_ENUM is generated if either target or query is not an accepted value.

GL_INVALID_OPERATION is generated if glGetMap is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glGetMaterialfv face pname params
[Function]void glGetMaterialiv face pname params

Return material parameters.

face Specifies which of the two materials is being queried. GL_FRONT or GL_

BACK are accepted, representing the front and back materials, respectively.

pname Specifies the material parameter to return. GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_EMISSION, GL_SHININESS, and GL_COLOR_INDEXES are
accepted.

Chapter 3: GL 234

params Returns the requested data.

glGetMaterial returns in params the value or values of parameter pname of material
face. Six parameters are defined:

GL_AMBIENT

params returns four integer or floating-point values representing the am-
bient reflectance of the material. Integer values, when requested, are
linearly mapped from the internal floating-point representation such that
1.0 maps to the most positive representable integer value, and -1.0 maps
to the most negative representable integer value. If the internal value is
outside the range [-1,1], the corresponding integer return value is unde-
fined. The initial value is (0.2, 0.2, 0.2, 1.0)

GL_DIFFUSE

params returns four integer or floating-point values representing the dif-
fuse reflectance of the material. Integer values, when requested, are lin-
early mapped from the internal floating-point representation such that 1.0
maps to the most positive representable integer value, and -1.0 maps to
the most negative representable integer value. If the internal value is out-
side the range [-1,1], the corresponding integer return value is undefined.
The initial value is (0.8, 0.8, 0.8, 1.0).

GL_SPECULAR

params returns four integer or floating-point values representing the spec-
ular reflectance of the material. Integer values, when requested, are lin-
early mapped from the internal floating-point representation such that 1.0
maps to the most positive representable integer value, and -1.0 maps to
the most negative representable integer value. If the internal value is out-
side the range [-1,1], the corresponding integer return value is undefined.
The initial value is (0, 0, 0, 1).

GL_EMISSION

params returns four integer or floating-point values representing the emit-
ted light intensity of the material. Integer values, when requested, are
linearly mapped from the internal floating-point representation such that
1.0 maps to the most positive representable integer value, and -1.0 maps
to the most negative representable integer value. If the internal value is
outside the range [-1,1], the corresponding integer return value is unde-
fined. The initial value is (0, 0, 0, 1).

GL_SHININESS

params returns one integer or floating-point value representing the spec-
ular exponent of the material. Integer values, when requested, are com-
puted by rounding the internal floating-point value to the nearest integer
value. The initial value is 0.

GL_COLOR_INDEXES

params returns three integer or floating-point values representing the am-
bient, diffuse, and specular indices of the material. These indices are used
only for color index lighting. (All the other parameters are used only for

Chapter 3: GL 235

RGBA lighting.) Integer values, when requested, are computed by round-
ing the internal floating-point values to the nearest integer values.

GL_INVALID_ENUM is generated if face or pname is not an accepted value.

GL_INVALID_OPERATION is generated if glGetMaterial is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glGetMinmaxParameterfv target pname params
[Function]void glGetMinmaxParameteriv target pname params

Get minmax parameters.

target Must be GL_MINMAX.

pname The parameter to be retrieved. Must be one of GL_MINMAX_FORMAT or
GL_MINMAX_SINK.

params A pointer to storage for the retrieved parameters.

glGetMinmaxParameter retrieves parameters for the current minmax table by setting
pname to one of the following values:

Parameter
Description

GL_MINMAX_FORMAT

Internal format of minmax table

GL_MINMAX_SINK

Value of the sink parameter

GL_INVALID_ENUM is generated if target is not GL_MINMAX.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

GL_INVALID_OPERATION is generated if glGetMinmaxParameter is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetMinmax target reset format types values
Get minimum and maximum pixel values.

target Must be GL_MINMAX.

reset If GL_TRUE, all entries in the minmax table that are actually returned are
reset to their initial values. (Other entries are unaltered.) If GL_FALSE,
the minmax table is unaltered.

format The format of the data to be returned in values. Must be one of GL_
RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_BGRA,
GL_LUMINANCE, or GL_LUMINANCE_ALPHA.

types The type of the data to be returned in values. Symbolic constants
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_

3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,

Chapter 3: GL 236

GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

values A pointer to storage for the returned values.

glGetMinmax returns the accumulated minimum and maximum pixel values (com-
puted on a per-component basis) in a one-dimensional image of width 2. The first set
of return values are the minima, and the second set of return values are the maxima.
The format of the return values is determined by format, and their type is determined
by types.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while minimum and maximum pixel values are requested, values is
treated as a byte offset into the buffer object’s data store.

No pixel transfer operations are performed on the return values, but pixel storage
modes that are applicable to one-dimensional images are performed. Color compo-
nents that are requested in the specified format, but that are not included in the
internal format of the minmax table, are returned as zero. The assignment of internal
color components to the components requested by format are as follows:

Internal Component
Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Luminance
Red

If reset is GL_TRUE, the minmax table entries corresponding to the return values are
reset to their initial values. Minimum and maximum values that are not returned are
not modified, even if reset is GL_TRUE.

GL_INVALID_ENUM is generated if target is not GL_MINMAX.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if types is not one of the allowable values.

GL_INVALID_OPERATION is generated if types is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if types is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

Chapter 3: GL 237

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and values is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetMinmax is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glGetPixelMapfv map data
[Function]void glGetPixelMapuiv map data
[Function]void glGetPixelMapusv map data

Return the specified pixel map.

map Specifies the name of the pixel map to return. Accepted values are GL_

PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S, GL_PIXEL_MAP_I_TO_R, GL_
PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A, GL_
PIXEL_MAP_R_TO_R, GL_PIXEL_MAP_G_TO_G, GL_PIXEL_MAP_B_TO_B, and
GL_PIXEL_MAP_A_TO_A.

data Returns the pixel map contents.

See the glPixelMap reference page for a description of the acceptable values for
the map parameter. glGetPixelMap returns in data the contents of the pixel map
specified in map. Pixel maps are used during the execution of glReadPixels,
glDrawPixels, glCopyPixels, glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glCopyTexImage1D,
glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D, and
glCopyTexSubImage3D. to map color indices, stencil indices, color components, and
depth components to other values.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a pixel map is requested, data is treated as a byte offset into
the buffer object’s data store.

Unsigned integer values, if requested, are linearly mapped from the internal fixed or
floating-point representation such that 1.0 maps to the largest representable integer
value, and 0.0 maps to 0. Return unsigned integer values are undefined if the map
value was not in the range [0,1].

To determine the required size of map, call glGet with the appropriate symbolic
constant.

GL_INVALID_ENUM is generated if map is not an accepted value.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated by glGetPixelMapfv if a non-zero buffer object
name is bound to the GL_PIXEL_PACK_BUFFER target and data is not evenly divisible
into the number of bytes needed to store in memory a GLfloat datum.

Chapter 3: GL 238

GL_INVALID_OPERATION is generated by glGetPixelMapuiv if a non-zero buffer object
name is bound to the GL_PIXEL_PACK_BUFFER target and data is not evenly divisible
into the number of bytes needed to store in memory a GLuint datum.

GL_INVALID_OPERATION is generated by glGetPixelMapusv if a non-zero buffer object
name is bound to the GL_PIXEL_PACK_BUFFER target and data is not evenly divisible
into the number of bytes needed to store in memory a GLushort datum.

GL_INVALID_OPERATION is generated if glGetPixelMap is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glGetPointerv pname params
Return the address of the specified pointer.

pname Specifies the array or buffer pointer to be returned. Symbolic
constants GL_COLOR_ARRAY_POINTER, GL_EDGE_FLAG_ARRAY_POINTER,
GL_FOG_COORD_ARRAY_POINTER, GL_FEEDBACK_BUFFER_POINTER,
GL_INDEX_ARRAY_POINTER, GL_NORMAL_ARRAY_POINTER, GL_

SECONDARY_COLOR_ARRAY_POINTER, GL_SELECTION_BUFFER_POINTER,
GL_TEXTURE_COORD_ARRAY_POINTER, or GL_VERTEX_ARRAY_POINTER are
accepted.

params Returns the pointer value specified by pname.

glGetPointerv returns pointer information. pname is a symbolic constant indicating
the pointer to be returned, and params is a pointer to a location in which to place
the returned data.

For all pname arguments except GL_FEEDBACK_BUFFER_POINTER and GL_SELECTION_

BUFFER_POINTER, if a non-zero named buffer object was bound to the GL_ARRAY_

BUFFER target (see glBindBuffer) when the desired pointer was previously specified,
the pointer returned is a byte offset into the buffer object’s data store. Buffer objects
are only available in OpenGL versions 1.5 and greater.

GL_INVALID_ENUM is generated if pname is not an accepted value.

[Function]void glGetPolygonStipple pattern
Return the polygon stipple pattern.

pattern Returns the stipple pattern. The initial value is all 1’s.

glGetPolygonStipple returns to pattern a 3232 polygon stipple pattern. The pattern
is packed into memory as if glReadPixels with both height and width of 32, type of
GL_BITMAP, and format of GL_COLOR_INDEX were called, and the stipple pattern were
stored in an internal 3232 color index buffer. Unlike glReadPixels, however, pixel
transfer operations (shift, offset, pixel map) are not applied to the returned stipple
image.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a polygon stipple pattern is requested, pattern is treated as a
byte offset into the buffer object’s data store.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

Chapter 3: GL 239

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if glGetPolygonStipple is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetProgramInfoLog program maxLength length infoLog
Returns the information log for a program object.

program Specifies the program object whose information log is to be queried.

maxLength
Specifies the size of the character buffer for storing the returned informa-
tion log.

length Returns the length of the string returned in infoLog (excluding the null
terminator).

infoLog Specifies an array of characters that is used to return the information log.

glGetProgramInfoLog returns the information log for the specified program object.
The information log for a program object is modified when the program object is
linked or validated. The string that is returned will be null terminated.

glGetProgramInfoLog returns in infoLog as much of the information log as it can, up
to a maximum of maxLength characters. The number of characters actually returned,
excluding the null termination character, is specified by length. If the length of the
returned string is not required, a value of NULL can be passed in the length argument.
The size of the buffer required to store the returned information log can be obtained
by calling glGetProgram with the value GL_INFO_LOG_LENGTH.

The information log for a program object is either an empty string, or a string con-
taining information about the last link operation, or a string containing information
about the last validation operation. It may contain diagnostic messages, warning
messages, and other information. When a program object is created, its information
log will be a string of length 0.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_VALUE is generated if maxLength is less than 0.

GL_INVALID_OPERATION is generated if glGetProgramInfoLog is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetProgramiv program pname params
Returns a parameter from a program object.

program Specifies the program object to be queried.

pname Specifies the object parameter. Accepted symbolic names are
GL_DELETE_STATUS, GL_LINK_STATUS, GL_VALIDATE_STATUS, GL_

INFO_LOG_LENGTH, GL_ATTACHED_SHADERS, GL_ACTIVE_ATTRIBUTES,
GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, GL_ACTIVE_UNIFORMS,
GL_ACTIVE_UNIFORM_MAX_LENGTH.

Chapter 3: GL 240

params Returns the requested object parameter.

glGetProgram returns in params the value of a parameter for a specific program
object. The following parameters are defined:

GL_DELETE_STATUS

params returns GL_TRUE if program is currently flagged for deletion, and
GL_FALSE otherwise.

GL_LINK_STATUS

params returns GL_TRUE if the last link operation on program was suc-
cessful, and GL_FALSE otherwise.

GL_VALIDATE_STATUS

params returns GL_TRUE or if the last validation operation on program
was successful, and GL_FALSE otherwise.

GL_INFO_LOG_LENGTH

params returns the number of characters in the information log for pro-
gram including the null termination character (i.e., the size of the char-
acter buffer required to store the information log). If program has no
information log, a value of 0 is returned.

GL_ATTACHED_SHADERS

params returns the number of shader objects attached to program.

GL_ACTIVE_ATTRIBUTES

params returns the number of active attribute variables for program.

GL_ACTIVE_ATTRIBUTE_MAX_LENGTH

params returns the length of the longest active attribute name for
program, including the null termination character (i.e., the size of the
character buffer required to store the longest attribute name). If no
active attributes exist, 0 is returned.

GL_ACTIVE_UNIFORMS

params returns the number of active uniform variables for program.

GL_ACTIVE_UNIFORM_MAX_LENGTH

params returns the length of the longest active uniform variable name
for program, including the null termination character (i.e., the size of the
character buffer required to store the longest uniform variable name). If
no active uniform variables exist, 0 is returned.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program does not refer to a program object.

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_OPERATION is generated if glGetProgram is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glGetQueryiv target pname params
Return parameters of a query object target.

Chapter 3: GL 241

target Specifies a query object target. Must be GL_SAMPLES_PASSED.

pname Specifies the symbolic name of a query object target parameter. Accepted
values are GL_CURRENT_QUERY or GL_QUERY_COUNTER_BITS.

params Returns the requested data.

glGetQueryiv returns in params a selected parameter of the query object target
specified by target.

pname names a specific query object target parameter. When target is GL_SAMPLES_
PASSED, pname can be as follows:

GL_CURRENT_QUERY

params returns the name of the currently active occlusion query object.
If no occlusion query is active, 0 is returned. The initial value is 0.

GL_QUERY_COUNTER_BITS

params returns the number of bits in the query counter used to accumu-
late passing samples. If the number of bits returned is 0, the implemen-
tation does not support a query counter, and the results obtained from
glGetQueryObject are useless.

GL_INVALID_ENUM is generated if target or pname is not an accepted value.

GL_INVALID_OPERATION is generated if glGetQueryiv is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glGetQueryObjectiv id pname params
[Function]void glGetQueryObjectuiv id pname params

Return parameters of a query object.

id Specifies the name of a query object.

pname Specifies the symbolic name of a query object parameter. Accepted values
are GL_QUERY_RESULT or GL_QUERY_RESULT_AVAILABLE.

params Returns the requested data.

glGetQueryObject returns in params a selected parameter of the query object spec-
ified by id.

pname names a specific query object parameter. pname can be as follows:

GL_QUERY_RESULT

params returns the value of the query object’s passed samples counter.
The initial value is 0.

GL_QUERY_RESULT_AVAILABLE

params returns whether the passed samples counter is immediately avail-
able. If a delay would occur waiting for the query result, GL_FALSE is
returned. Otherwise, GL_TRUE is returned, which also indicates that the
results of all previous queries are available as well.

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_OPERATION is generated if id is not the name of a query object.

Chapter 3: GL 242

GL_INVALID_OPERATION is generated if id is the name of a currently active query
object.

GL_INVALID_OPERATION is generated if glGetQueryObject is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetSeparableFilter target format type row column span
Get separable convolution filter kernel images.

target The separable filter to be retrieved. Must be GL_SEPARABLE_2D.

format Format of the output images. Must be one of GL_RED, GL_GREEN, GL_
BLUE, GL_ALPHA, GL_RGB, GL_BGRGL_RGBA, GL_BGRA, GL_LUMINANCE, or
GL_LUMINANCE_ALPHA.

type Data type of components in the output images. Symbolic constants
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_

3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

row Pointer to storage for the row filter image.

column Pointer to storage for the column filter image.

span Pointer to storage for the span filter image (currently unused).

glGetSeparableFilter returns the two one-dimensional filter kernel images for the
current separable 2D convolution filter. The row image is placed in row and the
column image is placed in column according to the specifications in format and type.
(In the current implementation, span is not affected in any way.) No pixel transfer
operations are performed on the images, but the relevant pixel storage modes are
applied.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a separable convolution filter is requested, row, column, and
span are treated as a byte offset into the buffer object’s data store.

Color components that are present in format but not included in the internal format
of the filters are returned as zero. The assignments of internal color components to
the components of format are as follows:

Internal Component
Resulting Component

Red Red

Green Green

Blue Blue

Alpha Alpha

Chapter 3: GL 243

Luminance
Red

Intensity Red

GL_INVALID_ENUM is generated if target is not GL_SEPARABLE_2D.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_PACK_BUFFER target and row or column is not evenly divisible into the
number of bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetSeparableFilter is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetShaderInfoLog shader maxLength length infoLog
Returns the information log for a shader object.

shader Specifies the shader object whose information log is to be queried.

maxLength
Specifies the size of the character buffer for storing the returned informa-
tion log.

length Returns the length of the string returned in infoLog (excluding the null
terminator).

infoLog Specifies an array of characters that is used to return the information log.

glGetShaderInfoLog returns the information log for the specified shader object. The
information log for a shader object is modified when the shader is compiled. The string
that is returned will be null terminated.

glGetShaderInfoLog returns in infoLog as much of the information log as it can, up
to a maximum of maxLength characters. The number of characters actually returned,
excluding the null termination character, is specified by length. If the length of the
returned string is not required, a value of NULL can be passed in the length argument.

Chapter 3: GL 244

The size of the buffer required to store the returned information log can be obtained
by calling glGetShader with the value GL_INFO_LOG_LENGTH.

The information log for a shader object is a string that may contain diagnostic mes-
sages, warning messages, and other information about the last compile operation.
When a shader object is created, its information log will be a string of length 0.

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if shader is not a shader object.

GL_INVALID_VALUE is generated if maxLength is less than 0.

GL_INVALID_OPERATION is generated if glGetShaderInfoLog is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetShaderSource shader bufSize length source
Returns the source code string from a shader object.

shader Specifies the shader object to be queried.

bufSize Specifies the size of the character buffer for storing the returned source
code string.

length Returns the length of the string returned in source (excluding the null
terminator).

source Specifies an array of characters that is used to return the source code
string.

glGetShaderSource returns the concatenation of the source code strings from the
shader object specified by shader. The source code strings for a shader object are the
result of a previous call to glShaderSource. The string returned by the function will
be null terminated.

glGetShaderSource returns in source as much of the source code string as it can,
up to a maximum of bufSize characters. The number of characters actually returned,
excluding the null termination character, is specified by length. If the length of the
returned string is not required, a value of NULL can be passed in the length argument.
The size of the buffer required to store the returned source code string can be obtained
by calling glGetShader with the value GL_SHADER_SOURCE_LENGTH.

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if shader is not a shader object.

GL_INVALID_VALUE is generated if bufSize is less than 0.

GL_INVALID_OPERATION is generated if glGetShaderSource is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetShaderiv shader pname params
Returns a parameter from a shader object.

shader Specifies the shader object to be queried.

pname Specifies the object parameter. Accepted symbolic names are GL_SHADER_
TYPE, GL_DELETE_STATUS, GL_COMPILE_STATUS, GL_INFO_LOG_LENGTH,
GL_SHADER_SOURCE_LENGTH.

Chapter 3: GL 245

params Returns the requested object parameter.

glGetShader returns in params the value of a parameter for a specific shader object.
The following parameters are defined:

GL_SHADER_TYPE

params returns GL_VERTEX_SHADER if shader is a vertex shader object,
and GL_FRAGMENT_SHADER if shader is a fragment shader object.

GL_DELETE_STATUS

params returns GL_TRUE if shader is currently flagged for deletion, and
GL_FALSE otherwise.

GL_COMPILE_STATUS

params returns GL_TRUE if the last compile operation on shader was suc-
cessful, and GL_FALSE otherwise.

GL_INFO_LOG_LENGTH

params returns the number of characters in the information log for shader
including the null termination character (i.e., the size of the character
buffer required to store the information log). If shader has no information
log, a value of 0 is returned.

GL_SHADER_SOURCE_LENGTH

params returns the length of the concatenation of the source strings that
make up the shader source for the shader, including the null termination
character. (i.e., the size of the character buffer required to store the
shader source). If no source code exists, 0 is returned.

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if shader does not refer to a shader object.

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_OPERATION is generated if glGetShader is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]const-GLubyte* glGetString name
Return a string describing the current GL connection.

name Specifies a symbolic constant, one of GL_VENDOR, GL_RENDERER,
GL_VERSION, GL_SHADING_LANGUAGE_VERSION, or GL_EXTENSIONS.

glGetString returns a pointer to a static string describing some aspect of the current
GL connection. name can be one of the following:

GL_VENDOR

Returns the company responsible for this GL implementation. This name
does not change from release to release.

GL_RENDERER

Returns the name of the renderer. This name is typically specific to a
particular configuration of a hardware platform. It does not change from
release to release.

Chapter 3: GL 246

GL_VERSION

Returns a version or release number.

GL_SHADING_LANGUAGE_VERSION

Returns a version or release number for the shading language.

GL_EXTENSIONS

Returns a space-separated list of supported extensions to GL.

Because the GL does not include queries for the performance characteristics of an
implementation, some applications are written to recognize known platforms and
modify their GL usage based on known performance characteristics of these platforms.
Strings GL_VENDOR and GL_RENDERER together uniquely specify a platform. They
do not change from release to release and should be used by platform-recognition
algorithms.

Some applications want to make use of features that are not part of the standard
GL. These features may be implemented as extensions to the standard GL. The GL_
EXTENSIONS string is a space-separated list of supported GL extensions. (Extension
names never contain a space character.)

The GL_VERSION and GL_SHADING_LANGUAGE_VERSION strings begin with a version
number. The version number uses one of these forms:

major number.minor numbermajor number.minor number.release number

Vendor-specific information may follow the version number. Its format depends on
the implementation, but a space always separates the version number and the vendor-
specific information.

All strings are null-terminated.

GL_INVALID_ENUM is generated if name is not an accepted value.

GL_INVALID_OPERATION is generated if glGetString is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glGetTexEnvfv target pname params
[Function]void glGetTexEnviv target pname params

Return texture environment parameters.

target Specifies a texture environment. May be GL_TEXTURE_ENV, GL_TEXTURE_
FILTER_CONTROL, or GL_POINT_SPRITE.

pname Specifies the symbolic name of a texture environment parameter.
Accepted values are GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_COLOR,
GL_TEXTURE_LOD_BIAS, GL_COMBINE_RGB, GL_COMBINE_ALPHA, GL_SRC0_
RGB, GL_SRC1_RGB, GL_SRC2_RGB, GL_SRC0_ALPHA, GL_SRC1_ALPHA,
GL_SRC2_ALPHA, GL_OPERAND0_RGB, GL_OPERAND1_RGB, GL_OPERAND2_

RGB, GL_OPERAND0_ALPHA, GL_OPERAND1_ALPHA, GL_OPERAND2_ALPHA,
GL_RGB_SCALE, GL_ALPHA_SCALE, or GL_COORD_REPLACE.

params Returns the requested data.

glGetTexEnv returns in params selected values of a texture environment that was
specified with glTexEnv. target specifies a texture environment.

Chapter 3: GL 247

When target is GL_TEXTURE_FILTER_CONTROL, pname must be GL_TEXTURE_LOD_

BIAS. When target is GL_POINT_SPRITE, pname must be GL_COORD_REPLACE. When
target is GL_TEXTURE_ENV, pname can be GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_
COLOR, GL_COMBINE_RGB, GL_COMBINE_ALPHA, GL_RGB_SCALE, GL_ALPHA_SCALE,
GL_SRC0_RGB, GL_SRC1_RGB, GL_SRC2_RGB, GL_SRC0_ALPHA, GL_SRC1_ALPHA, or
GL_SRC2_ALPHA.

pname names a specific texture environment parameter, as follows:

GL_TEXTURE_ENV_MODE

params returns the single-valued texture environment mode, a symbolic
constant. The initial value is GL_MODULATE.

GL_TEXTURE_ENV_COLOR

params returns four integer or floating-point values that are the texture
environment color. Integer values, when requested, are linearly mapped
from the internal floating-point representation such that 1.0 maps to the
most positive representable integer, and -1.0 maps to the most negative
representable integer. The initial value is (0, 0, 0, 0).

GL_TEXTURE_LOD_BIAS

params returns a single floating-point value that is the texture level-of-
detail bias. The initial value is 0.

GL_COMBINE_RGB

params returns a single symbolic constant value representing the current
RGB combine mode. The initial value is GL_MODULATE.

GL_COMBINE_ALPHA

params returns a single symbolic constant value representing the current
alpha combine mode. The initial value is GL_MODULATE.

GL_SRC0_RGB

params returns a single symbolic constant value representing the texture
combiner zero’s RGB source. The initial value is GL_TEXTURE.

GL_SRC1_RGB

params returns a single symbolic constant value representing the texture
combiner one’s RGB source. The initial value is GL_PREVIOUS.

GL_SRC2_RGB

params returns a single symbolic constant value representing the texture
combiner two’s RGB source. The initial value is GL_CONSTANT.

GL_SRC0_ALPHA

params returns a single symbolic constant value representing the texture
combiner zero’s alpha source. The initial value is GL_TEXTURE.

GL_SRC1_ALPHA

params returns a single symbolic constant value representing the texture
combiner one’s alpha source. The initial value is GL_PREVIOUS.

GL_SRC2_ALPHA

params returns a single symbolic constant value representing the texture
combiner two’s alpha source. The initial value is GL_CONSTANT.

Chapter 3: GL 248

GL_OPERAND0_RGB

params returns a single symbolic constant value representing the texture
combiner zero’s RGB operand. The initial value is GL_SRC_COLOR.

GL_OPERAND1_RGB

params returns a single symbolic constant value representing the texture
combiner one’s RGB operand. The initial value is GL_SRC_COLOR.

GL_OPERAND2_RGB

params returns a single symbolic constant value representing the texture
combiner two’s RGB operand. The initial value is GL_SRC_ALPHA.

GL_OPERAND0_ALPHA

params returns a single symbolic constant value representing the texture
combiner zero’s alpha operand. The initial value is GL_SRC_ALPHA.

GL_OPERAND1_ALPHA

params returns a single symbolic constant value representing the texture
combiner one’s alpha operand. The initial value is GL_SRC_ALPHA.

GL_OPERAND2_ALPHA

params returns a single symbolic constant value representing the texture
combiner two’s alpha operand. The initial value is GL_SRC_ALPHA.

GL_RGB_SCALE

params returns a single floating-point value representing the current RGB
texture combiner scaling factor. The initial value is 1.0.

GL_ALPHA_SCALE

params returns a single floating-point value representing the current alpha
texture combiner scaling factor. The initial value is 1.0.

GL_COORD_REPLACE

params returns a single boolean value representing the current point
sprite texture coordinate replacement enable state. The initial value is
GL_FALSE.

GL_INVALID_ENUM is generated if target or pname is not an accepted value.

GL_INVALID_OPERATION is generated if glGetTexEnv is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glGetTexGendv coord pname params
[Function]void glGetTexGenfv coord pname params
[Function]void glGetTexGeniv coord pname params

Return texture coordinate generation parameters.

coord Specifies a texture coordinate. Must be GL_S, GL_T, GL_R, or GL_Q.

pname Specifies the symbolic name of the value(s) to be returned. Must be either
GL_TEXTURE_GEN_MODE or the name of one of the texture generation plane
equations: GL_OBJECT_PLANE or GL_EYE_PLANE.

params Returns the requested data.

Chapter 3: GL 249

glGetTexGen returns in params selected parameters of a texture coordinate genera-
tion function that was specified using glTexGen. coord names one of the (s, t, r, q)
texture coordinates, using the symbolic constant GL_S, GL_T, GL_R, or GL_Q.

pname specifies one of three symbolic names:

GL_TEXTURE_GEN_MODE

params returns the single-valued texture generation function, a symbolic
constant. The initial value is GL_EYE_LINEAR.

GL_OBJECT_PLANE

params returns the four plane equation coefficients that specify object
linear-coordinate generation. Integer values, when requested, are mapped
directly from the internal floating-point representation.

GL_EYE_PLANE

params returns the four plane equation coefficients that specify eye linear-
coordinate generation. Integer values, when requested, are mapped di-
rectly from the internal floating-point representation. The returned val-
ues are those maintained in eye coordinates. They are not equal to the
values specified using glTexGen, unless the modelview matrix was iden-
tity when glTexGen was called.

GL_INVALID_ENUM is generated if coord or pname is not an accepted value.

GL_INVALID_OPERATION is generated if glGetTexGen is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glGetTexImage target level format type img
Return a texture image.

target Specifies which texture is to be obtained. GL_TEXTURE_1D, GL_

TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_

POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_

CUBE_MAP_POSITIVE_Z, and GL_TEXTURE_CUBE_MAP_NEGATIVE_Z are
accepted.

level Specifies the level-of-detail number of the desired image. Level 0 is the
base image level. Level n is the nth mipmap reduction image.

format Specifies a pixel format for the returned data. The supported formats
are GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA,
GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies a pixel type for the returned data. The supported types
are GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_

2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

Chapter 3: GL 250

img Returns the texture image. Should be a pointer to an array of the type
specified by type.

glGetTexImage returns a texture image into img. target specifies whether the desired
texture image is one specified by glTexImage1D (GL_TEXTURE_1D), glTexImage2D

(GL_TEXTURE_2D or any of GL_TEXTURE_CUBE_MAP_*), or glTexImage3D (GL_
TEXTURE_3D). level specifies the level-of-detail number of the desired image. format
and type specify the format and type of the desired image array. See the reference
pages glTexImage1D and glDrawPixels for a description of the acceptable values
for the format and type parameters, respectively.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a texture image is requested, img is treated as a byte offset into
the buffer object’s data store.

To understand the operation of glGetTexImage, consider the selected internal four-
component texture image to be an RGBA color buffer the size of the image. The
semantics of glGetTexImage are then identical to those of glReadPixels, with the
exception that no pixel transfer operations are performed, when called with the same
format and type, with x and y set to 0, width set to the width of the texture image
(including border if one was specified), and height set to 1 for 1D images, or to the
height of the texture image (including border if one was specified) for 2D images.
Because the internal texture image is an RGBA image, pixel formats GL_COLOR_

INDEX, GL_STENCIL_INDEX, and GL_DEPTH_COMPONENT are not accepted, and pixel
type GL_BITMAP is not accepted.

If the selected texture image does not contain four components, the following map-
pings are applied. Single-component textures are treated as RGBA buffers with red
set to the single-component value, green set to 0, blue set to 0, and alpha set to 1.
Two-component textures are treated as RGBA buffers with red set to the value of
component zero, alpha set to the value of component one, and green and blue set to
0. Finally, three-component textures are treated as RGBA buffers with red set to
component zero, green set to component one, blue set to component two, and alpha
set to 1.

To determine the required size of img, use glGetTexLevelParameter to determine
the dimensions of the internal texture image, then scale the required number of pixels
by the storage required for each pixel, based on format and type. Be sure to take the
pixel storage parameters into account, especially GL_PACK_ALIGNMENT.

GL_INVALID_ENUM is generated if target, format, or type is not an accepted value.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2(max,), where max
is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION is returned if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is returned if type is one of GL_UNSIGNED_SHORT_4_4_4_

4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,

Chapter 3: GL 251

GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV, and format
is neither GL_RGBA or GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_PACK_BUFFER target and img is not evenly divisible into the number
of bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glGetTexImage is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glGetTexLevelParameterfv target level pname params
[Function]void glGetTexLevelParameteriv target level pname params

Return texture parameter values for a specific level of detail.

target Specifies the symbolic name of the target texture, either GL_

TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_PROXY_TEXTURE_1D,
GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_3D, GL_TEXTURE_

CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_

TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_
Z, or GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number of the desired image. Level 0 is the
base image level. Level n is the nth mipmap reduction image.

pname Specifies the symbolic name of a texture parameter. GL_

TEXTURE_WIDTH, GL_TEXTURE_HEIGHT, GL_TEXTURE_DEPTH,
GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_BORDER, GL_TEXTURE_

RED_SIZE, GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE,
GL_TEXTURE_ALPHA_SIZE, GL_TEXTURE_LUMINANCE_SIZE, GL_TEXTURE_

INTENSITY_SIZE, GL_TEXTURE_DEPTH_SIZE, GL_TEXTURE_COMPRESSED,
and GL_TEXTURE_COMPRESSED_IMAGE_SIZE are accepted.

params Returns the requested data.

glGetTexLevelParameter returns in params texture parameter values for a
specific level-of-detail value, specified as level. target defines the target texture,
either GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_PROXY_TEXTURE_1D,
GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_POSITIVE_

X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_PROXY_TEXTURE_CUBE_MAP.

GL_MAX_TEXTURE_SIZE, and GL_MAX_3D_TEXTURE_SIZE are not really descriptive
enough. It has to report the largest square texture image that can be accommodated
with mipmaps and borders, but a long skinny texture, or a texture without mipmaps
and borders, may easily fit in texture memory. The proxy targets allow the user

Chapter 3: GL 252

to more accurately query whether the GL can accommodate a texture of a given
configuration. If the texture cannot be accommodated, the texture state variables,
which may be queried with glGetTexLevelParameter, are set to 0. If the texture
can be accommodated, the texture state values will be set as they would be set for a
non-proxy target.

pname specifies the texture parameter whose value or values will be returned.

The accepted parameter names are as follows:

GL_TEXTURE_WIDTH

params returns a single value, the width of the texture image. This value
includes the border of the texture image. The initial value is 0.

GL_TEXTURE_HEIGHT

params returns a single value, the height of the texture image. This value
includes the border of the texture image. The initial value is 0.

GL_TEXTURE_DEPTH

params returns a single value, the depth of the texture image. This value
includes the border of the texture image. The initial value is 0.

GL_TEXTURE_INTERNAL_FORMAT

params returns a single value, the internal format of the texture image.

GL_TEXTURE_BORDER

params returns a single value, the width in pixels of the border of the
texture image. The initial value is 0.

GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE,
GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_LUMINANCE_SIZE,
GL_TEXTURE_INTENSITY_SIZE,
GL_TEXTURE_DEPTH_SIZE

The internal storage resolution of an individual component. The resolu-
tion chosen by the GL will be a close match for the resolution requested by
the user with the component argument of glTexImage1D, glTexImage2D,
glTexImage3D, glCopyTexImage1D, and glCopyTexImage2D. The initial
value is 0.

GL_TEXTURE_COMPRESSED

params returns a single boolean value indicating if the texture image is
stored in a compressed internal format. The initiali value is GL_FALSE.

GL_TEXTURE_COMPRESSED_IMAGE_SIZE

params returns a single integer value, the number of unsigned
bytes of the compressed texture image that would be returned from
glGetCompressedTexImage.

GL_INVALID_ENUM is generated if target or pname is not an accepted value.

GL_INVALID_VALUE is generated if level is less than 0.

Chapter 3: GL 253

GL_INVALID_VALUE may be generated if level is greater than log 2max, where max is
the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION is generated if glGetTexLevelParameter is executed be-
tween the execution of glBegin and the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if GL_TEXTURE_COMPRESSED_IMAGE_SIZE is
queried on texture images with an uncompressed internal format or on proxy targets.

[Function]void glGetTexParameterfv target pname params
[Function]void glGetTexParameteriv target pname params

Return texture parameter values.

target Specifies the symbolic name of the target texture. GL_TEXTURE_1D, GL_
TEXTURE_2D, GL_TEXTURE_3D, and GL_TEXTURE_CUBE_MAP are accepted.

pname Specifies the symbolic name of a texture parameter. GL_TEXTURE_

MAG_FILTER, GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MIN_LOD,
GL_TEXTURE_MAX_LOD, GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_MAX_

LEVEL, GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R,
GL_TEXTURE_BORDER_COLOR, GL_TEXTURE_PRIORITY, GL_TEXTURE_

RESIDENT, GL_TEXTURE_COMPARE_MODE, GL_TEXTURE_COMPARE_FUNC,
GL_DEPTH_TEXTURE_MODE, and GL_GENERATE_MIPMAP are accepted.

params Returns the texture parameters.

glGetTexParameter returns in params the value or values of the texture parameter
specified as pname. target defines the target texture, either GL_TEXTURE_1D, GL_
TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP, to specify one-, two-, or
three-dimensional or cube-mapped texturing. pname accepts the same symbols as
glTexParameter, with the same interpretations:

GL_TEXTURE_MAG_FILTER

Returns the single-valued texture magnification filter, a symbolic con-
stant. The initial value is GL_LINEAR.

GL_TEXTURE_MIN_FILTER

Returns the single-valued texture minification filter, a symbolic constant.
The initial value is GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MIN_LOD

Returns the single-valued texture minimum level-of-detail value. The
initial value is -1000.

GL_TEXTURE_MAX_LOD

Returns the single-valued texture maximum level-of-detail value. The
initial value is 1000.

GL_TEXTURE_BASE_LEVEL

Returns the single-valued base texture mipmap level. The initial value is
0.

GL_TEXTURE_MAX_LEVEL

Returns the single-valued maximum texture mipmap array level. The
initial value is 1000.

Chapter 3: GL 254

GL_TEXTURE_WRAP_S

Returns the single-valued wrapping function for texture coordinate s, a
symbolic constant. The initial value is GL_REPEAT.

GL_TEXTURE_WRAP_T

Returns the single-valued wrapping function for texture coordinate t, a
symbolic constant. The initial value is GL_REPEAT.

GL_TEXTURE_WRAP_R

Returns the single-valued wrapping function for texture coordinate r, a
symbolic constant. The initial value is GL_REPEAT.

GL_TEXTURE_BORDER_COLOR

Returns four integer or floating-point numbers that comprise the RGBA
color of the texture border. Floating-point values are returned in the
range [0,1]. Integer values are returned as a linear mapping of the inter-
nal floating-point representation such that 1.0 maps to the most positive
representable integer and -1.0 maps to the most negative representable
integer. The initial value is (0, 0, 0, 0).

GL_TEXTURE_PRIORITY

Returns the residence priority of the target texture (or the named texture
bound to it). The initial value is 1. See glPrioritizeTextures.

GL_TEXTURE_RESIDENT

Returns the residence status of the target texture. If the value returned
in params is GL_TRUE, the texture is resident in texture memory. See
glAreTexturesResident.

GL_TEXTURE_COMPARE_MODE

Returns a single-valued texture comparison mode, a symbolic constant.
The initial value is GL_NONE. See glTexParameter.

GL_TEXTURE_COMPARE_FUNC

Returns a single-valued texture comparison function, a symbolic constant.
The initial value is GL_LEQUAL. See glTexParameter.

GL_DEPTH_TEXTURE_MODE

Returns a single-valued texture format indicating how the depth values
should be converted into color components. The initial value is GL_

LUMINANCE. See glTexParameter.

GL_GENERATE_MIPMAP

Returns a single boolean value indicating if automatic mipmap level up-
dates are enabled. See glTexParameter.

GL_INVALID_ENUM is generated if target or pname is not an accepted value.

GL_INVALID_OPERATION is generated if glGetTexParameter is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]GLint glGetUniformLocation program name
Returns the location of a uniform variable.

Chapter 3: GL 255

program Specifies the program object to be queried.

name Points to a null terminated string containing the name of the uniform
variable whose location is to be queried.

glGetUniformLocation returns an integer that represents the location of a specific
uniform variable within a program object. name must be a null terminated string that
contains no white space. name must be an active uniform variable name in program
that is not a structure, an array of structures, or a subcomponent of a vector or a
matrix. This function returns -1 if name does not correspond to an active uniform
variable in program or if name starts with the reserved prefix "gl ".

Uniform variables that are structures or arrays of structures may be queried by call-
ing glGetUniformLocation for each field within the structure. The array element
operator "[]" and the structure field operator "." may be used in name in order to
select elements within an array or fields within a structure. The result of using these
operators is not allowed to be another structure, an array of structures, or a subcom-
ponent of a vector or a matrix. Except if the last part of name indicates a uniform
variable array, the location of the first element of an array can be retrieved by using
the name of the array, or by using the name appended by "[0]".

The actual locations assigned to uniform variables are not known until the
program object is linked successfully. After linking has occurred, the command
glGetUniformLocation can be used to obtain the location of a uniform variable.
This location value can then be passed to glUniform to set the value of the uniform
variable or to glGetUniform in order to query the current value of the uniform
variable. After a program object has been linked successfully, the index values for
uniform variables remain fixed until the next link command occurs. Uniform variable
locations and values can only be queried after a link if the link was successful.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_OPERATION is generated if program has not been successfully linked.

GL_INVALID_OPERATION is generated if glGetUniformLocation is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glGetUniformfv program location params
[Function]void glGetUniformiv program location params

Returns the value of a uniform variable.

program Specifies the program object to be queried.

location Specifies the location of the uniform variable to be queried.

params Returns the value of the specified uniform variable.

glGetUniform returns in params the value(s) of the specified uniform variable. The
type of the uniform variable specified by location determines the number of values
returned. If the uniform variable is defined in the shader as a boolean, int, or float,
a single value will be returned. If it is defined as a vec2, ivec2, or bvec2, two values
will be returned. If it is defined as a vec3, ivec3, or bvec3, three values will be
returned, and so on. To query values stored in uniform variables declared as arrays,

Chapter 3: GL 256

call glGetUniform for each element of the array. To query values stored in uniform
variables declared as structures, call glGetUniform for each field in the structure.
The values for uniform variables declared as a matrix will be returned in column
major order.

The locations assigned to uniform variables are not known until the program object is
linked. After linking has occurred, the command glGetUniformLocation can be used
to obtain the location of a uniform variable. This location value can then be passed
to glGetUniform in order to query the current value of the uniform variable. After
a program object has been linked successfully, the index values for uniform variables
remain fixed until the next link command occurs. The uniform variable values can
only be queried after a link if the link was successful.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_OPERATION is generated if program has not been successfully linked.

GL_INVALID_OPERATION is generated if location does not correspond to a valid uniform
variable location for the specified program object.

GL_INVALID_OPERATION is generated if glGetUniform is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glGetVertexAttribPointerv index pname pointer
Return the address of the specified generic vertex attribute pointer.

index Specifies the generic vertex attribute parameter to be returned.

pname Specifies the symbolic name of the generic vertex attribute parameter to
be returned. Must be GL_VERTEX_ATTRIB_ARRAY_POINTER.

pointer Returns the pointer value.

glGetVertexAttribPointerv returns pointer information. index is the generic vertex
attribute to be queried, pname is a symbolic constant indicating the pointer to be
returned, and params is a pointer to a location in which to place the returned data.

If a non-zero named buffer object was bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) when the desired pointer was previously specified, the pointer re-
turned is a byte offset into the buffer object’s data store.

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_

ATTRIBS.

GL_INVALID_ENUM is generated if pname is not an accepted value.

[Function]void glGetVertexAttribdv index pname params
[Function]void glGetVertexAttribfv index pname params
[Function]void glGetVertexAttribiv index pname params

Return a generic vertex attribute parameter.

index Specifies the generic vertex attribute parameter to be queried.

pname Specifies the symbolic name of the vertex attribute parameter
to be queried. Accepted values are GL_VERTEX_ATTRIB_

ARRAY_BUFFER_BINDING, GL_VERTEX_ATTRIB_ARRAY_ENABLED,

Chapter 3: GL 257

GL_VERTEX_ATTRIB_ARRAY_SIZE, GL_VERTEX_ATTRIB_ARRAY_STRIDE,
GL_VERTEX_ATTRIB_ARRAY_TYPE, GL_VERTEX_ATTRIB_ARRAY_

NORMALIZED, or GL_CURRENT_VERTEX_ATTRIB.

params Returns the requested data.

glGetVertexAttrib returns in params the value of a generic vertex attribute pa-
rameter. The generic vertex attribute to be queried is specified by index, and the
parameter to be queried is specified by pname.

The accepted parameter names are as follows:

GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object currently
bound to the binding point corresponding to generic vertex attribute
array index. If no buffer object is bound, 0 is returned. The initial value
is 0.

GL_VERTEX_ATTRIB_ARRAY_ENABLED

params returns a single value that is non-zero (true) if the vertex attribute
array for index is enabled and 0 (false) if it is disabled. The initial value
is GL_FALSE.

GL_VERTEX_ATTRIB_ARRAY_SIZE

params returns a single value, the size of the vertex attribute array for
index. The size is the number of values for each element of the vertex
attribute array, and it will be 1, 2, 3, or 4. The initial value is 4.

GL_VERTEX_ATTRIB_ARRAY_STRIDE

params returns a single value, the array stride for (number of bytes be-
tween successive elements in) the vertex attribute array for index. A value
of 0 indicates that the array elements are stored sequentially in memory.
The initial value is 0.

GL_VERTEX_ATTRIB_ARRAY_TYPE

params returns a single value, a symbolic constant indicating the array
type for the vertex attribute array for index. Possible values are GL_

BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_
UNSIGNED_INT, GL_FLOAT, and GL_DOUBLE. The initial value is GL_FLOAT.

GL_VERTEX_ATTRIB_ARRAY_NORMALIZED

params returns a single value that is non-zero (true) if fixed-point data
types for the vertex attribute array indicated by index are normalized
when they are converted to floating point, and 0 (false) otherwise. The
initial value is GL_FALSE.

GL_CURRENT_VERTEX_ATTRIB

params returns four values that represent the current value for the generic
vertex attribute specified by index. Generic vertex attribute 0 is unique
in that it has no current state, so an error will be generated if index is 0.
The initial value for all other generic vertex attributes is (0,0,0,1).

All of the parameters except GL_CURRENT_VERTEX_ATTRIB represent client-side state.

Chapter 3: GL 258

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_

ATTRIBS.

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_OPERATION is generated if index is 0 and pname is GL_CURRENT_VERTEX_
ATTRIB.

[Function]void glGetBooleanv pname params
[Function]void glGetDoublev pname params
[Function]void glGetFloatv pname params
[Function]void glGetIntegerv pname params

Return the value or values of a selected parameter.

pname Specifies the parameter value to be returned. The symbolic constants in
the list below are accepted.

params Returns the value or values of the specified parameter.

These four commands return values for simple state variables in GL. pname is a
symbolic constant indicating the state variable to be returned, and params is a pointer
to an array of the indicated type in which to place the returned data.

Type conversion is performed if params has a different type than the state variable
value being requested. If glGetBooleanv is called, a floating-point (or integer) value
is converted to GL_FALSE if and only if it is 0.0 (or 0). Otherwise, it is converted
to GL_TRUE. If glGetIntegerv is called, boolean values are returned as GL_TRUE or
GL_FALSE, and most floating-point values are rounded to the nearest integer value.
Floating-point colors and normals, however, are returned with a linear mapping that
maps 1.0 to the most positive representable integer value and -1.0 to the most negative
representable integer value. If glGetFloatv or glGetDoublev is called, boolean values
are returned as GL_TRUE or GL_FALSE, and integer values are converted to floating-
point values.

The following symbolic constants are accepted by pname:

GL_ACCUM_ALPHA_BITS

params returns one value, the number of alpha bitplanes in the accumu-
lation buffer.

GL_ACCUM_BLUE_BITS

params returns one value, the number of blue bitplanes in the accumula-
tion buffer.

GL_ACCUM_CLEAR_VALUE

params returns four values: the red, green, blue, and alpha values used
to clear the accumulation buffer. Integer values, if requested, are linearly
mapped from the internal floating-point representation such that 1.0 re-
turns the most positive representable integer value, and -1.0 returns the
most negative representable integer value. The initial value is (0, 0, 0, 0).
See glClearAccum.

GL_ACCUM_GREEN_BITS

params returns one value, the number of green bitplanes in the accumu-
lation buffer.

Chapter 3: GL 259

GL_ACCUM_RED_BITS

params returns one value, the number of red bitplanes in the accumula-
tion buffer.

GL_ACTIVE_TEXTURE

params returns a single value indicating the active multitexture unit. The
initial value is GL_TEXTURE0. See glActiveTexture.

GL_ALIASED_POINT_SIZE_RANGE

params returns two values, the smallest and largest supported sizes for
aliased points.

GL_ALIASED_LINE_WIDTH_RANGE

params returns two values, the smallest and largest supported widths for
aliased lines.

GL_ALPHA_BIAS

params returns one value, the alpha bias factor used during pixel trans-
fers. The initial value is 0. See glPixelTransfer.

GL_ALPHA_BITS

params returns one value, the number of alpha bitplanes in each color
buffer.

GL_ALPHA_SCALE

params returns one value, the alpha scale factor used during pixel trans-
fers. The initial value is 1. See glPixelTransfer.

GL_ALPHA_TEST

params returns a single boolean value indicating whether alpha testing
of fragments is enabled. The initial value is GL_FALSE. See glAlphaFunc.

GL_ALPHA_TEST_FUNCparams returns one value,
the symbolic name of the alpha test function. The initial value is GL_

ALWAYS. See glAlphaFunc.

GL_ALPHA_TEST_REF

params returns one value, the reference value for the alpha test. The
initial value is 0. See glAlphaFunc. An integer value, if requested, is
linearly mapped from the internal floating-point representation such that
1.0 returns the most positive representable integer value, and -1.0 returns
the most negative representable integer value.

GL_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object currently
bound to the target GL_ARRAY_BUFFER. If no buffer object is bound to
this target, 0 is returned. The initial value is 0. See glBindBuffer.

GL_ATTRIB_STACK_DEPTH

params returns one value, the depth of the attribute stack. If the stack
is empty, 0 is returned. The initial value is 0. See glPushAttrib.

Chapter 3: GL 260

GL_AUTO_NORMAL

params returns a single boolean value indicating whether 2D map eval-
uation automatically generates surface normals. The initial value is GL_
FALSE. See glMap2.

GL_AUX_BUFFERS

params returns one value, the number of auxiliary color buffers available.

GL_BLEND

params returns a single boolean value indicating whether blending is en-
abled. The initial value is GL_FALSE. See glBlendFunc.

GL_BLEND_COLOR

params returns four values, the red, green, blue, and alpha values which
are the components of the blend color. See glBlendColor.

GL_BLEND_DST_ALPHA

params returns one value, the symbolic constant identifying the alpha des-
tination blend function. The initial value is GL_ZERO. See glBlendFunc

and glBlendFuncSeparate.

GL_BLEND_DST_RGB

params returns one value, the symbolic constant identifying the RGB des-
tination blend function. The initial value is GL_ZERO. See glBlendFunc

and glBlendFuncSeparate.

GL_BLEND_EQUATION_RGB

params returns one value, a symbolic constant indicating whether the
RGB blend equation is GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_

REVERSE_SUBTRACT, GL_MIN or GL_MAX. See glBlendEquationSeparate.

GL_BLEND_EQUATION_ALPHA

params returns one value, a symbolic constant indicating whether the
Alpha blend equation is GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_

REVERSE_SUBTRACT, GL_MIN or GL_MAX. See glBlendEquationSeparate.

GL_BLEND_SRC_ALPHA

params returns one value, the symbolic constant identifying the alpha
source blend function. The initial value is GL_ONE. See glBlendFunc and
glBlendFuncSeparate.

GL_BLEND_SRC_RGB

params returns one value, the symbolic constant identifying the RGB
source blend function. The initial value is GL_ONE. See glBlendFunc and
glBlendFuncSeparate.

GL_BLUE_BIAS

params returns one value, the blue bias factor used during pixel transfers.
The initial value is 0. See glPixelTransfer.

GL_BLUE_BITS

params returns one value, the number of blue bitplanes in each color
buffer.

Chapter 3: GL 261

GL_BLUE_SCALE

params returns one value, the blue scale factor used during pixel transfers.
The initial value is 1. See glPixelTransfer.

GL_CLIENT_ACTIVE_TEXTURE

params returns a single integer value indicating the current client
active multitexture unit. The initial value is GL_TEXTURE0. See
glClientActiveTexture.

GL_CLIENT_ATTRIB_STACK_DEPTH

params returns one value indicating the depth of the attribute stack. The
initial value is 0. See glPushClientAttrib.

GL_CLIP_PLANEi
params returns a single boolean value indicating whether the specified
clipping plane is enabled. The initial value is GL_FALSE. See
glClipPlane.

GL_COLOR_ARRAY

params returns a single boolean value indicating whether the color array
is enabled. The initial value is GL_FALSE. See glColorPointer.

GL_COLOR_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object associ-
ated with the color array. This buffer object would have been bound
to the target GL_ARRAY_BUFFER at the time of the most recent call to
glColorPointer. If no buffer object was bound to this target, 0 is re-
turned. The initial value is 0. See glBindBuffer.

GL_COLOR_ARRAY_SIZE

params returns one value, the number of components per color in the
color array. The initial value is 4. See glColorPointer.

GL_COLOR_ARRAY_STRIDE

params returns one value, the byte offset between consecutive colors in
the color array. The initial value is 0. See glColorPointer.

GL_COLOR_ARRAY_TYPE

params returns one value, the data type of each component in the color
array. The initial value is GL_FLOAT. See glColorPointer.

GL_COLOR_CLEAR_VALUE

params returns four values: the red, green, blue, and alpha values used to
clear the color buffers. Integer values, if requested, are linearly mapped
from the internal floating-point representation such that 1.0 returns the
most positive representable integer value, and -1.0 returns the most neg-
ative representable integer value. The initial value is (0, 0, 0, 0). See
glClearColor.

GL_COLOR_LOGIC_OP

params returns a single boolean value indicating whether a fragment’s
RGBA color values are merged into the framebuffer using a logical oper-
ation. The initial value is GL_FALSE. See glLogicOp.

Chapter 3: GL 262

GL_COLOR_MATERIAL

params returns a single boolean value indicating whether one or more
material parameters are tracking the current color. The initial value is
GL_FALSE. See glColorMaterial.

GL_COLOR_MATERIAL_FACE

params returns one value, a symbolic constant indicating which materials
have a parameter that is tracking the current color. The initial value is
GL_FRONT_AND_BACK. See glColorMaterial.

GL_COLOR_MATERIAL_PARAMETER

params returns one value, a symbolic constant indicating which mate-
rial parameters are tracking the current color. The initial value is GL_

AMBIENT_AND_DIFFUSE. See glColorMaterial.

GL_COLOR_MATRIX

params returns sixteen values: the color matrix on the top of the color ma-
trix stack. Initially this matrix is the identity matrix. See glPushMatrix.

GL_COLOR_MATRIX_STACK_DEPTH

params returns one value, the maximum supported depth of the projec-
tion matrix stack. The value must be at least 2. See glPushMatrix.

GL_COLOR_SUM

params returns a single boolean value indicating whether primary and
secondary color sum is enabled. See glSecondaryColor.

GL_COLOR_TABLE

params returns a single boolean value indicating whether the color table
lookup is enabled. See glColorTable.

GL_COLOR_WRITEMASK

params returns four boolean values: the red, green, blue, and alpha write
enables for the color buffers. The initial value is (GL_TRUE, GL_TRUE,
GL_TRUE, GL_TRUE). See glColorMask.

GL_COMPRESSED_TEXTURE_FORMATS

params returns a list of symbolic constants of length GL_NUM_

COMPRESSED_TEXTURE_FORMATS indicating which compressed texture
formats are available. See glCompressedTexImage2D.

GL_CONVOLUTION_1D

params returns a single boolean value indicating whether 1D convolution
is enabled. The initial value is GL_FALSE. See glConvolutionFilter1D.

GL_CONVOLUTION_2D

params returns a single boolean value indicating whether 2D convolution
is enabled. The initial value is GL_FALSE. See glConvolutionFilter2D.

GL_CULL_FACE

params returns a single boolean value indicating whether polygon culling
is enabled. The initial value is GL_FALSE. See glCullFace.

Chapter 3: GL 263

GL_CULL_FACE_MODE

params returns one value, a symbolic constant indicating which polygon
faces are to be culled. The initial value is GL_BACK. See glCullFace.

GL_CURRENT_COLOR

params returns four values: the red, green, blue, and alpha values of
the current color. Integer values, if requested, are linearly mapped from
the internal floating-point representation such that 1.0 returns the most
positive representable integer value, and -1.0 returns the most negative
representable integer value. The initial value is (1, 1, 1, 1). See glColor.

GL_CURRENT_FOG_COORD

params returns one value, the current fog coordinate. The initial value is
0. See glFogCoord.

GL_CURRENT_INDEX

params returns one value, the current color index. The initial value is 1.
See glIndex.

GL_CURRENT_NORMAL

params returns three values: the x, y, and z values of the current nor-
mal. Integer values, if requested, are linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive rep-
resentable integer value, and -1.0 returns the most negative representable
integer value. The initial value is (0, 0, 1). See glNormal.

GL_CURRENT_PROGRAM

params returns one value, the name of the program object that is cur-
rently active, or 0 if no program object is active. See glUseProgram.

GL_CURRENT_RASTER_COLOR

params returns four values: the red, green, blue, and alpha color values
of the current raster position. Integer values, if requested, are linearly
mapped from the internal floating-point representation such that 1.0 re-
turns the most positive representable integer value, and -1.0 returns the
most negative representable integer value. The initial value is (1, 1, 1, 1).
See glRasterPos.

GL_CURRENT_RASTER_DISTANCE

params returns one value, the distance from the eye to the current raster
position. The initial value is 0. See glRasterPos.

GL_CURRENT_RASTER_INDEX

params returns one value, the color index of the current raster position.
The initial value is 1. See glRasterPos.

GL_CURRENT_RASTER_POSITION

params returns four values: the x, y, z, and w components of the current
raster position. x, y, and z are in window coordinates, and w is in clip
coordinates. The initial value is (0, 0, 0, 1). See glRasterPos.

Chapter 3: GL 264

GL_CURRENT_RASTER_POSITION_VALID

params returns a single boolean value indicating whether the current
raster position is valid. The initial value is GL_TRUE. See glRasterPos.

GL_CURRENT_RASTER_SECONDARY_COLOR

params returns four values: the red, green, blue, and alpha secondary
color values of the current raster position. Integer values, if requested,
are linearly mapped from the internal floating-point representation such
that 1.0 returns the most positive representable integer value, and -1.0
returns the most negative representable integer value. The initial value
is (1, 1, 1, 1). See glRasterPos.

GL_CURRENT_RASTER_TEXTURE_COORDS

params returns four values: the s, t, r, and q texture coordinates of the
current raster position. The initial value is (0, 0, 0, 1). See glRasterPos
and glMultiTexCoord.

GL_CURRENT_SECONDARY_COLOR

params returns four values: the red, green, blue, and alpha values of the
current secondary color. Integer values, if requested, are linearly mapped
from the internal floating-point representation such that 1.0 returns the
most positive representable integer value, and -1.0 returns the most neg-
ative representable integer value. The initial value is (0, 0, 0, 0). See
glSecondaryColor.

GL_CURRENT_TEXTURE_COORDS

params returns four values: the s, t, r, and q current texture coordinates.
The initial value is (0, 0, 0, 1). See glMultiTexCoord.

GL_DEPTH_BIAS

params returns one value, the depth bias factor used during pixel trans-
fers. The initial value is 0. See glPixelTransfer.

GL_DEPTH_BITS

params returns one value, the number of bitplanes in the depth buffer.

GL_DEPTH_CLEAR_VALUE

params returns one value, the value that is used to clear the depth
buffer. Integer values, if requested, are linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive rep-
resentable integer value, and -1.0 returns the most negative representable
integer value. The initial value is 1. See glClearDepth.

GL_DEPTH_FUNC

params returns one value, the symbolic constant that indicates the depth
comparison function. The initial value is GL_LESS. See glDepthFunc.

GL_DEPTH_RANGE

params returns two values: the near and far mapping limits for the depth
buffer. Integer values, if requested, are linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive rep-
resentable integer value, and -1.0 returns the most negative representable
integer value. The initial value is (0, 1). See glDepthRange.

Chapter 3: GL 265

GL_DEPTH_SCALE

params returns one value, the depth scale factor used during pixel trans-
fers. The initial value is 1. See glPixelTransfer.

GL_DEPTH_TEST

params returns a single boolean value indicating whether depth testing
of fragments is enabled. The initial value is GL_FALSE. See glDepthFunc
and glDepthRange.

GL_DEPTH_WRITEMASK

params returns a single boolean value indicating if the depth buffer is
enabled for writing. The initial value is GL_TRUE. See glDepthMask.

GL_DITHER

params returns a single boolean value indicating whether dithering of
fragment colors and indices is enabled. The initial value is GL_TRUE.

GL_DOUBLEBUFFER

params returns a single boolean value indicating whether double buffering
is supported.

GL_DRAW_BUFFER

params returns one value, a symbolic constant indicating which buffers
are being drawn to. See glDrawBuffer. The initial value is GL_BACK if
there are back buffers, otherwise it is GL_FRONT.

GL_DRAW_BUFFERi
params returns one value, a symbolic constant indicating which
buffers are being drawn to by the corresponding output color. See
glDrawBuffers. The initial value of GL_DRAW_BUFFER0 is GL_BACK if
there are back buffers, otherwise it is GL_FRONT. The initial values of
draw buffers for all other output colors is GL_NONE.

GL_EDGE_FLAG

params returns a single boolean value indicating whether the current
edge flag is GL_TRUE or GL_FALSE. The initial value is GL_TRUE. See
glEdgeFlag.

GL_EDGE_FLAG_ARRAY

params returns a single boolean value indicating whether the edge flag
array is enabled. The initial value is GL_FALSE. See glEdgeFlagPointer.

GL_EDGE_FLAG_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object associated
with the edge flag array. This buffer object would have been bound
to the target GL_ARRAY_BUFFER at the time of the most recent call to
glEdgeFlagPointer. If no buffer object was bound to this target, 0 is
returned. The initial value is 0. See glBindBuffer.

GL_EDGE_FLAG_ARRAY_STRIDE

params returns one value, the byte offset between consecutive edge flags
in the edge flag array. The initial value is 0. See glEdgeFlagPointer.

Chapter 3: GL 266

GL_ELEMENT_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object currently
bound to the target GL_ELEMENT_ARRAY_BUFFER. If no buffer object
is bound to this target, 0 is returned. The initial value is 0. See
glBindBuffer.

GL_FEEDBACK_BUFFER_SIZE

params returns one value, the size of the feedback buffer. See
glFeedbackBuffer.

GL_FEEDBACK_BUFFER_TYPE

params returns one value, the type of the feedback buffer. See
glFeedbackBuffer.

GL_FOG

params returns a single boolean value indicating whether fogging is en-
abled. The initial value is GL_FALSE. See glFog.

GL_FOG_COORD_ARRAY

params returns a single boolean value indicating whether the fog
coordinate array is enabled. The initial value is GL_FALSE. See
glFogCoordPointer.

GL_FOG_COORD_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object associated
with the fog coordinate array. This buffer object would have been bound
to the target GL_ARRAY_BUFFER at the time of the most recent call to
glFogCoordPointer. If no buffer object was bound to this target, 0 is
returned. The initial value is 0. See glBindBuffer.

GL_FOG_COORD_ARRAY_STRIDE

params returns one value, the byte offset between consecutive fog
coordinates in the fog coordinate array. The initial value is 0. See
glFogCoordPointer.

GL_FOG_COORD_ARRAY_TYPE

params returns one value, the type of the fog coordinate array. The initial
value is GL_FLOAT. See glFogCoordPointer.

GL_FOG_COORD_SRC

params returns one value, a symbolic constant indicating the source of
the fog coordinate. The initial value is GL_FRAGMENT_DEPTH. See glFog.

GL_FOG_COLOR

params returns four values: the red, green, blue, and alpha components
of the fog color. Integer values, if requested, are linearly mapped from
the internal floating-point representation such that 1.0 returns the most
positive representable integer value, and -1.0 returns the most negative
representable integer value. The initial value is (0, 0, 0, 0). See glFog.

GL_FOG_DENSITY

params returns one value, the fog density parameter. The initial value is
1. See glFog.

Chapter 3: GL 267

GL_FOG_END

params returns one value, the end factor for the linear fog equation. The
initial value is 1. See glFog.

GL_FOG_HINT

params returns one value, a symbolic constant indicating the mode of the
fog hint. The initial value is GL_DONT_CARE. See glHint.

GL_FOG_INDEX

params returns one value, the fog color index. The initial value is 0. See
glFog.

GL_FOG_MODE

params returns one value, a symbolic constant indicating which fog equa-
tion is selected. The initial value is GL_EXP. See glFog.

GL_FOG_START

params returns one value, the start factor for the linear fog equation.
The initial value is 0. See glFog.

GL_FRAGMENT_SHADER_DERIVATIVE_HINT

params returns one value, a symbolic constant indicating the mode of
the derivative accuracy hint for fragment shaders. The initial value is
GL_DONT_CARE. See glHint.

GL_FRONT_FACE

params returns one value, a symbolic constant indicating whether clock-
wise or counterclockwise polygon winding is treated as front-facing. The
initial value is GL_CCW. See glFrontFace.

GL_GENERATE_MIPMAP_HINT

params returns one value, a symbolic constant indicating the mode of the
mipmap generation filtering hint. The initial value is GL_DONT_CARE. See
glHint.

GL_GREEN_BIAS

params returns one value, the green bias factor used during pixel trans-
fers. The initial value is 0.

GL_GREEN_BITS

params returns one value, the number of green bitplanes in each color
buffer.

GL_GREEN_SCALE

params returns one value, the green scale factor used during pixel trans-
fers. The initial value is 1. See glPixelTransfer.

GL_HISTOGRAM

params returns a single boolean value indicating whether histogram is
enabled. The initial value is GL_FALSE. See glHistogram.

GL_INDEX_ARRAY

params returns a single boolean value indicating whether the color index
array is enabled. The initial value is GL_FALSE. See glIndexPointer.

Chapter 3: GL 268

GL_INDEX_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object associated
with the color index array. This buffer object would have been bound
to the target GL_ARRAY_BUFFER at the time of the most recent call to
glIndexPointer. If no buffer object was bound to this target, 0 is re-
turned. The initial value is 0. See glBindBuffer.

GL_INDEX_ARRAY_STRIDE

params returns one value, the byte offset between consecutive color in-
dexes in the color index array. The initial value is 0. See glIndexPointer.

GL_INDEX_ARRAY_TYPE

params returns one value, the data type of indexes in the color index
array. The initial value is GL_FLOAT. See glIndexPointer.

GL_INDEX_BITS

params returns one value, the number of bitplanes in each color index
buffer.

GL_INDEX_CLEAR_VALUE

params returns one value, the color index used to clear the color index
buffers. The initial value is 0. See glClearIndex.

GL_INDEX_LOGIC_OP

params returns a single boolean value indicating whether a fragment’s
index values are merged into the framebuffer using a logical operation.
The initial value is GL_FALSE. See glLogicOp.

GL_INDEX_MODE

params returns a single boolean value indicating whether the GL is in
color index mode (GL_TRUE) or RGBA mode (GL_FALSE).

GL_INDEX_OFFSET

params returns one value, the offset added to color and stencil indices
during pixel transfers. The initial value is 0. See glPixelTransfer.

GL_INDEX_SHIFT

params returns one value, the amount that color and stencil indices
are shifted during pixel transfers. The initial value is 0. See
glPixelTransfer.

GL_INDEX_WRITEMASK

params returns one value, a mask indicating which bitplanes of each color
index buffer can be written. The initial value is all 1’s. See glIndexMask.

GL_LIGHTi

params returns a single boolean value indicating whether the specified
light is enabled. The initial value is GL_FALSE. See glLight and
glLightModel.

GL_LIGHTING

params returns a single boolean value indicating whether lighting is en-
abled. The initial value is GL_FALSE. See glLightModel.

Chapter 3: GL 269

GL_LIGHT_MODEL_AMBIENT

params returns four values: the red, green, blue, and alpha components
of the ambient intensity of the entire scene. Integer values, if requested,
are linearly mapped from the internal floating-point representation such
that 1.0 returns the most positive representable integer value, and -1.0
returns the most negative representable integer value. The initial value
is (0.2, 0.2, 0.2, 1.0). See glLightModel.

GL_LIGHT_MODEL_COLOR_CONTROL

params returns single enumerated value indicating whether specular re-
flection calculations are separated from normal lighting computations.
The initial value is GL_SINGLE_COLOR.

GL_LIGHT_MODEL_LOCAL_VIEWER

params returns a single boolean value indicating whether specular reflec-
tion calculations treat the viewer as being local to the scene. The initial
value is GL_FALSE. See glLightModel.

GL_LIGHT_MODEL_TWO_SIDE

params returns a single boolean value indicating whether separate ma-
terials are used to compute lighting for front- and back-facing polygons.
The initial value is GL_FALSE. See glLightModel.

GL_LINE_SMOOTH

params returns a single boolean value indicating whether antialiasing of
lines is enabled. The initial value is GL_FALSE. See glLineWidth.

GL_LINE_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the
line antialiasing hint. The initial value is GL_DONT_CARE. See glHint.

GL_LINE_STIPPLE

params returns a single boolean value indicating whether stippling of lines
is enabled. The initial value is GL_FALSE. See glLineStipple.

GL_LINE_STIPPLE_PATTERN

params returns one value, the 16-bit line stipple pattern. The initial value
is all 1’s. See glLineStipple.

GL_LINE_STIPPLE_REPEAT

params returns one value, the line stipple repeat factor. The initial value
is 1. See glLineStipple.

GL_LINE_WIDTH

params returns one value, the line width as specified with glLineWidth.
The initial value is 1.

GL_LINE_WIDTH_GRANULARITY

params returns one value, the width difference between adjacent sup-
ported widths for antialiased lines. See glLineWidth.

GL_LINE_WIDTH_RANGE

params returns two values: the smallest and largest supported widths for
antialiased lines. See glLineWidth.

Chapter 3: GL 270

GL_LIST_BASE

params returns one value, the base offset added to all names in arrays
presented to glCallLists. The initial value is 0. See glListBase.

GL_LIST_INDEX

params returns one value, the name of the display list currently under
construction. 0 is returned if no display list is currently under construc-
tion. The initial value is 0. See glNewList.

GL_LIST_MODE

params returns one value, a symbolic constant indicating the construction
mode of the display list currently under construction. The initial value
is 0. See glNewList.

GL_LOGIC_OP_MODE

params returns one value, a symbolic constant indicating the selected
logic operation mode. The initial value is GL_COPY. See glLogicOp.

GL_MAP1_COLOR_4

params returns a single boolean value indicating whether 1D evaluation
generates colors. The initial value is GL_FALSE. See glMap1.

GL_MAP1_GRID_DOMAIN

params returns two values: the endpoints of the 1D map’s grid domain.
The initial value is (0, 1). See glMapGrid.

GL_MAP1_GRID_SEGMENTS

params returns one value, the number of partitions in the 1D map’s grid
domain. The initial value is 1. See glMapGrid.

GL_MAP1_INDEX

params returns a single boolean value indicating whether 1D evaluation
generates color indices. The initial value is GL_FALSE. See glMap1.

GL_MAP1_NORMAL

params returns a single boolean value indicating whether 1D evaluation
generates normals. The initial value is GL_FALSE. See glMap1.

GL_MAP1_TEXTURE_COORD_1

params returns a single boolean value indicating whether 1D evaluation
generates 1D texture coordinates. The initial value is GL_FALSE. See
glMap1.

GL_MAP1_TEXTURE_COORD_2

params returns a single boolean value indicating whether 1D evaluation
generates 2D texture coordinates. The initial value is GL_FALSE. See
glMap1.

GL_MAP1_TEXTURE_COORD_3

params returns a single boolean value indicating whether 1D evaluation
generates 3D texture coordinates. The initial value is GL_FALSE. See
glMap1.

Chapter 3: GL 271

GL_MAP1_TEXTURE_COORD_4

params returns a single boolean value indicating whether 1D evaluation
generates 4D texture coordinates. The initial value is GL_FALSE. See
glMap1.

GL_MAP1_VERTEX_3

params returns a single boolean value indicating whether 1D evaluation
generates 3D vertex coordinates. The initial value is GL_FALSE. See
glMap1.

GL_MAP1_VERTEX_4

params returns a single boolean value indicating whether 1D evaluation
generates 4D vertex coordinates. The initial value is GL_FALSE. See
glMap1.

GL_MAP2_COLOR_4

params returns a single boolean value indicating whether 2D evaluation
generates colors. The initial value is GL_FALSE. See glMap2.

GL_MAP2_GRID_DOMAIN

params returns four values: the endpoints of the 2D map’s i and j grid
domains. The initial value is (0,1; 0,1). See glMapGrid.

GL_MAP2_GRID_SEGMENTS

params returns two values: the number of partitions in the 2D map’s i
and j grid domains. The initial value is (1,1). See glMapGrid.

GL_MAP2_INDEX

params returns a single boolean value indicating whether 2D evaluation
generates color indices. The initial value is GL_FALSE. See glMap2.

GL_MAP2_NORMAL

params returns a single boolean value indicating whether 2D evaluation
generates normals. The initial value is GL_FALSE. See glMap2.

GL_MAP2_TEXTURE_COORD_1

params returns a single boolean value indicating whether 2D evaluation
generates 1D texture coordinates. The initial value is GL_FALSE. See
glMap2.

GL_MAP2_TEXTURE_COORD_2

params returns a single boolean value indicating whether 2D evaluation
generates 2D texture coordinates. The initial value is GL_FALSE. See
glMap2.

GL_MAP2_TEXTURE_COORD_3

params returns a single boolean value indicating whether 2D evaluation
generates 3D texture coordinates. The initial value is GL_FALSE. See
glMap2.

GL_MAP2_TEXTURE_COORD_4

params returns a single boolean value indicating whether 2D evaluation
generates 4D texture coordinates. The initial value is GL_FALSE. See
glMap2.

Chapter 3: GL 272

GL_MAP2_VERTEX_3

params returns a single boolean value indicating whether 2D evaluation
generates 3D vertex coordinates. The initial value is GL_FALSE. See
glMap2.

GL_MAP2_VERTEX_4

params returns a single boolean value indicating whether 2D evaluation
generates 4D vertex coordinates. The initial value is GL_FALSE. See
glMap2.

GL_MAP_COLOR

params returns a single boolean value indicating if colors and color indices
are to be replaced by table lookup during pixel transfers. The initial value
is GL_FALSE. See glPixelTransfer.

GL_MAP_STENCIL

params returns a single boolean value indicating if stencil indices are to
be replaced by table lookup during pixel transfers. The initial value is
GL_FALSE. See glPixelTransfer.

GL_MATRIX_MODE

params returns one value, a symbolic constant indicating which matrix
stack is currently the target of all matrix operations. The initial value is
GL_MODELVIEW. See glMatrixMode.

GL_MAX_3D_TEXTURE_SIZE

params returns one value, a rough estimate of the largest 3D texture that
the GL can handle. The value must be at least 16. If the GL version is
1.2 or greater, use GL_PROXY_TEXTURE_3D to determine if a texture is too
large. See glTexImage3D.

GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

params returns one value indicating the maximum supported depth of
the client attribute stack. See glPushClientAttrib.

GL_MAX_ATTRIB_STACK_DEPTH

params returns one value, the maximum supported depth of the attribute
stack. The value must be at least 16. See glPushAttrib.

GL_MAX_CLIP_PLANES

params returns one value, the maximum number of application-defined
clipping planes. The value must be at least 6. See glClipPlane.

GL_MAX_COLOR_MATRIX_STACK_DEPTH

params returns one value, the maximum supported depth of the color
matrix stack. The value must be at least 2. See glPushMatrix.

GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS

params returns one value, the maximum supported texture image units
that can be used to access texture maps from the vertex shader and the
fragment processor combined. If both the vertex shader and the fragment
processing stage access the same texture image unit, then that counts as

Chapter 3: GL 273

using two texture image units against this limit. The value must be at
least 2. See glActiveTexture.

GL_MAX_CUBE_MAP_TEXTURE_SIZE

params returns one value. The value gives a rough estimate of the largest
cube-map texture that the GL can handle. The value must be at least
16. If the GL version is 1.3 or greater, use GL_PROXY_TEXTURE_CUBE_MAP
to determine if a texture is too large. See glTexImage2D.

GL_MAX_DRAW_BUFFERS

params returns one value, the maximum number of simultaneous output
colors allowed from a fragment shader using the gl_FragData built-in
array. The value must be at least 1. See glDrawBuffers.

GL_MAX_ELEMENTS_INDICES

params returns one value, the recommended maximum number of vertex
array indices. See glDrawRangeElements.

GL_MAX_ELEMENTS_VERTICES

params returns one value, the recommended maximum number of vertex
array vertices. See glDrawRangeElements.

GL_MAX_EVAL_ORDER

params returns one value, the maximum equation order supported by 1D
and 2D evaluators. The value must be at least 8. See glMap1 and glMap2.

GL_MAX_FRAGMENT_UNIFORM_COMPONENTS

params returns one value, the maximum number of individual floating-
point, integer, or boolean values that can be held in uniform variable stor-
age for a fragment shader. The value must be at least 64. See glUniform.

GL_MAX_LIGHTS

params returns one value, the maximum number of lights. The value
must be at least 8. See glLight.

GL_MAX_LIST_NESTING

params returns one value, the maximum recursion depth allowed during
display-list traversal. The value must be at least 64. See glCallList.

GL_MAX_MODELVIEW_STACK_DEPTH

params returns one value, the maximum supported depth of the mod-
elview matrix stack. The value must be at least 32. See glPushMatrix.

GL_MAX_NAME_STACK_DEPTH

params returns one value, the maximum supported depth of the selection
name stack. The value must be at least 64. See glPushName.

GL_MAX_PIXEL_MAP_TABLE

params returns one value, the maximum supported size of a glPixelMap

lookup table. The value must be at least 32. See glPixelMap.

GL_MAX_PROJECTION_STACK_DEPTH

params returns one value, the maximum supported depth of the projec-
tion matrix stack. The value must be at least 2. See glPushMatrix.

Chapter 3: GL 274

GL_MAX_TEXTURE_COORDS

params returns one value, the maximum number of texture coordinate
sets available to vertex and fragment shaders. The value must be at least
2. See glActiveTexture and glClientActiveTexture.

GL_MAX_TEXTURE_IMAGE_UNITS

params returns one value, the maximum supported texture image units
that can be used to access texture maps from the fragment shader. The
value must be at least 2. See glActiveTexture.

GL_MAX_TEXTURE_LOD_BIAS

params returns one value, the maximum, absolute value of the texture
level-of-detail bias. The value must be at least 4.

GL_MAX_TEXTURE_SIZE

params returns one value. The value gives a rough estimate of the largest
texture that the GL can handle. The value must be at least 64. If the
GL version is 1.1 or greater, use GL_PROXY_TEXTURE_1D or GL_PROXY_

TEXTURE_2D to determine if a texture is too large. See glTexImage1D

and glTexImage2D.

GL_MAX_TEXTURE_STACK_DEPTH

params returns one value, the maximum supported depth of the texture
matrix stack. The value must be at least 2. See glPushMatrix.

GL_MAX_TEXTURE_UNITS

params returns a single value indicating the number of conventional tex-
ture units supported. Each conventional texture unit includes both a tex-
ture coordinate set and a texture image unit. Conventional texture units
may be used for fixed-function (non-shader) rendering. The value must be
at least 2. Additional texture coordinate sets and texture image units may
be accessed from vertex and fragment shaders. See glActiveTexture and
glClientActiveTexture.

GL_MAX_VARYING_FLOATS

params returns one value, the maximum number of interpolators available
for processing varying variables used by vertex and fragment shaders.
This value represents the number of individual floating-point values that
can be interpolated; varying variables declared as vectors, matrices, and
arrays will all consume multiple interpolators. The value must be at least
32.

GL_MAX_VERTEX_ATTRIBS

params returns one value, the maximum number of 4-component generic
vertex attributes accessible to a vertex shader. The value must be at least
16. See glVertexAttrib.

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS

params returns one value, the maximum supported texture image units
that can be used to access texture maps from the vertex shader. The
value may be 0. See glActiveTexture.

Chapter 3: GL 275

GL_MAX_VERTEX_UNIFORM_COMPONENTS

params returns one value, the maximum number of individual floating-
point, integer, or boolean values that can be held in uniform variable stor-
age for a vertex shader. The value must be at least 512. See glUniform.

GL_MAX_VIEWPORT_DIMS

params returns two values: the maximum supported width and height of
the viewport. These must be at least as large as the visible dimensions
of the display being rendered to. See glViewport.

GL_MINMAX

params returns a single boolean value indicating whether pixel minmax
values are computed. The initial value is GL_FALSE. See glMinmax.

GL_MODELVIEW_MATRIX

params returns sixteen values: the modelview matrix on the top of the
modelview matrix stack. Initially this matrix is the identity matrix. See
glPushMatrix.

GL_MODELVIEW_STACK_DEPTH

params returns one value, the number of matrices on the modelview ma-
trix stack. The initial value is 1. See glPushMatrix.

GL_NAME_STACK_DEPTH

params returns one value, the number of names on the selection name
stack. The initial value is 0. See glPushName.

GL_NORMAL_ARRAY

params returns a single boolean value, indicating whether the normal
array is enabled. The initial value is GL_FALSE. See glNormalPointer.

GL_NORMAL_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object associ-
ated with the normal array. This buffer object would have been bound
to the target GL_ARRAY_BUFFER at the time of the most recent call to
glNormalPointer. If no buffer object was bound to this target, 0 is
returned. The initial value is 0. See glBindBuffer.

GL_NORMAL_ARRAY_STRIDE

params returns one value, the byte offset between consecutive normals in
the normal array. The initial value is 0. See glNormalPointer.

GL_NORMAL_ARRAY_TYPE

params returns one value, the data type of each coordinate in the normal
array. The initial value is GL_FLOAT. See glNormalPointer.

GL_NORMALIZE

params returns a single boolean value indicating whether normals are
automatically scaled to unit length after they have been transformed to
eye coordinates. The initial value is GL_FALSE. See glNormal.

Chapter 3: GL 276

GL_NUM_COMPRESSED_TEXTURE_FORMATS

params returns a single integer value indicating the number of
available compressed texture formats. The minimum value is 0. See
glCompressedTexImage2D.

GL_PACK_ALIGNMENT

params returns one value, the byte alignment used for writing pixel data
to memory. The initial value is 4. See glPixelStore.

GL_PACK_IMAGE_HEIGHT

params returns one value, the image height used for writing pixel data to
memory. The initial value is 0. See glPixelStore.

GL_PACK_LSB_FIRST

params returns a single boolean value indicating whether single-bit pixels
being written to memory are written first to the least significant bit of
each unsigned byte. The initial value is GL_FALSE. See glPixelStore.

GL_PACK_ROW_LENGTH

params returns one value, the row length used for writing pixel data to
memory. The initial value is 0. See glPixelStore.

GL_PACK_SKIP_IMAGES

params returns one value, the number of pixel images skipped before
the first pixel is written into memory. The initial value is 0. See
glPixelStore.

GL_PACK_SKIP_PIXELS

params returns one value, the number of pixel locations skipped be-
fore the first pixel is written into memory. The initial value is 0. See
glPixelStore.

GL_PACK_SKIP_ROWS

params returns one value, the number of rows of pixel locations skipped
before the first pixel is written into memory. The initial value is 0. See
glPixelStore.

GL_PACK_SWAP_BYTES

params returns a single boolean value indicating whether the bytes of two-
byte and four-byte pixel indices and components are swapped before being
written to memory. The initial value is GL_FALSE. See glPixelStore.

GL_PERSPECTIVE_CORRECTION_HINT

params returns one value, a symbolic constant indicating the mode of
the perspective correction hint. The initial value is GL_DONT_CARE. See
glHint.

GL_PIXEL_MAP_A_TO_A_SIZE

params returns one value, the size of the alpha-to-alpha pixel translation
table. The initial value is 1. See glPixelMap.

GL_PIXEL_MAP_B_TO_B_SIZE

params returns one value, the size of the blue-to-blue pixel translation
table. The initial value is 1. See glPixelMap.

Chapter 3: GL 277

GL_PIXEL_MAP_G_TO_G_SIZE

params returns one value, the size of the green-to-green pixel translation
table. The initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_A_SIZE

params returns one value, the size of the index-to-alpha pixel translation
table. The initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_B_SIZE

params returns one value, the size of the index-to-blue pixel translation
table. The initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_G_SIZE

params returns one value, the size of the index-to-green pixel translation
table. The initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_I_SIZE

params returns one value, the size of the index-to-index pixel translation
table. The initial value is 1. See glPixelMap.

GL_PIXEL_MAP_I_TO_R_SIZE

params returns one value, the size of the index-to-red pixel translation
table. The initial value is 1. See glPixelMap.

GL_PIXEL_MAP_R_TO_R_SIZE

params returns one value, the size of the red-to-red pixel translation table.
The initial value is 1. See glPixelMap.

GL_PIXEL_MAP_S_TO_S_SIZE

params returns one value, the size of the stencil-to-stencil pixel transla-
tion table. The initial value is 1. See glPixelMap.

GL_PIXEL_PACK_BUFFER_BINDING

params returns a single value, the name of the buffer object currently
bound to the target GL_PIXEL_PACK_BUFFER. If no buffer object is bound
to this target, 0 is returned. The initial value is 0. See glBindBuffer.

GL_PIXEL_UNPACK_BUFFER_BINDING

params returns a single value, the name of the buffer object currently
bound to the target GL_PIXEL_UNPACK_BUFFER. If no buffer object
is bound to this target, 0 is returned. The initial value is 0. See
glBindBuffer.

GL_POINT_DISTANCE_ATTENUATION

params returns three values, the coefficients for computing the attenua-
tion value for points. See glPointParameter.

GL_POINT_FADE_THRESHOLD_SIZE

params returns one value, the point size threshold for determining the
point size. See glPointParameter.

GL_POINT_SIZE

params returns one value, the point size as specified by glPointSize.
The initial value is 1.

Chapter 3: GL 278

GL_POINT_SIZE_GRANULARITY

params returns one value, the size difference between adjacent supported
sizes for antialiased points. See glPointSize.

GL_POINT_SIZE_MAX

params returns one value, the upper bound for the attenuated point sizes.
The initial value is 0.0. See glPointParameter.

GL_POINT_SIZE_MIN

params returns one value, the lower bound for the attenuated point sizes.
The initial value is 1.0. See glPointParameter.

GL_POINT_SIZE_RANGE

params returns two values: the smallest and largest supported sizes for
antialiased points. The smallest size must be at most 1, and the largest
size must be at least 1. See glPointSize.

GL_POINT_SMOOTH

params returns a single boolean value indicating whether antialiasing of
points is enabled. The initial value is GL_FALSE. See glPointSize.

GL_POINT_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the
point antialiasing hint. The initial value is GL_DONT_CARE. See glHint.

GL_POINT_SPRITE

params returns a single boolean value indicating whether point sprite is
enabled. The initial value is GL_FALSE.

GL_POLYGON_MODE

params returns two values: symbolic constants indicating whether front-
facing and back-facing polygons are rasterized as points, lines, or filled
polygons. The initial value is GL_FILL. See glPolygonMode.

GL_POLYGON_OFFSET_FACTOR

params returns one value, the scaling factor used to determine the
variable offset that is added to the depth value of each fragment
generated when a polygon is rasterized. The initial value is 0. See
glPolygonOffset.

GL_POLYGON_OFFSET_UNITS

params returns one value. This value is multiplied by an implementation-
specific value and then added to the depth value of each fragment
generated when a polygon is rasterized. The initial value is 0. See
glPolygonOffset.

GL_POLYGON_OFFSET_FILL

params returns a single boolean value indicating whether polygon offset
is enabled for polygons in fill mode. The initial value is GL_FALSE. See
glPolygonOffset.

Chapter 3: GL 279

GL_POLYGON_OFFSET_LINE

params returns a single boolean value indicating whether polygon offset
is enabled for polygons in line mode. The initial value is GL_FALSE. See
glPolygonOffset.

GL_POLYGON_OFFSET_POINT

params returns a single boolean value indicating whether polygon offset
is enabled for polygons in point mode. The initial value is GL_FALSE. See
glPolygonOffset.

GL_POLYGON_SMOOTH

params returns a single boolean value indicating whether antialiasing of
polygons is enabled. The initial value is GL_FALSE. See glPolygonMode.

GL_POLYGON_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of
the polygon antialiasing hint. The initial value is GL_DONT_CARE. See
glHint.

GL_POLYGON_STIPPLE

params returns a single boolean value indicating whether polygon stip-
pling is enabled. The initial value is GL_FALSE. See glPolygonStipple.

GL_POST_COLOR_MATRIX_COLOR_TABLE

params returns a single boolean value indicating whether post color ma-
trix transformation lookup is enabled. The initial value is GL_FALSE. See
glColorTable.

GL_POST_COLOR_MATRIX_RED_BIAS

params returns one value, the red bias factor applied to RGBA frag-
ments after color matrix transformations. The initial value is 0. See
glPixelTransfer.

GL_POST_COLOR_MATRIX_GREEN_BIAS

params returns one value, the green bias factor applied to RGBA frag-
ments after color matrix transformations. The initial value is 0. See
glPixelTransfer

GL_POST_COLOR_MATRIX_BLUE_BIAS

params returns one value, the blue bias factor applied to RGBA frag-
ments after color matrix transformations. The initial value is 0. See
glPixelTransfer.

GL_POST_COLOR_MATRIX_ALPHA_BIAS

params returns one value, the alpha bias factor applied to RGBA frag-
ments after color matrix transformations. The initial value is 0. See
glPixelTransfer.

GL_POST_COLOR_MATRIX_RED_SCALE

params returns one value, the red scale factor applied to RGBA frag-
ments after color matrix transformations. The initial value is 1. See
glPixelTransfer.

Chapter 3: GL 280

GL_POST_COLOR_MATRIX_GREEN_SCALE

params returns one value, the green scale factor applied to RGBA frag-
ments after color matrix transformations. The initial value is 1. See
glPixelTransfer.

GL_POST_COLOR_MATRIX_BLUE_SCALE

params returns one value, the blue scale factor applied to RGBA frag-
ments after color matrix transformations. The initial value is 1. See
glPixelTransfer.

GL_POST_COLOR_MATRIX_ALPHA_SCALE

params returns one value, the alpha scale factor applied to RGBA frag-
ments after color matrix transformations. The initial value is 1. See
glPixelTransfer.

GL_POST_CONVOLUTION_COLOR_TABLE

params returns a single boolean value indicating whether post convolution
lookup is enabled. The initial value is GL_FALSE. See glColorTable.

GL_POST_CONVOLUTION_RED_BIAS

params returns one value, the red bias factor applied to RGBA fragments
after convolution. The initial value is 0. See glPixelTransfer.

GL_POST_CONVOLUTION_GREEN_BIAS

params returns one value, the green bias factor applied to RGBA frag-
ments after convolution. The initial value is 0. See glPixelTransfer.

GL_POST_CONVOLUTION_BLUE_BIAS

params returns one value, the blue bias factor applied to RGBA fragments
after convolution. The initial value is 0. See glPixelTransfer.

GL_POST_CONVOLUTION_ALPHA_BIAS

params returns one value, the alpha bias factor applied to RGBA frag-
ments after convolution. The initial value is 0. See glPixelTransfer.

GL_POST_CONVOLUTION_RED_SCALE

params returns one value, the red scale factor applied to RGBA fragments
after convolution. The initial value is 1. See glPixelTransfer.

GL_POST_CONVOLUTION_GREEN_SCALE

params returns one value, the green scale factor applied to RGBA frag-
ments after convolution. The initial value is 1. See glPixelTransfer.

GL_POST_CONVOLUTION_BLUE_SCALE

params returns one value, the blue scale factor applied to RGBA frag-
ments after convolution. The initial value is 1. See glPixelTransfer.

GL_POST_CONVOLUTION_ALPHA_SCALE

params returns one value, the alpha scale factor applied to RGBA frag-
ments after convolution. The initial value is 1. See glPixelTransfer.

GL_PROJECTION_MATRIX

params returns sixteen values: the projection matrix on the top of the
projection matrix stack. Initially this matrix is the identity matrix. See
glPushMatrix.

Chapter 3: GL 281

GL_PROJECTION_STACK_DEPTH

params returns one value, the number of matrices on the projection ma-
trix stack. The initial value is 1. See glPushMatrix.

GL_READ_BUFFER

params returns one value, a symbolic constant indicating which color
buffer is selected for reading. The initial value is GL_BACK if there is a
back buffer, otherwise it is GL_FRONT. See glReadPixels and glAccum.

GL_RED_BIAS

params returns one value, the red bias factor used during pixel transfers.
The initial value is 0.

GL_RED_BITS

params returns one value, the number of red bitplanes in each color buffer.

GL_RED_SCALE

params returns one value, the red scale factor used during pixel transfers.
The initial value is 1. See glPixelTransfer.

GL_RENDER_MODE

params returns one value, a symbolic constant indicating whether the GL
is in render, select, or feedback mode. The initial value is GL_RENDER. See
glRenderMode.

GL_RESCALE_NORMAL

params returns single boolean value indicating whether normal rescaling
is enabled. See glEnable.

GL_RGBA_MODE

params returns a single boolean value indicating whether the GL is in
RGBA mode (true) or color index mode (false). See glColor.

GL_SAMPLE_BUFFERS

params returns a single integer value indicating the number of sample
buffers associated with the framebuffer. See glSampleCoverage.

GL_SAMPLE_COVERAGE_VALUE

params returns a single positive floating-point value indicating the current
sample coverage value. See glSampleCoverage.

GL_SAMPLE_COVERAGE_INVERT

params returns a single boolean value indicating if the temporary cover-
age value should be inverted. See glSampleCoverage.

GL_SAMPLES

params returns a single integer value indicating the coverage mask size.
See glSampleCoverage.

GL_SCISSOR_BOX

params returns four values: the x and y window coordinates of the scissor
box, followed by its width and height. Initially the x and y window
coordinates are both 0 and the width and height are set to the size of the
window. See glScissor.

Chapter 3: GL 282

GL_SCISSOR_TEST

params returns a single boolean value indicating whether scissoring is
enabled. The initial value is GL_FALSE. See glScissor.

GL_SECONDARY_COLOR_ARRAY

params returns a single boolean value indicating whether the
secondary color array is enabled. The initial value is GL_FALSE. See
glSecondaryColorPointer.

GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object associated
with the secondary color array. This buffer object would have been bound
to the target GL_ARRAY_BUFFER at the time of the most recent call to
glSecondaryColorPointer. If no buffer object was bound to this target,
0 is returned. The initial value is 0. See glBindBuffer.

GL_SECONDARY_COLOR_ARRAY_SIZE

params returns one value, the number of components per
color in the secondary color array. The initial value is 3. See
glSecondaryColorPointer.

GL_SECONDARY_COLOR_ARRAY_STRIDE

params returns one value, the byte offset between consecutive
colors in the secondary color array. The initial value is 0. See
glSecondaryColorPointer.

GL_SECONDARY_COLOR_ARRAY_TYPE

params returns one value, the data type of each component in
the secondary color array. The initial value is GL_FLOAT. See
glSecondaryColorPointer.

GL_SELECTION_BUFFER_SIZE

params return one value, the size of the selection buffer. See
glSelectBuffer.

GL_SEPARABLE_2D

params returns a single boolean value indicating whether 2D
separable convolution is enabled. The initial value is GL_FALSE. See
glSeparableFilter2D.

GL_SHADE_MODEL

params returns one value, a symbolic constant indicating whether the
shading mode is flat or smooth. The initial value is GL_SMOOTH. See
glShadeModel.

GL_SMOOTH_LINE_WIDTH_RANGE

params returns two values, the smallest and largest supported widths for
antialiased lines. See glLineWidth.

GL_SMOOTH_LINE_WIDTH_GRANULARITY

params returns one value, the granularity of widths for antialiased lines.
See glLineWidth.

Chapter 3: GL 283

GL_SMOOTH_POINT_SIZE_RANGE

params returns two values, the smallest and largest supported widths for
antialiased points. See glPointSize.

GL_SMOOTH_POINT_SIZE_GRANULARITY

params returns one value, the granularity of sizes for antialiased points.
See glPointSize.

GL_STENCIL_BACK_FAIL

params returns one value, a symbolic constant indicating what action
is taken for back-facing polygons when the stencil test fails. The initial
value is GL_KEEP. See glStencilOpSeparate.

GL_STENCIL_BACK_FUNC

params returns one value, a symbolic constant indicating what func-
tion is used for back-facing polygons to compare the stencil reference
value with the stencil buffer value. The initial value is GL_ALWAYS. See
glStencilFuncSeparate.

GL_STENCIL_BACK_PASS_DEPTH_FAIL

params returns one value, a symbolic constant indicating what action is
taken for back-facing polygons when the stencil test passes, but the depth
test fails. The initial value is GL_KEEP. See glStencilOpSeparate.

GL_STENCIL_BACK_PASS_DEPTH_PASS

params returns one value, a symbolic constant indicating what action is
taken for back-facing polygons when the stencil test passes and the depth
test passes. The initial value is GL_KEEP. See glStencilOpSeparate.

GL_STENCIL_BACK_REF

params returns one value, the reference value that is compared with the
contents of the stencil buffer for back-facing polygons. The initial value
is 0. See glStencilFuncSeparate.

GL_STENCIL_BACK_VALUE_MASK

params returns one value, the mask that is used for back-facing
polygons to mask both the stencil reference value and the stencil
buffer value before they are compared. The initial value is all 1’s. See
glStencilFuncSeparate.

GL_STENCIL_BACK_WRITEMASK

params returns one value, the mask that controls writing of the sten-
cil bitplanes for back-facing polygons. The initial value is all 1’s. See
glStencilMaskSeparate.

GL_STENCIL_BITS

params returns one value, the number of bitplanes in the stencil buffer.

GL_STENCIL_CLEAR_VALUE

params returns one value, the index to which the stencil bitplanes are
cleared. The initial value is 0. See glClearStencil.

Chapter 3: GL 284

GL_STENCIL_FAIL

params returns one value, a symbolic constant indicating what action
is taken when the stencil test fails. The initial value is GL_KEEP. See
glStencilOp. If the GL version is 2.0 or greater, this stencil state only
affects non-polygons and front-facing polygons. Back-facing polygons use
separate stencil state. See glStencilOpSeparate.

GL_STENCIL_FUNC

params returns one value, a symbolic constant indicating what function
is used to compare the stencil reference value with the stencil buffer value.
The initial value is GL_ALWAYS. See glStencilFunc. If the GL version
is 2.0 or greater, this stencil state only affects non-polygons and front-
facing polygons. Back-facing polygons use separate stencil state. See
glStencilFuncSeparate.

GL_STENCIL_PASS_DEPTH_FAIL

params returns one value, a symbolic constant indicating what action
is taken when the stencil test passes, but the depth test fails. The
initial value is GL_KEEP. See glStencilOp. If the GL version is 2.0 or
greater, this stencil state only affects non-polygons and front-facing
polygons. Back-facing polygons use separate stencil state. See
glStencilOpSeparate.

GL_STENCIL_PASS_DEPTH_PASS

params returns one value, a symbolic constant indicating what action
is taken when the stencil test passes and the depth test passes. The
initial value is GL_KEEP. See glStencilOp. If the GL version is 2.0 or
greater, this stencil state only affects non-polygons and front-facing
polygons. Back-facing polygons use separate stencil state. See
glStencilOpSeparate.

GL_STENCIL_REF

params returns one value, the reference value that is compared with the
contents of the stencil buffer. The initial value is 0. See glStencilFunc.
If the GL version is 2.0 or greater, this stencil state only affects non-
polygons and front-facing polygons. Back-facing polygons use separate
stencil state. See glStencilFuncSeparate.

GL_STENCIL_TEST

params returns a single boolean value indicating whether stencil testing of
fragments is enabled. The initial value is GL_FALSE. See glStencilFunc
and glStencilOp.

GL_STENCIL_VALUE_MASK

params returns one value, the mask that is used to mask both the sten-
cil reference value and the stencil buffer value before they are compared.
The initial value is all 1’s. See glStencilFunc. If the GL version is
2.0 or greater, this stencil state only affects non-polygons and front-
facing polygons. Back-facing polygons use separate stencil state. See
glStencilFuncSeparate.

Chapter 3: GL 285

GL_STENCIL_WRITEMASK

params returns one value, the mask that controls writing of the stencil
bitplanes. The initial value is all 1’s. See glStencilMask. If the GL
version is 2.0 or greater, this stencil state only affects non-polygons and
front-facing polygons. Back-facing polygons use separate stencil state.
See glStencilMaskSeparate.

GL_STEREO

params returns a single boolean value indicating whether stereo buffers
(left and right) are supported.

GL_SUBPIXEL_BITS

params returns one value, an estimate of the number of bits of subpixel
resolution that are used to position rasterized geometry in window coor-
dinates. The value must be at least 4.

GL_TEXTURE_1D

params returns a single boolean value indicating whether 1D texture map-
ping is enabled. The initial value is GL_FALSE. See glTexImage1D.

GL_TEXTURE_BINDING_1D

params returns a single value, the name of the texture currently bound
to the target GL_TEXTURE_1D. The initial value is 0. See glBindTexture.

GL_TEXTURE_2D

params returns a single boolean value indicating whether 2D texture map-
ping is enabled. The initial value is GL_FALSE. See glTexImage2D.

GL_TEXTURE_BINDING_2D

params returns a single value, the name of the texture currently bound
to the target GL_TEXTURE_2D. The initial value is 0. See glBindTexture.

GL_TEXTURE_3D

params returns a single boolean value indicating whether 3D texture map-
ping is enabled. The initial value is GL_FALSE. See glTexImage3D.

GL_TEXTURE_BINDING_3D

params returns a single value, the name of the texture currently bound
to the target GL_TEXTURE_3D. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_CUBE_MAP

params returns a single value, the name of the texture currently
bound to the target GL_TEXTURE_CUBE_MAP. The initial value is 0. See
glBindTexture.

GL_TEXTURE_COMPRESSION_HINT

params returns a single value indicating the mode of the texture com-
pression hint. The initial value is GL_DONT_CARE.

GL_TEXTURE_COORD_ARRAY

params returns a single boolean value indicating whether the texture
coordinate array is enabled. The initial value is GL_FALSE. See
glTexCoordPointer.

Chapter 3: GL 286

GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object associated
with the texture coordinate array. This buffer object would have been
bound to the target GL_ARRAY_BUFFER at the time of the most recent call
to glTexCoordPointer. If no buffer object was bound to this target, 0
is returned. The initial value is 0. See glBindBuffer.

GL_TEXTURE_COORD_ARRAY_SIZE

params returns one value, the number of coordinates per element in the
texture coordinate array. The initial value is 4. See glTexCoordPointer.

GL_TEXTURE_COORD_ARRAY_STRIDE

params returns one value, the byte offset between consecutive
elements in the texture coordinate array. The initial value is 0. See
glTexCoordPointer.

GL_TEXTURE_COORD_ARRAY_TYPE

params returns one value, the data type of the coordinates in the texture
coordinate array. The initial value is GL_FLOAT. See glTexCoordPointer.

GL_TEXTURE_CUBE_MAP

params returns a single boolean value indicating whether cube-mapped
texture mapping is enabled. The initial value is GL_FALSE. See
glTexImage2D.

GL_TEXTURE_GEN_Q

params returns a single boolean value indicating whether automatic gen-
eration of the q texture coordinate is enabled. The initial value is GL_

FALSE. See glTexGen.

GL_TEXTURE_GEN_R

params returns a single boolean value indicating whether automatic gen-
eration of the r texture coordinate is enabled. The initial value is GL_

FALSE. See glTexGen.

GL_TEXTURE_GEN_S

params returns a single boolean value indicating whether automatic gen-
eration of the S texture coordinate is enabled. The initial value is GL_

FALSE. See glTexGen.

GL_TEXTURE_GEN_T

params returns a single boolean value indicating whether automatic gen-
eration of the T texture coordinate is enabled. The initial value is GL_

FALSE. See glTexGen.

GL_TEXTURE_MATRIX

params returns sixteen values: the texture matrix on the top of the
texture matrix stack. Initially this matrix is the identity matrix. See
glPushMatrix.

GL_TEXTURE_STACK_DEPTH

params returns one value, the number of matrices on the texture matrix
stack. The initial value is 1. See glPushMatrix.

Chapter 3: GL 287

GL_TRANSPOSE_COLOR_MATRIX

params returns 16 values, the elements of the color matrix in row-major
order. See glLoadTransposeMatrix.

GL_TRANSPOSE_MODELVIEW_MATRIX

params returns 16 values, the elements of the modelview matrix in row-
major order. See glLoadTransposeMatrix.

GL_TRANSPOSE_PROJECTION_MATRIX

params returns 16 values, the elements of the projection matrix in row-
major order. See glLoadTransposeMatrix.

GL_TRANSPOSE_TEXTURE_MATRIX

params returns 16 values, the elements of the texture matrix in row-major
order. See glLoadTransposeMatrix.

GL_UNPACK_ALIGNMENT

params returns one value, the byte alignment used for reading pixel data
from memory. The initial value is 4. See glPixelStore.

GL_UNPACK_IMAGE_HEIGHT

params returns one value, the image height used for reading pixel data
from memory. The initial is 0. See glPixelStore.

GL_UNPACK_LSB_FIRST

params returns a single boolean value indicating whether single-bit pixels
being read from memory are read first from the least significant bit of each
unsigned byte. The initial value is GL_FALSE. See glPixelStore.

GL_UNPACK_ROW_LENGTH

params returns one value, the row length used for reading pixel data from
memory. The initial value is 0. See glPixelStore.

GL_UNPACK_SKIP_IMAGES

params returns one value, the number of pixel images skipped before the
first pixel is read from memory. The initial value is 0. See glPixelStore.

GL_UNPACK_SKIP_PIXELS

params returns one value, the number of pixel locations skipped be-
fore the first pixel is read from memory. The initial value is 0. See
glPixelStore.

GL_UNPACK_SKIP_ROWS

params returns one value, the number of rows of pixel locations skipped
before the first pixel is read from memory. The initial value is 0. See
glPixelStore.

GL_UNPACK_SWAP_BYTES

params returns a single boolean value indicating whether the bytes of two-
byte and four-byte pixel indices and components are swapped after being
read from memory. The initial value is GL_FALSE. See glPixelStore.

GL_VERTEX_ARRAY

params returns a single boolean value indicating whether the vertex array
is enabled. The initial value is GL_FALSE. See glVertexPointer.

Chapter 3: GL 288

GL_VERTEX_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object associ-
ated with the vertex array. This buffer object would have been bound
to the target GL_ARRAY_BUFFER at the time of the most recent call to
glVertexPointer. If no buffer object was bound to this target, 0 is
returned. The initial value is 0. See glBindBuffer.

GL_VERTEX_ARRAY_SIZE

params returns one value, the number of coordinates per vertex in the
vertex array. The initial value is 4. See glVertexPointer.

GL_VERTEX_ARRAY_STRIDE

params returns one value, the byte offset between consecutive vertices in
the vertex array. The initial value is 0. See glVertexPointer.

GL_VERTEX_ARRAY_TYPE

params returns one value, the data type of each coordinate in the vertex
array. The initial value is GL_FLOAT. See glVertexPointer.

GL_VERTEX_PROGRAM_POINT_SIZE

params returns a single boolean value indicating whether vertex program
point size mode is enabled. If enabled, and a vertex shader is active, then
the point size is taken from the shader built-in gl_PointSize. If disabled,
and a vertex shader is active, then the point size is taken from the point
state as specified by glPointSize. The initial value is GL_FALSE.

GL_VERTEX_PROGRAM_TWO_SIDE

params returns a single boolean value indicating whether vertex program
two-sided color mode is enabled. If enabled, and a vertex shader is active,
then the GL chooses the back color output for back-facing polygons, and
the front color output for non-polygons and front-facing polygons. If
disabled, and a vertex shader is active, then the front color output is
always selected. The initial value is GL_FALSE.

GL_VIEWPORT

params returns four values: the x and y window coordinates of the view-
port, followed by its width and height. Initially the x and y window
coordinates are both set to 0, and the width and height are set to the
width and height of the window into which the GL will do its rendering.
See glViewport.

GL_ZOOM_X

params returns one value, the x pixel zoom factor. The initial value is 1.
See glPixelZoom.

GL_ZOOM_Y

params returns one value, the y pixel zoom factor. The initial value is 1.
See glPixelZoom.

Many of the boolean parameters can also be queried more easily using glIsEnabled.

GL_INVALID_ENUM is generated if pname is not an accepted value.

Chapter 3: GL 289

GL_INVALID_OPERATION is generated if glGet is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glHint target mode
Specify implementation-specific hints.

target Specifies a symbolic constant indicating the behavior to be controlled.
GL_FOG_HINT, GL_GENERATE_MIPMAP_HINT, GL_LINE_SMOOTH_HINT,
GL_PERSPECTIVE_CORRECTION_HINT, GL_POINT_SMOOTH_HINT,
GL_POLYGON_SMOOTH_HINT, GL_TEXTURE_COMPRESSION_HINT, and
GL_FRAGMENT_SHADER_DERIVATIVE_HINT are accepted.

mode Specifies a symbolic constant indicating the desired behavior.
GL_FASTEST, GL_NICEST, and GL_DONT_CARE are accepted.

Certain aspects of GL behavior, when there is room for interpretation, can be con-
trolled with hints. A hint is specified with two arguments. target is a symbolic con-
stant indicating the behavior to be controlled, and mode is another symbolic constant
indicating the desired behavior. The initial value for each target is GL_DONT_CARE.
mode can be one of the following:

GL_FASTEST

The most efficient option should be chosen.

GL_NICEST

The most correct, or highest quality, option should be chosen.

GL_DONT_CARE

No preference.

Though the implementation aspects that can be hinted are well defined, the inter-
pretation of the hints depends on the implementation. The hint aspects that can be
specified with target, along with suggested semantics, are as follows:

GL_FOG_HINT

Indicates the accuracy of fog calculation. If per-pixel fog calculation is not
efficiently supported by the GL implementation, hinting GL_DONT_CARE

or GL_FASTEST can result in per-vertex calculation of fog effects.

GL_FRAGMENT_SHADER_DERIVATIVE_HINT

Indicates the accuracy of the derivative calculation for the GL shading
language fragment processing built-in functions: dFdx, dFdy, and fwidth.

GL_GENERATE_MIPMAP_HINT

Indicates the quality of filtering when generating mipmap images.

GL_LINE_SMOOTH_HINT

Indicates the sampling quality of antialiased lines. If a larger filter func-
tion is applied, hinting GL_NICEST can result in more pixel fragments
being generated during rasterization.

GL_PERSPECTIVE_CORRECTION_HINT

Indicates the quality of color, texture coordinate, and fog coordinate in-
terpolation. If perspective-corrected parameter interpolation is not effi-
ciently supported by the GL implementation, hinting GL_DONT_CARE or

Chapter 3: GL 290

GL_FASTEST can result in simple linear interpolation of colors and/or tex-
ture coordinates.

GL_POINT_SMOOTH_HINT

Indicates the sampling quality of antialiased points. If a larger filter
function is applied, hinting GL_NICEST can result in more pixel fragments
being generated during rasterization.

GL_POLYGON_SMOOTH_HINT

Indicates the sampling quality of antialiased polygons. Hinting
GL_NICEST can result in more pixel fragments being generated during
rasterization, if a larger filter function is applied.

GL_TEXTURE_COMPRESSION_HINT

Indicates the quality and performance of the compressing texture im-
ages. Hinting GL_FASTEST indicates that texture images should be com-
pressed as quickly as possible, while GL_NICEST indicates that texture
images should be compressed with as little image quality loss as possi-
ble. GL_NICEST should be selected if the texture is to be retrieved by
glGetCompressedTexImage for reuse.

GL_INVALID_ENUM is generated if either target or mode is not an accepted value.

GL_INVALID_OPERATION is generated if glHint is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glHistogram target width internalformat sink
Define histogram table.

target The histogram whose parameters are to be set. Must be one of GL_

HISTOGRAM or GL_PROXY_HISTOGRAM.

width The number of entries in the histogram table. Must be a power of 2.

internalformat
The format of entries in the histogram table. Must be one of
GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,
GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1,
GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

sink If GL_TRUE, pixels will be consumed by the histogramming process and
no drawing or texture loading will take place. If GL_FALSE, pixels will
proceed to the minmax process after histogramming.

When GL_HISTOGRAM is enabled, RGBA color components are converted to histogram
table indices by clamping to the range [0,1], multiplying by the width of the histogram
table, and rounding to the nearest integer. The table entries selected by the RGBA
indices are then incremented. (If the internal format of the histogram table includes

Chapter 3: GL 291

luminance, then the index derived from the R color component determines the lu-
minance table entry to be incremented.) If a histogram table entry is incremented
beyond its maximum value, then its value becomes undefined. (This is not an error.)

Histogramming is performed only for RGBA pixels (though these may be specified
originally as color indices and converted to RGBA by index table lookup). Histogram-
ming is enabled with glEnable and disabled with glDisable.

When target is GL_HISTOGRAM, glHistogram redefines the current histogram table
to have width entries of the format specified by internalformat. The entries are
indexed 0 through width-1, and all entries are initialized to zero. The values in the
previous histogram table, if any, are lost. If sink is GL_TRUE, then pixels are discarded
after histogramming; no further processing of the pixels takes place, and no drawing,
texture loading, or pixel readback will result.

When target is GL_PROXY_HISTOGRAM, glHistogram computes all state information
as if the histogram table were to be redefined, but does not actually define the new
table. If the requested histogram table is too large to be supported, then the state
information will be set to zero. This provides a way to determine if a histogram table
with the given parameters can be supported.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero or is not a power of 2.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_TABLE_TOO_LARGE is generated if target is GL_HISTOGRAM and the histogram table
specified is too large for the implementation.

GL_INVALID_OPERATION is generated if glHistogram is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glIndexMask mask
Control the writing of individual bits in the color index buffers.

mask Specifies a bit mask to enable and disable the writing of individual bits
in the color index buffers. Initially, the mask is all 1’s.

glIndexMask controls the writing of individual bits in the color index buffers. The
least significant n bits of mask, where n is the number of bits in a color index buffer,
specify a mask. Where a 1 (one) appears in the mask, it’s possible to write to the
corresponding bit in the color index buffer (or buffers). Where a 0 (zero) appears,
the corresponding bit is write-protected.

This mask is used only in color index mode, and it affects only the buffers currently
selected for writing (see glDrawBuffer). Initially, all bits are enabled for writing.

GL_INVALID_OPERATION is generated if glIndexMask is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glIndexPointer type stride pointer
Define an array of color indexes.

type Specifies the data type of each color index in the array. Symbolic con-
stants GL_UNSIGNED_BYTE, GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE

are accepted. The initial value is GL_FLOAT.

Chapter 3: GL 292

stride Specifies the byte offset between consecutive color indexes. If stride is 0,
the color indexes are understood to be tightly packed in the array. The
initial value is 0.

pointer Specifies a pointer to the first index in the array. The initial value is 0.

glIndexPointer specifies the location and data format of an array of color indexes to
use when rendering. type specifies the data type of each color index and stride spec-
ifies the byte stride from one color index to the next, allowing vertices and attributes
to be packed into a single array or stored in separate arrays.

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) while a color index array is specified, pointer is treated as a byte
offset into the buffer object’s data store. Also, the buffer object binding (GL_ARRAY_
BUFFER_BINDING) is saved as color index vertex array client-side state (GL_INDEX_
ARRAY_BUFFER_BINDING).

When a color index array is specified, type, stride, and pointer are saved as client-side
state, in addition to the current vertex array buffer object binding.

To enable and disable the color index array, call glEnableClientState and
glDisableClientState with the argument GL_INDEX_ARRAY. If enabled, the color
index array is used when glDrawArrays, glMultiDrawArrays, glDrawElements,
glMultiDrawElements, glDrawRangeElements, or glArrayElement is called.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

[Function]void glIndexs c
[Function]void glIndexi c
[Function]void glIndexf c
[Function]void glIndexd c
[Function]void glIndexub c
[Function]void glIndexsv c
[Function]void glIndexiv c
[Function]void glIndexfv c
[Function]void glIndexdv c
[Function]void glIndexubv c

Set the current color index.

c Specifies the new value for the current color index.

glIndex updates the current (single-valued) color index. It takes one argument, the
new value for the current color index.

The current index is stored as a floating-point value. Integer values are converted
directly to floating-point values, with no special mapping. The initial value is 1.

Index values outside the representable range of the color index buffer are not clamped.
However, before an index is dithered (if enabled) and written to the frame buffer, it
is converted to fixed-point format. Any bits in the integer portion of the resulting
fixed-point value that do not correspond to bits in the frame buffer are masked out.

Chapter 3: GL 293

[Function]void glInitNames
Initialize the name stack.

The name stack is used during selection mode to allow sets of rendering commands to
be uniquely identified. It consists of an ordered set of unsigned integers. glInitNames
causes the name stack to be initialized to its default empty state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to
glInitNames while the render mode is not GL_SELECT are ignored.

GL_INVALID_OPERATION is generated if glInitNames is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glInterleavedArrays format stride pointer
Simultaneously specify and enable several interleaved arrays.

format Specifies the type of array to enable. Symbolic constants GL_V2F,
GL_V3F, GL_C4UB_V2F, GL_C4UB_V3F, GL_C3F_V3F, GL_N3F_V3F,
GL_C4F_N3F_V3F, GL_T2F_V3F, GL_T4F_V4F, GL_T2F_C4UB_V3F,
GL_T2F_C3F_V3F, GL_T2F_N3F_V3F, GL_T2F_C4F_N3F_V3F, and
GL_T4F_C4F_N3F_V4F are accepted.

stride Specifies the offset in bytes between each aggregate array element.

glInterleavedArrays lets you specify and enable individual color, normal, texture
and vertex arrays whose elements are part of a larger aggregate array element. For
some implementations, this is more efficient than specifying the arrays separately.

If stride is 0, the aggregate elements are stored consecutively. Otherwise, stride bytes
occur between the beginning of one aggregate array element and the beginning of the
next aggregate array element.

format serves as a “key” describing the extraction of individual arrays from the ag-
gregate array. If format contains a T, then texture coordinates are extracted from the
interleaved array. If C is present, color values are extracted. If N is present, normal
coordinates are extracted. Vertex coordinates are always extracted.

The digits 2, 3, and 4 denote how many values are extracted. F indicates that values
are extracted as floating-point values. Colors may also be extracted as 4 unsigned
bytes if 4UB follows the C. If a color is extracted as 4 unsigned bytes, the vertex array
element which follows is located at the first possible floating-point aligned address.

GL_INVALID_ENUM is generated if format is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

[Function]GLboolean glIsBuffer buffer
Determine if a name corresponds to a buffer object.

buffer Specifies a value that may be the name of a buffer object.

glIsBuffer returns GL_TRUE if buffer is currently the name of a buffer object. If
buffer is zero, or is a non-zero value that is not currently the name of a buffer object,
or if an error occurs, glIsBuffer returns GL_FALSE.

A name returned by glGenBuffers, but not yet associated with a buffer object by
calling glBindBuffer, is not the name of a buffer object.

GL_INVALID_OPERATION is generated if glIsBuffer is executed between the execution
of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 294

[Function]GLboolean glIsEnabled cap
Test whether a capability is enabled.

cap Specifies a symbolic constant indicating a GL capability.

glIsEnabled returns GL_TRUE if cap is an enabled capability and returns GL_FALSE
otherwise. Initially all capabilities except GL_DITHER are disabled; GL_DITHER is ini-
tially enabled.

The following capabilities are accepted for cap:

Constant See

GL_ALPHA_TEST

glAlphaFunc

GL_AUTO_NORMAL

glEvalCoord

GL_BLEND glBlendFunc, glLogicOp

GL_CLIP_PLANEi
glClipPlane

GL_COLOR_ARRAY

glColorPointer

GL_COLOR_LOGIC_OP

glLogicOp

GL_COLOR_MATERIAL

glColorMaterial

GL_COLOR_SUM

glSecondaryColor

GL_COLOR_TABLE

glColorTable

GL_CONVOLUTION_1D

glConvolutionFilter1D

GL_CONVOLUTION_2D

glConvolutionFilter2D

GL_CULL_FACE

glCullFace

GL_DEPTH_TEST

glDepthFunc, glDepthRange

GL_DITHER

glEnable

GL_EDGE_FLAG_ARRAY

glEdgeFlagPointer

GL_FOG glFog

Chapter 3: GL 295

GL_FOG_COORD_ARRAY

glFogCoordPointer

GL_HISTOGRAM

glHistogram

GL_INDEX_ARRAY

glIndexPointer

GL_INDEX_LOGIC_OP

glLogicOp

GL_LIGHTi glLightModel, glLight

GL_LIGHTING

glMaterial, glLightModel, glLight

GL_LINE_SMOOTH

glLineWidth

GL_LINE_STIPPLE

glLineStipple

GL_MAP1_COLOR_4

glMap1

GL_MAP1_INDEX

glMap1

GL_MAP1_NORMAL

glMap1

GL_MAP1_TEXTURE_COORD_1

glMap1

GL_MAP1_TEXTURE_COORD_2

glMap1

GL_MAP1_TEXTURE_COORD_3

glMap1

GL_MAP1_TEXTURE_COORD_4

glMap1

GL_MAP2_COLOR_4

glMap2

GL_MAP2_INDEX

glMap2

GL_MAP2_NORMAL

glMap2

GL_MAP2_TEXTURE_COORD_1

glMap2

GL_MAP2_TEXTURE_COORD_2

glMap2

Chapter 3: GL 296

GL_MAP2_TEXTURE_COORD_3

glMap2

GL_MAP2_TEXTURE_COORD_4

glMap2

GL_MAP2_VERTEX_3

glMap2

GL_MAP2_VERTEX_4

glMap2

GL_MINMAX

glMinmax

GL_MULTISAMPLE

glSampleCoverage

GL_NORMAL_ARRAY

glNormalPointer

GL_NORMALIZE

glNormal

GL_POINT_SMOOTH

glPointSize

GL_POINT_SPRITE

glEnable

GL_POLYGON_SMOOTH

glPolygonMode

GL_POLYGON_OFFSET_FILL

glPolygonOffset

GL_POLYGON_OFFSET_LINE

glPolygonOffset

GL_POLYGON_OFFSET_POINT

glPolygonOffset

GL_POLYGON_STIPPLE

glPolygonStipple

GL_POST_COLOR_MATRIX_COLOR_TABLE

glColorTable

GL_POST_CONVOLUTION_COLOR_TABLE

glColorTable

GL_RESCALE_NORMAL

glNormal

GL_SAMPLE_ALPHA_TO_COVERAGE

glSampleCoverage

Chapter 3: GL 297

GL_SAMPLE_ALPHA_TO_ONE

glSampleCoverage

GL_SAMPLE_COVERAGE

glSampleCoverage

GL_SCISSOR_TEST

glScissor

GL_SECONDARY_COLOR_ARRAY

glSecondaryColorPointer

GL_SEPARABLE_2D

glSeparableFilter2D

GL_STENCIL_TEST

glStencilFunc, glStencilOp

GL_TEXTURE_1D

glTexImage1D

GL_TEXTURE_2D

glTexImage2D

GL_TEXTURE_3D

glTexImage3D

GL_TEXTURE_COORD_ARRAY

glTexCoordPointer

GL_TEXTURE_CUBE_MAP

glTexImage2D

GL_TEXTURE_GEN_Q

glTexGen

GL_TEXTURE_GEN_R

glTexGen

GL_TEXTURE_GEN_S

glTexGen

GL_TEXTURE_GEN_T

glTexGen

GL_VERTEX_ARRAY

glVertexPointer

GL_VERTEX_PROGRAM_POINT_SIZE

glEnable

GL_VERTEX_PROGRAM_TWO_SIDE

glEnable

GL_INVALID_ENUM is generated if cap is not an accepted value.

GL_INVALID_OPERATION is generated if glIsEnabled is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 298

[Function]GLboolean glIsList list
Determine if a name corresponds to a display list.

list Specifies a potential display list name.

glIsList returns GL_TRUE if list is the name of a display list and returns GL_FALSE
if it is not, or if an error occurs.

A name returned by glGenLists, but not yet associated with a display list by calling
glNewList, is not the name of a display list.

GL_INVALID_OPERATION is generated if glIsList is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]GLboolean glIsProgram program
Determines if a name corresponds to a program object.

program Specifies a potential program object.

glIsProgram returns GL_TRUE if program is the name of a program object previously
created with glCreateProgram and not yet deleted with glDeleteProgram. If pro-
gram is zero or a non-zero value that is not the name of a program object, or if an
error occurs, glIsProgram returns GL_FALSE.

GL_INVALID_OPERATION is generated if glIsProgram is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]GLboolean glIsQuery id
Determine if a name corresponds to a query object.

id Specifies a value that may be the name of a query object.

glIsQuery returns GL_TRUE if id is currently the name of a query object. If id is zero,
or is a non-zero value that is not currently the name of a query object, or if an error
occurs, glIsQuery returns GL_FALSE.

A name returned by glGenQueries, but not yet associated with a query object by
calling glBeginQuery, is not the name of a query object.

GL_INVALID_OPERATION is generated if glIsQuery is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]GLboolean glIsShader shader
Determines if a name corresponds to a shader object.

shader Specifies a potential shader object.

glIsShader returns GL_TRUE if shader is the name of a shader object previously
created with glCreateShader and not yet deleted with glDeleteShader. If shader
is zero or a non-zero value that is not the name of a shader object, or if an error
occurs, glIsShader returns GL_FALSE.

GL_INVALID_OPERATION is generated if glIsShader is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]GLboolean glIsTexture texture
Determine if a name corresponds to a texture.

Chapter 3: GL 299

texture Specifies a value that may be the name of a texture.

glIsTexture returns GL_TRUE if texture is currently the name of a texture. If texture
is zero, or is a non-zero value that is not currently the name of a texture, or if an
error occurs, glIsTexture returns GL_FALSE.

A name returned by glGenTextures, but not yet associated with a texture by calling
glBindTexture, is not the name of a texture.

GL_INVALID_OPERATION is generated if glIsTexture is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glLightModelf pname param
[Function]void glLightModeli pname param
[Function]void glLightModelfv pname params
[Function]void glLightModeliv pname params

Set the lighting model parameters.

pname Specifies a single-valued lighting model parameter. GL_LIGHT_

MODEL_LOCAL_VIEWER, GL_LIGHT_MODEL_COLOR_CONTROL, and
GL_LIGHT_MODEL_TWO_SIDE are accepted.

param Specifies the value that param will be set to.

glLightModel sets the lighting model parameter. pname names a parameter and
params gives the new value. There are three lighting model parameters:

GL_LIGHT_MODEL_AMBIENT

params contains four integer or floating-point values that specify the am-
bient RGBA intensity of the entire scene. Integer values are mapped
linearly such that the most positive representable value maps to 1.0, and
the most negative representable value maps to -1.0. Floating-point val-
ues are mapped directly. Neither integer nor floating-point values are
clamped. The initial ambient scene intensity is (0.2, 0.2, 0.2, 1.0).

GL_LIGHT_MODEL_COLOR_CONTROL

params must be either GL_SEPARATE_SPECULAR_COLOR or GL_SINGLE_

COLOR. GL_SINGLE_COLOR specifies that a single color is generated from
the lighting computation for a vertex. GL_SEPARATE_SPECULAR_COLOR

specifies that the specular color computation of lighting be stored sep-
arately from the remainder of the lighting computation. The specular
color is summed into the generated fragment’s color after the application
of texture mapping (if enabled). The initial value is GL_SINGLE_COLOR.

GL_LIGHT_MODEL_LOCAL_VIEWER

params is a single integer or floating-point value that specifies how specu-
lar reflection angles are computed. If params is 0 (or 0.0), specular reflec-
tion angles take the view direction to be parallel to and in the direction
of the -z axis, regardless of the location of the vertex in eye coordinates.
Otherwise, specular reflections are computed from the origin of the eye
coordinate system. The initial value is 0.

Chapter 3: GL 300

GL_LIGHT_MODEL_TWO_SIDE

params is a single integer or floating-point value that specifies whether
one- or two-sided lighting calculations are done for polygons. It has no
effect on the lighting calculations for points, lines, or bitmaps. If params
is 0 (or 0.0), one-sided lighting is specified, and only the front material
parameters are used in the lighting equation. Otherwise, two-sided light-
ing is specified. In this case, vertices of back-facing polygons are lighted
using the back material parameters and have their normals reversed be-
fore the lighting equation is evaluated. Vertices of front-facing polygons
are always lighted using the front material parameters, with no change
to their normals. The initial value is 0.

In RGBA mode, the lighted color of a vertex is the sum of the material emission
intensity, the product of the material ambient reflectance and the lighting model full-
scene ambient intensity, and the contribution of each enabled light source. Each light
source contributes the sum of three terms: ambient, diffuse, and specular. The am-
bient light source contribution is the product of the material ambient reflectance and
the light’s ambient intensity. The diffuse light source contribution is the product of
the material diffuse reflectance, the light’s diffuse intensity, and the dot product of the
vertex’s normal with the normalized vector from the vertex to the light source. The
specular light source contribution is the product of the material specular reflectance,
the light’s specular intensity, and the dot product of the normalized vertex-to-eye
and vertex-to-light vectors, raised to the power of the shininess of the material. All
three light source contributions are attenuated equally based on the distance from the
vertex to the light source and on light source direction, spread exponent, and spread
cutoff angle. All dot products are replaced with 0 if they evaluate to a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the
material diffuse reflectance.

In color index mode, the value of the lighted index of a vertex ranges from the ambient
to the specular values passed to glMaterial using GL_COLOR_INDEXES. Diffuse and
specular coefficients, computed with a (.30, .59, .11) weighting of the lights’ colors,
the shininess of the material, and the same reflection and attenuation equations as in
the RGBA case, determine how much above ambient the resulting index is.

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_ENUM is generated if pname is GL_LIGHT_MODEL_COLOR_CONTROL and
params is not one of GL_SINGLE_COLOR or GL_SEPARATE_SPECULAR_COLOR.

GL_INVALID_OPERATION is generated if glLightModel is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glLightf light pname param
[Function]void glLighti light pname param
[Function]void glLightfv light pname params
[Function]void glLightiv light pname params

Set light source parameters.

light Specifies a light. The number of lights depends on the implementation,
but at least eight lights are supported. They are identified by symbolic

Chapter 3: GL 301

names of the form GL_LIGHTi, where i ranges from 0 to the value of GL_
MAX_LIGHTS - 1.

pname Specifies a single-valued light source parameter for light. GL_

SPOT_EXPONENT, GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION are
accepted.

param Specifies the value that parameter pname of light source light will be set
to.

glLight sets the values of individual light source parameters. light names the light
and is a symbolic name of the form GL_LIGHTi, where i ranges from 0 to the value
of GL_MAX_LIGHTS - 1. pname specifies one of ten light source parameters, again by
symbolic name. params is either a single value or a pointer to an array that contains
the new values.

To enable and disable lighting calculation, call glEnable and glDisable with argu-
ment GL_LIGHTING. Lighting is initially disabled. When it is enabled, light sources
that are enabled contribute to the lighting calculation. Light source i is enabled and
disabled using glEnable and glDisable with argument GL_LIGHTi.

The ten light parameters are as follows:

GL_AMBIENT

params contains four integer or floating-point values that specify the am-
bient RGBA intensity of the light. Integer values are mapped linearly
such that the most positive representable value maps to 1.0, and the
most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped.
The initial ambient light intensity is (0, 0, 0, 1).

GL_DIFFUSE

params contains four integer or floating-point values that specify the dif-
fuse RGBA intensity of the light. Integer values are mapped linearly such
that the most positive representable value maps to 1.0, and the most neg-
ative representable value maps to -1.0. Floating-point values are mapped
directly. Neither integer nor floating-point values are clamped. The ini-
tial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial value
is (0, 0, 0, 1).

GL_SPECULAR

params contains four integer or floating-point values that specify the spec-
ular RGBA intensity of the light. Integer values are mapped linearly such
that the most positive representable value maps to 1.0, and the most neg-
ative representable value maps to -1.0. Floating-point values are mapped
directly. Neither integer nor floating-point values are clamped. The ini-
tial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial value
is (0, 0, 0, 1).

GL_POSITION

params contains four integer or floating-point values that specify the po-
sition of the light in homogeneous object coordinates. Both integer and

Chapter 3: GL 302

floating-point values are mapped directly. Neither integer nor floating-
point values are clamped.

The position is transformed by the modelview matrix when glLight is
called (just as if it were a point), and it is stored in eye coordinates.
If the w component of the position is 0, the light is treated as a direc-
tional source. Diffuse and specular lighting calculations take the light’s
direction, but not its actual position, into account, and attenuation is
disabled. Otherwise, diffuse and specular lighting calculations are based
on the actual location of the light in eye coordinates, and attenuation is
enabled. The initial position is (0, 0, 1, 0); thus, the initial light source
is directional, parallel to, and in the direction of the -z axis.

GL_SPOT_DIRECTION

params contains three integer or floating-point values that specify the di-
rection of the light in homogeneous object coordinates. Both integer and
floating-point values are mapped directly. Neither integer nor floating-
point values are clamped.

The spot direction is transformed by the upper 3x3 of the modelview
matrix when glLight is called, and it is stored in eye coordinates. It
is significant only when GL_SPOT_CUTOFF is not 180, which it is initially.
The initial direction is (0,0-1).

GL_SPOT_EXPONENT

params is a single integer or floating-point value that specifies the inten-
sity distribution of the light. Integer and floating-point values are mapped
directly. Only values in the range [0,128] are accepted.

Effective light intensity is attenuated by the cosine of the angle between
the direction of the light and the direction from the light to the vertex
being lighted, raised to the power of the spot exponent. Thus, higher
spot exponents result in a more focused light source, regardless of the
spot cutoff angle (see GL_SPOT_CUTOFF, next paragraph). The initial
spot exponent is 0, resulting in uniform light distribution.

GL_SPOT_CUTOFF

params is a single integer or floating-point value that specifies the maxi-
mum spread angle of a light source. Integer and floating-point values are
mapped directly. Only values in the range [0,90] and the special value
180 are accepted. If the angle between the direction of the light and the
direction from the light to the vertex being lighted is greater than the
spot cutoff angle, the light is completely masked. Otherwise, its inten-
sity is controlled by the spot exponent and the attenuation factors. The
initial spot cutoff is 180, resulting in uniform light distribution.

GL_CONSTANT_ATTENUATION

GL_LINEAR_ATTENUATION

GL_QUADRATIC_ATTENUATION

params is a single integer or floating-point value that specifies one of
the three light attenuation factors. Integer and floating-point values are
mapped directly. Only nonnegative values are accepted. If the light

Chapter 3: GL 303

is positional, rather than directional, its intensity is attenuated by the
reciprocal of the sum of the constant factor, the linear factor times the
distance between the light and the vertex being lighted, and the quadratic
factor times the square of the same distance. The initial attenuation
factors are (1, 0, 0), resulting in no attenuation.

GL_INVALID_ENUM is generated if either light or pname is not an accepted value.

GL_INVALID_VALUE is generated if a spot exponent value is specified outside the range
[0,128], or if spot cutoff is specified outside the range [0,90] (except for the special
value 180), or if a negative attenuation factor is specified.

GL_INVALID_OPERATION is generated if glLight is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glLineStipple factor pattern
Specify the line stipple pattern.

factor Specifies a multiplier for each bit in the line stipple pattern. If factor is
3, for example, each bit in the pattern is used three times before the next
bit in the pattern is used. factor is clamped to the range [1, 256] and
defaults to 1.

pattern Specifies a 16-bit integer whose bit pattern determines which fragments
of a line will be drawn when the line is rasterized. Bit zero is used first;
the default pattern is all 1’s.

Line stippling masks out certain fragments produced by rasterization; those fragments
will not be drawn. The masking is achieved by using three parameters: the 16-bit
line stipple pattern pattern, the repeat count factor, and an integer stipple counter s.

Counter s is reset to 0 whenever glBegin is called and before each line segment
of a glBegin(GL_LINES)/glEnd sequence is generated. It is incremented after each
fragment of a unit width aliased line segment is generated or after each i fragments
of an i width line segment are generated. The i fragments associated with count s
are masked out if

pattern bit (s/factor,)%16

is 0, otherwise these fragments are sent to the frame buffer. Bit zero of pattern is the
least significant bit.

Antialiased lines are treated as a sequence of 1width rectangles for purposes of stip-
pling. Whether rectangle s is rasterized or not depends on the fragment rule described
for aliased lines, counting rectangles rather than groups of fragments.

To enable and disable line stippling, call glEnable and glDisable with argument
GL_LINE_STIPPLE. When enabled, the line stipple pattern is applied as described
above. When disabled, it is as if the pattern were all 1’s. Initially, line stippling is
disabled.

GL_INVALID_OPERATION is generated if glLineStipple is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glLineWidth width
Specify the width of rasterized lines.

Chapter 3: GL 304

width Specifies the width of rasterized lines. The initial value is 1.

glLineWidth specifies the rasterized width of both aliased and antialiased lines. Using
a line width other than 1 has different effects, depending on whether line antialiasing
is enabled. To enable and disable line antialiasing, call glEnable and glDisable with
argument GL_LINE_SMOOTH. Line antialiasing is initially disabled.

If line antialiasing is disabled, the actual width is determined by rounding the supplied
width to the nearest integer. (If the rounding results in the value 0, it is as if the
line width were 1.) If x,>=y,, i pixels are filled in each column that is rasterized,
where i is the rounded value of width. Otherwise, i pixels are filled in each row that
is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square
that intersects the region lying within the rectangle having width equal to the current
line width, length equal to the actual length of the line, and centered on the mathe-
matical line segment. The coverage value for each fragment is the window coordinate
area of the intersection of the rectangular region with the corresponding pixel square.
This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported
width is requested, the nearest supported width is used. Only width 1 is guaran-
teed to be supported; others depend on the implementation. Likewise, there is a
range for aliased line widths as well. To query the range of supported widths and
the size difference between supported widths within the range, call glGet with ar-
guments GL_ALIASED_LINE_WIDTH_RANGE, GL_SMOOTH_LINE_WIDTH_RANGE, and GL_

SMOOTH_LINE_WIDTH_GRANULARITY.

GL_INVALID_VALUE is generated if width is less than or equal to 0.

GL_INVALID_OPERATION is generated if glLineWidth is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glLinkProgram program
Links a program object.

program Specifies the handle of the program object to be linked.

glLinkProgram links the program object specified by program. If any shader objects
of type GL_VERTEX_SHADER are attached to program, they will be used to create an
executable that will run on the programmable vertex processor. If any shader objects
of type GL_FRAGMENT_SHADER are attached to program, they will be used to create an
executable that will run on the programmable fragment processor.

The status of the link operation will be stored as part of the program object’s state.
This value will be set to GL_TRUE if the program object was linked without errors and
is ready for use, and GL_FALSE otherwise. It can be queried by calling glGetProgram

with arguments program and GL_LINK_STATUS.

As a result of a successful link operation, all active user-defined uniform variables
belonging to program will be initialized to 0, and each of the program object’s ac-
tive uniform variables will be assigned a location that can be queried by calling
glGetUniformLocation. Also, any active user-defined attribute variables that have
not been bound to a generic vertex attribute index will be bound to one at this time.

Chapter 3: GL 305

Linking of a program object can fail for a number of reasons as specified in the
OpenGL Shading Language Specification. The following lists some of the conditions
that will cause a link error.

• The number of active attribute variables supported by the implementation has
been exceeded.

• The storage limit for uniform variables has been exceeded.

• The number of active uniform variables supported by the implementation has
been exceeded.

• The main function is missing for the vertex shader or the fragment shader.

• A varying variable actually used in the fragment shader is not declared in the
same way (or is not declared at all) in the vertex shader.

• A reference to a function or variable name is unresolved.

• A shared global is declared with two different types or two different initial values.

• One or more of the attached shader objects has not been successfully compiled.

• Binding a generic attribute matrix caused some rows of the matrix to fall outside
the allowed maximum of GL_MAX_VERTEX_ATTRIBS.

• Not enough contiguous vertex attribute slots could be found to bind attribute
matrices.

When a program object has been successfully linked, the program object can be made
part of current state by calling glUseProgram. Whether or not the link operation was
successful, the program object’s information log will be overwritten. The information
log can be retrieved by calling glGetProgramInfoLog.

glLinkProgram will also install the generated executables as part of the current ren-
dering state if the link operation was successful and the specified program object is
already currently in use as a result of a previous call to glUseProgram. If the program
object currently in use is relinked unsuccessfully, its link status will be set to GL_FALSE
, but the executables and associated state will remain part of the current state until
a subsequent call to glUseProgram removes it from use. After it is removed from use,
it cannot be made part of current state until it has been successfully relinked.

If program contains shader objects of type GL_VERTEX_SHADER but does not contain
shader objects of type GL_FRAGMENT_SHADER, the vertex shader will be linked against
the implicit interface for fixed functionality fragment processing. Similarly, if program
contains shader objects of type GL_FRAGMENT_SHADER but it does not contain shader
objects of type GL_VERTEX_SHADER, the fragment shader will be linked against the
implicit interface for fixed functionality vertex processing.

The program object’s information log is updated and the program is generated at the
time of the link operation. After the link operation, applications are free to mod-
ify attached shader objects, compile attached shader objects, detach shader objects,
delete shader objects, and attach additional shader objects. None of these operations
affects the information log or the program that is part of the program object.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_OPERATION is generated if glLinkProgram is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 306

[Function]void glListBase base
Set the display-list base for .

base Specifies an integer offset that will be added to glCallLists offsets to
generate display-list names. The initial value is 0.

glCallLists specifies an array of offsets. Display-list names are generated by adding
base to each offset. Names that reference valid display lists are executed; the others
are ignored.

GL_INVALID_OPERATION is generated if glListBase is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glLoadIdentity
Replace the current matrix with the identity matrix.

glLoadIdentity replaces the current matrix with the identity matrix. It is semanti-
cally equivalent to calling glLoadMatrix with the identity matrix

((1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0 0 1),,)

but in some cases it is more efficient.

GL_INVALID_OPERATION is generated if glLoadIdentity is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glLoadMatrixd m
[Function]void glLoadMatrixf m

Replace the current matrix with the specified matrix.

m Specifies a pointer to 16 consecutive values, which are used as the elements
of a 44 column-major matrix.

glLoadMatrix replaces the current matrix with the one whose elements are specified
by m. The current matrix is the projection matrix, modelview matrix, or texture
matrix, depending on the current matrix mode (see glMatrixMode).

The current matrix, M, defines a transformation of coordinates. For instance, assume
M refers to the modelview matrix. If v=(v [0,],v [1,]v [2,]v [3,]) is the set of object
coordinates of a vertex, and m points to an array of 16 single- or double-precision
floating-point values m={m[0,],m[1,]...m[15,]}, then the modelview transformation
M(v,) does the following:

M(v,)=((m[0,] m[4,] m[8,] m[12,]), (m[1,] m[5,] m[9,] m[13,]), (m[2,] m[6,] m[10,]
m[14,]), (m[3,] m[7,] m[11,] m[15,]),)((v [0,]), (v [1,]), (v [2,]), (v [3,]),)

Projection and texture transformations are similarly defined.

GL_INVALID_OPERATION is generated if glLoadMatrix is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glLoadName name
Load a name onto the name stack.

name Specifies a name that will replace the top value on the name stack.

Chapter 3: GL 307

The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers and is
initially empty.

glLoadName causes name to replace the value on the top of the name stack.

The name stack is always empty while the render mode is not GL_SELECT. Calls to
glLoadName while the render mode is not GL_SELECT are ignored.

GL_INVALID_OPERATION is generated if glLoadName is called while the name stack is
empty.

GL_INVALID_OPERATION is generated if glLoadName is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glLoadTransposeMatrixd m
[Function]void glLoadTransposeMatrixf m

Replace the current matrix with the specified row-major ordered matrix.

m Specifies a pointer to 16 consecutive values, which are used as the elements
of a 44 row-major matrix.

glLoadTransposeMatrix replaces the current matrix with the one whose elements
are specified by m. The current matrix is the projection matrix, modelview matrix,
or texture matrix, depending on the current matrix mode (see glMatrixMode).

The current matrix, M, defines a transformation of coordinates. For instance, assume
M refers to the modelview matrix. If v=(v [0,],v [1,]v [2,]v [3,]) is the set of object
coordinates of a vertex, and m points to an array of 16 single- or double-precision
floating-point values m={m[0,],m[1,]...m[15,]}, then the modelview transformation
M(v,) does the following:

M(v,)=((m[0,] m[1,] m[2,] m[3,]), (m[4,] m[5,] m[6,] m[7,]), (m[8,] m[9,] m[10,] m[11,]),
(m[12,] m[13,] m[14,] m[15,]),)((v [0,]), (v [1,]), (v [2,]), (v [3,]),)

Projection and texture transformations are similarly defined.

Calling glLoadTransposeMatrix with matrix M is identical in operation to
glLoadMatrix with M^T, where T represents the transpose.

GL_INVALID_OPERATION is generated if glLoadTransposeMatrix is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glLogicOp opcode
Specify a logical pixel operation for color index rendering.

opcode Specifies a symbolic constant that selects a logical operation. The
following symbols are accepted: GL_CLEAR, GL_SET, GL_COPY,
GL_COPY_INVERTED, GL_NOOP, GL_INVERT, GL_AND, GL_NAND, GL_OR,
GL_NOR, GL_XOR, GL_EQUIV, GL_AND_REVERSE, GL_AND_INVERTED,
GL_OR_REVERSE, and GL_OR_INVERTED. The initial value is GL_COPY.

glLogicOp specifies a logical operation that, when enabled, is applied between the
incoming color index or RGBA color and the color index or RGBA color at the corre-
sponding location in the frame buffer. To enable or disable the logical operation, call
glEnable and glDisable using the symbolic constant GL_COLOR_LOGIC_OP for RGBA
mode or GL_INDEX_LOGIC_OP for color index mode. The initial value is disabled for
both operations.

Chapter 3: GL 308

Opcode Resulting Operation

GL_CLEAR 0

GL_SET 1

GL_COPY s

GL_COPY_INVERTED

~s

GL_NOOP d

GL_INVERT

~d

GL_AND s & d

GL_NAND ~(s & d)

GL_OR s | d

GL_NOR ~(s | d)

GL_XOR s ^ d

GL_EQUIV ~(s ^ d)

GL_AND_REVERSE

s & ~d

GL_AND_INVERTED

~s & d

GL_OR_REVERSE

s | ~d

GL_OR_INVERTED

~s | d

opcode is a symbolic constant chosen from the list above. In the explanation of the
logical operations, s represents the incoming color index and d represents the index in
the frame buffer. Standard C-language operators are used. As these bitwise operators
suggest, the logical operation is applied independently to each bit pair of the source
and destination indices or colors.

GL_INVALID_ENUM is generated if opcode is not an accepted value.

GL_INVALID_OPERATION is generated if glLogicOp is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glMap1f target u1 u2 stride order points
[Function]void glMap1d target u1 u2 stride order points

Define a one-dimensional evaluator.

target Specifies the kind of values that are generated by the evaluator. Symbolic
constants GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_4, GL_MAP1_INDEX, GL_
MAP1_COLOR_4, GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD_1, GL_MAP1_
TEXTURE_COORD_2, GL_MAP1_TEXTURE_COORD_3, and GL_MAP1_TEXTURE_

COORD_4 are accepted.

Chapter 3: GL 309

u1
u2 Specify a linear mapping of u, as presented to glEvalCoord1, to u^, the

variable that is evaluated by the equations specified by this command.

stride Specifies the number of floats or doubles between the beginning of one
control point and the beginning of the next one in the data structure ref-
erenced in points. This allows control points to be embedded in arbitrary
data structures. The only constraint is that the values for a particular
control point must occupy contiguous memory locations.

order Specifies the number of control points. Must be positive.

points Specifies a pointer to the array of control points.

Evaluators provide a way to use polynomial or rational polynomial mapping to pro-
duce vertices, normals, texture coordinates, and colors. The values produced by an
evaluator are sent to further stages of GL processing just as if they had been pre-
sented using glVertex, glNormal, glTexCoord, and glColor commands, except that
the generated values do not update the current normal, texture coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum de-
gree supported by the GL implementation) can be described using evaluators. These
include almost all splines used in computer graphics: B-splines, Bezier curves, Her-
mite splines, and so on.

Evaluators define curves based on Bernstein polynomials. Define p(u^,) as

p(u^,)=i=0nB i,^n(u^,)R i

where R i is a control point and B i,^n(u^,) is the ith Bernstein polynomial of degree
n (order = n+1):

B i,^n(u^,)=((n), (i),,)u^,^i(1-u^,)^n-i,,

Recall that

0^0==1 and ((n), (0),,)==1

glMap1 is used to define the basis and to specify what kind of values are pro-
duced. Once defined, a map can be enabled and disabled by calling glEnable and
glDisable with the map name, one of the nine predefined values for target described
below. glEvalCoord1 evaluates the one-dimensional maps that are enabled. When
glEvalCoord1 presents a value u, the Bernstein functions are evaluated using u^,
where u^=u-u1,/u2-u1,

target is a symbolic constant that indicates what kind of control points are provided
in points, and what output is generated when the map is evaluated. It can assume
one of nine predefined values:

GL_MAP1_VERTEX_3

Each control point is three floating-point values representing x, y , and z.
Internal glVertex3 commands are generated when the map is evaluated.

GL_MAP1_VERTEX_4

Each control point is four floating-point values representing x, y , z, and
w . Internal glVertex4 commands are generated when the map is evalu-
ated.

Chapter 3: GL 310

GL_MAP1_INDEX

Each control point is a single floating-point value representing a color
index. Internal glIndex commands are generated when the map is evalu-
ated but the current index is not updated with the value of these glIndex
commands.

GL_MAP1_COLOR_4

Each control point is four floating-point values representing red, green,
blue, and alpha. Internal glColor4 commands are generated when the
map is evaluated but the current color is not updated with the value of
these glColor4 commands.

GL_MAP1_NORMAL

Each control point is three floating-point values representing the x, y ,
and z components of a normal vector. Internal glNormal commands
are generated when the map is evaluated but the current normal is not
updated with the value of these glNormal commands.

GL_MAP1_TEXTURE_COORD_1

Each control point is a single floating-point value representing the s tex-
ture coordinate. Internal glTexCoord1 commands are generated when
the map is evaluated but the current texture coordinates are not updated
with the value of these glTexCoord commands.

GL_MAP1_TEXTURE_COORD_2

Each control point is two floating-point values representing the s and
t texture coordinates. Internal glTexCoord2 commands are generated
when the map is evaluated but the current texture coordinates are not
updated with the value of these glTexCoord commands.

GL_MAP1_TEXTURE_COORD_3

Each control point is three floating-point values representing the s, t, and
r texture coordinates. Internal glTexCoord3 commands are generated
when the map is evaluated but the current texture coordinates are not
updated with the value of these glTexCoord commands.

GL_MAP1_TEXTURE_COORD_4

Each control point is four floating-point values representing the s, t, r, and
q texture coordinates. Internal glTexCoord4 commands are generated
when the map is evaluated but the current texture coordinates are not
updated with the value of these glTexCoord commands.

stride, order, and points define the array addressing for accessing the control points.
points is the location of the first control point, which occupies one, two, three, or
four contiguous memory locations, depending on which map is being defined. order
is the number of control points in the array. stride specifies how many float or double
locations to advance the internal memory pointer to reach the next control point.

GL_INVALID_ENUM is generated if target is not an accepted value.

GL_INVALID_VALUE is generated if u1 is equal to u2.

GL_INVALID_VALUE is generated if stride is less than the number of values in a control
point.

Chapter 3: GL 311

GL_INVALID_VALUE is generated if order is less than 1 or greater than the return value
of GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION is generated if glMap1 is executed between the execution of
glBegin and the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if glMap1 is called and the value of GL_ACTIVE_
TEXTURE is not GL_TEXTURE0.

[Function]void glMap2f target u1 u2 ustride uorder v1 v2 vstride vorder points
[Function]void glMap2d target u1 u2 ustride uorder v1 v2 vstride vorder points

Define a two-dimensional evaluator.

target Specifies the kind of values that are generated by the evaluator. Symbolic
constants GL_MAP2_VERTEX_3, GL_MAP2_VERTEX_4, GL_MAP2_INDEX, GL_
MAP2_COLOR_4, GL_MAP2_NORMAL, GL_MAP2_TEXTURE_COORD_1, GL_MAP2_
TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, and GL_MAP2_TEXTURE_

COORD_4 are accepted.

u1
u2 Specify a linear mapping of u, as presented to glEvalCoord2, to u^, one

of the two variables that are evaluated by the equations specified by this
command. Initially, u1 is 0 and u2 is 1.

ustride Specifies the number of floats or doubles between the beginning of control
point R ij and the beginning of control point R (i+1,)j,, where i and j
are the u and v control point indices, respectively. This allows control
points to be embedded in arbitrary data structures. The only constraint
is that the values for a particular control point must occupy contiguous
memory locations. The initial value of ustride is 0.

uorder Specifies the dimension of the control point array in the u axis. Must be
positive. The initial value is 1.

v1
v2 Specify a linear mapping of v , as presented to glEvalCoord2, to v^, one

of the two variables that are evaluated by the equations specified by this
command. Initially, v1 is 0 and v2 is 1.

vstride Specifies the number of floats or doubles between the beginning of control
point R ij and the beginning of control point R i(j+1,),, where i and j
are the u and v control point indices, respectively. This allows control
points to be embedded in arbitrary data structures. The only constraint
is that the values for a particular control point must occupy contiguous
memory locations. The initial value of vstride is 0.

vorder Specifies the dimension of the control point array in the v axis. Must be
positive. The initial value is 1.

points Specifies a pointer to the array of control points.

Evaluators provide a way to use polynomial or rational polynomial mapping to pro-
duce vertices, normals, texture coordinates, and colors. The values produced by an
evaluator are sent on to further stages of GL processing just as if they had been

Chapter 3: GL 312

presented using glVertex, glNormal, glTexCoord, and glColor commands, except
that the generated values do not update the current normal, texture coordinates, or
color.

All polynomial or rational polynomial splines of any degree (up to the maximum de-
gree supported by the GL implementation) can be described using evaluators. These
include almost all surfaces used in computer graphics, including B-spline surfaces,
NURBS surfaces, Bezier surfaces, and so on.

Evaluators define surfaces based on bivariate Bernstein polynomials. Define p(u^,v^)
as

p(u^,v^)=i=0nj=0mB i,^n(u^,)B j,^m(v^,)R ij

where R ij is a control point, B i,^n(u^,) is the ith Bernstein polynomial of degree n
(uorder = n+1)

B i,^n(u^,)=((n), (i),,)u^,^i(1-u^,)^n-i,,

and B j,^m(v^,) is the jth Bernstein polynomial of degree m (vorder = m+1)

B j,^m(v^,)=((m), (j),,)v^,^j(1-v^,)^m-j,,

Recall that 0^0==1 and ((n), (0),,)==1

glMap2 is used to define the basis and to specify what kind of values are produced.
Once defined, a map can be enabled and disabled by calling glEnable and glDisable

with the map name, one of the nine predefined values for target, described below.
When glEvalCoord2 presents values u and v , the bivariate Bernstein polynomials
are evaluated using u^ and v^, where

u^=u-u1,/u2-u1,

v^=v-v1,/v2-v1,

target is a symbolic constant that indicates what kind of control points are provided
in points, and what output is generated when the map is evaluated. It can assume
one of nine predefined values:

GL_MAP2_VERTEX_3

Each control point is three floating-point values representing x, y , and z.
Internal glVertex3 commands are generated when the map is evaluated.

GL_MAP2_VERTEX_4

Each control point is four floating-point values representing x, y , z, and
w . Internal glVertex4 commands are generated when the map is evalu-
ated.

GL_MAP2_INDEX

Each control point is a single floating-point value representing a color
index. Internal glIndex commands are generated when the map is evalu-
ated but the current index is not updated with the value of these glIndex
commands.

GL_MAP2_COLOR_4

Each control point is four floating-point values representing red, green,
blue, and alpha. Internal glColor4 commands are generated when the
map is evaluated but the current color is not updated with the value of
these glColor4 commands.

Chapter 3: GL 313

GL_MAP2_NORMAL

Each control point is three floating-point values representing the x, y ,
and z components of a normal vector. Internal glNormal commands
are generated when the map is evaluated but the current normal is not
updated with the value of these glNormal commands.

GL_MAP2_TEXTURE_COORD_1

Each control point is a single floating-point value representing the s tex-
ture coordinate. Internal glTexCoord1 commands are generated when
the map is evaluated but the current texture coordinates are not updated
with the value of these glTexCoord commands.

GL_MAP2_TEXTURE_COORD_2

Each control point is two floating-point values representing the s and
t texture coordinates. Internal glTexCoord2 commands are generated
when the map is evaluated but the current texture coordinates are not
updated with the value of these glTexCoord commands.

GL_MAP2_TEXTURE_COORD_3

Each control point is three floating-point values representing the s, t, and
r texture coordinates. Internal glTexCoord3 commands are generated
when the map is evaluated but the current texture coordinates are not
updated with the value of these glTexCoord commands.

GL_MAP2_TEXTURE_COORD_4

Each control point is four floating-point values representing the s, t, r, and
q texture coordinates. Internal glTexCoord4 commands are generated
when the map is evaluated but the current texture coordinates are not
updated with the value of these glTexCoord commands.

ustride, uorder, vstride, vorder, and points define the array addressing for accessing
the control points. points is the location of the first control point, which occupies one,
two, three, or four contiguous memory locations, depending on which map is being
defined. There are uordervorder control points in the array. ustride specifies how
many float or double locations are skipped to advance the internal memory pointer
from control point R ij, to control point R (i+1,)j,. vstride specifies how many float
or double locations are skipped to advance the internal memory pointer from control
point R ij, to control point R i(j+1,),.

GL_INVALID_ENUM is generated if target is not an accepted value.

GL_INVALID_VALUE is generated if u1 is equal to u2, or if v1 is equal to v2.

GL_INVALID_VALUE is generated if either ustride or vstride is less than the number of
values in a control point.

GL_INVALID_VALUE is generated if either uorder or vorder is less than 1 or greater
than the return value of GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION is generated if glMap2 is executed between the execution of
glBegin and the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if glMap2 is called and the value of GL_ACTIVE_
TEXTURE is not GL_TEXTURE0.

Chapter 3: GL 314

[Function]void-* glMapBuffer target access
[Function]GLboolean glUnmapBuffer target

Map a buffer object’s data store.

target Specifies the target buffer object being mapped. The symbolic
constant must be GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

access Specifies the access policy, indicating whether it will be possible to read
from, write to, or both read from and write to the buffer object’s mapped
data store. The symbolic constant must be GL_READ_ONLY, GL_WRITE_
ONLY, or GL_READ_WRITE.

glMapBuffer maps to the client’s address space the entire data store of the buffer
object currently bound to target. The data can then be directly read and/or written
relative to the returned pointer, depending on the specified access policy. If the GL
is unable to map the buffer object’s data store, glMapBuffer generates an error and
returns NULL. This may occur for system-specific reasons, such as low virtual memory
availability.

If a mapped data store is accessed in a way inconsistent with the specified access
policy, no error is generated, but performance may be negatively impacted and system
errors, including program termination, may result. Unlike the usage parameter of
glBufferData, access is not a hint, and does in fact constrain the usage of the
mapped data store on some GL implementations. In order to achieve the highest
performance available, a buffer object’s data store should be used in ways consistent
with both its specified usage and access parameters.

A mapped data store must be unmapped with glUnmapBuffer before its buffer object
is used. Otherwise an error will be generated by any GL command that attempts to
dereference the buffer object’s data store. When a data store is unmapped, the pointer
to its data store becomes invalid. glUnmapBuffer returns GL_TRUE unless the data
store contents have become corrupt during the time the data store was mapped. This
can occur for system-specific reasons that affect the availability of graphics memory,
such as screen mode changes. In such situations, GL_FALSE is returned and the data
store contents are undefined. An application must detect this rare condition and
reinitialize the data store.

A buffer object’s mapped data store is automatically unmapped when the buffer
object is deleted or its data store is recreated with glBufferData.

GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER, GL_ELEMENT_

ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

GL_INVALID_ENUM is generated if access is not GL_READ_ONLY, GL_WRITE_ONLY, or
GL_READ_WRITE.

GL_OUT_OF_MEMORY is generated when glMapBuffer is executed if the GL is unable
to map the buffer object’s data store. This may occur for a variety of system-specific
reasons, such as the absence of sufficient remaining virtual memory.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to
target.

Chapter 3: GL 315

GL_INVALID_OPERATION is generated if glMapBuffer is executed for a buffer object
whose data store is already mapped.

GL_INVALID_OPERATION is generated if glUnmapBuffer is executed for a buffer object
whose data store is not currently mapped.

GL_INVALID_OPERATION is generated if glMapBuffer or glUnmapBuffer is executed
between the execution of glBegin and the corresponding execution of glEnd.

[Function]void glMapGrid1d un u1 u2
[Function]void glMapGrid1f un u1 u2
[Function]void glMapGrid2d un u1 u2 vn v1 v2
[Function]void glMapGrid2f un u1 u2 vn v1 v2

Define a one- or two-dimensional mesh.

un Specifies the number of partitions in the grid range interval [u1, u2]. Must
be positive.

u1
u2 Specify the mappings for integer grid domain values i=0 and i=un.

vn Specifies the number of partitions in the grid range interval [v1, v2]
(glMapGrid2 only).

v1
v2 Specify the mappings for integer grid domain values j=0 and j=vn

(glMapGrid2 only).

glMapGrid and glEvalMesh are used together to efficiently generate and evaluate
a series of evenly-spaced map domain values. glEvalMesh steps through the integer
domain of a one- or two-dimensional grid, whose range is the domain of the evaluation
maps specified by glMap1 and glMap2.

glMapGrid1 and glMapGrid2 specify the linear grid mappings between the i (or i
and j) integer grid coordinates, to the u (or u and v) floating-point evaluation map
coordinates. See glMap1 and glMap2 for details of how u and v coordinates are
evaluated.

glMapGrid1 specifies a single linear mapping such that integer grid coordinate 0 maps
exactly to u1, and integer grid coordinate un maps exactly to u2. All other integer
grid coordinates i are mapped so that

u=i(u2-u1,)/un+u1

glMapGrid2 specifies two such linear mappings. One maps integer grid coordinate
i=0 exactly to u1, and integer grid coordinate i=un exactly to u2. The other maps
integer grid coordinate j=0 exactly to v1, and integer grid coordinate j=vn exactly
to v2. Other integer grid coordinates i and j are mapped such that

u=i(u2-u1,)/un+u1

v=j(v2-v1,)/vn+v1

The mappings specified by glMapGrid are used identically by glEvalMesh and
glEvalPoint.

GL_INVALID_VALUE is generated if either un or vn is not positive.

GL_INVALID_OPERATION is generated if glMapGrid is executed between the execution
of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 316

[Function]void glMaterialf face pname param
[Function]void glMateriali face pname param
[Function]void glMaterialfv face pname params
[Function]void glMaterialiv face pname params

Specify material parameters for the lighting model.

face Specifies which face or faces are being updated. Must be one of GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK.

pname Specifies the single-valued material parameter of the face or faces that is
being updated. Must be GL_SHININESS.

param Specifies the value that parameter GL_SHININESS will be set to.

glMaterial assigns values to material parameters. There are two matched sets of
material parameters. One, the front-facing set, is used to shade points, lines, bitmaps,
and all polygons (when two-sided lighting is disabled), or just front-facing polygons
(when two-sided lighting is enabled). The other set, back-facing, is used to shade back-
facing polygons only when two-sided lighting is enabled. Refer to the glLightModel
reference page for details concerning one- and two-sided lighting calculations.

glMaterial takes three arguments. The first, face, specifies whether the GL_FRONT

materials, the GL_BACK materials, or both GL_FRONT_AND_BACK materials will be mod-
ified. The second, pname, specifies which of several parameters in one or both sets
will be modified. The third, params, specifies what value or values will be assigned
to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to
each vertex. The equation is discussed in the glLightModel reference page. The
parameters that can be specified using glMaterial, and their interpretations by the
lighting equation, are as follows:

GL_AMBIENT

params contains four integer or floating-point values that specify the am-
bient RGBA reflectance of the material. Integer values are mapped lin-
early such that the most positive representable value maps to 1.0, and the
most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped.
The initial ambient reflectance for both front- and back-facing materials
is (0.2, 0.2, 0.2, 1.0).

GL_DIFFUSE

params contains four integer or floating-point values that specify the dif-
fuse RGBA reflectance of the material. Integer values are mapped lin-
early such that the most positive representable value maps to 1.0, and the
most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped.
The initial diffuse reflectance for both front- and back-facing materials is
(0.8, 0.8, 0.8, 1.0).

GL_SPECULAR

params contains four integer or floating-point values that specify the spec-
ular RGBA reflectance of the material. Integer values are mapped lin-

Chapter 3: GL 317

early such that the most positive representable value maps to 1.0, and the
most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped.
The initial specular reflectance for both front- and back-facing materials
is (0, 0, 0, 1).

GL_EMISSION

params contains four integer or floating-point values that specify the
RGBA emitted light intensity of the material. Integer values are mapped
linearly such that the most positive representable value maps to 1.0, and
the most negative representable value maps to -1.0. Floating-point val-
ues are mapped directly. Neither integer nor floating-point values are
clamped. The initial emission intensity for both front- and back-facing
materials is (0, 0, 0, 1).

GL_SHININESS

params is a single integer or floating-point value that specifies the RGBA
specular exponent of the material. Integer and floating-point values are
mapped directly. Only values in the range [0,128] are accepted. The
initial specular exponent for both front- and back-facing materials is 0.

GL_AMBIENT_AND_DIFFUSE

Equivalent to calling glMaterial twice with the same parameter values,
once with GL_AMBIENT and once with GL_DIFFUSE.

GL_COLOR_INDEXES

params contains three integer or floating-point values specifying the color
indices for ambient, diffuse, and specular lighting. These three values,
and GL_SHININESS, are the only material values used by the color index
mode lighting equation. Refer to the glLightModel reference page for a
discussion of color index lighting.

GL_INVALID_ENUM is generated if either face or pname is not an accepted value.

GL_INVALID_VALUE is generated if a specular exponent outside the range [0,128] is
specified.

[Function]void glMatrixMode mode
Specify which matrix is the current matrix.

mode Specifies which matrix stack is the target for subsequent matrix opera-
tions. Three values are accepted: GL_MODELVIEW, GL_PROJECTION, and
GL_TEXTURE. The initial value is GL_MODELVIEW. Additionally, if the
ARB_imaging extension is supported, GL_COLOR is also accepted.

glMatrixMode sets the current matrix mode. mode can assume one of four values:

GL_MODELVIEW

Applies subsequent matrix operations to the modelview matrix stack.

GL_PROJECTION

Applies subsequent matrix operations to the projection matrix stack.

Chapter 3: GL 318

GL_TEXTURE

Applies subsequent matrix operations to the texture matrix stack.

GL_COLOR Applies subsequent matrix operations to the color matrix stack.

To find out which matrix stack is currently the target of all matrix operations, call
glGet with argument GL_MATRIX_MODE. The initial value is GL_MODELVIEW.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glMatrixMode is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glMinmax target internalformat sink
Define minmax table.

target The minmax table whose parameters are to be set. Must be GL_MINMAX.

internalformat
The format of entries in the minmax table. Must be one of GL_ALPHA,
GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_

ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_R3_G3_B2,
GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2,
GL_RGBA12, or GL_RGBA16.

sink If GL_TRUE, pixels will be consumed by the minmax process and no draw-
ing or texture loading will take place. If GL_FALSE, pixels will proceed to
the final conversion process after minmax.

When GL_MINMAX is enabled, the RGBA components of incoming pixels are compared
to the minimum and maximum values for each component, which are stored in the
two-element minmax table. (The first element stores the minima, and the second
element stores the maxima.) If a pixel component is greater than the corresponding
component in the maximum element, then the maximum element is updated with
the pixel component value. If a pixel component is less than the corresponding com-
ponent in the minimum element, then the minimum element is updated with the
pixel component value. (In both cases, if the internal format of the minmax table
includes luminance, then the R color component of incoming pixels is used for com-
parison.) The contents of the minmax table may be retrieved at a later time by calling
glGetMinmax. The minmax operation is enabled or disabled by calling glEnable or
glDisable, respectively, with an argument of GL_MINMAX.

glMinmax redefines the current minmax table to have entries of the format specified
by internalformat. The maximum element is initialized with the smallest possible
component values, and the minimum element is initialized with the largest possible
component values. The values in the previous minmax table, if any, are lost. If sink is
GL_TRUE, then pixels are discarded after minmax; no further processing of the pixels
takes place, and no drawing, texture loading, or pixel readback will result.

GL_INVALID_ENUM is generated if target is not one of the allowable values.

Chapter 3: GL 319

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_INVALID_OPERATION is generated if glMinmax is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glMultiDrawArrays mode first count primcount
Render multiple sets of primitives from array data.

mode Specifies what kind of primitives to render. Symbolic constants
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_

STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS,
and GL_POLYGON are accepted.

first Points to an array of starting indices in the enabled arrays.

count Points to an array of the number of indices to be rendered.

primcount Specifies the size of the first and count

glMultiDrawArrays specifies multiple sets of geometric primitives with very few sub-
routine calls. Instead of calling a GL procedure to pass each individual vertex, normal,
texture coordinate, edge flag, or color, you can prespecify separate arrays of vertices,
normals, and colors and use them to construct a sequence of primitives with a single
call to glMultiDrawArrays.

glMultiDrawArrays behaves identically to glDrawArrays except that primcount sep-
arate ranges of elements are specified instead.

When glMultiDrawArrays is called, it uses count sequential elements from each en-
abled array to construct a sequence of geometric primitives, beginning with element
first. mode specifies what kind of primitives are constructed, and how the array ele-
ments construct those primitives. If GL_VERTEX_ARRAY is not enabled, no geometric
primitives are generated.

Vertex attributes that are modified by glMultiDrawArrays have an unspecified value
after glMultiDrawArrays returns. For example, if GL_COLOR_ARRAY is enabled, the
value of the current color is undefined after glMultiDrawArrays executes. Attributes
that aren’t modified remain well defined.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if primcount is negative.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an
enabled array and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if glMultiDrawArrays is executed between the
execution of glBegin and the corresponding glEnd.

[Function]void glMultiDrawElements mode count type indices primcount
Render multiple sets of primitives by specifying indices of array data elements.

mode Specifies what kind of primitives to render. Symbolic constants
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_

STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS,
and GL_POLYGON are accepted.

count Points to an array of the elements counts.

Chapter 3: GL 320

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_
BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

primcount Specifies the size of the count array.

glMultiDrawElements specifies multiple sets of geometric primitives with very few
subroutine calls. Instead of calling a GL function to pass each individual vertex,
normal, texture coordinate, edge flag, or color, you can prespecify separate arrays of
vertices, normals, and so on, and use them to construct a sequence of primitives with
a single call to glMultiDrawElements.

glMultiDrawElements is identical in operation to glDrawElements except that prim-
count separate lists of elements are specified.

Vertex attributes that are modified by glMultiDrawElements have an unspecified
value after glMultiDrawElements returns. For example, if GL_COLOR_ARRAY is en-
abled, the value of the current color is undefined after glMultiDrawElements exe-
cutes. Attributes that aren’t modified maintain their previous values.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if primcount is negative.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
an enabled array or the element array and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if glMultiDrawElements is executed between
the execution of glBegin and the corresponding glEnd.

[Function]void glMultiTexCoord1s target s
[Function]void glMultiTexCoord1i target s
[Function]void glMultiTexCoord1f target s
[Function]void glMultiTexCoord1d target s
[Function]void glMultiTexCoord2s target s t
[Function]void glMultiTexCoord2i target s t
[Function]void glMultiTexCoord2f target s t
[Function]void glMultiTexCoord2d target s t
[Function]void glMultiTexCoord3s target s t r
[Function]void glMultiTexCoord3i target s t r
[Function]void glMultiTexCoord3f target s t r
[Function]void glMultiTexCoord3d target s t r
[Function]void glMultiTexCoord4s target s t r q
[Function]void glMultiTexCoord4i target s t r q
[Function]void glMultiTexCoord4f target s t r q
[Function]void glMultiTexCoord4d target s t r q
[Function]void glMultiTexCoord1sv target v
[Function]void glMultiTexCoord1iv target v
[Function]void glMultiTexCoord1fv target v
[Function]void glMultiTexCoord1dv target v
[Function]void glMultiTexCoord2sv target v
[Function]void glMultiTexCoord2iv target v

Chapter 3: GL 321

[Function]void glMultiTexCoord2fv target v
[Function]void glMultiTexCoord2dv target v
[Function]void glMultiTexCoord3sv target v
[Function]void glMultiTexCoord3iv target v
[Function]void glMultiTexCoord3fv target v
[Function]void glMultiTexCoord3dv target v
[Function]void glMultiTexCoord4sv target v
[Function]void glMultiTexCoord4iv target v
[Function]void glMultiTexCoord4fv target v
[Function]void glMultiTexCoord4dv target v

Set the current texture coordinates.

target Specifies the texture unit whose coordinates should be modified. The
number of texture units is implementation dependent, but must be at
least two. Symbolic constant must be one of GL_TEXTUREi, where i ranges
from 0 to GL_MAX_TEXTURE_COORDS - 1, which is an implementation-
dependent value.

s
t
r
q Specify s, t, r, and q texture coordinates for target texture unit. Not all

parameters are present in all forms of the command.

glMultiTexCoord specifies texture coordinates in one, two, three, or four dimen-
sions. glMultiTexCoord1 sets the current texture coordinates to (s,001); a call to
glMultiTexCoord2 sets them to (s,t01). Similarly, glMultiTexCoord3 specifies the
texture coordinates as (s,tr1), and glMultiTexCoord4 defines all four components
explicitly as (s,trq).

The current texture coordinates are part of the data that is associated with each vertex
and with the current raster position. Initially, the values for (s,trq) are (0,001).

[Function]void glMultMatrixd m
[Function]void glMultMatrixf m

Multiply the current matrix with the specified matrix.

m Points to 16 consecutive values that are used as the elements of a 44
column-major matrix.

glMultMatrix multiplies the current matrix with the one specified using m, and
replaces the current matrix with the product.

The current matrix is determined by the current matrix mode (see glMatrixMode).
It is either the projection matrix, modelview matrix, or the texture matrix.

GL_INVALID_OPERATION is generated if glMultMatrix is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glMultTransposeMatrixd m
[Function]void glMultTransposeMatrixf m

Multiply the current matrix with the specified row-major ordered matrix.

Chapter 3: GL 322

m Points to 16 consecutive values that are used as the elements of a 44
row-major matrix.

glMultTransposeMatrix multiplies the current matrix with the one specified using
m, and replaces the current matrix with the product.

The current matrix is determined by the current matrix mode (see glMatrixMode).
It is either the projection matrix, modelview matrix, or the texture matrix.

GL_INVALID_OPERATION is generated if glMultTransposeMatrix is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glNewList list mode
[Function]void glEndList

Create or replace a display list.

list Specifies the display-list name.

mode Specifies the compilation mode, which can be GL_COMPILE or
GL_COMPILE_AND_EXECUTE.

Display lists are groups of GL commands that have been stored for subsequent execu-
tion. Display lists are created with glNewList. All subsequent commands are placed
in the display list, in the order issued, until glEndList is called.

glNewList has two arguments. The first argument, list, is a positive integer that
becomes the unique name for the display list. Names can be created and reserved
with glGenLists and tested for uniqueness with glIsList. The second argument,
mode, is a symbolic constant that can assume one of two values:

GL_COMPILE

Commands are merely compiled.

GL_COMPILE_AND_EXECUTE

Commands are executed as they are compiled into the display list.

Certain commands are not compiled into the display list but are executed immediately,
regardless of the display-list mode. These commands are glAreTexturesResident,
glColorPointer, glDeleteLists, glDeleteTextures, glDisableClientState,
glEdgeFlagPointer, glEnableClientState, glFeedbackBuffer, glFinish,
glFlush, glGenLists, glGenTextures, glIndexPointer, glInterleavedArrays,
glIsEnabled, glIsList, glIsTexture, glNormalPointer, glPopClientAttrib,
glPixelStore, glPushClientAttrib, glReadPixels, glRenderMode,
glSelectBuffer, glTexCoordPointer, glVertexPointer, and all of the glGet

commands.

Similarly, glTexImage1D, glTexImage2D, and glTexImage3D are executed immedi-
ately and not compiled into the display list when their first argument is GL_PROXY_
TEXTURE_1D, GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_3D, respectively.

When the ARB_imaging extension is supported, glHistogram executes immediately
when its argument is GL_PROXY_HISTOGRAM. Similarly, glColorTable executes
immediately when its first argument is GL_PROXY_COLOR_TABLE, GL_PROXY_POST_

CONVOLUTION_COLOR_TABLE, or GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE.

Chapter 3: GL 323

For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is
supported, glClientActiveTexture is not compiled into display lists, but executed
immediately.

When glEndList is encountered, the display-list definition is completed by associating
the list with the unique name list (specified in the glNewList command). If a display
list with name list already exists, it is replaced only when glEndList is called.

GL_INVALID_VALUE is generated if list is 0.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glEndList is called without a preceding
glNewList, or if glNewList is called while a display list is being defined.

GL_INVALID_OPERATION is generated if glNewList or glEndList is executed between
the execution of glBegin and the corresponding execution of glEnd.

GL_OUT_OF_MEMORY is generated if there is insufficient memory to compile the display
list. If the GL version is 1.1 or greater, no change is made to the previous contents
of the display list, if any, and no other change is made to the GL state. (It is as if no
attempt had been made to create the new display list.)

[Function]void glNormalPointer type stride pointer
Define an array of normals.

type Specifies the data type of each coordinate in the array. Symbolic constants
GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE are accepted.
The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive normals. If stride is 0, the
normals are understood to be tightly packed in the array. The initial
value is 0.

pointer Specifies a pointer to the first coordinate of the first normal in the array.
The initial value is 0.

glNormalPointer specifies the location and data format of an array of normals to use
when rendering. type specifies the data type of each normal coordinate, and stride
specifies the byte stride from one normal to the next, allowing vertices and attributes
to be packed into a single array or stored in separate arrays. (Single-array storage
may be more efficient on some implementations; see glInterleavedArrays.)

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target
(see glBindBuffer) while a normal array is specified, pointer is treated as a
byte offset into the buffer object’s data store. Also, the buffer object binding
(GL_ARRAY_BUFFER_BINDING) is saved as normal vertex array client-side state
(GL_NORMAL_ARRAY_BUFFER_BINDING).

When a normal array is specified, type, stride, and pointer are saved as client-side
state, in addition to the current vertex array buffer object binding.

To enable and disable the normal array, call glEnableClientState and
glDisableClientState with the argument GL_NORMAL_ARRAY. If enabled, the
normal array is used when glDrawArrays, glMultiDrawArrays, glDrawElements,
glMultiDrawElements, glDrawRangeElements, or glArrayElement is called.

Chapter 3: GL 324

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

[Function]void glNormal3b nx ny nz
[Function]void glNormal3d nx ny nz
[Function]void glNormal3f nx ny nz
[Function]void glNormal3i nx ny nz
[Function]void glNormal3s nx ny nz
[Function]void glNormal3bv v
[Function]void glNormal3dv v
[Function]void glNormal3fv v
[Function]void glNormal3iv v
[Function]void glNormal3sv v

Set the current normal vector.

nx
ny
nz Specify the x, y , and z coordinates of the new current normal. The initial

value of the current normal is the unit vector, (0, 0, 1).

The current normal is set to the given coordinates whenever glNormal is issued.
Byte, short, or integer arguments are converted to floating-point format with a linear
mapping that maps the most positive representable integer value to 1.0 and the most
negative representable integer value to -1.0.

Normals specified with glNormal need not have unit length. If GL_NORMALIZE is en-
abled, then normals of any length specified with glNormal are normalized after trans-
formation. If GL_RESCALE_NORMAL is enabled, normals are scaled by a scaling factor
derived from the modelview matrix. GL_RESCALE_NORMAL requires that the originally
specified normals were of unit length, and that the modelview matrix contain only
uniform scales for proper results. To enable and disable normalization, call glEnable
and glDisable with either GL_NORMALIZE or GL_RESCALE_NORMAL. Normalization is
initially disabled.

[Function]void glOrtho left right bottom top nearVal farVal
Multiply the current matrix with an orthographic matrix.

left
right Specify the coordinates for the left and right vertical clipping planes.

bottom
top Specify the coordinates for the bottom and top horizontal clipping planes.

nearVal
farVal Specify the distances to the nearer and farther depth clipping planes.

These values are negative if the plane is to be behind the viewer.

glOrtho describes a transformation that produces a parallel projection. The cur-
rent matrix (see glMatrixMode) is multiplied by this matrix and the result replaces
the current matrix, as if glMultMatrix were called with the following matrix as its
argument:

Chapter 3: GL 325

((2/right-left,, 0 0 t x,), (0 2/top-bottom,, 0 t y,), (0 0 -2/farVal-nearVal,, t z,), (0 0
0 1),)

where t x=-right+left,/right-left,,t y=-top+bottom,/top-bottom,,t z=-
farVal+nearVal,/farVal-nearVal,,

Typically, the matrix mode is GL_PROJECTION, and (left,bottom-nearVal) and
(right,top-nearVal) specify the points on the near clipping plane that are mapped
to the lower left and upper right corners of the window, respectively, assuming that
the eye is located at (0, 0, 0). -farVal specifies the location of the far clipping plane.
Both nearVal and farVal can be either positive or negative.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

GL_INVALID_VALUE is generated if left = right, or bottom = top, or near = far.

GL_INVALID_OPERATION is generated if glOrtho is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glPassThrough token
Place a marker in the feedback buffer.

token Specifies a marker value to be placed in the feedback buffer following a
GL_PASS_THROUGH_TOKEN.

Feedback is a GL render mode. The mode is selected by calling glRenderMode with
GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by rasteri-
zation. Instead, information about primitives that would have been rasterized is fed
back to the application using the GL. See the glFeedbackBuffer reference page for
a description of the feedback buffer and the values in it.

glPassThrough inserts a user-defined marker in the feedback buffer when it is ex-
ecuted in feedback mode. token is returned as if it were a primitive; it is indi-
cated with its own unique identifying value: GL_PASS_THROUGH_TOKEN. The order of
glPassThrough commands with respect to the specification of graphics primitives is
maintained.

GL_INVALID_OPERATION is generated if glPassThrough is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glPixelMapfv map mapsize values
[Function]void glPixelMapuiv map mapsize values
[Function]void glPixelMapusv map mapsize values

Set up pixel transfer maps.

map Specifies a symbolic map name. Must be one of the following: GL_

PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S, GL_PIXEL_MAP_I_TO_R, GL_
PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A, GL_
PIXEL_MAP_R_TO_R, GL_PIXEL_MAP_G_TO_G, GL_PIXEL_MAP_B_TO_B, or
GL_PIXEL_MAP_A_TO_A.

mapsize Specifies the size of the map being defined.

values Specifies an array of mapsize values.

Chapter 3: GL 326

glPixelMap sets up translation tables, or maps, used by glCopyPixels,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, glDrawPixels, glReadPixels, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, and
glTexSubImage3D. Additionally, if the ARB_imaging subset is supported,
the routines glColorTable, glColorSubTable, glConvolutionFilter1D,
glConvolutionFilter2D, glHistogram, glMinmax, and glSeparableFilter2D. Use
of these maps is described completely in the glPixelTransfer reference page, and
partly in the reference pages for the pixel and texture image commands. Only the
specification of the maps is described in this reference page.

map is a symbolic map name, indicating one of ten maps to set. mapsize specifies
the number of entries in the map, and values is a pointer to an array of mapsize map
values.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a pixel transfer map is specified, values is treated as a byte
offset into the buffer object’s data store.

The ten maps are as follows:

GL_PIXEL_MAP_I_TO_I

Maps color indices to color indices.

GL_PIXEL_MAP_S_TO_S

Maps stencil indices to stencil indices.

GL_PIXEL_MAP_I_TO_R

Maps color indices to red components.

GL_PIXEL_MAP_I_TO_G

Maps color indices to green components.

GL_PIXEL_MAP_I_TO_B

Maps color indices to blue components.

GL_PIXEL_MAP_I_TO_A

Maps color indices to alpha components.

GL_PIXEL_MAP_R_TO_R

Maps red components to red components.

GL_PIXEL_MAP_G_TO_G

Maps green components to green components.

GL_PIXEL_MAP_B_TO_B

Maps blue components to blue components.

GL_PIXEL_MAP_A_TO_A

Maps alpha components to alpha components.

The entries in a map can be specified as single-precision floating-point numbers, un-
signed short integers, or unsigned int integers. Maps that store color component val-
ues (all but GL_PIXEL_MAP_I_TO_I and GL_PIXEL_MAP_S_TO_S) retain their values in
floating-point format, with unspecified mantissa and exponent sizes. Floating-point

Chapter 3: GL 327

values specified by glPixelMapfv are converted directly to the internal floating-point
format of these maps, then clamped to the range [0,1]. Unsigned integer values spec-
ified by glPixelMapusv and glPixelMapuiv are converted linearly such that the
largest representable integer maps to 1.0, and 0 maps to 0.0.

Maps that store indices, GL_PIXEL_MAP_I_TO_I and GL_PIXEL_MAP_S_TO_S, retain
their values in fixed-point format, with an unspecified number of bits to the right
of the binary point. Floating-point values specified by glPixelMapfv are converted
directly to the internal fixed-point format of these maps. Unsigned integer values
specified by glPixelMapusv and glPixelMapuiv specify integer values, with all 0’s
to the right of the binary point.

The following table shows the initial sizes and values for each of the maps. Maps that
are indexed by either color or stencil indices must have mapsize = 2^n for some n
or the results are undefined. The maximum allowable size for each map depends on
the implementation and can be determined by calling glGet with argument GL_MAX_
PIXEL_MAP_TABLE. The single maximum applies to all maps; it is at least 32.

map Lookup Index, Lookup Value, Initial Size, Initial Value

GL_PIXEL_MAP_I_TO_I

color index , color index , 1 , 0

GL_PIXEL_MAP_S_TO_S

stencil index , stencil index , 1 , 0

GL_PIXEL_MAP_I_TO_R

color index , R , 1 , 0

GL_PIXEL_MAP_I_TO_G

color index , G , 1 , 0

GL_PIXEL_MAP_I_TO_B

color index , B , 1 , 0

GL_PIXEL_MAP_I_TO_A

color index , A , 1 , 0

GL_PIXEL_MAP_R_TO_R

R , R , 1 , 0

GL_PIXEL_MAP_G_TO_G

G , G , 1 , 0

GL_PIXEL_MAP_B_TO_B

B , B , 1 , 0

GL_PIXEL_MAP_A_TO_A

A , A , 1 , 0

GL_INVALID_ENUM is generated if map is not an accepted value.

GL_INVALID_VALUE is generated if mapsize is less than one or larger than GL_MAX_

PIXEL_MAP_TABLE.

GL_INVALID_VALUE is generated if map is GL_PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_

S_TO_S, GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, or
GL_PIXEL_MAP_I_TO_A, and mapsize is not a power of two.

Chapter 3: GL 328

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated by glPixelMapfv if a non-zero buffer object
name is bound to the GL_PIXEL_UNPACK_BUFFER target and values is not evenly di-
visible into the number of bytes needed to store in memory a GLfloat datum.

GL_INVALID_OPERATION is generated by glPixelMapuiv if a non-zero buffer object
name is bound to the GL_PIXEL_UNPACK_BUFFER target and values is not evenly di-
visible into the number of bytes needed to store in memory a GLuint datum.

GL_INVALID_OPERATION is generated by glPixelMapusv if a non-zero buffer object
name is bound to the GL_PIXEL_UNPACK_BUFFER target and values is not evenly di-
visible into the number of bytes needed to store in memory a GLushort datum.

GL_INVALID_OPERATION is generated if glPixelMap is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glPixelStoref pname param
[Function]void glPixelStorei pname param

Set pixel storage modes.

pname Specifies the symbolic name of the parameter to be set. Six values
affect the packing of pixel data into memory: GL_PACK_SWAP_BYTES,
GL_PACK_LSB_FIRST, GL_PACK_ROW_LENGTH, GL_PACK_IMAGE_HEIGHT,
GL_PACK_SKIP_PIXELS, GL_PACK_SKIP_ROWS, GL_PACK_SKIP_IMAGES,
and GL_PACK_ALIGNMENT. Six more affect the unpacking of pixel
data from memory: GL_UNPACK_SWAP_BYTES, GL_UNPACK_LSB_FIRST,
GL_UNPACK_ROW_LENGTH, GL_UNPACK_IMAGE_HEIGHT, GL_UNPACK_

SKIP_PIXELS, GL_UNPACK_SKIP_ROWS, GL_UNPACK_SKIP_IMAGES, and
GL_UNPACK_ALIGNMENT.

param Specifies the value that pname is set to.

glPixelStore sets pixel storage modes that affect the operation of subse-
quent glDrawPixels and glReadPixels as well as the unpacking of polygon
stipple patterns (see glPolygonStipple), bitmaps (see glBitmap), texture
patterns (see glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D). Additionally, if the ARB_imaging

extension is supported, pixel storage modes affect convolution filters (see
glConvolutionFilter1D, glConvolutionFilter2D, and glSeparableFilter2D,
color table (see glColorTable, and glColorSubTable, and unpacking histogram
(See glHistogram), and minmax (See glMinmax) data.

pname is a symbolic constant indicating the parameter to be set, and param is the
new value. Six of the twelve storage parameters affect how pixel data is returned to
client memory. They are as follows:

Chapter 3: GL 329

GL_PACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components,
color indices, or stencil indices is reversed. That is, if a four-byte compo-
nent consists of bytes b 0, b 1, b 2, b 3, it is stored in memory as b 3,
b 2, b 1, b 0 if GL_PACK_SWAP_BYTES is true. GL_PACK_SWAP_BYTES has
no effect on the memory order of components within a pixel, only on the
order of bytes within components or indices. For example, the three com-
ponents of a GL_RGB format pixel are always stored with red first, green
second, and blue third, regardless of the value of GL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST

If true, bits are ordered within a byte from least significant to most sig-
nificant; otherwise, the first bit in each byte is the most significant one.
This parameter is significant for bitmap data only.

GL_PACK_ROW_LENGTH

If greater than 0, GL_PACK_ROW_LENGTH defines the number of pixels in a
row. If the first pixel of a row is placed at location p in memory, then
the location of the first pixel of the next row is obtained by skipping

k={(nl), (a/s,snl,/a,)(s>=a), (s<a),

components or indices, where n is the number of components or indices
in a pixel, l is the number of pixels in a row (GL_PACK_ROW_LENGTH if it
is greater than 0, the width argument to the pixel routine otherwise), a
is the value of GL_PACK_ALIGNMENT, and s is the size, in bytes, of a single
component (if a<s, then it is as if a=s). In the case of 1-bit values, the
location of the next row is obtained by skipping

k=8anl,/8a,,

components or indices.

The word component in this description refers to the nonindex values red,
green, blue, alpha, and depth. Storage format GL_RGB, for example, has
three components per pixel: first red, then green, and finally blue.

GL_PACK_IMAGE_HEIGHT

If greater than 0, GL_PACK_IMAGE_HEIGHT defines the number of pixels in
an image three-dimensional texture volume, where “image” is defined by
all pixels sharing the same third dimension index. If the first pixel of a
row is placed at location p in memory, then the location of the first pixel
of the next row is obtained by skipping

k={(nlh), (a/s,snlh,/a,)(s>=a), (s<a),

components or indices, where n is the number of components or indices
in a pixel, l is the number of pixels in a row (GL_PACK_ROW_LENGTH if it is
greater than 0, the width argument to glTexImage3D otherwise), h is the
number of rows in a pixel image (GL_PACK_IMAGE_HEIGHT if it is greater
than 0, the height argument to the glTexImage3D routine otherwise), a
is the value of GL_PACK_ALIGNMENT, and s is the size, in bytes, of a single
component (if a<s, then it is as if a=s).

Chapter 3: GL 330

The word component in this description refers to the nonindex values red,
green, blue, alpha, and depth. Storage format GL_RGB, for example, has
three components per pixel: first red, then green, and finally blue.

GL_PACK_SKIP_PIXELS, GL_PACK_SKIP_ROWS, and GL_PACK_SKIP_IMAGES

These values are provided as a convenience to the programmer; they pro-
vide no functionality that cannot be duplicated simply by incrementing
the pointer passed to glReadPixels. Setting GL_PACK_SKIP_PIXELS to
i is equivalent to incrementing the pointer by in components or indices,
where n is the number of components or indices in each pixel. Setting
GL_PACK_SKIP_ROWS to j is equivalent to incrementing the pointer by jm
components or indices, where m is the number of components or indices
per row, as just computed in the GL_PACK_ROW_LENGTH section. Setting
GL_PACK_SKIP_IMAGES to k is equivalent to incrementing the pointer by
kp, where p is the number of components or indices per image, as com-
puted in the GL_PACK_IMAGE_HEIGHT section.

GL_PACK_ALIGNMENT

Specifies the alignment requirements for the start of each pixel row in
memory. The allowable values are 1 (byte-alignment), 2 (rows aligned to
even-numbered bytes), 4 (word-alignment), and 8 (rows start on double-
word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from
client memory. These values are significant for glDrawPixels, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D,
glTexSubImage3D, glBitmap, and glPolygonStipple.

Additionally, if the ARB_imaging extension is supported, glColorTable,
glColorSubTable, glConvolutionFilter1D, glConvolutionFilter2D, and
glSeparableFilter2D. They are as follows:

GL_UNPACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components,
color indices, or stencil indices is reversed. That is, if a four-byte compo-
nent consists of bytes b 0, b 1, b 2, b 3, it is taken from memory as b 3,
b 2, b 1, b 0 if GL_UNPACK_SWAP_BYTES is true. GL_UNPACK_SWAP_BYTES
has no effect on the memory order of components within a pixel, only on
the order of bytes within components or indices. For example, the three
components of a GL_RGB format pixel are always stored with red first,
green second, and blue third, regardless of the value of GL_UNPACK_SWAP_
BYTES.

GL_UNPACK_LSB_FIRST

If true, bits are ordered within a byte from least significant to most sig-
nificant; otherwise, the first bit in each byte is the most significant one.
This is relevant only for bitmap data.

GL_UNPACK_ROW_LENGTH

If greater than 0, GL_UNPACK_ROW_LENGTH defines the number of pixels in
a row. If the first pixel of a row is placed at location p in memory, then
the location of the first pixel of the next row is obtained by skipping

Chapter 3: GL 331

k={(nl), (a/s,snl,/a,)(s>=a), (s<a),

components or indices, where n is the number of components or indices
in a pixel, l is the number of pixels in a row (GL_UNPACK_ROW_LENGTH if
it is greater than 0, the width argument to the pixel routine otherwise),
a is the value of GL_UNPACK_ALIGNMENT, and s is the size, in bytes, of a
single component (if a<s, then it is as if a=s). In the case of 1-bit values,
the location of the next row is obtained by skipping

k=8anl,/8a,,

components or indices.

The word component in this description refers to the nonindex values red,
green, blue, alpha, and depth. Storage format GL_RGB, for example, has
three components per pixel: first red, then green, and finally blue.

GL_UNPACK_IMAGE_HEIGHT

If greater than 0, GL_UNPACK_IMAGE_HEIGHT defines the number of pixels
in an image of a three-dimensional texture volume. Where “image” is
defined by all pixel sharing the same third dimension index. If the first
pixel of a row is placed at location p in memory, then the location of the
first pixel of the next row is obtained by skipping

k={(nlh), (a/s,snlh,/a,)(s>=a), (s<a),

components or indices, where n is the number of components or indices
in a pixel, l is the number of pixels in a row (GL_UNPACK_ROW_LENGTH
if it is greater than 0, the width argument to glTexImage3D otherwise),
h is the number of rows in an image (GL_UNPACK_IMAGE_HEIGHT if it is
greater than 0, the height argument to glTexImage3D otherwise), a is
the value of GL_UNPACK_ALIGNMENT, and s is the size, in bytes, of a single
component (if a<s, then it is as if a=s).

The word component in this description refers to the nonindex values red,
green, blue, alpha, and depth. Storage format GL_RGB, for example, has
three components per pixel: first red, then green, and finally blue.

GL_UNPACK_SKIP_PIXELS and GL_UNPACK_SKIP_ROWS

These values are provided as a convenience to the programmer; they
provide no functionality that cannot be duplicated by incrementing
the pointer passed to glDrawPixels, glTexImage1D, glTexImage2D,
glTexSubImage1D, glTexSubImage2D, glBitmap, or glPolygonStipple.
Setting GL_UNPACK_SKIP_PIXELS to i is equivalent to incrementing
the pointer by in components or indices, where n is the number of
components or indices in each pixel. Setting GL_UNPACK_SKIP_ROWS

to j is equivalent to incrementing the pointer by jk components or
indices, where k is the number of components or indices per row, as just
computed in the GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT

Specifies the alignment requirements for the start of each pixel row in
memory. The allowable values are 1 (byte-alignment), 2 (rows aligned to
even-numbered bytes), 4 (word-alignment), and 8 (rows start on double-
word boundaries).

Chapter 3: GL 332

The following table gives the type, initial value, and range of valid values for each
storage parameter that can be set with glPixelStore.

pname Type, Initial Value, Valid Range

GL_PACK_SWAP_BYTES

boolean , false , true or false

GL_PACK_LSB_FIRST

boolean , false , true or false

GL_PACK_ROW_LENGTH

integer , 0 , [0,)

GL_PACK_IMAGE_HEIGHT

integer , 0 , [0,)

GL_PACK_SKIP_ROWS

integer , 0 , [0,)

GL_PACK_SKIP_PIXELS

integer , 0 , [0,)

GL_PACK_SKIP_IMAGES

integer , 0 , [0,)

GL_PACK_ALIGNMENT

integer , 4 , 1, 2, 4, or 8

GL_UNPACK_SWAP_BYTES

boolean , false , true or false

GL_UNPACK_LSB_FIRST

boolean , false , true or false

GL_UNPACK_ROW_LENGTH

integer , 0 , [0,)

GL_UNPACK_IMAGE_HEIGHT

integer , 0 , [0,)

GL_UNPACK_SKIP_ROWS

integer , 0 , [0,)

GL_UNPACK_SKIP_PIXELS

integer , 0 , [0,)

GL_UNPACK_SKIP_IMAGES

integer , 0 , [0,)

GL_UNPACK_ALIGNMENT

integer , 4 , 1, 2, 4, or 8

glPixelStoref can be used to set any pixel store parameter. If the parameter type
is boolean, then if param is 0, the parameter is false; otherwise it is set to true. If
pname is a integer type parameter, param is rounded to the nearest integer.

Chapter 3: GL 333

Likewise, glPixelStorei can also be used to set any of the pixel store parameters.
Boolean parameters are set to false if param is 0 and true otherwise.

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_VALUE is generated if a negative row length, pixel skip, or row skip value
is specified, or if alignment is specified as other than 1, 2, 4, or 8.

GL_INVALID_OPERATION is generated if glPixelStore is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glPixelTransferf pname param
[Function]void glPixelTransferi pname param

Set pixel transfer modes.

pname Specifies the symbolic name of the pixel transfer parameter to be
set. Must be one of the following: GL_MAP_COLOR, GL_MAP_STENCIL,
GL_INDEX_SHIFT, GL_INDEX_OFFSET, GL_RED_SCALE, GL_RED_BIAS,
GL_GREEN_SCALE, GL_GREEN_BIAS, GL_BLUE_SCALE, GL_BLUE_BIAS,
GL_ALPHA_SCALE, GL_ALPHA_BIAS, GL_DEPTH_SCALE, or GL_DEPTH_BIAS.

Additionally, if the ARB_imaging extension is supported, the following
symbolic names are accepted: GL_POST_COLOR_MATRIX_RED_SCALE,
GL_POST_COLOR_MATRIX_GREEN_SCALE, GL_POST_COLOR_MATRIX_

BLUE_SCALE, GL_POST_COLOR_MATRIX_ALPHA_SCALE, GL_POST_

COLOR_MATRIX_RED_BIAS, GL_POST_COLOR_MATRIX_GREEN_BIAS,
GL_POST_COLOR_MATRIX_BLUE_BIAS, GL_POST_COLOR_MATRIX_ALPHA_

BIAS, GL_POST_CONVOLUTION_RED_SCALE, GL_POST_CONVOLUTION_

GREEN_SCALE, GL_POST_CONVOLUTION_BLUE_SCALE, GL_POST_

CONVOLUTION_ALPHA_SCALE, GL_POST_CONVOLUTION_RED_BIAS,
GL_POST_CONVOLUTION_GREEN_BIAS, GL_POST_CONVOLUTION_BLUE_

BIAS, and GL_POST_CONVOLUTION_ALPHA_BIAS.

param Specifies the value that pname is set to.

glPixelTransfer sets pixel transfer modes that affect the operation
of subsequent glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D,
glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, and glTexSubImage3D commands.
Additionally, if the ARB_imaging subset is supported, the routines glColorTable,
glColorSubTable, glConvolutionFilter1D, glConvolutionFilter2D,
glHistogram, glMinmax, and glSeparableFilter2D are also affected. The
algorithms that are specified by pixel transfer modes operate on pixels after they are
read from the frame buffer (glCopyPixelsglCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, and
glReadPixels), or unpacked from client memory (glDrawPixels, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, and
glTexSubImage3D). Pixel transfer operations happen in the same order, and in the
same manner, regardless of the command that resulted in the pixel operation. Pixel
storage modes (see glPixelStore) control the unpacking of pixels being read from
client memory and the packing of pixels being written back into client memory.

Chapter 3: GL 334

Pixel transfer operations handle four fundamental pixel types: color, color index,
depth, and stencil. Color pixels consist of four floating-point values with unspecified
mantissa and exponent sizes, scaled such that 0 represents zero intensity and 1 repre-
sents full intensity. Color indices comprise a single fixed-point value, with unspecified
precision to the right of the binary point. Depth pixels comprise a single floating-point
value, with unspecified mantissa and exponent sizes, scaled such that 0.0 represents
the minimum depth buffer value, and 1.0 represents the maximum depth buffer value.
Finally, stencil pixels comprise a single fixed-point value, with unspecified precision
to the right of the binary point.

The pixel transfer operations performed on the four basic pixel types are as follows:

Color Each of the four color components is multiplied by a scale factor, then
added to a bias factor. That is, the red component is multiplied by GL_

RED_SCALE, then added to GL_RED_BIAS; the green component is multi-
plied by GL_GREEN_SCALE, then added to GL_GREEN_BIAS; the blue com-
ponent is multiplied by GL_BLUE_SCALE, then added to GL_BLUE_BIAS;
and the alpha component is multiplied by GL_ALPHA_SCALE, then added
to GL_ALPHA_BIAS. After all four color components are scaled and biased,
each is clamped to the range [0,1]. All color, scale, and bias values are
specified with glPixelTransfer.

If GL_MAP_COLOR is true, each color component is scaled by the size of
the corresponding color-to-color map, then replaced by the contents of
that map indexed by the scaled component. That is, the red compo-
nent is scaled by GL_PIXEL_MAP_R_TO_R_SIZE, then replaced by the con-
tents of GL_PIXEL_MAP_R_TO_R indexed by itself. The green component is
scaled by GL_PIXEL_MAP_G_TO_G_SIZE, then replaced by the contents of
GL_PIXEL_MAP_G_TO_G indexed by itself. The blue component is scaled
by GL_PIXEL_MAP_B_TO_B_SIZE, then replaced by the contents of GL_
PIXEL_MAP_B_TO_B indexed by itself. And the alpha component is scaled
by GL_PIXEL_MAP_A_TO_A_SIZE, then replaced by the contents of GL_
PIXEL_MAP_A_TO_A indexed by itself. All components taken from the
maps are then clamped to the range [0,1]. GL_MAP_COLOR is specified
with glPixelTransfer. The contents of the various maps are specified
with glPixelMap.

If the ARB_imaging extension is supported, each of the four color
components may be scaled and biased after transformation by the color
matrix. That is, the red component is multiplied by GL_POST_COLOR_

MATRIX_RED_SCALE, then added to GL_POST_COLOR_MATRIX_RED_BIAS;
the green component is multiplied by GL_POST_COLOR_MATRIX_GREEN_

SCALE, then added to GL_POST_COLOR_MATRIX_GREEN_BIAS; the blue
component is multiplied by GL_POST_COLOR_MATRIX_BLUE_SCALE, then
added to GL_POST_COLOR_MATRIX_BLUE_BIAS; and the alpha component
is multiplied by GL_POST_COLOR_MATRIX_ALPHA_SCALE, then added to
GL_POST_COLOR_MATRIX_ALPHA_BIAS. After all four color components
are scaled and biased, each is clamped to the range [0,1].

Similarly, if the ARB_imaging extension is supported, each of the
four color components may be scaled and biased after processing

Chapter 3: GL 335

by the enabled convolution filter. That is, the red component
is multiplied by GL_POST_CONVOLUTION_RED_SCALE, then added
to GL_POST_CONVOLUTION_RED_BIAS; the green component is
multiplied by GL_POST_CONVOLUTION_GREEN_SCALE, then added
to GL_POST_CONVOLUTION_GREEN_BIAS; the blue component is
multiplied by GL_POST_CONVOLUTION_BLUE_SCALE, then added to
GL_POST_CONVOLUTION_BLUE_BIAS; and the alpha component is
multiplied by GL_POST_CONVOLUTION_ALPHA_SCALE, then added to
GL_POST_CONVOLUTION_ALPHA_BIAS. After all four color components
are scaled and biased, each is clamped to the range [0,1].

Color index
Each color index is shifted left by GL_INDEX_SHIFT bits; any bits beyond
the number of fraction bits carried by the fixed-point index are filled with
zeros. If GL_INDEX_SHIFT is negative, the shift is to the right, again zero
filled. Then GL_INDEX_OFFSET is added to the index. GL_INDEX_SHIFT

and GL_INDEX_OFFSET are specified with glPixelTransfer.

From this point, operation diverges depending on the required format
of the resulting pixels. If the resulting pixels are to be written to a
color index buffer, or if they are being read back to client memory in
GL_COLOR_INDEX format, the pixels continue to be treated as indices. If
GL_MAP_COLOR is true, each index is masked by 2^n-1, where n is GL_

PIXEL_MAP_I_TO_I_SIZE, then replaced by the contents of GL_PIXEL_
MAP_I_TO_I indexed by the masked value. GL_MAP_COLOR is specified
with glPixelTransfer. The contents of the index map is specified with
glPixelMap.

If the resulting pixels are to be written to an RGBA color buffer, or if they
are read back to client memory in a format other than GL_COLOR_INDEX,
the pixels are converted from indices to colors by referencing the four
maps GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_
TO_B, and GL_PIXEL_MAP_I_TO_A. Before being dereferenced, the index
is masked by 2^n-1, where n is GL_PIXEL_MAP_I_TO_R_SIZE for the red
map, GL_PIXEL_MAP_I_TO_G_SIZE for the green map, GL_PIXEL_MAP_

I_TO_B_SIZE for the blue map, and GL_PIXEL_MAP_I_TO_A_SIZE for the
alpha map. All components taken from the maps are then clamped to the
range [0,1]. The contents of the four maps is specified with glPixelMap.

Depth Each depth value is multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_

BIAS, then clamped to the range [0,1].

Stencil Each index is shifted GL_INDEX_SHIFT bits just as a color index is, then
added to GL_INDEX_OFFSET. If GL_MAP_STENCIL is true, each index is
masked by 2^n-1, where n is GL_PIXEL_MAP_S_TO_S_SIZE, then replaced
by the contents of GL_PIXEL_MAP_S_TO_S indexed by the masked value.

The following table gives the type, initial value, and range of valid values for each of
the pixel transfer parameters that are set with glPixelTransfer.

pname Type, Initial Value, Valid Range

Chapter 3: GL 336

GL_MAP_COLOR

boolean , false , true/false

GL_MAP_STENCIL

boolean , false , true/false

GL_INDEX_SHIFT

integer , 0 , (-,)

GL_INDEX_OFFSET

integer , 0 , (-,)

GL_RED_SCALE

float , 1 , (-,)

GL_GREEN_SCALE

float , 1 , (-,)

GL_BLUE_SCALE

float , 1 , (-,)

GL_ALPHA_SCALE

float , 1 , (-,)

GL_DEPTH_SCALE

float , 1 , (-,)

GL_RED_BIAS

float , 0 , (-,)

GL_GREEN_BIAS

float , 0 , (-,)

GL_BLUE_BIAS

float , 0 , (-,)

GL_ALPHA_BIAS

float , 0 , (-,)

GL_DEPTH_BIAS

float , 0 , (-,)

GL_POST_COLOR_MATRIX_RED_SCALE

float , 1 , (-,)

GL_POST_COLOR_MATRIX_GREEN_SCALE

float , 1 , (-,)

GL_POST_COLOR_MATRIX_BLUE_SCALE

float , 1 , (-,)

GL_POST_COLOR_MATRIX_ALPHA_SCALE

float , 1 , (-,)

GL_POST_COLOR_MATRIX_RED_BIAS

float , 0 , (-,)

Chapter 3: GL 337

GL_POST_COLOR_MATRIX_GREEN_BIAS

float , 0 , (-,)

GL_POST_COLOR_MATRIX_BLUE_BIAS

float , 0 , (-,)

GL_POST_COLOR_MATRIX_ALPHA_BIAS

float , 0 , (-,)

GL_POST_CONVOLUTION_RED_SCALE

float , 1 , (-,)

GL_POST_CONVOLUTION_GREEN_SCALE

float , 1 , (-,)

GL_POST_CONVOLUTION_BLUE_SCALE

float , 1 , (-,)

GL_POST_CONVOLUTION_ALPHA_SCALE

float , 1 , (-,)

GL_POST_CONVOLUTION_RED_BIAS

float , 0 , (-,)

GL_POST_CONVOLUTION_GREEN_BIAS

float , 0 , (-,)

GL_POST_CONVOLUTION_BLUE_BIAS

float , 0 , (-,)

GL_POST_CONVOLUTION_ALPHA_BIAS

float , 0 , (-,)

glPixelTransferf can be used to set any pixel transfer parameter. If the parameter
type is boolean, 0 implies false and any other value implies true. If pname is an
integer parameter, param is rounded to the nearest integer.

Likewise, glPixelTransferi can be used to set any of the pixel transfer parameters.
Boolean parameters are set to false if param is 0 and to true otherwise. param is
converted to floating point before being assigned to real-valued parameters.

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_OPERATION is generated if glPixelTransfer is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glPixelZoom xfactor yfactor
Specify the pixel zoom factors.

xfactor
yfactor Specify the x and y zoom factors for pixel write operations.

glPixelZoom specifies values for the x and y zoom factors. During the execution of
glDrawPixels or glCopyPixels, if (xr, yr) is the current raster position, and a given
element is in the mth row and nth column of the pixel rectangle, then pixels whose
centers are in the rectangle with corners at

(xr+nxfactor, yr+myfactor)

Chapter 3: GL 338

(xr+(n+1,)xfactor, yr+(m+1,)yfactor)

are candidates for replacement. Any pixel whose center lies on the bottom or left
edge of this rectangular region is also modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect
the resulting image about the current raster position.

GL_INVALID_OPERATION is generated if glPixelZoom is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glPointParameterf pname param
[Function]void glPointParameteri pname param
[Function]void glPointParameterfv pname params
[Function]void glPointParameteriv pname params

Specify point parameters.

pname Specifies a single-valued point parameter. GL_POINT_SIZE_MIN,
GL_POINT_SIZE_MAX, GL_POINT_FADE_THRESHOLD_SIZE, and
GL_POINT_SPRITE_COORD_ORIGIN are accepted.

param Specifies the value that pname will be set to.

The following values are accepted for pname:

GL_POINT_SIZE_MIN

params is a single floating-point value that specifies the minimum point
size. The default value is 0.0.

GL_POINT_SIZE_MAX

params is a single floating-point value that specifies the maximum point
size. The default value is 1.0.

GL_POINT_FADE_THRESHOLD_SIZE

params is a single floating-point value that specifies the threshold value
to which point sizes are clamped if they exceed the specified value. The
default value is 1.0.

GL_POINT_DISTANCE_ATTENUATION

params is an array of three floating-point values that specify the coeffi-
cients used for scaling the computed point size. The default values are
(1,00).

GL_POINT_SPRITE_COORD_ORIGIN

params is a single enum specifying the point sprite texture coordinate
origin, either GL_LOWER_LEFT or GL_UPPER_LEFT. The default value is
GL_UPPER_LEFT.

GL_INVALID_VALUE is generated If the value specified for GL_POINT_SIZE_MIN, GL_
POINT_SIZE_MAX, or GL_POINT_FADE_THRESHOLD_SIZE is less than zero.

GL_INVALID_ENUM is generated If the value specified for GL_POINT_SPRITE_COORD_

ORIGIN is not GL_LOWER_LEFT or GL_UPPER_LEFT.

If the value for GL_POINT_SIZE_MIN is greater than GL_POINT_SIZE_MAX, the point
size after clamping is undefined, but no error is generated.

Chapter 3: GL 339

[Function]void glPointSize size
Specify the diameter of rasterized points.

size Specifies the diameter of rasterized points. The initial value is 1.

glPointSize specifies the rasterized diameter of both aliased and antialiased points.
Using a point size other than 1 has different effects, depending on whether point
antialiasing is enabled. To enable and disable point antialiasing, call glEnable and
glDisable with argument GL_POINT_SMOOTH. Point antialiasing is initially disabled.

The specified point size is multiplied with a distance attenuation factor and clamped to
the specified point size range, and further clamped to the implementation-dependent
point size range to produce the derived point size using

pointSize=clamp(size(1/a+bd+cd^2,,,),,)

where d is the eye-coordinate distance from the eye to the vertex, and a, b, and c are
the distance attenuation coefficients (see glPointParameter).

If multisampling is disabled, the computed point size is used as the point’s width.

If multisampling is enabled, the point may be faded by modifying the point alpha
value (see glSampleCoverage) instead of allowing the point width to go below a
given threshold (see glPointParameter). In this case, the width is further modified
in the following manner:

pointWidth={(pointSize), (threshold)(pointSize>=threshold), (otherwise),

The point alpha value is modified by computing:

pointAlpha={(1), ((pointSize/threshold,)^2)(pointSize>=threshold), (otherwise),

If point antialiasing is disabled, the actual size is determined by rounding the supplied
size to the nearest integer. (If the rounding results in the value 0, it is as if the point
size were 1.) If the rounded size is odd, then the center point (x, y) of the pixel
fragment that represents the point is computed as

(x w,+.5,y w,+.5)

where w subscripts indicate window coordinates. All pixels that lie within the square
grid of the rounded size centered at (x, y) make up the fragment. If the size is even,
the center point is

(x w+.5,,y w+.5,)

and the rasterized fragment’s centers are the half-integer window coordinates within
the square of the rounded size centered at (x,y). All pixel fragments produced in
rasterizing a nonantialiased point are assigned the same associated data, that of the
vertex corresponding to the point.

If antialiasing is enabled, then point rasterization produces a fragment for each pixel
square that intersects the region lying within the circle having diameter equal to the
current point size and centered at the point’s (x w,y w). The coverage value for each
fragment is the window coordinate area of the intersection of the circular region with
the corresponding pixel square. This value is saved and used in the final rasterization
step. The data associated with each fragment is the data associated with the point
being rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported
size is requested, the nearest supported size is used. Only size 1 is guaranteed to

Chapter 3: GL 340

be supported; others depend on the implementation. To query the range of sup-
ported sizes and the size difference between supported sizes within the range, call
glGet with arguments GL_SMOOTH_POINT_SIZE_RANGE and GL_SMOOTH_POINT_SIZE_

GRANULARITY. For aliased points, query the supported ranges and granularity with
glGet with arguments GL_ALIASED_POINT_SIZE_RANGE.

GL_INVALID_VALUE is generated if size is less than or equal to 0.

GL_INVALID_OPERATION is generated if glPointSize is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glPolygonMode face mode
Select a polygon rasterization mode.

face Specifies the polygons that mode applies to. Must be GL_FRONT for front-
facing polygons, GL_BACK for back-facing polygons, or GL_FRONT_AND_

BACK for front- and back-facing polygons.

mode Specifies how polygons will be rasterized. Accepted values are GL_POINT,
GL_LINE, and GL_FILL. The initial value is GL_FILL for both front- and
back-facing polygons.

glPolygonMode controls the interpretation of polygons for rasterization. face de-
scribes which polygons mode applies to: front-facing polygons (GL_FRONT), back-
facing polygons (GL_BACK), or both (GL_FRONT_AND_BACK). The polygon mode affects
only the final rasterization of polygons. In particular, a polygon’s vertices are lit and
the polygon is clipped and possibly culled before these modes are applied.

Three modes are defined and can be specified in mode:

GL_POINT Polygon vertices that are marked as the start of a boundary edge are
drawn as points. Point attributes such as GL_POINT_SIZE and GL_POINT_

SMOOTH control the rasterization of the points. Polygon rasterization at-
tributes other than GL_POLYGON_MODE have no effect.

GL_LINE Boundary edges of the polygon are drawn as line segments. They are
treated as connected line segments for line stippling; the line stipple
counter and pattern are not reset between segments (see glLineStipple).
Line attributes such as GL_LINE_WIDTH and GL_LINE_SMOOTH control the
rasterization of the lines. Polygon rasterization attributes other than
GL_POLYGON_MODE have no effect.

GL_FILL The interior of the polygon is filled. Polygon attributes such as GL_

POLYGON_STIPPLE and GL_POLYGON_SMOOTH control the rasterization of
the polygon.

GL_INVALID_ENUM is generated if either face or mode is not an accepted value.

GL_INVALID_OPERATION is generated if glPolygonMode is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glPolygonOffset factor units
Set the scale and units used to calculate depth values.

factor Specifies a scale factor that is used to create a variable depth offset for
each polygon. The initial value is 0.

Chapter 3: GL 341

units Is multiplied by an implementation-specific value to create a constant
depth offset. The initial value is 0.

When GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or GL_POLYGON_

OFFSET_POINT is enabled, each fragment’s depth value will be offset after it is
interpolated from the depth values of the appropriate vertices. The value of the
offset is factorDZ+runits, where DZ is a measurement of the change in depth relative
to the screen area of the polygon, and r is the smallest value that is guaranteed to
produce a resolvable offset for a given implementation. The offset is added before
the depth test is performed and before the value is written into the depth buffer.

glPolygonOffset is useful for rendering hidden-line images, for applying decals to
surfaces, and for rendering solids with highlighted edges.

GL_INVALID_OPERATION is generated if glPolygonOffset is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glPolygonStipple pattern
Set the polygon stippling pattern.

pattern Specifies a pointer to a 3232 stipple pattern that will be unpacked from
memory in the same way that glDrawPixels unpacks pixels.

Polygon stippling, like line stippling (see glLineStipple), masks out certain frag-
ments produced by rasterization, creating a pattern. Stippling is independent of
polygon antialiasing.

pattern is a pointer to a 3232 stipple pattern that is stored in memory just like the
pixel data supplied to a glDrawPixels call with height and width both equal to 32,
a pixel format of GL_COLOR_INDEX, and data type of GL_BITMAP. That is, the stipple
pattern is represented as a 3232 array of 1-bit color indices packed in unsigned bytes.
glPixelStore parameters like GL_UNPACK_SWAP_BYTES and GL_UNPACK_LSB_FIRST

affect the assembling of the bits into a stipple pattern. Pixel transfer operations
(shift, offset, pixel map) are not applied to the stipple image, however.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a stipple pattern is specified, pattern is treated as a byte
offset into the buffer object’s data store.

To enable and disable polygon stippling, call glEnable and glDisable with argu-
ment GL_POLYGON_STIPPLE. Polygon stippling is initially disabled. If it’s enabled,
a rasterized polygon fragment with window coordinates x w and y w is sent to the
next stage of the GL if and only if the (x w%32)th bit in the (y w%32)th row of the
stipple pattern is 1 (one). When polygon stippling is disabled, it is as if the stipple
pattern consists of all 1’s.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if glPolygonStipple is executed between the
execution of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 342

[Function]void glPrioritizeTextures n textures priorities
Set texture residence priority.

n Specifies the number of textures to be prioritized.

textures Specifies an array containing the names of the textures to be prioritized.

priorities Specifies an array containing the texture priorities. A priority given in an
element of priorities applies to the texture named by the corresponding
element of textures.

glPrioritizeTextures assigns the n texture priorities given in priorities to the n
textures named in textures.

The GL establishes a “working set” of textures that are resident in texture
memory. These textures may be bound to a texture target much more efficiently
than textures that are not resident. By specifying a priority for each texture,
glPrioritizeTextures allows applications to guide the GL implementation in
determining which textures should be resident.

The priorities given in priorities are clamped to the range [0,1] before they are as-
signed. 0 indicates the lowest priority; textures with priority 0 are least likely to be
resident. 1 indicates the highest priority; textures with priority 1 are most likely to
be resident. However, textures are not guaranteed to be resident until they are used.

glPrioritizeTextures silently ignores attempts to prioritize texture 0 or any texture
name that does not correspond to an existing texture.

glPrioritizeTextures does not require that any of the textures named by textures
be bound to a texture target. glTexParameter may also be used to set a texture’s
priority, but only if the texture is currently bound. This is the only way to set the
priority of a default texture.

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glPrioritizeTextures is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glPushAttrib mask
[Function]void glPopAttrib

Push and pop the server attribute stack.

mask Specifies a mask that indicates which attributes to save. Values for mask
are listed below.

glPushAttrib takes one argument, a mask that indicates which groups of state vari-
ables to save on the attribute stack. Symbolic constants are used to set bits in the
mask. mask is typically constructed by specifying the bitwise-or of several of these
constants together. The special mask GL_ALL_ATTRIB_BITS can be used to save all
stackable states.

The symbolic mask constants and their associated GL state are as follows (the second
column lists which attributes are saved):

GL_ACCUM_BUFFER_BIT

Accumulation buffer clear value

Chapter 3: GL 343

GL_COLOR_BUFFER_BIT

GL_ALPHA_TEST enable bit

. Alpha test function and reference value

. GL_BLEND enable bit

. Blending source and destination functions

. Constant blend color

. Blending equation

. GL_DITHER enable bit

. GL_DRAW_BUFFER setting

. GL_COLOR_LOGIC_OP enable bit

. GL_INDEX_LOGIC_OP enable bit

. Logic op function

. Color mode and index mode clear values

. Color mode and index mode writemasks

GL_CURRENT_BIT

Current RGBA color

. Current color index

. Current normal vector

. Current texture coordinates

. Current raster position

. GL_CURRENT_RASTER_POSITION_VALID flag

. RGBA color associated with current raster position

. Color index associated with current raster position

. Texture coordinates associated with current raster position

. GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT

GL_DEPTH_TEST enable bit

. Depth buffer test function

. Depth buffer clear value

. GL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT

GL_ALPHA_TEST flag

. GL_AUTO_NORMAL flag

. GL_BLEND flag

Chapter 3: GL 344

. Enable bits for the user-definable clipping planes

. GL_COLOR_MATERIAL

. GL_CULL_FACE flag

. GL_DEPTH_TEST flag

. GL_DITHER flag

. GL_FOG flag

. GL_LIGHTi where 0 <= i < GL_MAX_LIGHTS

. GL_LIGHTING flag

. GL_LINE_SMOOTH flag

. GL_LINE_STIPPLE flag

. GL_COLOR_LOGIC_OP flag

. GL_INDEX_LOGIC_OP flag

. GL_MAP1_x where x is a map type

. GL_MAP2_x where x is a map type

. GL_MULTISAMPLE flag

. GL_NORMALIZE flag

. GL_POINT_SMOOTH flag

. GL_POLYGON_OFFSET_LINE flag

. GL_POLYGON_OFFSET_FILL flag

. GL_POLYGON_OFFSET_POINT flag

. GL_POLYGON_SMOOTH flag

. GL_POLYGON_STIPPLE flag

. GL_SAMPLE_ALPHA_TO_COVERAGE flag

. GL_SAMPLE_ALPHA_TO_ONE flag

. GL_SAMPLE_COVERAGE flag

. GL_SCISSOR_TEST flag

. GL_STENCIL_TEST flag

. GL_TEXTURE_1D flag

. GL_TEXTURE_2D flag

. GL_TEXTURE_3D flag

. Flags GL_TEXTURE_GEN_x where x is S, T, R, or Q

GL_EVAL_BIT

GL_MAP1_x enable bits, where x is a map type

Chapter 3: GL 345

. GL_MAP2_x enable bits, where x is a map type

. 1D grid endpoints and divisions

. 2D grid endpoints and divisions

. GL_AUTO_NORMAL enable bit

GL_FOG_BIT

GL_FOG enable bit

. Fog color

. Fog density

. Linear fog start

. Linear fog end

. Fog index

. GL_FOG_MODE value

GL_HINT_BIT

GL_PERSPECTIVE_CORRECTION_HINT setting

. GL_POINT_SMOOTH_HINT setting

. GL_LINE_SMOOTH_HINT setting

. GL_POLYGON_SMOOTH_HINT setting

. GL_FOG_HINT setting

. GL_GENERATE_MIPMAP_HINT setting

. GL_TEXTURE_COMPRESSION_HINT setting

GL_LIGHTING_BIT

GL_COLOR_MATERIAL enable bit

. GL_COLOR_MATERIAL_FACE value

. Color material parameters that are tracking the current color

. Ambient scene color

. GL_LIGHT_MODEL_LOCAL_VIEWER value

. GL_LIGHT_MODEL_TWO_SIDE setting

. GL_LIGHTING enable bit

. Enable bit for each light

. Ambient, diffuse, and specular intensity for each light

. Direction, position, exponent, and cutoff angle for each light

. Constant, linear, and quadratic attenuation factors for each light

. Ambient, diffuse, specular, and emissive color for each material

. Ambient, diffuse, and specular color indices for each material

Chapter 3: GL 346

. Specular exponent for each material

. GL_SHADE_MODEL setting

GL_LINE_BIT

GL_LINE_SMOOTH flag

. GL_LINE_STIPPLE enable bit

. Line stipple pattern and repeat counter

. Line width

GL_LIST_BIT

GL_LIST_BASE setting

GL_MULTISAMPLE_BIT

GL_MULTISAMPLE flag

. GL_SAMPLE_ALPHA_TO_COVERAGE flag

. GL_SAMPLE_ALPHA_TO_ONE flag

. GL_SAMPLE_COVERAGE flag

. GL_SAMPLE_COVERAGE_VALUE value

. GL_SAMPLE_COVERAGE_INVERT value

GL_PIXEL_MODE_BIT

GL_RED_BIAS and GL_RED_SCALE settings

. GL_GREEN_BIAS and GL_GREEN_SCALE values

. GL_BLUE_BIAS and GL_BLUE_SCALE

. GL_ALPHA_BIAS and GL_ALPHA_SCALE

. GL_DEPTH_BIAS and GL_DEPTH_SCALE

. GL_INDEX_OFFSET and GL_INDEX_SHIFT values

. GL_MAP_COLOR and GL_MAP_STENCIL flags

. GL_ZOOM_X and GL_ZOOM_Y factors

. GL_READ_BUFFER setting

GL_POINT_BIT

GL_POINT_SMOOTH flag

. Point size

GL_POLYGON_BIT

GL_CULL_FACE enable bit

. GL_CULL_FACE_MODE value

. GL_FRONT_FACE indicator

. GL_POLYGON_MODE setting

. GL_POLYGON_SMOOTH flag

Chapter 3: GL 347

. GL_POLYGON_STIPPLE enable bit

. GL_POLYGON_OFFSET_FILL flag

. GL_POLYGON_OFFSET_LINE flag

. GL_POLYGON_OFFSET_POINT flag

. GL_POLYGON_OFFSET_FACTOR

. GL_POLYGON_OFFSET_UNITS

GL_POLYGON_STIPPLE_BIT

Polygon stipple image

GL_SCISSOR_BIT

GL_SCISSOR_TEST flag

. Scissor box

GL_STENCIL_BUFFER_BIT

GL_STENCIL_TEST enable bit

. Stencil function and reference value

. Stencil value mask

. Stencil fail, pass, and depth buffer pass actions

. Stencil buffer clear value

. Stencil buffer writemask

GL_TEXTURE_BIT

Enable bits for the four texture coordinates

. Border color for each texture image

. Minification function for each texture image

. Magnification function for each texture image

. Texture coordinates and wrap mode for each texture image

. Color and mode for each texture environment

. Enable bits GL_TEXTURE_GEN_x, x is S, T, R, and Q

. GL_TEXTURE_GEN_MODE setting for S, T, R, and Q

. glTexGen plane equations for S, T, R, and Q

. Current texture bindings (for example, GL_TEXTURE_BINDING_2D)

GL_TRANSFORM_BIT

Coefficients of the six clipping planes

. Enable bits for the user-definable clipping planes

. GL_MATRIX_MODE value

. GL_NORMALIZE flag

Chapter 3: GL 348

. GL_RESCALE_NORMAL flag

GL_VIEWPORT_BIT

Depth range (near and far)

. Viewport origin and extent

glPopAttrib restores the values of the state variables saved with the last
glPushAttrib command. Those not saved are left unchanged.

It is an error to push attributes onto a full stack or to pop attributes off an empty
stack. In either case, the error flag is set and no other change is made to GL state.

Initially, the attribute stack is empty.

GL_STACK_OVERFLOW is generated if glPushAttrib is called while the attribute stack
is full.

GL_STACK_UNDERFLOW is generated if glPopAttrib is called while the attribute stack
is empty.

GL_INVALID_OPERATION is generated if glPushAttrib or glPopAttrib is executed
between the execution of glBegin and the corresponding execution of glEnd.

[Function]void glPushClientAttrib mask
[Function]void glPopClientAttrib

Push and pop the client attribute stack.

mask Specifies a mask that indicates which attributes to save. Values for mask
are listed below.

glPushClientAttrib takes one argument, a mask that indicates which groups of
client-state variables to save on the client attribute stack. Symbolic constants are used
to set bits in the mask. mask is typically constructed by specifying the bitwise-or of
several of these constants together. The special mask GL_CLIENT_ALL_ATTRIB_BITS

can be used to save all stackable client state.

The symbolic mask constants and their associated GL client state are as follows (the
second column lists which attributes are saved):

GL_CLIENT_PIXEL_STORE_BIT Pixel storage modes GL_CLIENT_VERTEX_ARRAY_BIT

Vertex arrays (and enables)

glPopClientAttrib restores the values of the client-state variables saved with the
last glPushClientAttrib. Those not saved are left unchanged.

It is an error to push attributes onto a full client attribute stack or to pop attributes
off an empty stack. In either case, the error flag is set, and no other change is made
to GL state.

Initially, the client attribute stack is empty.

GL_STACK_OVERFLOW is generated if glPushClientAttrib is called while the attribute
stack is full.

GL_STACK_UNDERFLOW is generated if glPopClientAttrib is called while the attribute
stack is empty.

Chapter 3: GL 349

[Function]void glPushMatrix
[Function]void glPopMatrix

Push and pop the current matrix stack.

There is a stack of matrices for each of the matrix modes. In GL_MODELVIEW mode,
the stack depth is at least 32. In the other modes, GL_COLOR, GL_PROJECTION, and
GL_TEXTURE, the depth is at least 2. The current matrix in any mode is the matrix
on the top of the stack for that mode.

glPushMatrix pushes the current matrix stack down by one, duplicating the current
matrix. That is, after a glPushMatrix call, the matrix on top of the stack is identical
to the one below it.

glPopMatrix pops the current matrix stack, replacing the current matrix with the
one below it on the stack.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to push a full matrix stack or to pop a matrix stack that contains only
a single matrix. In either case, the error flag is set and no other change is made to
GL state.

GL_STACK_OVERFLOW is generated if glPushMatrix is called while the current matrix
stack is full.

GL_STACK_UNDERFLOW is generated if glPopMatrix is called while the current matrix
stack contains only a single matrix.

GL_INVALID_OPERATION is generated if glPushMatrix or glPopMatrix is executed
between the execution of glBegin and the corresponding execution of glEnd.

[Function]void glPushName name
[Function]void glPopName

Push and pop the name stack.

name Specifies a name that will be pushed onto the name stack.

The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers and is
initially empty.

glPushName causes name to be pushed onto the name stack. glPopName pops one
name off the top of the stack.

The maximum name stack depth is implementation-dependent; call GL_MAX_NAME_
STACK_DEPTH to find out the value for a particular implementation. It is an error
to push a name onto a full stack or to pop a name off an empty stack. It is also
an error to manipulate the name stack between the execution of glBegin and the
corresponding execution of glEnd. In any of these cases, the error flag is set and no
other change is made to GL state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to
glPushName or glPopName while the render mode is not GL_SELECT are ignored.

GL_STACK_OVERFLOW is generated if glPushName is called while the name stack is full.

GL_STACK_UNDERFLOW is generated if glPopName is called while the name stack is
empty.

Chapter 3: GL 350

GL_INVALID_OPERATION is generated if glPushName or glPopName is executed between
a call to glBegin and the corresponding call to glEnd.

[Function]void glRasterPos2s x y
[Function]void glRasterPos2i x y
[Function]void glRasterPos2f x y
[Function]void glRasterPos2d x y
[Function]void glRasterPos3s x y z
[Function]void glRasterPos3i x y z
[Function]void glRasterPos3f x y z
[Function]void glRasterPos3d x y z
[Function]void glRasterPos4s x y z w
[Function]void glRasterPos4i x y z w
[Function]void glRasterPos4f x y z w
[Function]void glRasterPos4d x y z w
[Function]void glRasterPos2sv v
[Function]void glRasterPos2iv v
[Function]void glRasterPos2fv v
[Function]void glRasterPos2dv v
[Function]void glRasterPos3sv v
[Function]void glRasterPos3iv v
[Function]void glRasterPos3fv v
[Function]void glRasterPos3dv v
[Function]void glRasterPos4sv v
[Function]void glRasterPos4iv v
[Function]void glRasterPos4fv v
[Function]void glRasterPos4dv v

Specify the raster position for pixel operations.

x
y
z
w Specify the x, y , z, and w object coordinates (if present) for the raster

position.

The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is maintained
with subpixel accuracy. See glBitmap, glDrawPixels, and glCopyPixels.

The current raster position consists of three window coordinates (x, y , z), a clip
coordinate value (w), an eye coordinate distance, a valid bit, and associated color
data and texture coordinates. The w coordinate is a clip coordinate, because w is
not projected to window coordinates. glRasterPos4 specifies object coordinates x, y ,
z, and w explicitly. glRasterPos3 specifies object coordinate x, y , and z explicitly,
while w is implicitly set to 1. glRasterPos2 uses the argument values for x and y
while implicitly setting z and w to 0 and 1.

The object coordinates presented by glRasterPos are treated just like those of a
glVertex command: They are transformed by the current modelview and projection
matrices and passed to the clipping stage. If the vertex is not culled, then it is

Chapter 3: GL 351

projected and scaled to window coordinates, which become the new current raster
position, and the GL_CURRENT_RASTER_POSITION_VALID flag is set. If the vertex is
culled, then the valid bit is cleared and the current raster position and associated
color and texture coordinates are undefined.

The current raster position also includes some associated color data and texture co-
ordinates. If lighting is enabled, then GL_CURRENT_RASTER_COLOR (in RGBA mode)
or GL_CURRENT_RASTER_INDEX (in color index mode) is set to the color produced by
the lighting calculation (see glLight, glLightModel, and glShadeModel). If light-
ing is disabled, current color (in RGBA mode, state variable GL_CURRENT_COLOR) or
color index (in color index mode, state variable GL_CURRENT_INDEX) is used to update
the current raster color. GL_CURRENT_RASTER_SECONDARY_COLOR (in RGBA mode) is
likewise updated.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of
GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture
generation functions (see glTexGen). Finally, the distance from the origin of the
eye coordinate system to the vertex as transformed by only the modelview matrix
replaces GL_CURRENT_RASTER_DISTANCE.

Initially, the current raster position is (0, 0, 0, 1), the current raster distance is 0, the
valid bit is set, the associated RGBA color is (1, 1, 1, 1), the associated color index
is 1, and the associated texture coordinates are (0, 0, 0, 1). In RGBA mode, GL_
CURRENT_RASTER_INDEX is always 1; in color index mode, the current raster RGBA
color always maintains its initial value.

GL_INVALID_OPERATION is generated if glRasterPos is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glReadBuffer mode
Select a color buffer source for pixels.

mode Specifies a color buffer. Accepted values are GL_FRONT_LEFT, GL_FRONT_
RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT,
GL_RIGHT, and GL_AUXi, where i is between 0 and the value of GL_AUX_
BUFFERS minus 1.

glReadBuffer specifies a color buffer as the source for subsequent
glReadPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, and glCopyPixels commands.
mode accepts one of twelve or more predefined values. (GL_AUX0 through GL_AUX3

are always defined.) In a fully configured system, GL_FRONT, GL_LEFT, and
GL_FRONT_LEFT all name the front left buffer, GL_FRONT_RIGHT and GL_RIGHT name
the front right buffer, and GL_BACK_LEFT and GL_BACK name the back left buffer.

Nonstereo double-buffered configurations have only a front left and a back left buffer.
Single-buffered configurations have a front left and a front right buffer if stereo, and
only a front left buffer if nonstereo. It is an error to specify a nonexistent buffer to
glReadBuffer.

mode is initially GL_FRONT in single-buffered configurations and GL_BACK in double-
buffered configurations.

Chapter 3: GL 352

GL_INVALID_ENUM is generated if mode is not one of the twelve (or more) accepted
values.

GL_INVALID_OPERATION is generated if mode specifies a buffer that does not exist.

GL_INVALID_OPERATION is generated if glReadBuffer is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glReadPixels x y width height format type data
Read a block of pixels from the frame buffer.

x
y Specify the window coordinates of the first pixel that is read from the

frame buffer. This location is the lower left corner of a rectangular block
of pixels.

width
height Specify the dimensions of the pixel rectangle. width and height of one

correspond to a single pixel.

format Specifies the format of the pixel data. The following symbolic values are
accepted: GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT,
GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_
BGRA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. Must be one of GL_

UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_

2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV.

data Returns the pixel data.

glReadPixels returns pixel data from the frame buffer, starting with the pixel whose
lower left corner is at location (x, y), into client memory starting at location data.
Several parameters control the processing of the pixel data before it is placed into
client memory. These parameters are set with three commands: glPixelStore,
glPixelTransfer, and glPixelMap. This reference page describes the effects on
glReadPixels of most, but not all of the parameters specified by these three com-
mands.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a block of pixels is requested, data is treated as a byte offset
into the buffer object’s data store rather than a pointer to client memory.

When the ARB_imaging extension is supported, the pixel data may be processed
by additional operations including color table lookup, color matrix transformations,
convolutions, histograms, and minimum and maximum pixel value computations.

glReadPixels returns values from each pixel with lower left corner at (x+i,y+j) for
0<=i<width and 0<=j<height. This pixel is said to be the ith pixel in the jth row.

Chapter 3: GL 353

Pixels are returned in row order from the lowest to the highest row, left to right in
each row.

format specifies the format for the returned pixel values; accepted values are:

GL_COLOR_INDEX

Color indices are read from the color buffer selected by glReadBuffer.
Each index is converted to fixed point, shifted left or right depending on
the value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET.
If GL_MAP_COLOR is GL_TRUE, indices are replaced by their mappings in
the table GL_PIXEL_MAP_I_TO_I.

GL_STENCIL_INDEX

Stencil values are read from the stencil buffer. Each index is converted
to fixed point, shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If GL_MAP_STENCIL
is GL_TRUE, indices are replaced by their mappings in the table GL_PIXEL_
MAP_S_TO_S.

GL_DEPTH_COMPONENT

Depth values are read from the depth buffer. Each component is con-
verted to floating point such that the minimum depth value maps to 0
and the maximum value maps to 1. Each component is then multiplied
by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and finally clamped to
the range [0,1].

GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

GL_BGR

GL_RGBA

GL_BGRA

GL_LUMINANCE

GL_LUMINANCE_ALPHA

Processing differs depending on whether color buffers store color indices
or RGBA color components. If color indices are stored, they are read
from the color buffer selected by glReadBuffer. Each index is converted
to fixed point, shifted left or right depending on the value and sign of GL_
INDEX_SHIFT, and added to GL_INDEX_OFFSET. Indices are then replaced
by the red, green, blue, and alpha values obtained by indexing the tables
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B,
and GL_PIXEL_MAP_I_TO_A. Each table must be of size 2^n, but n may
be different for different tables. Before an index is used to look up a value
in a table of size 2^n, it must be masked against 2^n-1.

Chapter 3: GL 354

If RGBA color components are stored in the color buffers, they are read
from the color buffer selected by glReadBuffer. Each color component
is converted to floating point such that zero intensity maps to 0.0 and
full intensity maps to 1.0. Each component is then multiplied by GL_

c_SCALE and added to GL_c_BIAS, where c is RED, GREEN, BLUE, or
ALPHA. Finally, if GL_MAP_COLOR is GL_TRUE, each component is clamped
to the range [0,1], scaled to the size of its corresponding table, and is then
replaced by its mapping in the table GL_PIXEL_MAP_c_TO_c, where c is
R, G, B, or A.

Unneeded data is then discarded. For example, GL_RED discards the
green, blue, and alpha components, while GL_RGB discards only the alpha
component. GL_LUMINANCE computes a single-component value as the
sum of the red, green, and blue components, and GL_LUMINANCE_ALPHA

does the same, while keeping alpha as a second value. The final values
are clamped to the range [0,1].

The shift, scale, bias, and lookup factors just described are all specified by
glPixelTransfer. The lookup table contents themselves are specified by
glPixelMap.

Finally, the indices or components are converted to the proper format, as specified
by type. If format is GL_COLOR_INDEX or GL_STENCIL_INDEX and type is not GL_

FLOAT, each index is masked with the mask value given in the following table. If type
is GL_FLOAT, then each integer index is converted to single-precision floating-point
format.

If format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA, GL_
BGRA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA and type is not GL_FLOAT, each compo-
nent is multiplied by the multiplier shown in the following table. If type is GL_FLOAT,
then each component is passed as is (or converted to the client’s single-precision
floating-point format if it is different from the one used by the GL).

type Index Mask, Component Conversion

GL_UNSIGNED_BYTE

2^8-1, (2^8-1,)c

GL_BYTE 2^7-1, (2^8-1,)c-1,/2

GL_BITMAP

1, 1

GL_UNSIGNED_SHORT

2^16-1, (2^16-1,)c

GL_SHORT 2^15-1, (2^16-1,)c-1,/2

GL_UNSIGNED_INT

2^32-1, (2^32-1,)c

GL_INT 2^31-1, (2^32-1,)c-1,/2

GL_FLOAT none , c

Chapter 3: GL 355

Return values are placed in memory as follows. If format is GL_COLOR_INDEX, GL_
STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, or
GL_LUMINANCE, a single value is returned and the data for the ith pixel in the jth
row is placed in location (j,)width+i. GL_RGB and GL_BGR return three values, GL_
RGBA and GL_BGRA return four values, and GL_LUMINANCE_ALPHA returns two values
for each pixel, with all values corresponding to a single pixel occupying contiguous
space in data. Storage parameters set by glPixelStore, such as GL_PACK_LSB_

FIRST and GL_PACK_SWAP_BYTES, affect the way that data is written into memory.
See glPixelStore for a description.

GL_INVALID_ENUM is generated if format or type is not an accepted value.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_

INDEX or GL_STENCIL_INDEX.

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if format is GL_COLOR_INDEX and the color
buffers store RGBA color components.

GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no
stencil buffer.

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and there is
no depth buffer.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

The formats GL_BGR, and GL_BGRA and types GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_

5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_

INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2,
and GL_UNSIGNED_INT_2_10_10_10_REV are available only if the GL version is 1.2
or greater.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object
such that the memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glReadPixels is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 356

[Function]void glRectd x1 y1 x2 y2
[Function]void glRectf x1 y1 x2 y2
[Function]void glRecti x1 y1 x2 y2
[Function]void glRects x1 y1 x2 y2
[Function]void glRectdv v1 v2
[Function]void glRectfv v1 v2
[Function]void glRectiv v1 v2
[Function]void glRectsv v1 v2

Draw a rectangle.

x1
y1 Specify one vertex of a rectangle.

x2
y2 Specify the opposite vertex of the rectangle.

glRect supports efficient specification of rectangles as two corner points. Each rect-
angle command takes four arguments, organized either as two consecutive pairs of
(x,y) coordinates or as two pointers to arrays, each containing an (x,y) pair. The
resulting rectangle is defined in the z=0 plane.

glRect(x1, y1, x2, y2) is exactly equivalent to the following sequence: Note that if the
second vertex is above and to the right of the first vertex, the rectangle is constructed
with a counterclockwise winding.

glBegin(GL_POLYGON);

glVertex2(x1, y1);

glVertex2(x2, y1);

glVertex2(x2, y2);

glVertex2(x1, y2);

glEnd();

GL_INVALID_OPERATION is generated if glRect is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]GLint glRenderMode mode
Set rasterization mode.

mode Specifies the rasterization mode. Three values are accepted: GL_RENDER,
GL_SELECT, and GL_FEEDBACK. The initial value is GL_RENDER.

glRenderMode sets the rasterization mode. It takes one argument, mode, which can
assume one of three predefined values:

GL_RENDER

Render mode. Primitives are rasterized, producing pixel fragments, which
are written into the frame buffer. This is the normal mode and also the
default mode.

GL_SELECT

Selection mode. No pixel fragments are produced, and no change to the
frame buffer contents is made. Instead, a record of the names of primitives

Chapter 3: GL 357

that would have been drawn if the render mode had been GL_RENDER is
returned in a select buffer, which must be created (see glSelectBuffer)
before selection mode is entered.

GL_FEEDBACK

Feedback mode. No pixel fragments are produced, and no change to the
frame buffer contents is made. Instead, the coordinates and attributes
of vertices that would have been drawn if the render mode had been
GL_RENDER is returned in a feedback buffer, which must be created (see
glFeedbackBuffer) before feedback mode is entered.

The return value of glRenderMode is determined by the render mode at the time
glRenderMode is called, rather than by mode. The values returned for the three
render modes are as follows:

GL_RENDER

0.

GL_SELECT

The number of hit records transferred to the select buffer.

GL_FEEDBACK

The number of values (not vertices) transferred to the feedback buffer.

See the glSelectBuffer and glFeedbackBuffer reference pages for more details
concerning selection and feedback operation.

GL_INVALID_ENUM is generated if mode is not one of the three accepted values.

GL_INVALID_OPERATION is generated if glSelectBuffer is called while the render
mode is GL_SELECT, or if glRenderMode is called with argument GL_SELECT before
glSelectBuffer is called at least once.

GL_INVALID_OPERATION is generated if glFeedbackBuffer is called while the ren-
der mode is GL_FEEDBACK, or if glRenderMode is called with argument GL_FEEDBACK
before glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION is generated if glRenderMode is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glResetHistogram target
Reset histogram table entries to zero.

target Must be GL_HISTOGRAM.

glResetHistogram resets all the elements of the current histogram table to zero.

GL_INVALID_ENUM is generated if target is not GL_HISTOGRAM.

GL_INVALID_OPERATION is generated if glResetHistogram is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glResetMinmax target
Reset minmax table entries to initial values.

target Must be GL_MINMAX.

Chapter 3: GL 358

glResetMinmax resets the elements of the current minmax table to their initial values:
the “maximum” element receives the minimum possible component values, and the
“minimum” element receives the maximum possible component values.

GL_INVALID_ENUM is generated if target is not GL_MINMAX.

GL_INVALID_OPERATION is generated if glResetMinmax is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glRotated angle x y z
[Function]void glRotatef angle x y z

Multiply the current matrix by a rotation matrix.

angle Specifies the angle of rotation, in degrees.

x
y
z Specify the x, y, and z coordinates of a vector, respectively.

glRotate produces a rotation of angle degrees around the vector (x,yz). The current
matrix (see glMatrixMode) is multiplied by a rotation matrix with the product re-
placing the current matrix, as if glMultMatrix were called with the following matrix
as its argument:

((x^2(1-c,)+c xy(1-c,)-zs xz(1-c,)+ys 0), (yx(1-c,)+zs y^2(1-c,)+c yz(1-c,)-xs 0),
(xz(1-c,)-ys yz(1-c,)+xs z^2(1-c,)+c 0), (0 0 0 1),)

Where c=cos(angle,), s=sin(angle,), and (x,yz),=1 (if not, the GL will normalize this
vector).

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn
after glRotate is called are rotated. Use glPushMatrix and glPopMatrix to save
and restore the unrotated coordinate system.

GL_INVALID_OPERATION is generated if glRotate is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glSampleCoverage value invert
Specify multisample coverage parameters.

value Specify a single floating-point sample coverage value. The value is
clamped to the range [0,1]. The initial value is 1.0.

invert Specify a single boolean value representing if the coverage masks should
be inverted. GL_TRUE and GL_FALSE are accepted. The initial value is
GL_FALSE.

Multisampling samples a pixel multiple times at various implementation-dependent
subpixel locations to generate antialiasing effects. Multisampling transparently an-
tialiases points, lines, polygons, bitmaps, and images if it is enabled.

value is used in constructing a temporary mask used in determining which samples
will be used in resolving the final fragment color. This mask is bitwise-anded with
the coverage mask generated from the multisampling computation. If the invert flag
is set, the temporary mask is inverted (all bits flipped) and then the bitwise-and is
computed.

Chapter 3: GL 359

If an implementation does not have any multisample buffers available, or multisam-
pling is disabled, rasterization occurs with only a single sample computing a pixel’s
final RGB color.

Provided an implementation supports multisample buffers, and multisampling is en-
abled, then a pixel’s final color is generated by combining several samples per pixel.
Each sample contains color, depth, and stencil information, allowing those operations
to be performed on each sample.

GL_INVALID_OPERATION is generated if glSampleCoverage is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glScaled x y z
[Function]void glScalef x y z

Multiply the current matrix by a general scaling matrix.

x
y
z Specify scale factors along the x, y, and z axes, respectively.

glScale produces a nonuniform scaling along the x, y, and z axes. The three param-
eters indicate the desired scale factor along each of the three axes.

The current matrix (see glMatrixMode) is multiplied by this scale matrix, and the
product replaces the current matrix as if glMultMatrix were called with the following
matrix as its argument:

((x 0 0 0), (0 y 0 0), (0 0 z 0), (0 0 0 1),)

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after
glScale is called are scaled.

Use glPushMatrix and glPopMatrix to save and restore the unscaled coordinate
system.

GL_INVALID_OPERATION is generated if glScale is executed between the execution of
glBegin and the corresponding execution of glEnd.

[Function]void glScissor x y width height
Define the scissor box.

x
y Specify the lower left corner of the scissor box. Initially (0, 0).

width
height Specify the width and height of the scissor box. When a GL context is

first attached to a window, width and height are set to the dimensions of
that window.

glScissor defines a rectangle, called the scissor box, in window coordinates. The
first two arguments, x and y, specify the lower left corner of the box. width and
height specify the width and height of the box.

To enable and disable the scissor test, call glEnable and glDisable with argument
GL_SCISSOR_TEST. The test is initially disabled. While the test is enabled, only
pixels that lie within the scissor box can be modified by drawing commands. Win-
dow coordinates have integer values at the shared corners of frame buffer pixels.

Chapter 3: GL 360

glScissor(0,0,1,1) allows modification of only the lower left pixel in the window,
and glScissor(0,0,0,0) doesn’t allow modification of any pixels in the window.

When the scissor test is disabled, it is as though the scissor box includes the entire
window.

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if glScissor is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glSecondaryColorPointer size type stride pointer
Define an array of secondary colors.

size Specifies the number of components per color. Must be 3.

type Specifies the data type of each color component in the array. Symbolic
constants GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT,
GL_INT, GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE are accepted. The
initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive colors. If stride is 0, the
colors are understood to be tightly packed in the array. The initial value
is 0.

pointer Specifies a pointer to the first component of the first color element in the
array. The initial value is 0.

glSecondaryColorPointer specifies the location and data format of an array of color
components to use when rendering. size specifies the number of components per color,
and must be 3. type specifies the data type of each color component, and stride
specifies the byte stride from one color to the next, allowing vertices and attributes
to be packed into a single array or stored in separate arrays.

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) while a secondary color array is specified, pointer is treated as a
byte offset into the buffer object’s data store. Also, the buffer object binding (GL_
ARRAY_BUFFER_BINDING) is saved as secondary color vertex array client-side state
(GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING).

When a secondary color array is specified, size, type, stride, and pointer are saved as
client-side state, in addition to the current vertex array buffer object binding.

To enable and disable the secondary color array, call glEnableClientState

and glDisableClientState with the argument GL_SECONDARY_COLOR_

ARRAY. If enabled, the secondary color array is used when glArrayElement,
glDrawArrays, glMultiDrawArrays, glDrawElements, glMultiDrawElements, or
glDrawRangeElements is called.

GL_INVALID_VALUE is generated if size is not 3.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

[Function]void glSecondaryColor3b red green blue
[Function]void glSecondaryColor3s red green blue

Chapter 3: GL 361

[Function]void glSecondaryColor3i red green blue
[Function]void glSecondaryColor3f red green blue
[Function]void glSecondaryColor3d red green blue
[Function]void glSecondaryColor3ub red green blue
[Function]void glSecondaryColor3us red green blue
[Function]void glSecondaryColor3ui red green blue
[Function]void glSecondaryColor3bv v
[Function]void glSecondaryColor3sv v
[Function]void glSecondaryColor3iv v
[Function]void glSecondaryColor3fv v
[Function]void glSecondaryColor3dv v
[Function]void glSecondaryColor3ubv v
[Function]void glSecondaryColor3usv v
[Function]void glSecondaryColor3uiv v

Set the current secondary color.

red
green
blue Specify new red, green, and blue values for the current secondary color.

The GL stores both a primary four-valued RGBA color and a secondary four-valued
RGBA color (where alpha is always set to 0.0) that is associated with every vertex.

The secondary color is interpolated and applied to each fragment during rasteriza-
tion when GL_COLOR_SUM is enabled. When lighting is enabled, and GL_SEPARATE_

SPECULAR_COLOR is specified, the value of the secondary color is assigned the value
computed from the specular term of the lighting computation. Both the primary
and secondary current colors are applied to each fragment, regardless of the state
of GL_COLOR_SUM, under such conditions. When GL_SEPARATE_SPECULAR_COLOR is
specified, the value returned from querying the current secondary color is undefined.

glSecondaryColor3b, glSecondaryColor3s, and glSecondaryColor3i take three
signed byte, short, or long integers as arguments. When v is appended to the name,
the color commands can take a pointer to an array of such values.

Color values are stored in floating-point format, with unspecified mantissa and expo-
nent sizes. Unsigned integer color components, when specified, are linearly mapped
to floating-point values such that the largest representable value maps to 1.0 (full
intensity), and 0 maps to 0.0 (zero intensity). Signed integer color components, when
specified, are linearly mapped to floating-point values such that the most positive
representable value maps to 1.0, and the most negative representable value maps to
-1.0. (Note that this mapping does not convert 0 precisely to 0.0). Floating-point
values are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0,1] before
the current color is updated. However, color components are clamped to this range
before they are interpolated or written into a color buffer.

[Function]void glSelectBuffer size buffer
Establish a buffer for selection mode values.

size Specifies the size of buffer.

Chapter 3: GL 362

buffer Returns the selection data.

glSelectBuffer has two arguments: buffer is a pointer to an array of unsigned
integers, and size indicates the size of the array. buffer returns values from the name
stack (see glInitNames, glLoadName, glPushName) when the rendering mode is GL_
SELECT (see glRenderMode). glSelectBuffer must be issued before selection mode
is enabled, and it must not be issued while the rendering mode is GL_SELECT.

A programmer can use selection to determine which primitives are drawn into some
region of a window. The region is defined by the current modelview and perspective
matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a
primitive or a raster position intersects the clipping volume defined by the viewing
frustum and the user-defined clipping planes, this primitive causes a selection hit.
(With polygons, no hit occurs if the polygon is culled.) When a change is made to
the name stack, or when glRenderMode is called, a hit record is copied to buffer if
any hits have occurred since the last such event (name stack change or glRenderMode
call). The hit record consists of the number of names in the name stack at the time
of the event, followed by the minimum and maximum depth values of all vertices that
hit since the previous event, followed by the name stack contents, bottom name first.

Depth values (which are in the range [0,1]) are multiplied by 2^32-1, before being
placed in the hit record.

An internal index into buffer is reset to 0 whenever selection mode is entered. Each
time a hit record is copied into buffer, the index is incremented to point to the cell
just past the end of the block of names\(emthat is, to the next available cell If the
hit record is larger than the number of remaining locations in buffer, as much data as
can fit is copied, and the overflow flag is set. If the name stack is empty when a hit
record is copied, that record consists of 0 followed by the minimum and maximum
depth values.

To exit selection mode, call glRenderMode with an argument other than GL_SELECT.
Whenever glRenderMode is called while the render mode is GL_SELECT, it returns the
number of hit records copied to buffer, resets the overflow flag and the selection buffer
pointer, and initializes the name stack to be empty. If the overflow bit was set when
glRenderMode was called, a negative hit record count is returned.

GL_INVALID_VALUE is generated if size is negative.

GL_INVALID_OPERATION is generated if glSelectBuffer is called while the render
mode is GL_SELECT, or if glRenderMode is called with argument GL_SELECT before
glSelectBuffer is called at least once.

GL_INVALID_OPERATION is generated if glSelectBuffer is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glSeparableFilter2D target internalformat width height format
type row column

Define a separable two-dimensional convolution filter.

target Must be GL_SEPARABLE_2D.

Chapter 3: GL 363

internalformat
The internal format of the convolution filter kernel. The allowable
values are GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width The number of elements in the pixel array referenced by row. (This is
the width of the separable filter kernel.)

height The number of elements in the pixel array referenced by column. (This
is the height of the separable filter kernel.)

format The format of the pixel data in row and column. The allowable values
are GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_BGR, GL_RGBA,
GL_BGRA, GL_INTENSITY, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type The type of the pixel data in row and column. Symbolic constants
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_

3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

row Pointer to a one-dimensional array of pixel data that is processed to build
the row filter kernel.

column Pointer to a one-dimensional array of pixel data that is processed to build
the column filter kernel.

glSeparableFilter2D builds a two-dimensional separable convolution filter kernel
from two arrays of pixels.

The pixel arrays specified by (width, format, type, row) and (height, format, type,
column) are processed just as if they had been passed to glDrawPixels, but processing
stops after the final expansion to RGBA is completed.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a convolution filter is specified, row and column are treated
as byte offsets into the buffer object’s data store.

Next, the R, G, B, and A components of all pixels in both arrays are scaled by
the four separable 2D GL_CONVOLUTION_FILTER_SCALE parameters and biased by the
four separable 2D GL_CONVOLUTION_FILTER_BIAS parameters. (The scale and bias
parameters are set by glConvolutionParameter using the GL_SEPARABLE_2D target

Chapter 3: GL 364

and the names GL_CONVOLUTION_FILTER_SCALE and GL_CONVOLUTION_FILTER_BIAS.
The parameters themselves are vectors of four values that are applied to red, green,
blue, and alpha, in that order.) The R, G, B, and A values are not clamped to [0,1]
at any time during this process.

Each pixel is then converted to the internal format specified by internalformat. This
conversion simply maps the component values of the pixel (R, G, B, and A) to the val-
ues included in the internal format (red, green, blue, alpha, luminance, and intensity).
The mapping is as follows:

Internal Format
Red, Green, Blue, Alpha, Luminance, Intensity

GL_LUMINANCE

, , , , R ,

GL_LUMINANCE_ALPHA

, , , A , R ,

GL_INTENSITY

, , , , , R

GL_RGB R , G , B , , ,

GL_RGBA R , G , B , A , ,

The red, green, blue, alpha, luminance, and/or intensity components of the resulting
pixels are stored in floating-point rather than integer format. They form two one-
dimensional filter kernel images. The row image is indexed by coordinate i starting
at zero and increasing from left to right. Each location in the row image is derived
from element i of row. The column image is indexed by coordinate j starting at zero
and increasing from bottom to top. Each location in the column image is derived
from element j of column.

Note that after a convolution is performed, the resulting color components are also
scaled by their corresponding GL_POST_CONVOLUTION_c_SCALE parameters and biased
by their corresponding GL_POST_CONVOLUTION_c_BIAS parameters (where c takes
on the values RED, GREEN, BLUE, and ALPHA). These parameters are set by
glPixelTransfer.

GL_INVALID_ENUM is generated if target is not GL_SEPARABLE_2D.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero or greater than the maximum
supported value. This value may be queried with glGetConvolutionParameter using
target GL_SEPARABLE_2D and name GL_MAX_CONVOLUTION_WIDTH.

GL_INVALID_VALUE is generated if height is less than zero or greater than the maxi-
mum supported value. This value may be queried with glGetConvolutionParameter

using target GL_SEPARABLE_2D and name GL_MAX_CONVOLUTION_HEIGHT.

GL_INVALID_OPERATION is generated if height is one of GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_

SHORT_5_6_5_REV and format is not GL_RGB.

Chapter 3: GL 365

GL_INVALID_OPERATION is generated if height is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and row or column is not evenly divisible into the
number of bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glSeparableFilter2D is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glShadeModel mode
Select flat or smooth shading.

mode Specifies a symbolic value representing a shading technique. Accepted
values are GL_FLAT and GL_SMOOTH. The initial value is GL_SMOOTH.

GL primitives can have either flat or smooth shading. Smooth shading, the default,
causes the computed colors of vertices to be interpolated as the primitive is rasterized,
typically assigning different colors to each resulting pixel fragment. Flat shading
selects the computed color of just one vertex and assigns it to all the pixel fragments
generated by rasterizing a single primitive. In either case, the computed color of a
vertex is the result of lighting if lighting is enabled, or it is the current color at the
time the vertex was specified if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Starting when glBegin is
issued and counting vertices and primitives from 1, the GL gives each flat-shaded line
segment i the computed color of vertex i+1, its second vertex. Counting similarly
from 1, the GL gives each flat-shaded polygon the computed color of the vertex listed
in the following table. This is the last vertex to specify the polygon in all cases except
single polygons, where the first vertex specifies the flat-shaded color.

Primitive Type of Polygon i
Vertex

Single polygon (i==1)
1

Triangle strip
i+2

Triangle fan
i+2

Independent triangle
3i

Chapter 3: GL 366

Quad strip
2i+2

Independent quad
4i

Flat and smooth shading are specified by glShadeModel with mode set to GL_FLAT

and GL_SMOOTH, respectively.

GL_INVALID_ENUM is generated ifmode is any value other than GL_FLAT or GL_SMOOTH.

GL_INVALID_OPERATION is generated if glShadeModel is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glShaderSource shader count string length
Replaces the source code in a shader object.

shader Specifies the handle of the shader object whose source code is to be re-
placed.

count Specifies the number of elements in the string and length arrays.

string Specifies an array of pointers to strings containing the source code to be
loaded into the shader.

length Specifies an array of string lengths.

glShaderSource sets the source code in shader to the source code in the array of
strings specified by string. Any source code previously stored in the shader object
is completely replaced. The number of strings in the array is specified by count. If
length is NULL, each string is assumed to be null terminated. If length is a value
other than NULL, it points to an array containing a string length for each of the
corresponding elements of string. Each element in the length array may contain the
length of the corresponding string (the null character is not counted as part of the
string length) or a value less than 0 to indicate that the string is null terminated. The
source code strings are not scanned or parsed at this time; they are simply copied
into the specified shader object.

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if shader is not a shader object.

GL_INVALID_VALUE is generated if count is less than 0.

GL_INVALID_OPERATION is generated if glShaderSource is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glStencilFuncSeparate face func ref mask
Set front and/or back function and reference value for stencil testing.

face Specifies whether front and/or back stencil state is updated. Three sym-
bolic constants are valid: GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.

func Specifies the test function. Eight symbolic constants are valid: GL_NEVER,
GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL,
and GL_ALWAYS. The initial value is GL_ALWAYS.

Chapter 3: GL 367

ref Specifies the reference value for the stencil test. ref is clamped to the
range [0,2^n-1], where n is the number of bitplanes in the stencil buffer.
The initial value is 0.

mask Specifies a mask that is ANDed with both the reference value and the
stored stencil value when the test is done. The initial value is all 1’s.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis.
You draw into the stencil planes using GL drawing primitives, then render geometry
and images, using the stencil planes to mask out portions of the screen. Stenciling
is typically used in multipass rendering algorithms to achieve special effects, such as
decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a compar-
ison between the reference value and the value in the stencil buffer. To enable and
disable the test, call glEnable and glDisable with argument GL_STENCIL_TEST.
To specify actions based on the outcome of the stencil test, call glStencilOp or
glStencilOpSeparate.

There can be two separate sets of func, ref, and mask parameters; one affects back-
facing polygons, and the other affects front-facing polygons as well as other non-
polygon primitives. glStencilFunc sets both front and back stencil state to the
same values, as if glStencilFuncSeparate were called with face set to GL_FRONT_

AND_BACK.

func is a symbolic constant that determines the stencil comparison function. It accepts
one of eight values, shown in the following list. ref is an integer reference value that
is used in the stencil comparison. It is clamped to the range [0,2^n-1], where n is
the number of bitplanes in the stencil buffer. mask is bitwise ANDed with both the
reference value and the stored stencil value, with the ANDed values participating in
the comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the
following list shows the effect of each comparison function that can be specified by
func. Only if the comparison succeeds is the pixel passed through to the next stage in
the rasterization process (see glStencilOp). All tests treat stencil values as unsigned
integers in the range [0,2^n-1], where n is the number of bitplanes in the stencil buffer.

The following values are accepted by func:

GL_NEVER Always fails.

GL_LESS Passes if (ref & mask) < (stencil & mask).

GL_LEQUAL

Passes if (ref & mask) <= (stencil & mask).

GL_GREATER

Passes if (ref & mask) > (stencil & mask).

GL_GEQUAL

Passes if (ref & mask) >= (stencil & mask).

GL_EQUAL Passes if (ref & mask) = (stencil & mask).

Chapter 3: GL 368

GL_NOTEQUAL

Passes if (ref & mask) != (stencil & mask).

GL_ALWAYS

Always passes.

GL_INVALID_ENUM is generated if func is not one of the eight accepted values.

GL_INVALID_OPERATION is generated if glStencilFuncSeparate is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glStencilFunc func ref mask
Set front and back function and reference value for stencil testing.

func Specifies the test function. Eight symbolic constants are valid: GL_NEVER,
GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL,
and GL_ALWAYS. The initial value is GL_ALWAYS.

ref Specifies the reference value for the stencil test. ref is clamped to the
range [0,2^n-1], where n is the number of bitplanes in the stencil buffer.
The initial value is 0.

mask Specifies a mask that is ANDed with both the reference value and the
stored stencil value when the test is done. The initial value is all 1’s.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis.
Stencil planes are first drawn into using GL drawing primitives, then geometry and
images are rendered using the stencil planes to mask out portions of the screen.
Stenciling is typically used in multipass rendering algorithms to achieve special effects,
such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a compar-
ison between the reference value and the value in the stencil buffer. To enable and
disable the test, call glEnable and glDisable with argument GL_STENCIL_TEST.
To specify actions based on the outcome of the stencil test, call glStencilOp or
glStencilOpSeparate.

There can be two separate sets of func, ref, and mask parameters; one affects back-
facing polygons, and the other affects front-facing polygons as well as other non-
polygon primitives. glStencilFunc sets both front and back stencil state to the
same values. Use glStencilFuncSeparate to set front and back stencil state to
different values.

func is a symbolic constant that determines the stencil comparison function. It accepts
one of eight values, shown in the following list. ref is an integer reference value that
is used in the stencil comparison. It is clamped to the range [0,2^n-1], where n is
the number of bitplanes in the stencil buffer. mask is bitwise ANDed with both the
reference value and the stored stencil value, with the ANDed values participating in
the comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the
following list shows the effect of each comparison function that can be specified by
func. Only if the comparison succeeds is the pixel passed through to the next stage in
the rasterization process (see glStencilOp). All tests treat stencil values as unsigned
integers in the range [0,2^n-1], where n is the number of bitplanes in the stencil buffer.

Chapter 3: GL 369

The following values are accepted by func:

GL_NEVER Always fails.

GL_LESS Passes if (ref & mask) < (stencil & mask).

GL_LEQUAL

Passes if (ref & mask) <= (stencil & mask).

GL_GREATER

Passes if (ref & mask) > (stencil & mask).

GL_GEQUAL

Passes if (ref & mask) >= (stencil & mask).

GL_EQUAL Passes if (ref & mask) = (stencil & mask).

GL_NOTEQUAL

Passes if (ref & mask) != (stencil & mask).

GL_ALWAYS

Always passes.

GL_INVALID_ENUM is generated if func is not one of the eight accepted values.

GL_INVALID_OPERATION is generated if glStencilFunc is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glStencilMaskSeparate face mask
Control the front and/or back writing of individual bits in the stencil planes.

face Specifies whether the front and/or back stencil writemask is updated.
Three symbolic constants are valid: GL_FRONT, GL_BACK, and GL_FRONT_

AND_BACK.

mask Specifies a bit mask to enable and disable writing of individual bits in
the stencil planes. Initially, the mask is all 1’s.

glStencilMaskSeparate controls the writing of individual bits in the stencil planes.
The least significant n bits of mask, where n is the number of bits in the stencil
buffer, specify a mask. Where a 1 appears in the mask, it’s possible to write to the
corresponding bit in the stencil buffer. Where a 0 appears, the corresponding bit is
write-protected. Initially, all bits are enabled for writing.

There can be two separate mask writemasks; one affects back-facing polygons, and
the other affects front-facing polygons as well as other non-polygon primitives.
glStencilMask sets both front and back stencil writemasks to the same values, as if
glStencilMaskSeparate were called with face set to GL_FRONT_AND_BACK.

GL_INVALID_OPERATION is generated if glStencilMaskSeparate is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glStencilMask mask
Control the front and back writing of individual bits in the stencil planes.

mask Specifies a bit mask to enable and disable writing of individual bits in
the stencil planes. Initially, the mask is all 1’s.

Chapter 3: GL 370

glStencilMask controls the writing of individual bits in the stencil planes. The least
significant n bits of mask, where n is the number of bits in the stencil buffer, specify
a mask. Where a 1 appears in the mask, it’s possible to write to the corresponding
bit in the stencil buffer. Where a 0 appears, the corresponding bit is write-protected.
Initially, all bits are enabled for writing.

There can be two separate mask writemasks; one affects back-facing polygons, and
the other affects front-facing polygons as well as other non-polygon primitives.
glStencilMask sets both front and back stencil writemasks to the same values. Use
glStencilMaskSeparate to set front and back stencil writemasks to different values.

GL_INVALID_OPERATION is generated if glStencilMask is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glStencilOpSeparate face sfail dpfail dppass
Set front and/or back stencil test actions.

face Specifies whether front and/or back stencil state is updated. Three sym-
bolic constants are valid: GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.

sfail Specifies the action to take when the stencil test fails. Eight symbolic
constants are accepted: GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_
INCR_WRAP, GL_DECR, GL_DECR_WRAP, and GL_INVERT. The initial value
is GL_KEEP.

dpfail Specifies the stencil action when the stencil test passes, but the depth
test fails. dpfail accepts the same symbolic constants as sfail. The initial
value is GL_KEEP.

dppass Specifies the stencil action when both the stencil test and the depth test
pass, or when the stencil test passes and either there is no depth buffer or
depth testing is not enabled. dppass accepts the same symbolic constants
as sfail. The initial value is GL_KEEP.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis.
You draw into the stencil planes using GL drawing primitives, then render geometry
and images, using the stencil planes to mask out portions of the screen. Stenciling
is typically used in multipass rendering algorithms to achieve special effects, such as
decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison
between the value in the stencil buffer and a reference value. To enable and disable
the test, call glEnable and glDisable with argument GL_STENCIL_TEST; to control
it, call glStencilFunc or glStencilFuncSeparate.

There can be two separate sets of sfail, dpfail, and dppass parameters; one affects
back-facing polygons, and the other affects front-facing polygons as well as other non-
polygon primitives. glStencilOp sets both front and back stencil state to the same
values, as if glStencilOpSeparate were called with face set to GL_FRONT_AND_BACK.

glStencilOpSeparate takes three arguments that indicate what happens to the
stored stencil value while stenciling is enabled. If the stencil test fails, no change
is made to the pixel’s color or depth buffers, and sfail specifies what happens to the
stencil buffer contents. The following eight actions are possible.

Chapter 3: GL 371

GL_KEEP Keeps the current value.

GL_ZERO Sets the stencil buffer value to 0.

GL_REPLACE

Sets the stencil buffer value to ref, as specified by glStencilFunc.

GL_INCR Increments the current stencil buffer value. Clamps to the maximum
representable unsigned value.

GL_INCR_WRAP

Increments the current stencil buffer value. Wraps stencil buffer value to
zero when incrementing the maximum representable unsigned value.

GL_DECR Decrements the current stencil buffer value. Clamps to 0.

GL_DECR_WRAP

Decrements the current stencil buffer value. Wraps stencil buffer value to
the maximum representable unsigned value when decrementing a stencil
buffer value of zero.

GL_INVERT

Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decre-
mented, values are clamped to 0 and 2^n-1, where n is the value returned by querying
GL_STENCIL_BITS.

The other two arguments to glStencilOpSeparate specify stencil buffer actions that
depend on whether subsequent depth buffer tests succeed (dppass) or fail (dpfail) (see
glDepthFunc). The actions are specified using the same eight symbolic constants as
sfail. Note that dpfail is ignored when there is no depth buffer, or when the depth
buffer is not enabled. In these cases, sfail and dppass specify stencil action when the
stencil test fails and passes, respectively.

GL_INVALID_ENUM is generated if face is any value other than GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

GL_INVALID_ENUM is generated if sfail, dpfail, or dppass is any value other than the
eight defined constant values.

GL_INVALID_OPERATION is generated if glStencilOpSeparate is executed between
the execution of glBegin and the corresponding execution of glEnd.

[Function]void glStencilOp sfail dpfail dppass
Set front and back stencil test actions.

sfail Specifies the action to take when the stencil test fails. Eight symbolic
constants are accepted: GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_
INCR_WRAP, GL_DECR, GL_DECR_WRAP, and GL_INVERT. The initial value
is GL_KEEP.

dpfail Specifies the stencil action when the stencil test passes, but the depth
test fails. dpfail accepts the same symbolic constants as sfail. The initial
value is GL_KEEP.

Chapter 3: GL 372

dppass Specifies the stencil action when both the stencil test and the depth test
pass, or when the stencil test passes and either there is no depth buffer or
depth testing is not enabled. dppass accepts the same symbolic constants
as sfail. The initial value is GL_KEEP.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis.
You draw into the stencil planes using GL drawing primitives, then render geometry
and images, using the stencil planes to mask out portions of the screen. Stenciling
is typically used in multipass rendering algorithms to achieve special effects, such as
decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison
between the value in the stencil buffer and a reference value. To enable and disable
the test, call glEnable and glDisable with argument GL_STENCIL_TEST; to control
it, call glStencilFunc or glStencilFuncSeparate.

There can be two separate sets of sfail, dpfail, and dppass parameters; one affects
back-facing polygons, and the other affects front-facing polygons as well as other non-
polygon primitives. glStencilOp sets both front and back stencil state to the same
values. Use glStencilOpSeparate to set front and back stencil state to different
values.

glStencilOp takes three arguments that indicate what happens to the stored stencil
value while stenciling is enabled. If the stencil test fails, no change is made to the
pixel’s color or depth buffers, and sfail specifies what happens to the stencil buffer
contents. The following eight actions are possible.

GL_KEEP Keeps the current value.

GL_ZERO Sets the stencil buffer value to 0.

GL_REPLACE

Sets the stencil buffer value to ref, as specified by glStencilFunc.

GL_INCR Increments the current stencil buffer value. Clamps to the maximum
representable unsigned value.

GL_INCR_WRAP

Increments the current stencil buffer value. Wraps stencil buffer value to
zero when incrementing the maximum representable unsigned value.

GL_DECR Decrements the current stencil buffer value. Clamps to 0.

GL_DECR_WRAP

Decrements the current stencil buffer value. Wraps stencil buffer value to
the maximum representable unsigned value when decrementing a stencil
buffer value of zero.

GL_INVERT

Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decre-
mented, values are clamped to 0 and 2^n-1, where n is the value returned by querying
GL_STENCIL_BITS.

Chapter 3: GL 373

The other two arguments to glStencilOp specify stencil buffer actions that de-
pend on whether subsequent depth buffer tests succeed (dppass) or fail (dpfail) (see
glDepthFunc). The actions are specified using the same eight symbolic constants as
sfail. Note that dpfail is ignored when there is no depth buffer, or when the depth
buffer is not enabled. In these cases, sfail and dppass specify stencil action when the
stencil test fails and passes, respectively.

GL_INVALID_ENUM is generated if sfail, dpfail, or dppass is any value other than the
eight defined constant values.

GL_INVALID_OPERATION is generated if glStencilOp is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glTexCoordPointer size type stride pointer
Define an array of texture coordinates.

size Specifies the number of coordinates per array element. Must be 1, 2, 3,
or 4. The initial value is 4.

type Specifies the data type of each texture coordinate. Symbolic constants
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial
value is GL_FLOAT.

stride Specifies the byte offset between consecutive texture coordinate sets. If
stride is 0, the array elements are understood to be tightly packed. The
initial value is 0.

pointer Specifies a pointer to the first coordinate of the first texture coordinate
set in the array. The initial value is 0.

glTexCoordPointer specifies the location and data format of an array of texture co-
ordinates to use when rendering. size specifies the number of coordinates per texture
coordinate set, and must be 1, 2, 3, or 4. type specifies the data type of each texture
coordinate, and stride specifies the byte stride from one texture coordinate set to the
next, allowing vertices and attributes to be packed into a single array or stored in sep-
arate arrays. (Single-array storage may be more efficient on some implementations;
see glInterleavedArrays.)

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) while a texture coordinate array is specified, pointer is treated as
a byte offset into the buffer object’s data store. Also, the buffer object binding (GL_
ARRAY_BUFFER_BINDING) is saved as texture coordinate vertex array client-side state
(GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING).

When a texture coordinate array is specified, size, type, stride, and pointer are saved
as client-side state, in addition to the current vertex array buffer object binding.

To enable and disable a texture coordinate array, call glEnableClientState

and glDisableClientState with the argument GL_TEXTURE_COORD_ARRAY.
If enabled, the texture coordinate array is used when glArrayElement,
glDrawArrays, glMultiDrawArrays, glDrawElements, glMultiDrawElements, or
glDrawRangeElements is called.

GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.

Chapter 3: GL 374

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

[Function]void glTexCoord1s s
[Function]void glTexCoord1i s
[Function]void glTexCoord1f s
[Function]void glTexCoord1d s
[Function]void glTexCoord2s s t
[Function]void glTexCoord2i s t
[Function]void glTexCoord2f s t
[Function]void glTexCoord2d s t
[Function]void glTexCoord3s s t r
[Function]void glTexCoord3i s t r
[Function]void glTexCoord3f s t r
[Function]void glTexCoord3d s t r
[Function]void glTexCoord4s s t r q
[Function]void glTexCoord4i s t r q
[Function]void glTexCoord4f s t r q
[Function]void glTexCoord4d s t r q
[Function]void glTexCoord1sv v
[Function]void glTexCoord1iv v
[Function]void glTexCoord1fv v
[Function]void glTexCoord1dv v
[Function]void glTexCoord2sv v
[Function]void glTexCoord2iv v
[Function]void glTexCoord2fv v
[Function]void glTexCoord2dv v
[Function]void glTexCoord3sv v
[Function]void glTexCoord3iv v
[Function]void glTexCoord3fv v
[Function]void glTexCoord3dv v
[Function]void glTexCoord4sv v
[Function]void glTexCoord4iv v
[Function]void glTexCoord4fv v
[Function]void glTexCoord4dv v

Set the current texture coordinates.

s
t
r
q Specify s, t, r, and q texture coordinates. Not all parameters are present

in all forms of the command.

glTexCoord specifies texture coordinates in one, two, three, or four dimensions.
glTexCoord1 sets the current texture coordinates to (s,001); a call to glTexCoord2

sets them to (s,t01). Similarly, glTexCoord3 specifies the texture coordinates as
(s,tr1), and glTexCoord4 defines all four components explicitly as (s,trq).

Chapter 3: GL 375

The current texture coordinates are part of the data that is associated with each
vertex and with the current raster position. Initially, the values for s, t, r, and q are
(0, 0, 0, 1).

[Function]void glTexEnvf target pname param
[Function]void glTexEnvi target pname param
[Function]void glTexEnvfv target pname params
[Function]void glTexEnviv target pname params

Set texture environment parameters.

target Specifies a texture environment. May be GL_TEXTURE_ENV, GL_TEXTURE_
FILTER_CONTROL or GL_POINT_SPRITE.

pname Specifies the symbolic name of a single-valued texture environment pa-
rameter. May be either GL_TEXTURE_ENV_MODE, GL_TEXTURE_LOD_BIAS,
GL_COMBINE_RGB, GL_COMBINE_ALPHA, GL_SRC0_RGB, GL_SRC1_RGB,
GL_SRC2_RGB, GL_SRC0_ALPHA, GL_SRC1_ALPHA, GL_SRC2_ALPHA,
GL_OPERAND0_RGB, GL_OPERAND1_RGB, GL_OPERAND2_RGB, GL_OPERAND0_
ALPHA, GL_OPERAND1_ALPHA, GL_OPERAND2_ALPHA, GL_RGB_SCALE,
GL_ALPHA_SCALE, or GL_COORD_REPLACE.

param Specifies a single symbolic constant, one of GL_ADD, GL_ADD_SIGNED,
GL_INTERPOLATE, GL_MODULATE, GL_DECAL, GL_BLEND, GL_REPLACE,
GL_SUBTRACT, GL_COMBINE, GL_TEXTURE, GL_CONSTANT, GL_PRIMARY_

COLOR, GL_PREVIOUS, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, a single boolean value for the
point sprite texture coordinate replacement, a single floating-point value
for the texture level-of-detail bias, or 1.0, 2.0, or 4.0 when specifying the
GL_RGB_SCALE or GL_ALPHA_SCALE.

A texture environment specifies how texture values are interpreted when a
fragment is textured. When target is GL_TEXTURE_FILTER_CONTROL, pname
must be GL_TEXTURE_LOD_BIAS. When target is GL_TEXTURE_ENV, pname
can be GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_COLOR, GL_COMBINE_RGB,
GL_COMBINE_ALPHA, GL_RGB_SCALE, GL_ALPHA_SCALE, GL_SRC0_RGB, GL_SRC1_RGB,
GL_SRC2_RGB, GL_SRC0_ALPHA, GL_SRC1_ALPHA, or GL_SRC2_ALPHA.

If pname is GL_TEXTURE_ENV_MODE, then params is (or points to) the symbolic name
of a texture function. Six texture functions may be specified: GL_ADD, GL_MODULATE,
GL_DECAL, GL_BLEND, GL_REPLACE, or GL_COMBINE.

The following table shows the correspondence of filtered texture values R t, G t, B t,
A t, L t, I t to texture source components. C s and A s are used by the texture
functions described below.

Texture Base Internal Format
C s, A s

GL_ALPHA (0, 0, 0) , A t

GL_LUMINANCE

(L t, L t, L t) , 1

Chapter 3: GL 376

GL_LUMINANCE_ALPHA

(L t, L t, L t) , A t

GL_INTENSITY

(I t, I t, I t) , I t

GL_RGB (R t, G t, B t) , 1

GL_RGBA (R t, G t, B t) , A t

A texture function acts on the fragment to be textured using the texture image value
that applies to the fragment (see glTexParameter) and produces an RGBA color for
that fragment. The following table shows how the RGBA color is produced for each
of the first five texture functions that can be chosen. C is a triple of color values
(RGB) and A is the associated alpha value. RGBA values extracted from a texture
image are in the range [0,1]. The subscript p refers to the color computed from the
previous texture stage (or the incoming fragment if processing texture stage 0), the
subscript s to the texture source color, the subscript c to the texture environment
color, and the subscript v indicates a value produced by the texture function.

Texture Base Internal Format
Value, GL_REPLACE Function , GL_MODULATE Function , GL_DECAL Func-
tion , GL_BLEND Function , GL_ADD Function

GL_ALPHA C v=, C p, C p, undefined , C p, C p

. A v=, A s, A pA s, , A v=A pA s, A pA s

GL_LUMINANCE

C v=, C s, C pC s, undefined , C p(1-C s,)+C cC s, C p+C s

(or 1) A v=, A p, A p, , A p, A p

GL_LUMINANCE_ALPHA

C v=, C s, C pC s, undefined , C p(1-C s,)+C cC s, C p+C s

(or 2) A v=, A s, A pA s, , A pA s, A pA s

GL_INTENSITY

C v=, C s, C pC s, undefined , C p(1-C s,)+C cC s, C p+C s

. A v=, A s, A pA s, , A p(1-A s,)+A cA s, A p+A s

GL_RGB C v=, C s, C pC s, C s, C p(1-C s,)+C cC s, C p+C s

(or 3) A v=, A p, A p, A p, A p, A p

GL_RGBA C v=, C s, C pC s, C p(1-A s,)+C sA s, C p(1-C s,)+C cC s,
C p+C s

(or 4) A v=, A s, A pA s, A p, A pA s, A pA s

If pname is GL_TEXTURE_ENV_MODE, and params is GL_COMBINE, the form of the tex-
ture function depends on the values of GL_COMBINE_RGB and GL_COMBINE_ALPHA.

The following describes how the texture sources, as specified by GL_SRC0_RGB, GL_
SRC1_RGB, GL_SRC2_RGB, GL_SRC0_ALPHA, GL_SRC1_ALPHA, and GL_SRC2_ALPHA, are
combined to produce a final texture color. In the following tables, GL_SRC0_c is

Chapter 3: GL 377

represented byArg0, GL_SRC1_c is represented byArg1, and GL_SRC2_c is represented
by Arg2.

GL_COMBINE_RGB accepts any of GL_REPLACE, GL_MODULATE, GL_ADD, GL_ADD_SIGNED,
GL_INTERPOLATE, GL_SUBTRACT, GL_DOT3_RGB, or GL_DOT3_RGBA.

GL_COMBINE_RGB

Texture Function

GL_REPLACE

Arg0

GL_MODULATE

Arg0Arg1

GL_ADD Arg0+Arg1

GL_ADD_SIGNED

Arg0+Arg1-0.5

GL_INTERPOLATE

Arg0Arg2+Arg1(1-Arg2,)

GL_SUBTRACT

Arg0-Arg1

GL_DOT3_RGB or GL_DOT3_RGBA
4(((Arg0 r,-0.5,)(Arg1 r,-0.5,),)+((Arg0 g,-0.5,)(Arg1 g,-
0.5,),)+((Arg0 b,-0.5,)(Arg1 b,-0.5,),),)

The scalar results for GL_DOT3_RGB and GL_DOT3_RGBA are placed into each of the 3
(RGB) or 4 (RGBA) components on output.

Likewise, GL_COMBINE_ALPHA accepts any of GL_REPLACE, GL_MODULATE, GL_ADD, GL_
ADD_SIGNED, GL_INTERPOLATE, or GL_SUBTRACT. The following table describes how
alpha values are combined:

GL_COMBINE_ALPHA

Texture Function

GL_REPLACE

Arg0

GL_MODULATE

Arg0Arg1

GL_ADD Arg0+Arg1

GL_ADD_SIGNED

Arg0+Arg1-0.5

GL_INTERPOLATE

Arg0Arg2+Arg1(1-Arg2,)

GL_SUBTRACT

Arg0-Arg1

Chapter 3: GL 378

In the following tables, the value C s represents the color sampled from the currently
bound texture, C c represents the constant texture-environment color, C f represents
the primary color of the incoming fragment, and C p represents the color computed
from the previous texture stage or C f if processing texture stage 0. Likewise, A s,
A c, A f , and A p represent the respective alpha values.

The following table describes the values assigned to Arg0, Arg1, and Arg2 based
upon the RGB sources and operands:

GL_SRCn_RGB

GL_OPERANDn_RGB, Argument Value

GL_TEXTURE

GL_SRC_COLOR, C s,

. GL_ONE_MINUS_SRC_COLOR, 1-C s,

. GL_SRC_ALPHA, A s,

. GL_ONE_MINUS_SRC_ALPHA, 1-A s,

GL_TEXTUREn

GL_SRC_COLOR, C s,

. GL_ONE_MINUS_SRC_COLOR, 1-C s,

. GL_SRC_ALPHA, A s,

. GL_ONE_MINUS_SRC_ALPHA, 1-A s,

GL_CONSTANT

GL_SRC_COLOR, C c,

. GL_ONE_MINUS_SRC_COLOR, 1-C c,

. GL_SRC_ALPHA, A c,

. GL_ONE_MINUS_SRC_ALPHA, 1-A c,

GL_PRIMARY_COLOR

GL_SRC_COLOR, C f,

. GL_ONE_MINUS_SRC_COLOR, 1-C f,

. GL_SRC_ALPHA, A f,

. GL_ONE_MINUS_SRC_ALPHA, 1-A f,

GL_PREVIOUS

GL_SRC_COLOR, C p,

. GL_ONE_MINUS_SRC_COLOR, 1-C p,

. GL_SRC_ALPHA, A p,

. GL_ONE_MINUS_SRC_ALPHA, 1-A p,

For GL_TEXTUREn sources, C s and A s represent the color and alpha, respectively,
produced from texture stage n.

The follow table describes the values assigned to Arg0, Arg1, and Arg2 based upon
the alpha sources and operands:

Chapter 3: GL 379

GL_SRCn_ALPHA

GL_OPERANDn_ALPHA, Argument Value

GL_TEXTURE

GL_SRC_ALPHA, A s,

. GL_ONE_MINUS_SRC_ALPHA, 1-A s,

GL_TEXTUREn

GL_SRC_ALPHA, A s,

. GL_ONE_MINUS_SRC_ALPHA, 1-A s,

GL_CONSTANT

GL_SRC_ALPHA, A c,

. GL_ONE_MINUS_SRC_ALPHA, 1-A c,

GL_PRIMARY_COLOR

GL_SRC_ALPHA, A f,

. GL_ONE_MINUS_SRC_ALPHA, 1-A f,

GL_PREVIOUS

GL_SRC_ALPHA, A p,

. GL_ONE_MINUS_SRC_ALPHA, 1-A p,

The RGB and alpha results of the texture function are multipled by the values of
GL_RGB_SCALE and GL_ALPHA_SCALE, respectively, and clamped to the range [0,1].

If pname is GL_TEXTURE_ENV_COLOR, params is a pointer to an array that holds an
RGBA color consisting of four values. Integer color components are interpreted lin-
early such that the most positive integer maps to 1.0, and the most negative integer
maps to -1.0. The values are clamped to the range [0,1] when they are specified. C c
takes these four values.

If pname is GL_TEXTURE_LOD_BIAS, the value specified is added to the texture level-
of-detail parameter, that selects which mipmap, or mipmaps depending upon the
selected GL_TEXTURE_MIN_FILTER, will be sampled.

GL_TEXTURE_ENV_MODE defaults to GL_MODULATE and GL_TEXTURE_ENV_COLOR defaults
to (0, 0, 0, 0).

If target is GL_POINT_SPRITE and pname is GL_COORD_REPLACE, the boolean value
specified is used to either enable or disable point sprite texture coordinate replace-
ment. The default value is GL_FALSE.

GL_INVALID_ENUM is generated when target or pname is not one of the accepted
defined values, or when params should have a defined constant value (based on the
value of pname) and does not.

GL_INVALID_VALUE is generated if the params value for GL_RGB_SCALE or GL_ALPHA_
SCALE are not one of 1.0, 2.0, or 4.0.

GL_INVALID_OPERATION is generated if glTexEnv is executed between the execution
of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 380

[Function]void glTexGeni coord pname param
[Function]void glTexGenf coord pname param
[Function]void glTexGend coord pname param
[Function]void glTexGeniv coord pname params
[Function]void glTexGenfv coord pname params
[Function]void glTexGendv coord pname params

Control the generation of texture coordinates.

coord Specifies a texture coordinate. Must be one of GL_S, GL_T, GL_R, or GL_Q.

pname Specifies the symbolic name of the texture-coordinate generation func-
tion. Must be GL_TEXTURE_GEN_MODE.

param Specifies a single-valued texture generation parameter, one of
GL_OBJECT_LINEAR, GL_EYE_LINEAR, GL_SPHERE_MAP, GL_NORMAL_MAP,
or GL_REFLECTION_MAP.

glTexGen selects a texture-coordinate generation function or supplies coefficients for
one of the functions. coord names one of the (s, t, r, q) texture coordinates; it must be
one of the symbols GL_S, GL_T, GL_R, or GL_Q. pname must be one of three symbolic
constants: GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE. If pname
is GL_TEXTURE_GEN_MODE, then params chooses a mode, one of GL_OBJECT_LINEAR,
GL_EYE_LINEAR, GL_SPHERE_MAP, GL_NORMAL_MAP, or GL_REFLECTION_MAP. If pname
is either GL_OBJECT_PLANE or GL_EYE_PLANE, params contains coefficients for the
corresponding texture generation function.

If the texture generation function is GL_OBJECT_LINEAR, the function

g=p 1x o+p 2y o+p 3z o+p 4w o

is used, where g is the value computed for the coordinate named in coord, p 1, p 2,
p 3, and p 4 are the four values supplied in params, and x o, y o, z o, and w o
are the object coordinates of the vertex. This function can be used, for example, to
texture-map terrain using sea level as a reference plane (defined by p 1, p 2, p 3,
and p 4). The altitude of a terrain vertex is computed by the GL_OBJECT_LINEAR

coordinate generation function as its distance from sea level; that altitude can then
be used to index the texture image to map white snow onto peaks and green grass
onto foothills.

If the texture generation function is GL_EYE_LINEAR, the function

g=p 1,^x e+p 2,^y e+p 3,^z e+p 4,^w e

is used, where

(p 1,^p 2,^p 3,^p 4,^,)=(p 1p 2p 3p 4,)M^-1

and x e, y e, z e, and w e are the eye coordinates of the vertex, p 1, p 2, p 3, and
p 4 are the values supplied in params, andM is the modelview matrix when glTexGen

is invoked. If M is poorly conditioned or singular, texture coordinates generated by
the resulting function may be inaccurate or undefined.

Note that the values in params define a reference plane in eye coordinates. The
modelview matrix that is applied to them may not be the same one in effect when
the polygon vertices are transformed. This function establishes a field of texture
coordinates that can produce dynamic contour lines on moving objects.

Chapter 3: GL 381

If the texture generation function is GL_SPHERE_MAP and coord is either GL_S or GL_T,
s and t texture coordinates are generated as follows. Let u be the unit vector pointing
from the origin to the polygon vertex (in eye coordinates). Let n sup prime be the
current normal, after transformation to eye coordinates. Let

f=(f xf yf z,)^T be the reflection vector such that

f=u-2n^n^,^Tu

Finally, let m=2(f x,^2+f y,^2+(f z+1,)^2,). Then the values assigned to the s and
t texture coordinates are

s=f x/m+1/2

t=f y/m+1/2

To enable or disable a texture-coordinate generation function, call glEnable or
glDisable with one of the symbolic texture-coordinate names (GL_TEXTURE_GEN_S,
GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q) as the argument.
When enabled, the specified texture coordinate is computed according to the
generating function associated with that coordinate. When disabled, subsequent
vertices take the specified texture coordinate from the current set of texture
coordinates. Initially, all texture generation functions are set to GL_EYE_LINEAR and
are disabled. Both s plane equations are (1, 0, 0, 0), both t plane equations are (0,
1, 0, 0), and all r and q plane equations are (0, 0, 0, 0).

When the ARB_multitexture extension is supported, glTexGen sets the texture
generation parameters for the currently active texture unit, selected with
glActiveTexture.

GL_INVALID_ENUM is generated when coord or pname is not an accepted defined value,
or when pname is GL_TEXTURE_GEN_MODE and params is not an accepted defined value.

GL_INVALID_ENUM is generated when pname is GL_TEXTURE_GEN_MODE, params is GL_
SPHERE_MAP, and coord is either GL_R or GL_Q.

GL_INVALID_OPERATION is generated if glTexGen is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glTexImage1D target level internalFormat width border format type
data

Specify a one-dimensional texture image.

target Specifies the target texture. Must be GL_TEXTURE_1D or GL_PROXY_

TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

internalFormat
Specifies the number of color components in the texture. Must
be 1, 2, 3, or 4, or one of the following symbolic constants:
GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_

LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32, GL_LUMINANCE,

Chapter 3: GL 382

GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_

ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,
GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1,
GL_RGBA8, GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SLUMINANCE,
GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, GL_SLUMINANCE8_ALPHA8,
GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

width Specifies the width of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2^n+2(border,) for some integer n. All implementations support texture
images that are at least 64 texels wide. The height of the 1D texture
image is 1.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_

ALPHA.

type Specifies the data type of the pixel data. The following symbolic
values are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_

FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV, GL_

UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable one-dimensional texturing, call
glEnable and glDisable with argument GL_TEXTURE_1D.

Texture images are defined with glTexImage1D. The arguments describe the param-
eters of the texture image, such as width, width of the border, level-of-detail number
(see glTexParameter), and the internal resolution and format used to store the im-
age. The last three arguments describe how the image is represented in memory; they
are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_1D, no data is read from data, but all of the tex-
ture image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the
requested texture size, it sets all of the image state to 0, but does not generate an
error (see glGetError). To query for an entire mipmap array, use an image array
level greater than or equal to 1.

Chapter 3: GL 383

If target is GL_TEXTURE_1D, data is read from data as a sequence of signed or unsigned
bytes, shorts, or longs, or single-precision floating-point values, depending on type.
These values are grouped into sets of one, two, three, or four values, depending on
format, to form elements. If type is GL_BITMAP, the data is considered as a string
of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated
as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see
glPixelStore).

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

The first element corresponds to the left end of the texture array. Subsequent elements
progress left-to-right through the remaining texels in the texture array. The final
element corresponds to the right end of the texture array.

format determines the composition of each element in data. It can assume one of
these symbolic values:

GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to
fixed point (with an unspecified number of zero bits to the right of the
binary point), shifted left or right depending on the value and sign of GL_
INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer).
The resulting index is converted to a set of color components using the
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B,
and GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for green
and blue, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red
and blue, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red
and green, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_ALPHA Each element is a single alpha component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red,
green, and blue. Each component is then multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0,1] (see glPixelTransfer).

Chapter 3: GL 384

GL_INTENSITY

Each element is a single intensity value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the
intensity value three times for red, green, blue, and alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGB

GL_BGR Each element is an RGB triple. The GL converts it to floating point
and assembles it into an RGBA element by attaching 1 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGBA

GL_BGRA Each element contains all four components. Each component is multiplied
by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_

BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_LUMINANCE

Each element is a single luminance value. The GL converts it to float-
ing point, then assembles it into an RGBA element by replicating the
luminance value three times for red, green, and blue and attaching 1 for
alpha. Each component is then multiplied by the signed scale factor GL_
c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see glPixelTransfer).

GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the lumi-
nance value three times for red, green, and blue. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed
bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_DEPTH_COMPONENT

Each element is a single depth value. The GL converts it to floating
point, multiplies by the signed scale factor GL_DEPTH_SCALE, adds
the signed bias GL_DEPTH_BIAS, and clamps to the range [0,1] (see
glPixelTransfer).

Refer to the glDrawPixels reference page for a description of the acceptable values
for the type parameter.

If an application wants to store the texture at a certain resolution or in a certain
format, it can request the resolution and format with internalFormat. The GL
will choose an internal representation that closely approximates that requested by
internalFormat, but it may not match exactly. (The representations specified by GL_

LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The
numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

Chapter 3: GL 385

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA,
the GL will replace the internal format with the symbolic constant for a specific
internal format and compress the texture before storage. If no corresponding
internal format is available, or the GL can not compress that image for any reason,
the internal format is instead replaced with a corresponding base internal format.

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA,
GL_SRGB8_ALPHA8, GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA,
or GL_SLUMINANCE8_ALPHA8, the texture is treated as if the red, green, blue, or
luminance components are encoded in the sRGB color space. Any alpha component
is left unchanged. The conversion from the sRGB encoded component c s to a linear
component c l is:

c l={(c s/12.92 if c s0.04045), ((c s+0.055/1.055)^2.4 if c s>0.04045)

Assume c s is the sRGB component in the range [0,1].

Use the GL_PROXY_TEXTURE_1D target to try out a resolution and format. The im-
plementation will update and recompute its best match for the requested storage
resolution and format. To then query this state, call glGetTexLevelParameter. If
the texture cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color
from data. A two-component image uses the R and A values. A three-component
image uses the R, G, and B values. A four-component image uses all of the RGBA
components.

Depth textures can be treated as LUMINANCE, INTENSITY or ALPHA textures
during texture filtering and application. Image-based shadowingcanbe enabledby-
comparing texture r coordinates to depth texture values to generate a boolean result.
See glTexParameter for details on texture comparison.

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D or GL_PROXY_TEXTURE_
1D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format
constants other than GL_STENCIL_INDEX are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_

INDEX.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2(max,), where max
is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalFormat is not 1, 2, 3, 4, or one of the
accepted resolution and format symbolic constants.

GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 + GL_MAX_

TEXTURE_SIZE.

GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and
the width cannot be represented as 2^n+2(border,) for some integer value of n.

Chapter 3: GL 386

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT

and internalFormat is not GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if internalFormat is GL_DEPTH_COMPONENT, GL_
DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32, and for-
mat is not GL_DEPTH_COMPONENT.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexImage1D is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glTexImage2D target level internalFormat width height border
format type data

Specify a two-dimensional texture image.

target Specifies the target texture. Must be GL_TEXTURE_2D, GL_PROXY_

TEXTURE_2D, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_

CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_

TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_PROXY_TEXTURE_CUBE_MAP.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

internalFormat
Specifies the number of color components in the texture. Must
be 1, 2, 3, or 4, or one of the following symbolic constants:
GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_

LUMINANCE_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,

Chapter 3: GL 387

GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_

ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,
GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1,
GL_RGBA8, GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SLUMINANCE,
GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, GL_SLUMINANCE8_ALPHA8,
GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

width Specifies the width of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2^n+2(border,) for some integer n. All implementations support texture
images that are at least 64 texels wide.

height Specifies the height of the texture image including the border if any. If the
GL version does not support non-power-of-two sizes, this value must be
2^m+2(border,) for some integer m. All implementations support texture
images that are at least 64 texels high.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_

ALPHA.

type Specifies the data type of the pixel data. The following symbolic
values are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_

FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV, GL_

UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable two-dimensional texturing,
call glEnable and glDisable with argument GL_TEXTURE_2D. To enable and disable
texturing using cube-mapped texture, call glEnable and glDisable with argument
GL_TEXTURE_CUBE_MAP.

To define texture images, call glTexImage2D. The arguments describe the parameters
of the texture image, such as height, width, width of the border, level-of-detail number
(see glTexParameter), and number of color components provided. The last three
arguments describe how the image is represented in memory; they are identical to the
pixel formats used for glDrawPixels.

Chapter 3: GL 388

If target is GL_PROXY_TEXTURE_2D or GL_PROXY_TEXTURE_CUBE_MAP, no data is read
from data, but all of the texture image state is recalculated, checked for consistency,
and checked against the implementation’s capabilities. If the implementation cannot
handle a texture of the requested texture size, it sets all of the image state to 0, but
does not generate an error (see glGetError). To query for an entire mipmap array,
use an image array level greater than or equal to 1.

If target is GL_TEXTURE_2D, or one of the GL_TEXTURE_CUBE_MAP targets, data is
read from data as a sequence of signed or unsigned bytes, shorts, or longs, or single-
precision floating-point values, depending on type. These values are grouped into sets
of one, two, three, or four values, depending on format, to form elements. If type is
GL_BITMAP, the data is considered as a string of unsigned bytes (and format must be
GL_COLOR_INDEX). Each data byte is treated as eight 1-bit elements, with bit ordering
determined by GL_UNPACK_LSB_FIRST (see glPixelStore).

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

The first element corresponds to the lower left corner of the texture image. Subsequent
elements progress left-to-right through the remaining texels in the lowest row of the
texture image, and then in successively higher rows of the texture image. The final
element corresponds to the upper right corner of the texture image.

format determines the composition of each element in data. It can assume one of
these symbolic values:

GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to
fixed point (with an unspecified number of zero bits to the right of the
binary point), shifted left or right depending on the value and sign of GL_
INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer).
The resulting index is converted to a set of color components using the
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B,
and GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for green
and blue, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red
and blue, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red
and green, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

Chapter 3: GL 389

GL_ALPHA Each element is a single alpha component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red,
green, and blue. Each component is then multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0,1] (see glPixelTransfer).

GL_INTENSITY

Each element is a single intensity value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the
intensity value three times for red, green, blue, and alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGB

GL_BGR Each element is an RGB triple. The GL converts it to floating point
and assembles it into an RGBA element by attaching 1 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGBA

GL_BGRA Each element contains all four components. Each component is multiplied
by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_

BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_LUMINANCE

Each element is a single luminance value. The GL converts it to float-
ing point, then assembles it into an RGBA element by replicating the
luminance value three times for red, green, and blue and attaching 1 for
alpha. Each component is then multiplied by the signed scale factor GL_
c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see glPixelTransfer).

GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the lumi-
nance value three times for red, green, and blue. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed
bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_DEPTH_COMPONENT

Each element is a single depth value. The GL converts it to floating
point, multiplies by the signed scale factor GL_DEPTH_SCALE, adds
the signed bias GL_DEPTH_BIAS, and clamps to the range [0,1] (see
glPixelTransfer).

Refer to the glDrawPixels reference page for a description of the acceptable values
for the type parameter.

Chapter 3: GL 390

If an application wants to store the texture at a certain resolution or in a certain
format, it can request the resolution and format with internalFormat. The GL
will choose an internal representation that closely approximates that requested by
internalFormat, but it may not match exactly. (The representations specified by GL_

LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The
numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA,
the GL will replace the internal format with the symbolic constant for a specific
internal format and compress the texture before storage. If no corresponding
internal format is available, or the GL can not compress that image for any reason,
the internal format is instead replaced with a corresponding base internal format.

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA,
GL_SRGB8_ALPHA8, GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA,
or GL_SLUMINANCE8_ALPHA8, the texture is treated as if the red, green, blue, or
luminance components are encoded in the sRGB color space. Any alpha component
is left unchanged. The conversion from the sRGB encoded component c s to a linear
component c l is:

c l={(c s/12.92 if c s0.04045), ((c s+0.055/1.055)^2.4 if c s>0.04045)

Assume c s is the sRGB component in the range [0,1].

Use the GL_PROXY_TEXTURE_2D or GL_PROXY_TEXTURE_CUBE_MAP target to try out
a resolution and format. The implementation will update and recompute its best
match for the requested storage resolution and format. To then query this state, call
glGetTexLevelParameter. If the texture cannot be accommodated, texture state is
set to 0.

A one-component texture image uses only the red component of the RGBA color
extracted from data. A two-component image uses the R and A values. A three-
component image uses the R, G, and B values. A four-component image uses all of
the RGBA components.

Depth textures can be treated as LUMINANCE, INTENSITY or ALPHA textures
during texture filtering and application. Image-based shadowingcanbe enabledby-
comparing texture r coordinates to depth texture values to generate a boolean result.
See glTexParameter for details on texture comparison.

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D, GL_PROXY_

TEXTURE_2D, GL_PROXY_TEXTURE_CUBE_MAP, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_ENUM is generated if target is one of the six cube map 2D image targets
and the width and height parameters are not equal.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_

INDEX.

Chapter 3: GL 391

GL_INVALID_VALUE is generated if width or height is less than 0 or greater than 2 +

GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2(max,), where max
is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalFormat is not 1, 2, 3, 4, or one of the
accepted resolution and format symbolic constants.

GL_INVALID_VALUE is generated if width or height is less than 0 or greater than 2 +

GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and
the width or height cannot be represented as 2^k+2(border,) for some integer value
of k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if target is not GL_TEXTURE_2D or GL_PROXY_

TEXTURE_2D and internalFormat is GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT

and internalFormat is not GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if internalFormat is GL_DEPTH_COMPONENT, GL_
DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32, and for-
mat is not GL_DEPTH_COMPONENT.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexImage2D is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glTexImage3D target level internalFormat width height depth
border format type data

Specify a three-dimensional texture image.

Chapter 3: GL 392

target Specifies the target texture. Must be GL_TEXTURE_3D or GL_PROXY_

TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the n^th mipmap reduction image.

internalFormat
Specifies the number of color components in the texture. Must be 1, 2, 3,
or 4, or one of the following symbolic constants: GL_ALPHA, GL_ALPHA4,
GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_COMPRESSED_ALPHA,
GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA, GL_

COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4,
GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_

ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12,
GL_INTENSITY16, GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, GL_RGBA16,
GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA, GL_

SLUMINANCE8_ALPHA8, GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or
GL_SRGB8_ALPHA8.

width Specifies the width of the texture image including the border if any. If
the GL version does not support non-power-of-two sizes, this value must
be 2^n+2(border,) for some integer n. All implementations support 3D
texture images that are at least 16 texels wide.

height Specifies the height of the texture image including the border if any. If
the GL version does not support non-power-of-two sizes, this value must
be 2^m+2(border,) for some integer m. All implementations support 3D
texture images that are at least 16 texels high.

depth Specifies the depth of the texture image including the border if any. If
the GL version does not support non-power-of-two sizes, this value must
be 2^k+2(border,) for some integer k. All implementations support 3D
texture images that are at least 16 texels deep.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_

ALPHA.

type Specifies the data type of the pixel data. The following symbolic
values are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_

FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,

Chapter 3: GL 393

GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV, GL_

UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable three-dimensional texturing,
call glEnable and glDisable with argument GL_TEXTURE_3D.

To define texture images, call glTexImage3D. The arguments describe the parameters
of the texture image, such as height, width, depth, width of the border, level-of-detail
number (see glTexParameter), and number of color components provided. The last
three arguments describe how the image is represented in memory; they are identical
to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_3D, no data is read from data, but all of the tex-
ture image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the
requested texture size, it sets all of the image state to 0, but does not generate an
error (see glGetError). To query for an entire mipmap array, use an image array
level greater than or equal to 1.

If target is GL_TEXTURE_3D, data is read from data as a sequence of signed or unsigned
bytes, shorts, or longs, or single-precision floating-point values, depending on type.
These values are grouped into sets of one, two, three, or four values, depending on
format, to form elements. If type is GL_BITMAP, the data is considered as a string
of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated
as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see
glPixelStore).

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

The first element corresponds to the lower left corner of the texture image. Subsequent
elements progress left-to-right through the remaining texels in the lowest row of the
texture image, and then in successively higher rows of the texture image. The final
element corresponds to the upper right corner of the texture image.

format determines the composition of each element in data. It can assume one of
these symbolic values:

GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to
fixed point (with an unspecified number of zero bits to the right of the
binary point), shifted left or right depending on the value and sign of GL_
INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer).
The resulting index is converted to a set of color components using the
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B,
and GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

Chapter 3: GL 394

GL_RED Each element is a single red component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for green
and blue, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red
and blue, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red
and green, and 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_ALPHA Each element is a single alpha component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red,
green, and blue. Each component is then multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0,1] (see glPixelTransfer).

GL_INTENSITY

Each element is a single intensity value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the
intensity value three times for red, green, blue, and alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGB

GL_BGR Each element is an RGB triple. The GL converts it to floating point
and assembles it into an RGBA element by attaching 1 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,
added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGBA

GL_BGRA Each element contains all four components. Each component is multiplied
by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_

BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_LUMINANCE

Each element is a single luminance value. The GL converts it to float-
ing point, then assembles it into an RGBA element by replicating the
luminance value three times for red, green, and blue and attaching 1 for
alpha. Each component is then multiplied by the signed scale factor GL_
c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see glPixelTransfer).

Chapter 3: GL 395

GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the lumi-
nance value three times for red, green, and blue. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed
bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

Refer to the glDrawPixels reference page for a description of the acceptable values
for the type parameter.

If an application wants to store the texture at a certain resolution or in a certain
format, it can request the resolution and format with internalFormat. The GL
will choose an internal representation that closely approximates that requested by
internalFormat, but it may not match exactly. (The representations specified by GL_

LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The
numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_LUMINANCE,
GL_COMPRESSED_LUMINANCE_ALPHA, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA,
the GL will replace the internal format with the symbolic constant for a specific
internal format and compress the texture before storage. If no corresponding
internal format is available, or the GL can not compress that image for any reason,
the internal format is instead replaced with a corresponding base internal format.

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA,
GL_SRGB8_ALPHA8, GL_SLUMINANCE, GL_SLUMINANCE8, GL_SLUMINANCE_ALPHA,
or GL_SLUMINANCE8_ALPHA8, the texture is treated as if the red, green, blue, or
luminance components are encoded in the sRGB color space. Any alpha component
is left unchanged. The conversion from the sRGB encoded component c s to a linear
component c l is:

c l={(c s/12.92 if c s0.04045), ((c s+0.055/1.055)^2.4 if c s>0.04045)

Assume c s is the sRGB component in the range [0,1].

Use the GL_PROXY_TEXTURE_3D target to try out a resolution and format. The im-
plementation will update and recompute its best match for the requested storage
resolution and format. To then query this state, call glGetTexLevelParameter. If
the texture cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color
extracted from data. A two-component image uses the R and A values. A three-
component image uses the R, G, and B values. A four-component image uses all of
the RGBA components.

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D or GL_PROXY_TEXTURE_
3D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format
constants other than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_

INDEX.

Chapter 3: GL 396

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2(max,), where max
is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalFormat is not 1, 2, 3, 4, or one of the
accepted resolution and format symbolic constants.

GL_INVALID_VALUE is generated if width, height, or depth is less than 0 or greater
than 2 + GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and
the width, height, or depth cannot be represented as 2^k+2(border,) for some integer
value of k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if format or internalFormat is GL_

DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or
GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexImage3D is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glTexParameterf target pname param
[Function]void glTexParameteri target pname param
[Function]void glTexParameterfv target pname params
[Function]void glTexParameteriv target pname params

Set texture parameters.

target Specifies the target texture, which must be either GL_TEXTURE_1D, GL_
TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP.

pname Specifies the symbolic name of a single-valued texture parameter.
pname can be one of the following: GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MAG_FILTER, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,

Chapter 3: GL 397

GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_WRAP_

S, GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R, GL_TEXTURE_PRIORITY,
GL_TEXTURE_COMPARE_MODE, GL_TEXTURE_COMPARE_FUNC, GL_DEPTH_

TEXTURE_MODE, or GL_GENERATE_MIPMAP.

param Specifies the value of pname.

Texture mapping is a technique that applies an image onto an object’s surface as if
the image were a decal or cellophane shrink-wrap. The image is created in texture
space, with an (s, t) coordinate system. A texture is a one- or two-dimensional image
and a set of parameters that determine how samples are derived from the image.

glTexParameter assigns the value or values in params to the texture parameter
specified as pname. target defines the target texture, either GL_TEXTURE_1D, GL_
TEXTURE_2D, or GL_TEXTURE_3D. The following symbols are accepted in pname:

GL_TEXTURE_MIN_FILTER

The texture minifying function is used whenever the pixel being textured
maps to an area greater than one texture element. There are six de-
fined minifying functions. Two of them use the nearest one or nearest
four texture elements to compute the texture value. The other four use
mipmaps.

A mipmap is an ordered set of arrays representing the same image at
progressively lower resolutions. If the texture has dimensions 2^n2^m,
there are max(n,m)+1 mipmaps. The first mipmap is the original tex-
ture, with dimensions 2^n2^m. Each subsequent mipmap has dimensions
2^k-1,2^l-1,, where 2^k2^l are the dimensions of the previous mipmap,
until either k=0 or l=0. At that point, subsequent mipmaps have dimen-
sion 12^l-1, or 2^k-1,1 until the final mipmap, which has dimension 11. To
define the mipmaps, call glTexImage1D, glTexImage2D, glTexImage3D,
glCopyTexImage1D, or glCopyTexImage2D with the level argument indi-
cating the order of the mipmaps. Level 0 is the original texture; level
max(n,m) is the final 11 mipmap.

params supplies a function for minifying the texture as one of the follow-
ing:

As more texture elements are sampled in the minification process, fewer
aliasing artifacts will be apparent. While the GL_NEAREST and GL_LINEAR

minification functions can be faster than the other four, they sample only
one or four texture elements to determine the texture value of the pixel
being rendered and can produce moire patterns or ragged transitions. The
initial value of GL_TEXTURE_MIN_FILTER is GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MAG_FILTER

The texture magnification function is used when the pixel being textured
maps to an area less than or equal to one texture element. It sets the
texture magnification function to either GL_NEAREST or GL_LINEAR (see
below). GL_NEAREST is generally faster than GL_LINEAR, but it can pro-
duce textured images with sharper edges because the transition between
texture elements is not as smooth. The initial value of GL_TEXTURE_MAG_
FILTER is GL_LINEAR.

Chapter 3: GL 398

GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan
distance) to the center of the pixel being textured.

GL_LINEAR

Returns the weighted average of the four texture elements that are clos-
est to the center of the pixel being textured. These can include border
texture elements, depending on the values of GL_TEXTURE_WRAP_S and
GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_NEAREST_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the pixel being
textured and uses the GL_NEAREST criterion (the texture element nearest
to the center of the pixel) to produce a texture value.

GL_LINEAR_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the pixel being
textured and uses the GL_LINEAR criterion (a weighted average of the four
texture elements that are closest to the center of the pixel) to produce a
texture value.

GL_NEAREST_MIPMAP_LINEAR

Chooses the two mipmaps that most closely match the size of the pixel
being textured and uses the GL_NEAREST criterion (the texture element
nearest to the center of the pixel) to produce a texture value from each
mipmap. The final texture value is a weighted average of those two values.

GL_LINEAR_MIPMAP_LINEAR

Chooses the two mipmaps that most closely match the size of the pixel
being textured and uses the GL_LINEAR criterion (a weighted average of
the four texture elements that are closest to the center of the pixel) to
produce a texture value from each mipmap. The final texture value is a
weighted average of those two values.

GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan
distance) to the center of the pixel being textured.

GL_LINEAR

Returns the weighted average of the four texture elements that are clos-
est to the center of the pixel being textured. These can include border
texture elements, depending on the values of GL_TEXTURE_WRAP_S and
GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_TEXTURE_MIN_LOD

Sets the minimum level-of-detail parameter. This floating-point value
limits the selection of highest resolution mipmap (lowest mipmap level).
The initial value is -1000.

GL_TEXTURE_MAX_LOD

Sets the maximum level-of-detail parameter. This floating-point value
limits the selection of the lowest resolution mipmap (highest mipmap
level). The initial value is 1000.

Chapter 3: GL 399

GL_TEXTURE_BASE_LEVEL

Specifies the index of the lowest defined mipmap level. This is an integer
value. The initial value is 0.

GL_TEXTURE_MAX_LEVEL

Sets the index of the highest defined mipmap level. This is an integer
value. The initial value is 1000.

GL_TEXTURE_WRAP_S

Sets the wrap parameter for texture coordinate s to either GL_CLAMP,
GL_CLAMP_TO_BORDER, GL_CLAMP_TO_EDGE, GL_MIRRORED_REPEAT, or GL_
REPEAT. GL_CLAMP causes s coordinates to be clamped to the range [0,1]
and is useful for preventing wrapping artifacts when mapping a single
image onto an object. GL_CLAMP_TO_BORDER causes the s coordinate to
be clamped to the range [-1/2N,,1+1/2N,], where N is the size of the tex-
ture in the direction of clamping.GL_CLAMP_TO_EDGE causes s coordinates
to be clamped to the range [1/2N,,1-1/2N,], where N is the size of the
texture in the direction of clamping. GL_REPEAT causes the integer part
of the s coordinate to be ignored; the GL uses only the fractional part,
thereby creating a repeating pattern. GL_MIRRORED_REPEAT causes the
s coordinate to be set to the fractional part of the texture coordinate if
the integer part of s is even; if the integer part of s is odd, then the s
texture coordinate is set to 1-frac(s,), where frac(s,) represents the frac-
tional part of s. Border texture elements are accessed only if wrapping is
set to GL_CLAMP or GL_CLAMP_TO_BORDER. Initially, GL_TEXTURE_WRAP_S
is set to GL_REPEAT.

GL_TEXTURE_WRAP_T

Sets the wrap parameter for texture coordinate t to either GL_CLAMP,
GL_CLAMP_TO_BORDER, GL_CLAMP_TO_EDGE, GL_MIRRORED_REPEAT, or GL_
REPEAT. See the discussion under GL_TEXTURE_WRAP_S. Initially, GL_

TEXTURE_WRAP_T is set to GL_REPEAT.

GL_TEXTURE_WRAP_R

Sets the wrap parameter for texture coordinate r to either GL_CLAMP,
GL_CLAMP_TO_BORDER, GL_CLAMP_TO_EDGE, GL_MIRRORED_REPEAT, or GL_
REPEAT. See the discussion under GL_TEXTURE_WRAP_S. Initially, GL_

TEXTURE_WRAP_R is set to GL_REPEAT.

GL_TEXTURE_BORDER_COLOR

Sets a border color. params contains four values that comprise the RGBA
color of the texture border. Integer color components are interpreted
linearly such that the most positive integer maps to 1.0, and the most
negative integer maps to -1.0. The values are clamped to the range [0,1]
when they are specified. Initially, the border color is (0, 0, 0, 0).

GL_TEXTURE_PRIORITY

Specifies the texture residence priority of the currently bound texture.
Permissible values are in the range [0,1]. See glPrioritizeTextures

and glBindTexture for more information.

Chapter 3: GL 400

GL_TEXTURE_COMPARE_MODE

Specifies the texture comparison mode for currently bound depth tex-
tures. That is, a texture whose internal format is GL_DEPTH_COMPONENT_
*; see glTexImage2D) Permissible values are:

GL_TEXTURE_COMPARE_FUNC

Specifies the comparison operator used when GL_TEXTURE_COMPARE_MODE

is set to GL_COMPARE_R_TO_TEXTURE. Permissible values are: where r is
the current interpolated texture coordinate, and D t is the depth texture
value sampled from the currently bound depth texture. result is assigned
to the either the luminance, intensity, or alpha (as specified by GL_DEPTH_
TEXTURE_MODE.)

GL_DEPTH_TEXTURE_MODE

Specifies a single symbolic constant indicating how depth values should
be treated during filtering and texture application. Accepted values are
GL_LUMINANCE, GL_INTENSITY, and GL_ALPHA. The initial value is GL_

LUMINANCE.

GL_GENERATE_MIPMAP

Specifies a boolean value that indicates if all levels of a mipmap array
should be automatically updated when any modification to the base level
mipmap is done. The initial value is GL_FALSE.

GL_COMPARE_R_TO_TEXTURE

Specifies that the interpolated and clamped r texture coordinate should
be compared to the value in the currently bound depth texture. See the
discussion of GL_TEXTURE_COMPARE_FUNC for details of how the compari-
son is evaluated. The result of the comparison is assigned to luminance,
intensity, or alpha (as specified by GL_DEPTH_TEXTURE_MODE).

GL_NONE Specifies that the luminance, intensity, or alpha (as specified by GL_

DEPTH_TEXTURE_MODE) should be assigned the appropriate value from the
currently bound depth texture.

Texture Comparison Function
Computed result

GL_LEQUAL

result={(1.0), (0.0)(r<=D t,), (r>D t,),

GL_GEQUAL

result={(1.0), (0.0)(r>=D t,), (r<D t,),

GL_LESS result={(1.0), (0.0)(r<D t,), (r>=D t,),

GL_GREATER

result={(1.0), (0.0)(r>D t,), (r<=D t,),

GL_EQUAL result={(1.0), (0.0)(r=D t,), (rD t,),

GL_NOTEQUAL

result={(1.0), (0.0)(rD t,), (r=D t,),

Chapter 3: GL 401

GL_ALWAYS

result=1.0

GL_NEVER result=0.0

GL_INVALID_ENUM is generated if target or pname is not one of the accepted defined
values.

GL_INVALID_ENUM is generated if params should have a defined constant value (based
on the value of pname) and does not.

GL_INVALID_OPERATION is generated if glTexParameter is executed between the ex-
ecution of glBegin and the corresponding execution of glEnd.

[Function]void glTexSubImage1D target level xoffset width format type data
Specify a one-dimensional texture subimage.

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

width Specifies the width of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_

ALPHA.

type Specifies the data type of the pixel data. The following symbolic
values are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_

FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV, GL_

UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable or disable one-dimensional texturing, call
glEnable and glDisable with argument GL_TEXTURE_1D.

glTexSubImage1D redefines a contiguous subregion of an existing one-dimensional
texture image. The texels referenced by data replace the portion of the existing
texture array with x indices xoffset and xoffset+width-1, inclusive. This region may
not include any texels outside the range of the texture array as it was originally
specified. It is not an error to specify a subtexture with width of 0, but such a
specification has no effect.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

Chapter 3: GL 402

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_

INDEX.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2max, where max is
the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if xoffset<-b, or if (xoffset+width,)>(w-b,), where w is
the GL_TEXTURE_WIDTH, and b is the width of the GL_TEXTURE_BORDER of the texture
image being modified. Note that w includes twice the border width.

GL_INVALID_VALUE is generated if width is less than 0.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous glTexImage1D operation.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexSubImage1D is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glTexSubImage2D target level xoffset yoffset width height format
type data

Specify a two-dimensional texture subimage.

target Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_

CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_

TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_

NEGATIVE_Z.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

Chapter 3: GL 403

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_

ALPHA.

type Specifies the data type of the pixel data. The following symbolic
values are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_

FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV, GL_

UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable two-dimensional texturing, call
glEnable and glDisable with argument GL_TEXTURE_2D.

glTexSubImage2D redefines a contiguous subregion of an existing two-dimensional
texture image. The texels referenced by data replace the portion of the existing
texture array with x indices xoffset and xoffset+width-1, inclusive, and y indices yoffset
and yoffset+height-1, inclusive. This region may not include any texels outside the
range of the texture array as it was originally specified. It is not an error to specify
a subtexture with zero width or height, but such a specification has no effect.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D, GL_TEXTURE_

CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_

MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_

POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_

INDEX.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2max, where max is
the returned value of GL_MAX_TEXTURE_SIZE.

Chapter 3: GL 404

GL_INVALID_VALUE is generated if xoffset<-b, (xoffset+width,)>(w-b,), yoffset<-b, or
(yoffset+height,)>(h-b,), where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_

HEIGHT, and b is the border width of the texture image being modified. Note that w
and h include twice the border width.

GL_INVALID_VALUE is generated if width or height is less than 0.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous glTexImage2D operation.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexSubImage2D is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glTexSubImage3D target level xoffset yoffset zoffset width height
depth format type data

Specify a three-dimensional texture subimage.

target Specifies the target texture. Must be GL_TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

depth Specifies the depth of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values
are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGB, GL_BGR, GL_RGBA, GL_BGRA, GL_LUMINANCE, and GL_LUMINANCE_

ALPHA.

Chapter 3: GL 405

type Specifies the data type of the pixel data. The following symbolic
values are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_

FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV, GL_

UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable three-dimensional texturing,
call glEnable and glDisable with argument GL_TEXTURE_3D.

glTexSubImage3D redefines a contiguous subregion of an existing three-dimensional
texture image. The texels referenced by data replace the portion of the existing
texture array with x indices xoffset and xoffset+width-1, inclusive, y indices yoffset
and yoffset+height-1, inclusive, and z indices zoffset and zoffset+depth-1, inclusive.
This region may not include any texels outside the range of the texture array as it
was originally specified. It is not an error to specify a subtexture with zero width,
height, or depth but such a specification has no effect.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target
(see glBindBuffer) while a texture image is specified, data is treated as a byte offset
into the buffer object’s data store.

GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_3D.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_

INDEX.

GL_INVALID_VALUE is generated if level is less than 0.

GL_INVALID_VALUE may be generated if level is greater than log 2max, where max is
the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if xoffset<-b, (xoffset+width,)>(w-b,), yoffset<-b, or
(yoffset+height,)>(h-b,), or zoffset<-b, or (zoffset+depth,)>(d-b,), where w is the GL_

TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH and b is
the border width of the texture image being modified. Note that w , h, and d include
twice the border width.

GL_INVALID_VALUE is generated if width, height, or depth is less than 0.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous glTexImage3D operation.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2, GL_
UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or GL_UNSIGNED_SHORT_5_
6_5_REV and format is not GL_RGB.

Chapter 3: GL 406

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_
4, GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_
SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, or GL_UNSIGNED_INT_2_10_10_10_REV and format
is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to
the GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently
mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer
object such that the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of
bytes needed to store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if glTexSubImage3D is executed between the
execution of glBegin and the corresponding execution of glEnd.

[Function]void glTranslated x y z
[Function]void glTranslatef x y z

Multiply the current matrix by a translation matrix.

x
y
z Specify the x, y, and z coordinates of a translation vector.

glTranslate produces a translation by (x,yz). The current matrix (see
glMatrixMode) is multiplied by this translation matrix, with the product replacing
the current matrix, as if glMultMatrix were called with the following matrix for its
argument:

((1 0 0 x), (0 1 0 y), (0 0 1 z), (0 0 0 1),)

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after
a call to glTranslate are translated.

Use glPushMatrix and glPopMatrix to save and restore the untranslated coordinate
system.

GL_INVALID_OPERATION is generated if glTranslate is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

[Function]void glUniform1f location v0
[Function]void glUniform2f location v0 v1
[Function]void glUniform3f location v0 v1 v2
[Function]void glUniform4f location v0 v1 v2 v3
[Function]void glUniform1i location v0
[Function]void glUniform2i location v0 v1
[Function]void glUniform3i location v0 v1 v2
[Function]void glUniform4i location v0 v1 v2 v3
[Function]void glUniform1fv location count value
[Function]void glUniform2fv location count value

Chapter 3: GL 407

[Function]void glUniform3fv location count value
[Function]void glUniform4fv location count value
[Function]void glUniform1iv location count value
[Function]void glUniform2iv location count value
[Function]void glUniform3iv location count value
[Function]void glUniform4iv location count value
[Function]void glUniformMatrix2fv location count transpose value
[Function]void glUniformMatrix3fv location count transpose value
[Function]void glUniformMatrix4fv location count transpose value
[Function]void glUniformMatrix2x3fv location count transpose value
[Function]void glUniformMatrix3x2fv location count transpose value
[Function]void glUniformMatrix2x4fv location count transpose value
[Function]void glUniformMatrix4x2fv location count transpose value
[Function]void glUniformMatrix3x4fv location count transpose value
[Function]void glUniformMatrix4x3fv location count transpose value

Specify the value of a uniform variable for the current program object.

location Specifies the location of the uniform variable to be modified.

v0, v1, v2, v3
Specifies the new values to be used for the specified uniform variable.

glUniform modifies the value of a uniform variable or a uniform variable array. The
location of the uniform variable to be modified is specified by location, which should
be a value returned by glGetUniformLocation. glUniform operates on the program
object that was made part of current state by calling glUseProgram.

The commands glUniform{1|2|3|4}{f|i} are used to change the value of the uni-
form variable specified by location using the values passed as arguments. The number
specified in the command should match the number of components in the data type
of the specified uniform variable (e.g., 1 for float, int, bool; 2 for vec2, ivec2, bvec2,
etc.). The suffix f indicates that floating-point values are being passed; the suffix i

indicates that integer values are being passed, and this type should also match the
data type of the specified uniform variable. The i variants of this function should
be used to provide values for uniform variables defined as int, ivec2, ivec3, ivec4, or
arrays of these. The f variants should be used to provide values for uniform variables
of type float, vec2, vec3, vec4, or arrays of these. Either the i or the f variants may
be used to provide values for uniform variables of type bool, bvec2, bvec3, bvec4, or
arrays of these. The uniform variable will be set to false if the input value is 0 or 0.0f,
and it will be set to true otherwise.

All active uniform variables defined in a program object are initialized to 0 when the
program object is linked successfully. They retain the values assigned to them by
a call to glUniform until the next successful link operation occurs on the program
object, when they are once again initialized to 0.

The commands glUniform{1|2|3|4}{f|i}v can be used to modify a single uniform
variable or a uniform variable array. These commands pass a count and a pointer to
the values to be loaded into a uniform variable or a uniform variable array. A count
of 1 should be used if modifying the value of a single uniform variable, and a count of
1 or greater can be used to modify an entire array or part of an array. When loading

Chapter 3: GL 408

n elements starting at an arbitrary position m in a uniform variable array, elements
m + n - 1 in the array will be replaced with the new values. If m + n - 1 is larger
than the size of the uniform variable array, values for all array elements beyond the
end of the array will be ignored. The number specified in the name of the command
indicates the number of components for each element in value, and it should match
the number of components in the data type of the specified uniform variable (e.g.,
1 for float, int, bool; 2 for vec2, ivec2, bvec2, etc.). The data type specified in the
name of the command must match the data type for the specified uniform variable
as described previously for glUniform{1|2|3|4}{f|i}.

For uniform variable arrays, each element of the array is considered to be of the type
indicated in the name of the command (e.g., glUniform3f or glUniform3fv can be
used to load a uniform variable array of type vec3). The number of elements of the
uniform variable array to be modified is specified by count

The commands glUniformMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv are used to
modify a matrix or an array of matrices. The numbers in the command name are
interpreted as the dimensionality of the matrix. The number 2 indicates a 2 2
matrix (i.e., 4 values), the number 3 indicates a 3 3 matrix (i.e., 9 values), and the
number 4 indicates a 4 4 matrix (i.e., 16 values). Non-square matrix dimensionality
is explicit, with the first number representing the number of columns and the second
number representing the number of rows. For example, 2x4 indicates a 2 4 matrix
with 2 columns and 4 rows (i.e., 8 values). If transpose is GL_FALSE, each matrix is
assumed to be supplied in column major order. If transpose is GL_TRUE, each matrix
is assumed to be supplied in row major order. The count argument indicates the
number of matrices to be passed. A count of 1 should be used if modifying the value
of a single matrix, and a count greater than 1 can be used to modify an array of
matrices.

GL_INVALID_OPERATION is generated if there is no current program object.

GL_INVALID_OPERATION is generated if the size of the uniform variable declared in
the shader does not match the size indicated by the glUniform command.

GL_INVALID_OPERATION is generated if one of the integer variants of this function is
used to load a uniform variable of type float, vec2, vec3, vec4, or an array of these, or
if one of the floating-point variants of this function is used to load a uniform variable
of type int, ivec2, ivec3, or ivec4, or an array of these.

GL_INVALID_OPERATION is generated if location is an invalid uniform location for the
current program object and location is not equal to -1.

GL_INVALID_VALUE is generated if count is less than 0.

GL_INVALID_OPERATION is generated if count is greater than 1 and the indicated
uniform variable is not an array variable.

GL_INVALID_OPERATION is generated if a sampler is loaded using a command other
than glUniform1i and glUniform1iv.

GL_INVALID_OPERATION is generated if glUniform is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glUseProgram program
Installs a program object as part of current rendering state.

Chapter 3: GL 409

program Specifies the handle of the program object whose executables are to be
used as part of current rendering state.

glUseProgram installs the program object specified by program as part of current
rendering state. One or more executables are created in a program object by success-
fully attaching shader objects to it with glAttachShader, successfully compiling the
shader objects with glCompileShader, and successfully linking the program object
with glLinkProgram.

A program object will contain an executable that will run on the vertex processor if it
contains one or more shader objects of type GL_VERTEX_SHADER that have been suc-
cessfully compiled and linked. Similarly, a program object will contain an executable
that will run on the fragment processor if it contains one or more shader objects of
type GL_FRAGMENT_SHADER that have been successfully compiled and linked.

Successfully installing an executable on a programmable processor will cause the cor-
responding fixed functionality of OpenGL to be disabled. Specifically, if an executable
is installed on the vertex processor, the OpenGL fixed functionality will be disabled
as follows.

• The modelview matrix is not applied to vertex coordinates.

• The projection matrix is not applied to vertex coordinates.

• The texture matrices are not applied to texture coordinates.

• Normals are not transformed to eye coordinates.

• Normals are not rescaled or normalized.

• Normalization of GL_AUTO_NORMAL evaluated normals is not performed.

• Texture coordinates are not generated automatically.

• Per-vertex lighting is not performed.

• Color material computations are not performed.

• Color index lighting is not performed.

• This list also applies when setting the current raster position.

The executable that is installed on the vertex processor is expected to implement any
or all of the desired functionality from the preceding list. Similarly, if an executable is
installed on the fragment processor, the OpenGL fixed functionality will be disabled
as follows.

• Texture environment and texture functions are not applied.

• Texture application is not applied.

• Color sum is not applied.

• Fog is not applied.

Again, the fragment shader that is installed is expected to implement any or all of
the desired functionality from the preceding list.

While a program object is in use, applications are free to modify attached shader
objects, compile attached shader objects, attach additional shader objects, and detach
or delete shader objects. None of these operations will affect the executables that are
part of the current state. However, relinking the program object that is currently in

Chapter 3: GL 410

use will install the program object as part of the current rendering state if the link
operation was successful (see glLinkProgram). If the program object currently in use
is relinked unsuccessfully, its link status will be set to GL_FALSE, but the executables
and associated state will remain part of the current state until a subsequent call to
glUseProgram removes it from use. After it is removed from use, it cannot be made
part of current state until it has been successfully relinked.

If program contains shader objects of type GL_VERTEX_SHADER but it does not contain
shader objects of type GL_FRAGMENT_SHADER, an executable will be installed on the
vertex processor, but fixed functionality will be used for fragment processing. Simi-
larly, if program contains shader objects of type GL_FRAGMENT_SHADER but it does not
contain shader objects of type GL_VERTEX_SHADER, an executable will be installed on
the fragment processor, but fixed functionality will be used for vertex processing. If
program is 0, the programmable processors will be disabled, and fixed functionality
will be used for both vertex and fragment processing.

GL_INVALID_VALUE is generated if program is neither 0 nor a value generated by
OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_OPERATION is generated if program could not be made part of current
state.

GL_INVALID_OPERATION is generated if glUseProgram is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

[Function]void glValidateProgram program
Validates a program object.

program Specifies the handle of the program object to be validated.

glValidateProgram checks to see whether the executables contained in program can
execute given the current OpenGL state. The information generated by the validation
process will be stored in program’s information log. The validation information may
consist of an empty string, or it may be a string containing information about how
the current program object interacts with the rest of current OpenGL state. This
provides a way for OpenGL implementers to convey more information about why the
current program is inefficient, suboptimal, failing to execute, and so on.

The status of the validation operation will be stored as part of the program object’s
state. This value will be set to GL_TRUE if the validation succeeded, and GL_FALSE

otherwise. It can be queried by calling glGetProgram with arguments program and
GL_VALIDATE_STATUS. If validation is successful, program is guaranteed to execute
given the current state. Otherwise, program is guaranteed to not execute.

This function is typically useful only during application development. The informa-
tional string stored in the information log is completely implementation dependent;
therefore, an application should not expect different OpenGL implementations to
produce identical information strings.

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.

GL_INVALID_OPERATION is generated if glValidateProgram is executed between the
execution of glBegin and the corresponding execution of glEnd.

Chapter 3: GL 411

[Function]void glVertexAttribPointer index size type normalized stride pointer
Define an array of generic vertex attribute data.

index Specifies the index of the generic vertex attribute to be modified.

size Specifies the number of components per generic vertex attribute. Must
be 1, 2, 3, or 4. The initial value is 4.

type Specifies the data type of each component in the array. Symbolic
constants GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT,
GL_INT, GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE are accepted. The
initial value is GL_FLOAT.

normalized
Specifies whether fixed-point data values should be normalized (GL_TRUE)
or converted directly as fixed-point values (GL_FALSE) when they are ac-
cessed.

stride Specifies the byte offset between consecutive generic vertex attributes.
If stride is 0, the generic vertex attributes are understood to be tightly
packed in the array. The initial value is 0.

pointer Specifies a pointer to the first component of the first generic vertex at-
tribute in the array. The initial value is 0.

glVertexAttribPointer specifies the location and data format of the array of generic
vertex attributes at index index to use when rendering. size specifies the number of
components per attribute and must be 1, 2, 3, or 4. type specifies the data type of
each component, and stride specifies the byte stride from one attribute to the next,
allowing vertices and attributes to be packed into a single array or stored in separate
arrays. If set to GL_TRUE, normalized indicates that values stored in an integer format
are to be mapped to the range [-1,1] (for signed values) or [0,1] (for unsigned values)
when they are accessed and converted to floating point. Otherwise, values will be
converted to floats directly without normalization.

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target (see
glBindBuffer) while a generic vertex attribute array is specified, pointer is treated
as a byte offset into the buffer object’s data store. Also, the buffer object binding (GL_
ARRAY_BUFFER_BINDING) is saved as generic vertex attribute array client-side state
(GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING) for index index.

When a generic vertex attribute array is specified, size, type, normalized, stride, and
pointer are saved as client-side state, in addition to the current vertex array buffer
object binding.

To enable and disable a generic vertex attribute array, call glEnableVertexAttribArray
and glDisableVertexAttribArray with index. If enabled, the generic vertex
attribute array is used when glArrayElement, glDrawArrays, glMultiDrawArrays,
glDrawElements, glMultiDrawElements, or glDrawRangeElements is called.

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_

ATTRIBS.

GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.

Chapter 3: GL 412

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

[Function]void glVertexAttrib1f index v0
[Function]void glVertexAttrib1s index v0
[Function]void glVertexAttrib1d index v0
[Function]void glVertexAttrib2f index v0 v1
[Function]void glVertexAttrib2s index v0 v1
[Function]void glVertexAttrib2d index v0 v1
[Function]void glVertexAttrib3f index v0 v1 v2
[Function]void glVertexAttrib3s index v0 v1 v2
[Function]void glVertexAttrib3d index v0 v1 v2
[Function]void glVertexAttrib4f index v0 v1 v2 v3
[Function]void glVertexAttrib4s index v0 v1 v2 v3
[Function]void glVertexAttrib4d index v0 v1 v2 v3
[Function]void glVertexAttrib4Nub index v0 v1 v2 v3
[Function]void glVertexAttrib1fv index v
[Function]void glVertexAttrib1sv index v
[Function]void glVertexAttrib1dv index v
[Function]void glVertexAttrib2fv index v
[Function]void glVertexAttrib2sv index v
[Function]void glVertexAttrib2dv index v
[Function]void glVertexAttrib3fv index v
[Function]void glVertexAttrib3sv index v
[Function]void glVertexAttrib3dv index v
[Function]void glVertexAttrib4fv index v
[Function]void glVertexAttrib4sv index v
[Function]void glVertexAttrib4dv index v
[Function]void glVertexAttrib4iv index v
[Function]void glVertexAttrib4bv index v
[Function]void glVertexAttrib4ubv index v
[Function]void glVertexAttrib4usv index v
[Function]void glVertexAttrib4uiv index v
[Function]void glVertexAttrib4Nbv index v
[Function]void glVertexAttrib4Nsv index v
[Function]void glVertexAttrib4Niv index v
[Function]void glVertexAttrib4Nubv index v
[Function]void glVertexAttrib4Nusv index v
[Function]void glVertexAttrib4Nuiv index v

Specifies the value of a generic vertex attribute.

index Specifies the index of the generic vertex attribute to be modified.

v0, v1, v2, v3
Specifies the new values to be used for the specified vertex attribute.

OpenGL defines a number of standard vertex attributes that applications can mod-
ify with standard API entry points (color, normal, texture coordinates, etc.). The

Chapter 3: GL 413

glVertexAttrib family of entry points allows an application to pass generic vertex
attributes in numbered locations.

Generic attributes are defined as four-component values that are organized into an
array. The first entry of this array is numbered 0, and the size of the array is speci-
fied by the implementation-dependent constant GL_MAX_VERTEX_ATTRIBS. Individual
elements of this array can be modified with a glVertexAttrib call that specifies the
index of the element to be modified and a value for that element.

These commands can be used to specify one, two, three, or all four components of the
generic vertex attribute specified by index. A 1 in the name of the command indicates
that only one value is passed, and it will be used to modify the first component of
the generic vertex attribute. The second and third components will be set to 0, and
the fourth component will be set to 1. Similarly, a 2 in the name of the command
indicates that values are provided for the first two components, the third component
will be set to 0, and the fourth component will be set to 1. A 3 in the name of the
command indicates that values are provided for the first three components and the
fourth component will be set to 1, whereas a 4 in the name indicates that values are
provided for all four components.

The letters s, f, i, d, ub, us, and ui indicate whether the arguments are of type
short, float, int, double, unsigned byte, unsigned short, or unsigned int. When v is
appended to the name, the commands can take a pointer to an array of such values.
The commands containing N indicate that the arguments will be passed as fixed-point
values that are scaled to a normalized range according to the component conversion
rules defined by the OpenGL specification. Signed values are understood to represent
fixed-point values in the range [-1,1], and unsigned values are understood to represent
fixed-point values in the range [0,1].

OpenGL Shading Language attribute variables are allowed to be of type mat2, mat3,
or mat4. Attributes of these types may be loaded using the glVertexAttrib entry
points. Matrices must be loaded into successive generic attribute slots in column
major order, with one column of the matrix in each generic attribute slot.

A user-defined attribute variable declared in a vertex shader can be bound to a generic
attribute index by calling glBindAttribLocation. This allows an application to use
more descriptive variable names in a vertex shader. A subsequent change to the
specified generic vertex attribute will be immediately reflected as a change to the
corresponding attribute variable in the vertex shader.

The binding between a generic vertex attribute index and a user-defined attribute
variable in a vertex shader is part of the state of a program object, but the current
value of the generic vertex attribute is not. The value of each generic vertex attribute
is part of current state, just like standard vertex attributes, and it is maintained even
if a different program object is used.

An application may freely modify generic vertex attributes that are not bound to a
named vertex shader attribute variable. These values are simply maintained as part
of current state and will not be accessed by the vertex shader. If a generic vertex
attribute bound to an attribute variable in a vertex shader is not updated while the
vertex shader is executing, the vertex shader will repeatedly use the current value for
the generic vertex attribute.

Chapter 3: GL 414

The generic vertex attribute with index 0 is the same as the vertex position attribute
previously defined by OpenGL. A glVertex2, glVertex3, or glVertex4 command is
completely equivalent to the corresponding glVertexAttrib command with an index
argument of 0. A vertex shader can access generic vertex attribute 0 by using the
built-in attribute variable gl Vertex. There are no current values for generic vertex
attribute 0. This is the only generic vertex attribute with this property; calls to set
other standard vertex attributes can be freely mixed with calls to set any of the other
generic vertex attributes.

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_

ATTRIBS.

[Function]void glVertexPointer size type stride pointer
Define an array of vertex data.

size Specifies the number of coordinates per vertex. Must be 2, 3, or 4. The
initial value is 4.

type Specifies the data type of each coordinate in the array. Symbolic constants
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial
value is GL_FLOAT.

stride Specifies the byte offset between consecutive vertices. If stride is 0, the
vertices are understood to be tightly packed in the array. The initial
value is 0.

pointer Specifies a pointer to the first coordinate of the first vertex in the array.
The initial value is 0.

glVertexPointer specifies the location and data format of an array of vertex coor-
dinates to use when rendering. size specifies the number of coordinates per vertex,
and must be 2, 3, or 4. type specifies the data type of each coordinate, and stride
specifies the byte stride from one vertex to the next, allowing vertices and attributes
to be packed into a single array or stored in separate arrays. (Single-array storage
may be more efficient on some implementations; see glInterleavedArrays.)

If a non-zero named buffer object is bound to the GL_ARRAY_BUFFER target
(see glBindBuffer) while a vertex array is specified, pointer is treated as
a byte offset into the buffer object’s data store. Also, the buffer object
binding (GL_ARRAY_BUFFER_BINDING) is saved as vertex array client-side state
(GL_VERTEX_ARRAY_BUFFER_BINDING).

When a vertex array is specified, size, type, stride, and pointer are saved as client-side
state, in addition to the current vertex array buffer object binding.

To enable and disable the vertex array, call glEnableClientState and
glDisableClientState with the argument GL_VERTEX_ARRAY. If enabled, the
vertex array is used when glArrayElement, glDrawArrays, glMultiDrawArrays,
glDrawElements, glMultiDrawElements, or glDrawRangeElements is called.

GL_INVALID_VALUE is generated if size is not 2, 3, or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

Chapter 3: GL 415

[Function]void glVertex2s x y
[Function]void glVertex2i x y
[Function]void glVertex2f x y
[Function]void glVertex2d x y
[Function]void glVertex3s x y z
[Function]void glVertex3i x y z
[Function]void glVertex3f x y z
[Function]void glVertex3d x y z
[Function]void glVertex4s x y z w
[Function]void glVertex4i x y z w
[Function]void glVertex4f x y z w
[Function]void glVertex4d x y z w
[Function]void glVertex2sv v
[Function]void glVertex2iv v
[Function]void glVertex2fv v
[Function]void glVertex2dv v
[Function]void glVertex3sv v
[Function]void glVertex3iv v
[Function]void glVertex3fv v
[Function]void glVertex3dv v
[Function]void glVertex4sv v
[Function]void glVertex4iv v
[Function]void glVertex4fv v
[Function]void glVertex4dv v

Specify a vertex.

x
y
z
w Specify x, y, z, and w coordinates of a vertex. Not all parameters are

present in all forms of the command.

glVertex commands are used within glBegin/glEnd pairs to specify point, line, and
polygon vertices. The current color, normal, texture coordinates, and fog coordinate
are associated with the vertex when glVertex is called.

When only x and y are specified, z defaults to 0 and w defaults to 1. When x, y ,
and z are specified, w defaults to 1.

[Function]void glViewport x y width height
Set the viewport.

x
y Specify the lower left corner of the viewport rectangle, in pixels. The

initial value is (0,0).

width
height Specify the width and height of the viewport. When a GL context is first

attached to a window, width and height are set to the dimensions of that
window.

Chapter 3: GL 416

glViewport specifies the affine transformation of x and y from normalized device co-
ordinates to window coordinates. Let (x nd,y nd) be normalized device coordinates.
Then the window coordinates (x w,y w) are computed as follows:

x w=(x nd+1,)(width/2,)+x

y w=(y nd+1,)(height/2,)+y

Viewport width and height are silently clamped to a range that depends on the
implementation. To query this range, call glGet with argument GL_MAX_VIEWPORT_
DIMS.

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if glViewport is executed between the execution
of glBegin and the corresponding execution of glEnd.

[Function]void glWindowPos2s x y
[Function]void glWindowPos2i x y
[Function]void glWindowPos2f x y
[Function]void glWindowPos2d x y
[Function]void glWindowPos3s x y z
[Function]void glWindowPos3i x y z
[Function]void glWindowPos3f x y z
[Function]void glWindowPos3d x y z
[Function]void glWindowPos2sv v
[Function]void glWindowPos2iv v
[Function]void glWindowPos2fv v
[Function]void glWindowPos2dv v
[Function]void glWindowPos3sv v
[Function]void glWindowPos3iv v
[Function]void glWindowPos3fv v
[Function]void glWindowPos3dv v

Specify the raster position in window coordinates for pixel operations.

x
y
z Specify the x, y , z coordinates for the raster position.

The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is maintained
with subpixel accuracy. See glBitmap, glDrawPixels, and glCopyPixels.

glWindowPos2 specifies the x and y coordinates, while z is implicitly set to 0.
glWindowPos3 specifies all three coordinates. The w coordinate of the current raster
position is always set to 1.0.

glWindowPos directly updates the x and y coordinates of the current raster position
with the values specified. That is, the values are neither transformed by the current
modelview and projection matrices, nor by the viewport-to-window transform. The
z coordinate of the current raster position is updated in the following manner:

z={(n), (f), (n+z(f-n,),)(if z<=0), (if z>=1), (otherwise,),

where n is GL_DEPTH_RANGE’s near value, and f is GL_DEPTH_RANGE’s far value. See
glDepthRange.

Chapter 3: GL 417

The specified coordinates are not clip-tested, causing the raster position to always be
valid.

The current raster position also includes some associated color data and texture co-
ordinates. If lighting is enabled, then GL_CURRENT_RASTER_COLOR (in RGBA mode)
or GL_CURRENT_RASTER_INDEX (in color index mode) is set to the color produced by
the lighting calculation (see glLight, glLightModel, and glShadeModel). If light-
ing is disabled, current color (in RGBA mode, state variable GL_CURRENT_COLOR) or
color index (in color index mode, state variable GL_CURRENT_INDEX) is used to update
the current raster color. GL_CURRENT_RASTER_SECONDARY_COLOR (in RGBA mode) is
likewise updated.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of
GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture
generation functions (see glTexGen). The GL_CURRENT_RASTER_DISTANCE is set to
the GL_CURRENT_FOG_COORD.

GL_INVALID_OPERATION is generated if glWindowPos is executed between the execu-
tion of glBegin and the corresponding execution of glEnd.

3.7 GL Extensions

The future is already here – it’s just not very evenly distributed.

– William Gibson

Before interfaces end up in the core OpenGL API, the are usually present as vendor-
specific or candidate extensions. Indeed, the making of an OpenGL standard these days
seems to be a matter of simply collecting a set of mature extensions and making them
coherent.

Guile doesn’t currently provide specific interfaces for GL extensions. Perhaps it should,
but that’s a lot of work that we haven’t had time to do. Contributions are welcome.

In the meantime, if you know enough about GL to know that you need an extension,
you can define one yourself – after all, this library is all a bunch of Scheme code anyway.

For example, let’s say you decide that you need to render to a framebuffer object. You
go to http://www.opengl.org/registry/ and pick out an extension, say http://www.

opengl.org/registry/specs/ARB/framebuffer_object.txt.

This extension defines a procedure, GLboolean glIsRenderBuffer(GLuint). So you
define it:

(use-modules (gl runtime) (gl types))

(define-gl-procedure (glIsRenderBuffer (buf GLuint) -> GLboolean)

"Render buffer predicate. Other docs here.")

And that’s that. It’s a low-level binding, but what did you expect?

Note that you’ll still need to check for the availability of this extension at runtime with
(glGetString GL_EXTENSIONS).

http://www.opengl.org/registry/
http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt
http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

Chapter 4: GLU 418

4 GLU

4.1 GLU API

Import the GLU module to have access to these procedures:

(use-modules (glu))

The GLU specification is available at http://www.opengl.org/registry/doc/glu1.
3.pdf.

4.1.1 Initialization

4.1.2 Mipmapping

4.1.3 Matrix Manipulation

[Function]glu-perspective fov-y aspect z-near z-far
Set up a perspective projection matrix.

fov-y is the field of view angle, in degrees, in the Y direction. aspect is the ratio of
width to height. z-near and z-far are the distances from the viewer to the near and
far clipping planes, respectively.

The resulting matrix is multiplied against the current matrix.

4.1.4 Polygon Tesselation

4.1.5 Quadrics

4.1.6 NURBS

4.1.7 Errors

4.2 Low-Level GLU

The functions from this section may be had by loading the module:

(use-modules (glu low-level)

This section of the manual was derived from the upstream OpenGL documentation.
Each function’s documentation has its own copyright statement; for full details, see the
upstream documentation. The copyright notices and licenses present in this section are as
follows.

Copyright c© 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI
Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

[Function]void gluBeginCurve nurb
[Function]void gluEndCurve nurb

Delimit a NURBS curve definition.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

http://www.opengl.org/registry/doc/glu1.3.pdf
http://www.opengl.org/registry/doc/glu1.3.pdf
http://oss.sgi.com/projects/FreeB/

Chapter 4: GLU 419

Use gluBeginCurve to mark the beginning of a NURBS curve definition. After calling
gluBeginCurve, make one or more calls to gluNurbsCurve to define the attributes
of the curve. Exactly one of the calls to gluNurbsCurve must have a curve type of
GLU_MAP1_VERTEX_3 or GLU_MAP1_VERTEX_4. To mark the end of the NURBS curve
definition, call gluEndCurve.

GL evaluators are used to render the NURBS curve as a series of line segments.
Evaluator state is preserved during rendering with glPushAttrib(GLU_EVAL_BIT) and
glPopAttrib(). See the glPushAttrib reference page for details on exactly what state
these calls preserve.

[Function]void gluBeginPolygon tess
[Function]void gluEndPolygon tess

Delimit a polygon description.

tess Specifies the tessellation object (created with gluNewTess).

gluBeginPolygon and gluEndPolygon delimit the definition of a nonconvex polygon.
To define such a polygon, first call gluBeginPolygon. Then define the contours of
the polygon by calling gluTessVertex for each vertex and gluNextContour to start
each new contour. Finally, call gluEndPolygon to signal the end of the definition.
See the gluTessVertex and gluNextContour reference pages for more details.

Once gluEndPolygon is called, the polygon is tessellated, and the resulting triangles
are described through callbacks. See gluTessCallback for descriptions of the callback
functions.

[Function]void gluBeginSurface nurb
[Function]void gluEndSurface nurb

Delimit a NURBS surface definition.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

Use gluBeginSurface to mark the beginning of a NURBS surface definition. After
calling gluBeginSurface, make one or more calls to gluNurbsSurface to define the
attributes of the surface. Exactly one of these calls to gluNurbsSurface must have a
surface type of GLU_MAP2_VERTEX_3 or GLU_MAP2_VERTEX_4. To mark the end of the
NURBS surface definition, call gluEndSurface.

Trimming of NURBS surfaces is supported with gluBeginTrim, gluPwlCurve,
gluNurbsCurve, and gluEndTrim. See the gluBeginTrim reference page for details.

GL evaluators are used to render the NURBS surface as a set of polygons. Eval-
uator state is preserved during rendering with glPushAttrib(GLU_EVAL_BIT) and
glPopAttrib. See the glPushAttrib reference page for details on exactly what state
these calls preserve.

[Function]void gluBeginTrim nurb
[Function]void gluEndTrim nurb

Delimit a NURBS trimming loop definition.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

Chapter 4: GLU 420

Use gluBeginTrim to mark the beginning of a trimming loop and gluEndTrim to
mark the end of a trimming loop. A trimming loop is a set of oriented curve seg-
ments (forming a closed curve) that define boundaries of a NURBS surface. You
include these trimming loops in the definition of a NURBS surface, between calls to
gluBeginSurface and gluEndSurface.

The definition for a NURBS surface can contain many trimming loops. For example,
if you wrote a definition for a NURBS surface that resembled a rectangle with a hole
punched out, the definition would contain two trimming loops. One loop would define
the outer edge of the rectangle; the other would define the hole punched out of the
rectangle. The definitions of each of these trimming loops would be bracketed by a
gluBeginTrim/gluEndTrim pair.

The definition of a single closed trimming loop can consist of multiple curve segments,
each described as a piecewise linear curve (see gluPwlCurve) or as a single NURBS
curve (see gluNurbsCurve), or as a combination of both in any order. The only
library calls that can appear in a trimming loop definition (between the calls to
gluBeginTrim and gluEndTrim) are gluPwlCurve and gluNurbsCurve.

The area of the NURBS surface that is displayed is the region in the domain to
the left of the trimming curve as the curve parameter increases. Thus, the retained
region of the NURBS surface is inside a counterclockwise trimming loop and outside
a clockwise trimming loop. For the rectangle mentioned earlier, the trimming loop
for the outer edge of the rectangle runs counterclockwise, while the trimming loop for
the punched-out hole runs clockwise.

If you use more than one curve to define a single trimming loop, the curve segments
must form a closed loop (that is, the endpoint of each curve must be the starting
point of the next curve, and the endpoint of the final curve must be the starting point
of the first curve). If the endpoints of the curve are sufficiently close together but not
exactly coincident, they will be coerced to match. If the endpoints are not sufficiently
close, an error results (see gluNurbsCallback).

If a trimming loop definition contains multiple curves, the direction of the curves
must be consistent (that is, the inside must be to the left of all of the curves). Nested
trimming loops are legal as long as the curve orientations alternate correctly. If
trimming curves are self-intersecting, or intersect one another, an error results.

If no trimming information is given for a NURBS surface, the entire surface is drawn.

[Function]GLint gluBuild1DMipmapLevels target internalFormat width format
type level base max data

Builds a subset of one-dimensional mipmap levels.

target Specifies the target texture. Must be GLU_TEXTURE_1D.

internalFormat
Requests the internal storage format of the texture image. The most
current version of the SGI implementation of GLU does not check this
value for validity before passing it on to the underlying OpenGL imple-
mentation. A value that is not accepted by the OpenGL implementation
will lead to an OpenGL error. The benefit of not checking this value at
the GLU level is that OpenGL extensions can add new internal texture

Chapter 4: GLU 421

formats without requiring a revision of the GLU implementation.
Older implementations of GLU check this value and raise a GLU error
if it is not 1, 2, 3, or 4 or one of the following symbolic constants:
GLU_ALPHA, GLU_ALPHA4, GLU_ALPHA8, GLU_ALPHA12, GLU_ALPHA16,
GLU_LUMINANCE, GLU_LUMINANCE4, GLU_LUMINANCE8, GLU_LUMINANCE12,
GLU_LUMINANCE16, GLU_LUMINANCE_ALPHA, GLU_LUMINANCE4_ALPHA4,
GLU_LUMINANCE6_ALPHA2, GLU_LUMINANCE8_ALPHA8, GLU_LUMINANCE12_
ALPHA4, GLU_LUMINANCE12_ALPHA12, GLU_LUMINANCE16_ALPHA16,
GLU_INTENSITY, GLU_INTENSITY4, GLU_INTENSITY8, GLU_INTENSITY12,
GLU_INTENSITY16, GLU_RGB, GLU_R3_G3_B2, GLU_RGB4, GLU_RGB5,
GLU_RGB8, GLU_RGB10, GLU_RGB12, GLU_RGB16, GLU_RGBA, GLU_RGBA2,
GLU_RGBA4, GLU_RGB5_A1, GLU_RGBA8, GLU_RGB10_A2, GLU_RGBA12, or
GLU_RGBA16.

width Specifies the width in pixels of the texture image. This should be a power
of 2.

format Specifies the format of the pixel data. Must be one of: GLU_COLOR_

INDEX, GLU_DEPTH_COMPONENT, GLU_RED, GLU_GREEN, GLU_BLUE,
GLU_ALPHA, GLU_RGB, GLU_RGBA, GLU_BGR, GLU_BGRA, GLU_LUMINANCE,
or GLU_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of: GLU_UNSIGNED_

BYTE, GLU_BYTE, GLU_BITMAP, GLU_UNSIGNED_SHORT, GLU_SHORT,
GLU_UNSIGNED_INT, GLU_INT, GLU_FLOAT, GLU_UNSIGNED_BYTE_3_3_2,
GLU_UNSIGNED_BYTE_2_3_3_REV, GLU_UNSIGNED_SHORT_5_6_5,
GLU_UNSIGNED_SHORT_5_6_5_REV, GLU_UNSIGNED_SHORT_4_4_4_4,
GLU_UNSIGNED_SHORT_4_4_4_4_REV, GLU_UNSIGNED_SHORT_5_5_5_1,
GLU_UNSIGNED_SHORT_1_5_5_5_REV, GLU_UNSIGNED_INT_8_8_8_8,
GLU_UNSIGNED_INT_8_8_8_8_REV, GLU_UNSIGNED_INT_10_10_10_2, or
GLU_UNSIGNED_INT_2_10_10_10_REV.

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to glTexImage1D.

max Specifies the maximum mipmap level to pass to glTexImage1D.

data Specifies a pointer to the image data in memory.

gluBuild1DMipmapLevels builds a subset of prefiltered one-dimensional texture maps
of decreasing resolutions called a mipmap. This is used for the antialiasing of texture
mapped primitives.

A return value of zero indicates success, otherwise a GLU error code is returned (see
gluErrorString).

A series of mipmap levels from base to max is built by decimating data in half until
size 11 is reached. At each level, each texel in the halved mipmap level is an average
of the corresponding two texels in the larger mipmap level. glTexImage1D is called
to load these mipmap levels from base to max. If max is larger than the highest
mipmap level for the texture of the specified size, then a GLU error code is returned
(see gluErrorString) and nothing is loaded.

Chapter 4: GLU 422

For example, if level is 2 and width is 16, the following levels are possible: 161, 81,
41, 21, 11. These correspond to levels 2 through 6 respectively. If base is 3 and max
is 5, then only mipmap levels 81, 41 and 21 are loaded. However, if max is 7, then an
error is returned and nothing is loaded since max is larger than the highest mipmap
level which is, in this case, 6.

The highest mipmap level can be derived from the formula log 2(width2^level,).

See the glTexImage1D reference page for a description of the acceptable values for type
parameter. See the glDrawPixels reference page for a description of the acceptable
values for level parameter.

GLU_INVALID_VALUE is returned if level > base, base < 0, max < base or max is > the
highest mipmap level for data.

GLU_INVALID_VALUE is returned if width is < 1.

GLU_INVALID_ENUM is returned if internalFormat, format, or type are not legal.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_BYTE_3_3_2 or GLU_

UNSIGNED_BYTE_2_3_3_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_6_5 or GLU_
UNSIGNED_SHORT_5_6_5_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_4_4_4_4 or
GLU_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_5_5_1 or
GLU_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_8_8_8_8 or GLU_
UNSIGNED_INT_8_8_8_8_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_10_10_10_2 or
GLU_UNSIGNED_INT_2_10_10_10_REV and format is neither GLU_RGBA nor GLU_BGRA.

[Function]GLint gluBuild1DMipmaps target internalFormat width format type
data

Builds a one-dimensional mipmap.

target Specifies the target texture. Must be GLU_TEXTURE_1D.

internalFormat
Requests the internal storage format of the texture image. The most
current version of the SGI implementation of GLU does not check this
value for validity before passing it on to the underlying OpenGL imple-
mentation. A value that is not accepted by the OpenGL implementation
will lead to an OpenGL error. The benefit of not checking this value at
the GLU level is that OpenGL extensions can add new internal texture
formats without requiring a revision of the GLU implementation.
Older implementations of GLU check this value and raise a GLU error
if it is not 1, 2, 3, or 4 or one of the following symbolic constants:
GLU_ALPHA, GLU_ALPHA4, GLU_ALPHA8, GLU_ALPHA12, GLU_ALPHA16,
GLU_LUMINANCE, GLU_LUMINANCE4, GLU_LUMINANCE8, GLU_LUMINANCE12,
GLU_LUMINANCE16, GLU_LUMINANCE_ALPHA, GLU_LUMINANCE4_ALPHA4,

Chapter 4: GLU 423

GLU_LUMINANCE6_ALPHA2, GLU_LUMINANCE8_ALPHA8, GLU_LUMINANCE12_
ALPHA4, GLU_LUMINANCE12_ALPHA12, GLU_LUMINANCE16_ALPHA16,
GLU_INTENSITY, GLU_INTENSITY4, GLU_INTENSITY8, GLU_INTENSITY12,
GLU_INTENSITY16, GLU_RGB, GLU_R3_G3_B2, GLU_RGB4, GLU_RGB5,
GLU_RGB8, GLU_RGB10, GLU_RGB12, GLU_RGB16, GLU_RGBA, GLU_RGBA2,
GLU_RGBA4, GLU_RGB5_A1, GLU_RGBA8, GLU_RGB10_A2, GLU_RGBA12, or
GLU_RGBA16.

width Specifies the width, in pixels, of the texture image.

format Specifies the format of the pixel data. Must be one of GLU_COLOR_INDEX,
GLU_DEPTH_COMPONENT, GLU_RED, GLU_GREEN, GLU_BLUE, GLU_ALPHA,
GLU_RGB, GLU_RGBA, GLU_BGR, GLU_BGRA, GLU_LUMINANCE, or
GLU_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of GLU_UNSIGNED_

BYTE, GLU_BYTE, GLU_BITMAP, GLU_UNSIGNED_SHORT, GLU_SHORT,
GLU_UNSIGNED_INT, GLU_INT, GLU_FLOAT, GLU_UNSIGNED_BYTE_3_3_2,
GLU_UNSIGNED_BYTE_2_3_3_REV, GLU_UNSIGNED_SHORT_5_6_5,
GLU_UNSIGNED_SHORT_5_6_5_REV, GLU_UNSIGNED_SHORT_4_4_4_4,
GLU_UNSIGNED_SHORT_4_4_4_4_REV, GLU_UNSIGNED_SHORT_5_5_5_1,
GLU_UNSIGNED_SHORT_1_5_5_5_REV, GLU_UNSIGNED_INT_8_8_8_8,
GLU_UNSIGNED_INT_8_8_8_8_REV, GLU_UNSIGNED_INT_10_10_10_2, or
GLU_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

gluBuild1DMipmaps builds a series of prefiltered one-dimensional texture maps of
decreasing resolutions called a mipmap. This is used for the antialiasing of texture
mapped primitives.

A return value of zero indicates success, otherwise a GLU error code is returned (see
gluErrorString).

Initially, the width of data is checked to see if it is a power of 2. If not, a copy of data
is scaled up or down to the nearest power of 2. (If width is exactly between powers
of 2, then the copy of data will scale upwards.) This copy will be used for subsequent
mipmapping operations described below. For example, if width is 57, then a copy of
data will scale up to 64 before mipmapping takes place.

Then, proxy textures (see glTexImage1D) are used to determine if the implementation
can fit the requested texture. If not, width is continually halved until it fits.

Next, a series of mipmap levels is built by decimating a copy of data in half until size
11 is reached. At each level, each texel in the halved mipmap level is an average of
the corresponding two texels in the larger mipmap level.

glTexImage1D is called to load each of these mipmap levels. Level 0 is a copy of data.
The highest level is log 2,(width,). For example, if width is 64 and the implementation
can store a texture of this size, the following mipmap levels are built: 641, 321, 161,
81, 41, 21, and 11. These correspond to levels 0 through 6, respectively.

See the glTexImage1D reference page for a description of the acceptable values for
the type parameter. See the glDrawPixels reference page for a description of the
acceptable values for the data parameter.

Chapter 4: GLU 424

GLU_INVALID_VALUE is returned if width is < 1.

GLU_INVALID_ENUM is returned if format or type are not legal.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_BYTE_3_3_2 or GLU_

UNSIGNED_BYTE_2_3_3_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_6_5 or GLU_
UNSIGNED_SHORT_5_6_5_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_4_4_4_4 or
GLU_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_5_5_1 or
GLU_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_8_8_8_8 or GLU_
UNSIGNED_INT_8_8_8_8_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_10_10_10_2 or
GLU_UNSIGNED_INT_2_10_10_10_REV and format is neither GLU_RGBA nor GLU_BGRA.

[Function]GLint gluBuild2DMipmapLevels target internalFormat width height
format type level base max data

Builds a subset of two-dimensional mipmap levels.

target Specifies the target texture. Must be GLU_TEXTURE_2D.

internalFormat
Requests the internal storage format of the texture image. The most
current version of the SGI implementation of GLU does not check this
value for validity before passing it on to the underlying OpenGL imple-
mentation. A value that is not accepted by the OpenGL implementation
will lead to an OpenGL error. The benefit of not checking this value at
the GLU level is that OpenGL extensions can add new internal texture
formats without requiring a revision of the GLU implementation.
Older implementations of GLU check this value and raise a GLU error
if it is not 1, 2, 3, or 4 or one of the following symbolic constants:
GLU_ALPHA, GLU_ALPHA4, GLU_ALPHA8, GLU_ALPHA12, GLU_ALPHA16,
GLU_LUMINANCE, GLU_LUMINANCE4, GLU_LUMINANCE8, GLU_LUMINANCE12,
GLU_LUMINANCE16, GLU_LUMINANCE_ALPHA, GLU_LUMINANCE4_ALPHA4,
GLU_LUMINANCE6_ALPHA2, GLU_LUMINANCE8_ALPHA8, GLU_LUMINANCE12_
ALPHA4, GLU_LUMINANCE12_ALPHA12, GLU_LUMINANCE16_ALPHA16,
GLU_INTENSITY, GLU_INTENSITY4, GLU_INTENSITY8, GLU_INTENSITY12,
GLU_INTENSITY16, GLU_RGB, GLU_R3_G3_B2, GLU_RGB4, GLU_RGB5,
GLU_RGB8, GLU_RGB10, GLU_RGB12, GLU_RGB16, GLU_RGBA, GLU_RGBA2,
GLU_RGBA4, GLU_RGB5_A1, GLU_RGBA8, GLU_RGB10_A2, GLU_RGBA12, or
GLU_RGBA16.

width
height Specifies the width and height, respectively, in pixels of the texture image.

These should be a power of 2.

format Specifies the format of the pixel data. Must be one of GLU_COLOR_INDEX,
GLU_DEPTH_COMPONENT, GLU_RED, GLU_GREEN, GLU_BLUE, GLU_ALPHA,

Chapter 4: GLU 425

GLU_RGB, GLU_RGBA, GLU_BGR, GLU_BGRA, GLU_LUMINANCE, or
GLU_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of GLU_UNSIGNED_

BYTE, GLU_BYTE, GLU_BITMAP, GLU_UNSIGNED_SHORT, GLU_SHORT,
GLU_UNSIGNED_INT, GLU_INT, GLU_FLOAT, GLU_UNSIGNED_BYTE_3_3_2,
GLU_UNSIGNED_BYTE_2_3_3_REV, GLU_UNSIGNED_SHORT_5_6_5,
GLU_UNSIGNED_SHORT_5_6_5_REV, GLU_UNSIGNED_SHORT_4_4_4_4,
GLU_UNSIGNED_SHORT_4_4_4_4_REV, GLU_UNSIGNED_SHORT_5_5_5_1,
GLU_UNSIGNED_SHORT_1_5_5_5_REV, GLU_UNSIGNED_INT_8_8_8_8,
GLU_UNSIGNED_INT_8_8_8_8_REV, GLU_UNSIGNED_INT_10_10_10_2, or
GLU_UNSIGNED_INT_2_10_10_10_REV.

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to glTexImage2D.

max Specifies the maximum mipmap level to pass to glTexImage2D.

data Specifies a pointer to the image data in memory.

gluBuild2DMipmapLevels builds a subset of prefiltered two-dimensional texture maps
of decreasing resolutions called a mipmap. This is used for the antialiasing of texture
mapped primitives.

A return value of zero indicates success, otherwise a GLU error code is returned (see
gluErrorString).

A series of mipmap levels from base to max is built by decimating data in half along
both dimensions until size 11 is reached. At each level, each texel in the halved
mipmap level is an average of the corresponding four texels in the larger mipmap
level. (In the case of rectangular images, the decimation will ultimately reach an N1
or 1N configuration. Here, two texels are averaged instead.) glTexImage2D is called
to load these mipmap levels from base to max. If max is larger than the highest
mipmap level for the texture of the specified size, then a GLU error code is returned
(see gluErrorString) and nothing is loaded.

For example, if level is 2 and width is 16 and height is 8, the following levels are
possible: 168, 84, 42, 21, 11. These correspond to levels 2 through 6 respectively. If
base is 3 and max is 5, then only mipmap levels 84, 42, and 21 are loaded. However,
if max is 7, then an error is returned and nothing is loaded since max is larger than
the highest mipmap level which is, in this case, 6.

The highest mipmap level can be derived from the formula log 2(max(width,height)2^level,).

See the glTexImage1D reference page for a description of the acceptable values for
format parameter. See the glDrawPixels reference page for a description of the
acceptable values for type parameter.

GLU_INVALID_VALUE is returned if level > base, base < 0, max < base, or max is > the
highest mipmap level for data.

GLU_INVALID_VALUE is returned if width or height is < 1.

GLU_INVALID_ENUM is returned if internalFormat, format, or type is not legal.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_BYTE_3_3_2 or GLU_

UNSIGNED_BYTE_2_3_3_REV and format is not GLU_RGB.

Chapter 4: GLU 426

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_6_5 or GLU_
UNSIGNED_SHORT_5_6_5_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_4_4_4_4 or
GLU_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_5_5_1 or
GLU_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_8_8_8_8 or GLU_
UNSIGNED_INT_8_8_8_8_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_10_10_10_2 or
GLU_UNSIGNED_INT_2_10_10_10_REV and format is neither GLU_RGBA nor GLU_BGRA.

[Function]GLint gluBuild2DMipmaps target internalFormat width height format
type data

Builds a two-dimensional mipmap.

target Specifies the target texture. Must be GLU_TEXTURE_2D.

internalFormat
Requests the internal storage format of the texture image. The most
current version of the SGI implementation of GLU does not check this
value for validity before passing it on to the underlying OpenGL imple-
mentation. A value that is not accepted by the OpenGL implementation
will lead to an OpenGL error. The benefit of not checking this value at
the GLU level is that OpenGL extensions can add new internal texture
formats without requiring a revision of the GLU implementation.
Older implementations of GLU check this value and raise a GLU error
if it is not 1, 2, 3, or 4 or one of the following symbolic constants:
GLU_ALPHA, GLU_ALPHA4, GLU_ALPHA8, GLU_ALPHA12, GLU_ALPHA16,
GLU_LUMINANCE, GLU_LUMINANCE4, GLU_LUMINANCE8, GLU_LUMINANCE12,
GLU_LUMINANCE16, GLU_LUMINANCE_ALPHA, GLU_LUMINANCE4_ALPHA4,
GLU_LUMINANCE6_ALPHA2, GLU_LUMINANCE8_ALPHA8, GLU_LUMINANCE12_
ALPHA4, GLU_LUMINANCE12_ALPHA12, GLU_LUMINANCE16_ALPHA16,
GLU_INTENSITY, GLU_INTENSITY4, GLU_INTENSITY8, GLU_INTENSITY12,
GLU_INTENSITY16, GLU_RGB, GLU_R3_G3_B2, GLU_RGB4, GLU_RGB5,
GLU_RGB8, GLU_RGB10, GLU_RGB12, GLU_RGB16, GLU_RGBA, GLU_RGBA2,
GLU_RGBA4, GLU_RGB5_A1, GLU_RGBA8, GLU_RGB10_A2, GLU_RGBA12, or
GLU_RGBA16.

width
height Specifies in pixels the width and height, respectively, of the texture image.

format Specifies the format of the pixel data. Must be one of GLU_COLOR_INDEX,
GLU_DEPTH_COMPONENT, GLU_RED, GLU_GREEN, GLU_BLUE, GLU_ALPHA,
GLU_RGB, GLU_RGBA, GLU_BGR, GLU_BGRA, GLU_LUMINANCE, or
GLU_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of GLU_UNSIGNED_

BYTE, GLU_BYTE, GLU_BITMAP, GLU_UNSIGNED_SHORT, GLU_SHORT,
GLU_UNSIGNED_INT, GLU_INT, GLU_FLOAT, GLU_UNSIGNED_BYTE_3_3_2,

Chapter 4: GLU 427

GLU_UNSIGNED_BYTE_2_3_3_REV, GLU_UNSIGNED_SHORT_5_6_5,
GLU_UNSIGNED_SHORT_5_6_5_REV, GLU_UNSIGNED_SHORT_4_4_4_4,
GLU_UNSIGNED_SHORT_4_4_4_4_REV, GLU_UNSIGNED_SHORT_5_5_5_1,
GLU_UNSIGNED_SHORT_1_5_5_5_REV, GLU_UNSIGNED_INT_8_8_8_8,
GLU_UNSIGNED_INT_8_8_8_8_REV, GLU_UNSIGNED_INT_10_10_10_2, or
GLU_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

gluBuild2DMipmaps builds a series of prefiltered two-dimensional texture maps of
decreasing resolutions called a mipmap. This is used for the antialiasing of texture-
mapped primitives.

A return value of zero indicates success, otherwise a GLU error code is returned (see
gluErrorString).

Initially, the width and height of data are checked to see if they are a power of 2. If
not, a copy of data (not data), is scaled up or down to the nearest power of 2. This
copy will be used for subsequent mipmapping operations described below. (If width
or height is exactly between powers of 2, then the copy of data will scale upwards.)
For example, if width is 57 and height is 23, then a copy of data will scale up to 64
in width and down to 16 in depth, before mipmapping takes place.

Then, proxy textures (see glTexImage2D) are used to determine if the implementa-
tion can fit the requested texture. If not, both dimensions are continually halved
until it fits. (If the OpenGL version is \(<= 1.0, both maximum texture dimensions
are clamped to the value returned by glGetIntegerv with the argument GLU_MAX_
TEXTURE_SIZE.)

Next, a series of mipmap levels is built by decimating a copy of data in half along both
dimensions until size 11 is reached. At each level, each texel in the halved mipmap
level is an average of the corresponding four texels in the larger mipmap level. (In
the case of rectangular images, the decimation will ultimately reach an N1 or 1N
configuration. Here, two texels are averaged instead.)

glTexImage2D is called to load each of these mipmap levels. Level 0 is a copy of
data. The highest level is log 2,(max(width,height),). For example, if width is 64
and height is 16 and the implementation can store a texture of this size, the following
mipmap levels are built: 6416, 328, 164, 82, 41, 21, and 11 These correspond to levels
0 through 6, respectively.

See the glTexImage1D reference page for a description of the acceptable values for
format parameter. See the glDrawPixels reference page for a description of the
acceptable values for type parameter.

GLU_INVALID_VALUE is returned if width or height is < 1.

GLU_INVALID_ENUM is returned if internalFormat, format, or type is not legal.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_BYTE_3_3_2 or GLU_

UNSIGNED_BYTE_2_3_3_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_6_5 or GLU_
UNSIGNED_SHORT_5_6_5_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_4_4_4_4 or
GLU_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GLU_RGBA nor GLU_BGRA.

Chapter 4: GLU 428

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_5_5_1 or
GLU_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_8_8_8_8 or GLU_
UNSIGNED_INT_8_8_8_8_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_10_10_10_2 or
GLU_UNSIGNED_INT_2_10_10_10_REV and format is neither GLU_RGBA nor GLU_BGRA.

[Function]GLint gluBuild3DMipmapLevels target internalFormat width height
depth format type level base max data

Builds a subset of three-dimensional mipmap levels.

target Specifies the target texture. Must be GLU_TEXTURE_3D.

internalFormat
Requests the internal storage format of the texture image. The most
current version of the SGI implementation of GLU does not check this
value for validity before passing it on to the underlying OpenGL imple-
mentation. A value that is not accepted by the OpenGL implementation
will lead to an OpenGL error. The benefit of not checking this value at
the GLU level is that OpenGL extensions can add new internal texture
formats without requiring a revision of the GLU implementation.
Older implementations of GLU check this value and raise a GLU error
if it is not 1, 2, 3, or 4 or one of the following symbolic constants:
GLU_ALPHA, GLU_ALPHA4, GLU_ALPHA8, GLU_ALPHA12, GLU_ALPHA16,
GLU_LUMINANCE, GLU_LUMINANCE4, GLU_LUMINANCE8, GLU_LUMINANCE12,
GLU_LUMINANCE16, GLU_LUMINANCE_ALPHA, GLU_LUMINANCE4_ALPHA4,
GLU_LUMINANCE6_ALPHA2, GLU_LUMINANCE8_ALPHA8, GLU_LUMINANCE12_
ALPHA4, GLU_LUMINANCE12_ALPHA12, GLU_LUMINANCE16_ALPHA16,
GLU_INTENSITY, GLU_INTENSITY4, GLU_INTENSITY8, GLU_INTENSITY12,
GLU_INTENSITY16, GLU_RGB, GLU_R3_G3_B2, GLU_RGB4, GLU_RGB5,
GLU_RGB8, GLU_RGB10, GLU_RGB12, GLU_RGB16, GLU_RGBA, GLU_RGBA2,
GLU_RGBA4, GLU_RGB5_A1, GLU_RGBA8, GLU_RGB10_A2, GLU_RGBA12, or
GLU_RGBA16.

width
height
depth Specifies in pixels the width, height and depth respectively, of the texture

image. These should be a power of 2.

format Specifies the format of the pixel data. Must be one of GLU_COLOR_INDEX,
GLU_DEPTH_COMPONENT, GLU_RED, GLU_GREEN, GLU_BLUE, GLU_ALPHA,
GLU_RGB, GLU_RGBA, GLU_BGR, GLU_BGRA, GLU_LUMINANCE, or
GLU_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of GLU_UNSIGNED_

BYTE, GLU_BYTE, GLU_BITMAP, GLU_UNSIGNED_SHORT, GLU_SHORT,
GLU_UNSIGNED_INT, GLU_INT, GLU_FLOAT, GLU_UNSIGNED_BYTE_3_3_2,
GLU_UNSIGNED_BYTE_2_3_3_REV, GLU_UNSIGNED_SHORT_5_6_5,
GLU_UNSIGNED_SHORT_5_6_5_REV, GLU_UNSIGNED_SHORT_4_4_4_4,
GLU_UNSIGNED_SHORT_4_4_4_4_REV, GLU_UNSIGNED_SHORT_5_5_5_1,

Chapter 4: GLU 429

GLU_UNSIGNED_SHORT_1_5_5_5_REV, GLU_UNSIGNED_INT_8_8_8_8,
GLU_UNSIGNED_INT_8_8_8_8_REV, GLU_UNSIGNED_INT_10_10_10_2, or
GLU_UNSIGNED_INT_2_10_10_10_REV.

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to glTexImage3D.

max Specifies the maximum mipmap level to pass to glTexImage3D.

data Specifies a pointer to the image data in memory.

gluBuild3DMipmapLevels builds a subset of prefiltered three-dimensional texture
maps of decreasing resolutions called a mipmap. This is used for the antialiasing of
texture mapped primitives.

A return value of zero indicates success, otherwise a GLU error code is returned (see
gluErrorString).

A series of mipmap levels from base to max is built by decimating data in half along
both dimensions until size 111 is reached. At each level, each texel in the halved
mipmap level is an average of the corresponding eight texels in the larger mipmap
level. (If exactly one of the dimensions is 1, four texels are averaged. If exactly two
of the dimensions are 1, two texels are averaged.) glTexImage3D is called to load
these mipmap levels from base to max. If max is larger than the highest mipmap
level for the texture of the specified size, then a GLU error code is returned (see
gluErrorString) and nothing is loaded.

For example, if level is 2 and width is 16, height is 8 and depth is 4, the following
levels are possible: 1684, 842, 421, 211, 111. These correspond to levels 2 through 6
respectively. If base is 3 and max is 5, then only mipmap levels 842, 421, and 211 are
loaded. However, if max is 7, then an error is returned and nothing is loaded, since
max is larger than the highest mipmap level which is, in this case, 6.

The highest mipmap level can be derived from the formula log 2(max(width,heightdepth)2^level,).

See the glTexImage1D reference page for a description of the acceptable values for
format parameter. See the glDrawPixels reference page for a description of the
acceptable values for type parameter.

GLU_INVALID_VALUE is returned if level > base, base < 0, max < base, or max is > the
highest mipmap level for data.

GLU_INVALID_VALUE is returned if width, height, or depth is < 1.

GLU_INVALID_ENUM is returned if internalFormat, format, or type is not legal.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_BYTE_3_3_2 or GLU_

UNSIGNED_BYTE_2_3_3_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_6_5 or GLU_
UNSIGNED_SHORT_5_6_5_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_4_4_4_4 or
GLU_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_5_5_1 or
GLU_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GLU_RGBA nor GLU_BGRA.

Chapter 4: GLU 430

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_8_8_8_8 or GLU_
UNSIGNED_INT_8_8_8_8_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_10_10_10_2 or
GLU_UNSIGNED_INT_2_10_10_10_REV and format is neither GLU_RGBA nor GLU_BGRA.

[Function]GLint gluBuild3DMipmaps target internalFormat width height depth
format type data

Builds a three-dimensional mipmap.

target Specifies the target texture. Must be GLU_TEXTURE_3D.

internalFormat
Requests the internal storage format of the texture image. The most
current version of the SGI implementation of GLU does not check this
value for validity before passing it on to the underlying OpenGL imple-
mentation. A value that is not accepted by the OpenGL implementation
will lead to an OpenGL error. The benefit of not checking this value at
the GLU level is that OpenGL extensions can add new internal texture
formats without requiring a revision of the GLU implementation.
Older implementations of GLU check this value and raise a GLU error
if it is not 1, 2, 3, or 4 or one of the following symbolic constants:
GLU_ALPHA, GLU_ALPHA4, GLU_ALPHA8, GLU_ALPHA12, GLU_ALPHA16,
GLU_LUMINANCE, GLU_LUMINANCE4, GLU_LUMINANCE8, GLU_LUMINANCE12,
GLU_LUMINANCE16, GLU_LUMINANCE_ALPHA, GLU_LUMINANCE4_ALPHA4,
GLU_LUMINANCE6_ALPHA2, GLU_LUMINANCE8_ALPHA8, GLU_LUMINANCE12_
ALPHA4, GLU_LUMINANCE12_ALPHA12, GLU_LUMINANCE16_ALPHA16,
GLU_INTENSITY, GLU_INTENSITY4, GLU_INTENSITY8, GLU_INTENSITY12,
GLU_INTENSITY16, GLU_RGB, GLU_R3_G3_B2, GLU_RGB4, GLU_RGB5,
GLU_RGB8, GLU_RGB10, GLU_RGB12, GLU_RGB16, GLU_RGBA, GLU_RGBA2,
GLU_RGBA4, GLU_RGB5_A1, GLU_RGBA8, GLU_RGB10_A2, GLU_RGBA12, or
GLU_RGBA16.

width
height
depth Specifies in pixels the width, height and depth respectively, in pixels of

the texture image.

format Specifies the format of the pixel data. Must be one of GLU_COLOR_INDEX,
GLU_DEPTH_COMPONENT, GLU_RED, GLU_GREEN, GLU_BLUE, GLU_ALPHA,
GLU_RGB, GLU_RGBA, GLU_BGR, GLU_BGRA, GLU_LUMINANCE, or
GLU_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of: GLU_UNSIGNED_

BYTE, GLU_BYTE, GLU_BITMAP, GLU_UNSIGNED_SHORT, GLU_SHORT,
GLU_UNSIGNED_INT, GLU_INT, GLU_FLOAT, GLU_UNSIGNED_BYTE_3_3_2,
GLU_UNSIGNED_BYTE_2_3_3_REV, GLU_UNSIGNED_SHORT_5_6_5,
GLU_UNSIGNED_SHORT_5_6_5_REV, GLU_UNSIGNED_SHORT_4_4_4_4,
GLU_UNSIGNED_SHORT_4_4_4_4_REV, GLU_UNSIGNED_SHORT_5_5_5_1,
GLU_UNSIGNED_SHORT_1_5_5_5_REV, GLU_UNSIGNED_INT_8_8_8_8,

Chapter 4: GLU 431

GLU_UNSIGNED_INT_8_8_8_8_REV, GLU_UNSIGNED_INT_10_10_10_2, or
GLU_UNSIGNED_INT_2_10_10_10_REV.

data Specifies a pointer to the image data in memory.

gluBuild3DMipmaps builds a series of prefiltered three-dimensional texture maps of
decreasing resolutions called a mipmap. This is used for the antialiasing of texture-
mapped primitives.

A return value of zero indicates success, otherwise a GLU error code is returned (see
gluErrorString).

Initially, the width, height and depth of data are checked to see if they are a power
of 2. If not, a copy of data is made and scaled up or down to the nearest power of
2. (If width, height, or depth is exactly between powers of 2, then the copy of data
will scale upwards.) This copy will be used for subsequent mipmapping operations
described below. For example, if width is 57, height is 23, and depth is 24, then a
copy of data will scale up to 64 in width, down to 16 in height, and up to 32 in depth
before mipmapping takes place.

Then, proxy textures (see glTexImage3D) are used to determine if the implementation
can fit the requested texture. If not, all three dimensions are continually halved until
it fits.

Next, a series of mipmap levels is built by decimating a copy of data in half along
all three dimensions until size 111 is reached. At each level, each texel in the halved
mipmap level is an average of the corresponding eight texels in the larger mipmap
level. (If exactly one of the dimensions is 1, four texels are averaged. If exactly two
of the dimensions are 1, two texels are averaged.)

glTexImage3D is called to load each of these mipmap levels. Level 0 is a copy of data.
The highest level is log 2,(max(width,heightdepth),). For example, if width is 64,
height is 16, and depth is 32, and the implementation can store a texture of this size,
the following mipmap levels are built: 641632, 32816, 1648, 824, 412, 211, and 111.
These correspond to levels 0 through 6, respectively.

See the glTexImage1D reference page for a description of the acceptable values for
format parameter. See the glDrawPixels reference page for a description of the
acceptable values for type parameter.

GLU_INVALID_VALUE is returned if width, height, or depth is < 1.

GLU_INVALID_ENUM is returned if internalFormat, format, or type is not legal.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_BYTE_3_3_2 or GLU_

UNSIGNED_BYTE_2_3_3_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_6_5 or GLU_
UNSIGNED_SHORT_5_6_5_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_4_4_4_4 or
GLU_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_SHORT_5_5_5_1 or
GLU_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GLU_RGBA nor GLU_BGRA.

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_8_8_8_8 or GLU_
UNSIGNED_INT_8_8_8_8_REV and format is neither GLU_RGBA nor GLU_BGRA.

Chapter 4: GLU 432

GLU_INVALID_OPERATION is returned if type is GLU_UNSIGNED_INT_10_10_10_2 or
GLU_UNSIGNED_INT_2_10_10_10_REV and format is neither GLU_RGBA nor GLU_BGRA.

[Function]GLboolean gluCheckExtension extName extString
Determines if an extension name is supported.

extName Specifies an extension name.

extString Specifies a space-separated list of extension names supported.

gluCheckExtension returns GLU_TRUE if extName is supported otherwise GLU_FALSE
is returned.

This is used to check for the presence for OpenGL, GLU, or GLX extension
names by passing the extension strings returned by glGetString, gluGetString,
glXGetClientString, glXQueryExtensionsString, or glXQueryServerString,
respectively, as extString.

[Function]void gluCylinder quad base top height slices stacks
Draw a cylinder.

quad Specifies the quadrics object (created with gluNewQuadric).

base Specifies the radius of the cylinder at z = 0.

top Specifies the radius of the cylinder at z = height.

height Specifies the height of the cylinder.

slices Specifies the number of subdivisions around the z axis.

stacks Specifies the number of subdivisions along the z axis.

gluCylinder draws a cylinder oriented along the z axis. The base of the cylinder
is placed at z = 0 and the top at z=height. Like a sphere, a cylinder is subdivided
around the z axis into slices and along the z axis into stacks.

Note that if top is set to 0.0, this routine generates a cone.

If the orientation is set to GLU_OUTSIDE (with gluQuadricOrientation), then any
generated normals point away from the z axis. Otherwise, they point toward the z
axis.

If texturing is turned on (with gluQuadricTexture), then texture coordinates are
generated so that t ranges linearly from 0.0 at z = 0 to 1.0 at z = height, and s
ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the -y axis, to 0.75 at
the \-x axis, and back to 1.0 at the +y axis.

[Function]void gluDeleteNurbsRenderer nurb
Destroy a NURBS object.

nurb Specifies the NURBS object to be destroyed.

gluDeleteNurbsRenderer destroys the NURBS object (which was cre-
ated with gluNewNurbsRenderer) and frees any memory it uses. Once
gluDeleteNurbsRenderer has been called, nurb cannot be used again.

Chapter 4: GLU 433

[Function]void gluDeleteQuadric quad
Destroy a quadrics object.

quad Specifies the quadrics object to be destroyed.

gluDeleteQuadric destroys the quadrics object (created with gluNewQuadric) and
frees any memory it uses. Once gluDeleteQuadric has been called, quad cannot be
used again.

[Function]void gluDeleteTess tess
Destroy a tessellation object.

tess Specifies the tessellation object to destroy.

gluDeleteTess destroys the indicated tessellation object (which was created with
gluNewTess) and frees any memory that it used.

[Function]void gluDisk quad inner outer slices loops
Draw a disk.

quad Specifies the quadrics object (created with gluNewQuadric).

inner Specifies the inner radius of the disk (may be 0).

outer Specifies the outer radius of the disk.

slices Specifies the number of subdivisions around the z axis.

loops Specifies the number of concentric rings about the origin into which the
disk is subdivided.

gluDisk renders a disk on the z = 0 plane. The disk has a radius of outer and
contains a concentric circular hole with a radius of inner. If inner is 0, then no hole
is generated. The disk is subdivided around the z axis into slices (like pizza slices)
and also about the z axis into rings (as specified by slices and loops, respectively).

With respect to orientation, the +z side of the disk is considered to be “outside” (see
gluQuadricOrientation). This means that if the orientation is set to GLU_OUTSIDE,
then any normals generated point along the +z axis. Otherwise, they point along the
\-z axis.

If texturing has been turned on (with gluQuadricTexture), texture coordinates are
generated linearly such that where r=outer, the value at (r, 0, 0) is (1, 0.5), at (0, r,
0) it is (0.5, 1), at (\-r, 0, 0) it is (0, 0.5), and at (0, \-r, 0) it is (0.5, 0).

[Function]const-GLubyte-* gluErrorString error
Produce an error string from a GL or GLU error code.

error Specifies a GL or GLU error code.

gluErrorString produces an error string from a GL or GLU error code. The string is
in ISO Latin 1 format. For example, gluErrorString(GLU_OUT_OF_MEMORY) returns
the string out of memory.

The standard GLU error codes are GLU_INVALID_ENUM, GLU_INVALID_VALUE, and
GLU_OUT_OF_MEMORY. Certain other GLU functions can return specialized error codes
through callbacks. See the glGetError reference page for the list of GL error codes.

NULL is returned if error is not a valid GL or GLU error code.

Chapter 4: GLU 434

[Function]void gluGetNurbsProperty nurb property data
Get a NURBS property.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

property Specifies the property whose value is to be fetched. Valid values
are GLU_CULLING, GLU_SAMPLING_TOLERANCE, GLU_DISPLAY_MODE,
GLU_AUTO_LOAD_MATRIX, GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_

METHOD, GLU_U_STEP, GLU_V_STEP, and GLU_NURBS_MODE.

data Specifies a pointer to the location into which the value of the named
property is written.

gluGetNurbsProperty retrieves properties stored in a NURBS object. These
properties affect the way that NURBS curves and surfaces are rendered. See the
gluNurbsProperty reference page for information about what the properties are
and what they do.

[Function]const-GLubyte-* gluGetString name
Return a string describing the GLU version or GLU extensions .

name Specifies a symbolic constant, one of GLU_VERSION, or GLU_EXTENSIONS.

gluGetString returns a pointer to a static string describing the GLU version or the
GLU extensions that are supported.

The version number is one of the following forms:

major number.minor numbermajor number.minor number.release number.

The version string is of the following form:

version number<space>vendor-specific information

Vendor-specific information is optional. Its format and contents depend on the im-
plementation.

The standard GLU contains a basic set of features and capabilities. If a company
or group of companies wish to support other features, these may be included as
extensions to the GLU. If name is GLU_EXTENSIONS, then gluGetString returns a
space-separated list of names of supported GLU extensions. (Extension names never
contain spaces.)

All strings are null-terminated.

NULL is returned if name is not GLU_VERSION or GLU_EXTENSIONS.

[Function]void gluGetTessProperty tess which data
Get a tessellation object property.

tess Specifies the tessellation object (created with gluNewTess).

which Specifies the property whose value is to be fetched. Valid values
are GLU_TESS_WINDING_RULE, GLU_TESS_BOUNDARY_ONLY, and
GLU_TESS_TOLERANCE.

data Specifies a pointer to the location into which the value of the named
property is written.

Chapter 4: GLU 435

gluGetTessProperty retrieves properties stored in a tessellation object. These prop-
erties affect the way that tessellation objects are interpreted and rendered. See the
gluTessProperty reference page for information about the properties and what they
do.

[Function]void gluLoadSamplingMatrices nurb model perspective view
Load NURBS sampling and culling matrices.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

model Specifies a modelview matrix (as from a glGetFloatv call).

perspective
Specifies a projection matrix (as from a glGetFloatv call).

view Specifies a viewport (as from a glGetIntegerv call).

gluLoadSamplingMatrices uses model, perspective, and view to recompute the sam-
pling and culling matrices stored in nurb. The sampling matrix determines how finely
a NURBS curve or surface must be tessellated to satisfy the sampling tolerance (as
determined by the GLU_SAMPLING_TOLERANCE property). The culling matrix is used
in deciding if a NURBS curve or surface should be culled before rendering (when the
GLU_CULLING property is turned on).

gluLoadSamplingMatrices is necessary only if the GLU_AUTO_LOAD_MATRIX property
is turned off (see gluNurbsProperty). Although it can be convenient to leave the
GLU_AUTO_LOAD_MATRIX property turned on, there can be a performance penalty for
doing so. (A round trip to the GL server is needed to fetch the current values of the
modelview matrix, projection matrix, and viewport.)

[Function]void gluLookAt eyeX eyeY eyeZ centerX centerY centerZ upX upY upZ
Define a viewing transformation.

eyeX
eyeY
eyeZ Specifies the position of the eye point.

centerX
centerY
centerZ Specifies the position of the reference point.

upX
upY
upZ Specifies the direction of the up vector.

gluLookAt creates a viewing matrix derived from an eye point, a reference point
indicating the center of the scene, and an UP vector.

The matrix maps the reference point to the negative z axis and the eye point to the
origin. When a typical projection matrix is used, the center of the scene therefore
maps to the center of the viewport. Similarly, the direction described by the UP
vector projected onto the viewing plane is mapped to the positive y axis so that it
points upward in the viewport. The UP vector must not be parallel to the line of
sight from the eye point to the reference point.

Chapter 4: GLU 436

Let

F=((centerX-eyeX), (centerY-eyeY), (centerZ-eyeZ),)

Let UP be the vector (upX,upYupZ).

Then normalize as follows: f=F/F,,

UP^=UP/UP,,

Finally, let s=f UP^, and u=sf .

M is then constructed as follows: M=((s[0,] s[1,] s[2,] 0), (u[0,] u[1,] u[2,] 0), (-f [0,]
-f [1,] -f [2,] 0), (0 0 0 1),)

and gluLookAt is equivalent to

glMultMatrixf(M);

glTranslated(-eyex, -eyey, -eyez);

[Function]GLUnurbs* gluNewNurbsRenderer
Create a NURBS object.

gluNewNurbsRenderer creates and returns a pointer to a new NURBS object. This
object must be referred to when calling NURBS rendering and control functions. A
return value of 0 means that there is not enough memory to allocate the object.

[Function]GLUquadric* gluNewQuadric
Create a quadrics object.

gluNewQuadric creates and returns a pointer to a new quadrics object. This object
must be referred to when calling quadrics rendering and control functions. A return
value of 0 means that there is not enough memory to allocate the object.

[Function]GLUtesselator* gluNewTess
Create a tessellation object.

gluNewTess creates and returns a pointer to a new tessellation object. This object
must be referred to when calling tessellation functions. A return value of 0 means
that there is not enough memory to allocate the object.

[Function]void gluNextContour tess type
Mark the beginning of another contour.

tess Specifies the tessellation object (created with gluNewTess).

type Specifies the type of the contour being defined. Valid values are GLU_

EXTERIOR, GLU_INTERIOR, GLU_UNKNOWN, GLU_CCW, and GLU_CW.

gluNextContour is used in describing polygons with multiple contours. After
the first contour has been described through a series of gluTessVertex calls, a
gluNextContour call indicates that the previous contour is complete and that the
next contour is about to begin. Another series of gluTessVertex calls is then used
to describe the new contour. This process can be repeated until all contours have
been described.

type defines what type of contour follows. The legal contour types are as follows:

Chapter 4: GLU 437

GLU_EXTERIOR

An exterior contour defines an exterior boundary of the polygon.

GLU_INTERIOR

An interior contour defines an interior boundary of the polygon (such as
a hole).

GLU_UNKNOWN

An unknown contour is analyzed by the library to determine if it is interior
or exterior.

GLU_CCW,

GLU_CW The first GLU_CCW or GLU_CW contour defined is considered to be exterior.
All other contours are considered to be exterior if they are oriented in the
same direction (clockwise or counterclockwise) as the first contour, and
interior if they are not.

If one contour is of type GLU_CCW or GLU_CW, then all contours must be of the same
type (if they are not, then all GLU_CCW and GLU_CW contours will be changed to GLU_

UNKNOWN).

Note that there is no real difference between the GLU_CCW and GLU_CW contour types.

Before the first contour is described, gluNextContour can be called to define the type
of the first contour. If gluNextContour is not called before the first contour, then
the first contour is marked GLU_EXTERIOR.

This command is obsolete and is provided for backward compatibility only.
Calls to gluNextContour are mapped to gluTessEndContour followed by
gluTessBeginContour.

[Function]void gluNurbsCallbackDataEXT nurb userData
Set a user data pointer.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

userData Specifies a pointer to the user’s data.

gluNurbsCallbackDataEXT is used to pass a pointer to the application’s data to
NURBS tessellator. A copy of this pointer will be passed by the tessellator in the
NURBS callback functions (set by gluNurbsCallback).

[Function]void gluNurbsCallbackData nurb userData
Set a user data pointer.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

userData Specifies a pointer to the user’s data.

gluNurbsCallbackData is used to pass a pointer to the application’s data to NURBS
tessellator. A copy of this pointer will be passed by the tessellator in the NURBS
callback functions (set by gluNurbsCallback).

[Function]void gluNurbsCallback nurb which CallBackFunc
Define a callback for a NURBS object.

Chapter 4: GLU 438

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

which Specifies the callback being defined. Valid values are GLU_NURBS_

BEGIN, GLU_NURBS_VERTEX, GLU_NURBS_NORMAL, GLU_NURBS_COLOR,
GLU_NURBS_TEXTURE_COORD, GLU_NURBS_END, GLU_NURBS_BEGIN_DATA,
GLU_NURBS_VERTEX_DATA, GLU_NURBS_NORMAL_DATA, GLU_NURBS_COLOR_
DATA, GLU_NURBS_TEXTURE_COORD_DATA, GLU_NURBS_END_DATA, and
GLU_NURBS_ERROR.

CallBackFunc
Specifies the function that the callback calls.

gluNurbsCallback is used to define a callback to be used by a NURBS object. If the
specified callback is already defined, then it is replaced. If CallBackFunc is NULL,
then this callback will not get invoked and the related data, if any, will be lost.

Except the error callback, these callbacks are used by NURBS tessellator (when GLU_

NURBS_MODE is set to be GLU_NURBS_TESSELLATOR) to return back the OpenGL poly-
gon primitives resulting from the tessellation. Note that there are two versions of
each callback: one with a user data pointer and one without. If both versions for a
particular callback are specified then the callback with the user data pointer will be
used. Note that “userData” is a copy of the pointer that was specified at the last call
to gluNurbsCallbackData.

The error callback function is effective no matter which value that GLU_NURBS_MODE
is set to. All other callback functions are effective only when GLU_NURBS_MODE is set
to GLU_NURBS_TESSELLATOR.

The legal callbacks are as follows:

GLU_NURBS_BEGIN

The begin callback indicates the start of a primitive. The function takes
a single argument of type GLenum, which can be one of GLU_LINES,
GLU_LINE_STRIP, GLU_TRIANGLE_FAN, GLU_TRIANGLE_STRIP, GLU_

TRIANGLES, or GLU_QUAD_STRIP. The default begin callback function is
NULL. The function prototype for this callback looks like:

GLU_NURBS_BEGIN_DATA

The same as the GLU_NURBS_BEGIN callback except that it takes an addi-
tional pointer argument. This pointer is a copy of the pointer that was
specified at the last call to gluNurbsCallbackData. The default callback
function is NULL. The function prototype for this callback function looks
like:

GLU_NURBS_VERTEX

The vertex callback indicates a vertex of the primitive. The coordinates
of the vertex are stored in the parameter “vertex”. All the generated
vertices have dimension 3; that is, homogeneous coordinates have been
transformed into affine coordinates. The default vertex callback function
is NULL. The function prototype for this callback function looks like:

GLU_NURBS_VERTEX_DATA

This is the same as the GLU_NURBS_VERTEX callback, except that it takes
an additional pointer argument. This pointer is a copy of the pointer

Chapter 4: GLU 439

that was specified at the last call to gluNurbsCallbackData. The de-
fault callback function is NULL. The function prototype for this callback
function looks like:

GLU_NURBS_NORMAL

The normal callback is invoked as the vertex normal is generated. The
components of the normal are stored in the parameter “normal.” In
the case of a NURBS curve, the callback function is effective only when
the user provides a normal map (GLU_MAP1_NORMAL). In the case of a
NURBS surface, if a normal map (GLU_MAP2_NORMAL) is provided, then
the generated normal is computed from the normal map. If a normal map
is not provided, then a surface normal is computed in a manner similar
to that described for evaluators when GLU_AUTO_NORMAL is enabled. The
default normal callback function is NULL. The function prototype for
this callback function looks like:

GLU_NURBS_NORMAL_DATA

The same as the GLU_NURBS_NORMAL callback except that it takes an ad-
ditional pointer argument. This pointer is a copy of the pointer that was
specified at the last call to gluNurbsCallbackData. The default callback
function is NULL. The function prototype for this callback function looks
like:

GLU_NURBS_COLOR

The color callback is invoked as the color of a vertex is generated. The
components of the color are stored in the parameter “color.” This callback
is effective only when the user provides a color map (GLU_MAP1_COLOR_
4 or GLU_MAP2_COLOR_4). “color” contains four components: R, G, B,
A. The default color callback function is NULL. The prototype for this
callback function looks like:

GLU_NURBS_COLOR_DATA

The same as the GLU_NURBS_COLOR callback except that it takes an addi-
tional pointer argument. This pointer is a copy of the pointer that was
specified at the last call to gluNurbsCallbackData. The default callback
function is NULL. The function prototype for this callback function looks
like:

GLU_NURBS_TEXTURE_COORD

The texture callback is invoked as the texture coordinates of a vertex are
generated. These coordinates are stored in the parameter “texCoord.”
The number of texture coordinates can be 1, 2, 3, or 4 depending
on which type of texture map is specified (GLU_MAP1_TEXTURE_
COORD_1, GLU_MAP1_TEXTURE_COORD_2, GLU_MAP1_TEXTURE_COORD_3,
GLU_MAP1_TEXTURE_COORD_4, GLU_MAP2_TEXTURE_COORD_1,
GLU_MAP2_TEXTURE_COORD_2, GLU_MAP2_TEXTURE_COORD_3, GLU_MAP2_

TEXTURE_COORD_4). If no texture map is specified, this callback function
will not be called. The default texture callback function is NULL. The
function prototype for this callback function looks like:

Chapter 4: GLU 440

GLU_NURBS_TEXTURE_COORD_DATA

This is the same as the GLU_NURBS_TEXTURE_COORD callback, except that
it takes an additional pointer argument. This pointer is a copy of the
pointer that was specified at the last call to gluNurbsCallbackData.
The default callback function is NULL. The function prototype for this
callback function looks like:

GLU_NURBS_END

The end callback is invoked at the end of a primitive. The default end
callback function is NULL. The function prototype for this callback func-
tion looks like:

GLU_NURBS_END_DATA

This is the same as the GLU_NURBS_END callback, except that it takes an
additional pointer argument. This pointer is a copy of the pointer that
was specified at the last call to gluNurbsCallbackData. The default call-
back function is NULL. The function prototype for this callback function
looks like:

GLU_NURBS_ERROR

The error function is called when an error is encountered. Its single
argument is of type GLenum, and it indicates the specific error that
occurred. There are 37 errors unique to NURBS, named GLU_NURBS_

ERROR1 through GLU_NURBS_ERROR37. Character strings describing these
errors can be retrieved with gluErrorString.

void begin(GLenum type);

void beginData(GLenum type, void *userData);

void vertex(GLfloat *vertex);

void vertexData(GLfloat *vertex, void *userData);

void normal(GLfloat *normal);

void normalData(GLfloat *normal, void *userData);

void color(GLfloat *color);

void colorData(GLfloat *color, void *userData);

void texCoord(GLfloat *texCoord);

void texCoordData(GLfloat *texCoord, void *userData);

void end(void);

Chapter 4: GLU 441

void endData(void *userData);

[Function]void gluNurbsCurve nurb knotCount knots stride control order type
Define the shape of a NURBS curve.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

knotCount
Specifies the number of knots in knots. knotCount equals the number of
control points plus the order.

knots Specifies an array of knotCount nondecreasing knot values.

stride Specifies the offset (as a number of single-precision floating-point values)
between successive curve control points.

control Specifies a pointer to an array of control points. The coordinates must
agree with type, specified below.

order Specifies the order of the NURBS curve. order equals degree + 1, hence
a cubic curve has an order of 4.

type Specifies the type of the curve. If this curve is defined within a
gluBeginCurve/gluEndCurve pair, then the type can be any of the
valid one-dimensional evaluator types (such as GLU_MAP1_VERTEX_3 or
GLU_MAP1_COLOR_4). Between a gluBeginTrim/gluEndTrim pair, the
only valid types are GLU_MAP1_TRIM_2 and GLU_MAP1_TRIM_3.

Use gluNurbsCurve to describe a NURBS curve.

When gluNurbsCurve appears between a gluBeginCurve/gluEndCurve pair,
it is used to describe a curve to be rendered. Positional, texture, and color
coordinates are associated by presenting each as a separate gluNurbsCurve between
a gluBeginCurve/gluEndCurve pair. No more than one call to gluNurbsCurve

for each of color, position, and texture data can be made within a single
gluBeginCurve/gluEndCurve pair. Exactly one call must be made to describe the
position of the curve (a type of GLU_MAP1_VERTEX_3 or GLU_MAP1_VERTEX_4).

When gluNurbsCurve appears between a gluBeginTrim/gluEndTrim pair, it is used
to describe a trimming curve on a NURBS surface. If type is GLU_MAP1_TRIM_2,
then it describes a curve in two-dimensional (u and v) parameter space. If it is GLU_
MAP1_TRIM_3, then it describes a curve in two-dimensional homogeneous (u, v, and
w) parameter space. See the gluBeginTrim reference page for more discussion about
trimming curves.

[Function]void gluNurbsProperty nurb property value
Set a NURBS property.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

property Specifies the property to be set. Valid values are GLU_SAMPLING_

TOLERANCE, GLU_DISPLAY_MODE, GLU_CULLING, GLU_AUTO_LOAD_MATRIX,
GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD, GLU_U_STEP,
GLU_V_STEP, or GLU_NURBS_MODE.

Chapter 4: GLU 442

value Specifies the value of the indicated property. It may be a numeric
value or one of GLU_OUTLINE_POLYGON, GLU_FILL, GLU_OUTLINE_PATCH,
GLU_TRUE, GLU_FALSE, GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR, GLU_
DOMAIN_DISTANCE, GLU_NURBS_RENDERER, or GLU_NURBS_TESSELLATOR.

gluNurbsProperty is used to control properties stored in a NURBS object. These
properties affect the way that a NURBS curve is rendered. The accepted values for
property are as follows:

GLU_NURBS_MODE

value should be set to be either GLU_NURBS_RENDERER or GLU_NURBS_

TESSELLATOR. When set to GLU_NURBS_RENDERER, NURBS objects are
tessellated into OpenGL primitives and sent to the pipeline for rendering.
When set to GLU_NURBS_TESSELLATOR, NURBS objects are tessellated
into OpenGL primitives but the vertices, normals, colors, and/or textures
are retrieved back through a callback interface (see gluNurbsCallback).
This allows the user to cache the tessellated results for further processing.
The initial value is GLU_NURBS_RENDERER.

GLU_SAMPLING_METHOD

Specifies how a NURBS surface should be tessellated. value may be one
of GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR, GLU_DOMAIN_DISTANCE,
GLU_OBJECT_PATH_LENGTH, or GLU_OBJECT_PARAMETRIC_ERROR. When
set to GLU_PATH_LENGTH, the surface is rendered so that the maximum
length, in pixels, of the edges of the tessellation polygons is no greater
than what is specified by GLU_SAMPLING_TOLERANCE.

GLU_PARAMETRIC_ERROR specifies that the surface is rendered in such a
way that the value specified by GLU_PARAMETRIC_TOLERANCE describes
the maximum distance, in pixels, between the tessellation polygons and
the surfaces they approximate.

GLU_DOMAIN_DISTANCE allows users to specify, in parametric coordinates,
how many sample points per unit length are taken in u, v direction.

GLU_OBJECT_PATH_LENGTH is similar to GLU_PATH_LENGTH except that it
is view independent; that is, the surface is rendered so that the maximum
length, in object space, of edges of the tessellation polygons is no greater
than what is specified by GLU_SAMPLING_TOLERANCE.

GLU_OBJECT_PARAMETRIC_ERROR is similar to GLU_PARAMETRIC_ERROR ex-
cept that it is view independent; that is, the surface is rendered in such
a way that the value specified by GLU_PARAMETRIC_TOLERANCE describes
the maximum distance, in object space, between the tessellation polygons
and the surfaces they approximate.

The initial value of GLU_SAMPLING_METHOD is GLU_PATH_LENGTH.

GLU_SAMPLING_TOLERANCE

Specifies the maximum length, in pixels or in object space length unit,
to use when the sampling method is set to GLU_PATH_LENGTH or GLU_

OBJECT_PATH_LENGTH. The NURBS code is conservative when rendering
a curve or surface, so the actual length can be somewhat shorter. The
initial value is 50.0 pixels.

Chapter 4: GLU 443

GLU_PARAMETRIC_TOLERANCE

Specifies the maximum distance, in pixels or in object space length unit,
to use when the sampling method is GLU_PARAMETRIC_ERROR or GLU_

OBJECT_PARAMETRIC_ERROR. The initial value is 0.5.

GLU_U_STEP

Specifies the number of sample points per unit length taken along the u
axis in parametric coordinates. It is needed when GLU_SAMPLING_METHOD

is set to GLU_DOMAIN_DISTANCE. The initial value is 100.

GLU_V_STEP

Specifies the number of sample points per unit length taken along the v
axis in parametric coordinate. It is needed when GLU_SAMPLING_METHOD

is set to GLU_DOMAIN_DISTANCE. The initial value is 100.

GLU_DISPLAY_MODE

value can be set to GLU_OUTLINE_POLYGON, GLU_FILL, or GLU_OUTLINE_
PATCH. When GLU_NURBS_MODE is set to be GLU_NURBS_RENDERER, value
defines how a NURBS surface should be rendered. When value is set to
GLU_FILL, the surface is rendered as a set of polygons. When value is set
to GLU_OUTLINE_POLYGON, the NURBS library draws only the outlines of
the polygons created by tessellation. When value is set to GLU_OUTLINE_

PATCH just the outlines of patches and trim curves defined by the user are
drawn.

When GLU_NURBS_MODE is set to be GLU_NURBS_TESSELLATOR, value de-
fines how a NURBS surface should be tessellated. When GLU_DISPLAY_

MODE is set to GLU_FILL or GLU_OUTLINE_POLYGON, the NURBS surface
is tessellated into OpenGL triangle primitives that can be retrieved back
through callback functions. If GLU_DISPLAY_MODE is set to GLU_OUTLINE_
PATCH, only the outlines of the patches and trim curves are generated as
a sequence of line strips that can be retrieved back through callback func-
tions.

The initial value is GLU_FILL.

GLU_CULLING

value is a boolean value that, when set to GLU_TRUE, indicates that a
NURBS curve should be discarded prior to tessellation if its control points
lie outside the current viewport. The initial value is GLU_FALSE.

GLU_AUTO_LOAD_MATRIX

value is a boolean value. When set to GLU_TRUE, the NURBS code down-
loads the projection matrix, the modelview matrix, and the viewport from
the GL server to compute sampling and culling matrices for each NURBS
curve that is rendered. Sampling and culling matrices are required to de-
termine the tessellation of a NURBS surface into line segments or poly-
gons and to cull a NURBS surface if it lies outside the viewport.

If this mode is set to GLU_FALSE, then the program needs to provide a
projection matrix, a modelview matrix, and a viewport for the NURBS
renderer to use to construct sampling and culling matrices. This can be

Chapter 4: GLU 444

done with the gluLoadSamplingMatrices function. This mode is initially
set to GLU_TRUE. Changing it from GLU_TRUE to GLU_FALSE does not
affect the sampling and culling matrices until gluLoadSamplingMatrices
is called.

[Function]void gluNurbsSurface nurb sKnotCount sKnots tKnotCount tKnots
sStride tStride control sOrder tOrder type

Define the shape of a NURBS surface.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

sKnotCount
Specifies the number of knots in the parametric u direction.

sKnots Specifies an array of sKnotCount nondecreasing knot values in the para-
metric u direction.

tKnotCount
Specifies the number of knots in the parametric v direction.

tKnots Specifies an array of tKnotCount nondecreasing knot values in the para-
metric v direction.

sStride Specifies the offset (as a number of single-precision floating-point values)
between successive control points in the parametric u direction in control.

tStride Specifies the offset (in single-precision floating-point values) between suc-
cessive control points in the parametric v direction in control.

control Specifies an array containing control points for the NURBS surface. The
offsets between successive control points in the parametric u and v direc-
tions are given by sStride and tStride.

sOrder Specifies the order of the NURBS surface in the parametric u direction.
The order is one more than the degree, hence a surface that is cubic in u
has a u order of 4.

tOrder Specifies the order of the NURBS surface in the parametric v direction.
The order is one more than the degree, hence a surface that is cubic in v
has a v order of 4.

type Specifies type of the surface. type can be any of the valid two-dimensional
evaluator types (such as GLU_MAP2_VERTEX_3 or GLU_MAP2_COLOR_4).

Use gluNurbsSurface within a NURBS (Non-Uniform Rational B-Spline) surface
definition to describe the shape of a NURBS surface (before any trimming). To mark
the beginning of a NURBS surface definition, use the gluBeginSurface command.
To mark the end of a NURBS surface definition, use the gluEndSurface command.
Call gluNurbsSurface within a NURBS surface definition only.

Positional, texture, and color coordinates are associated with a surface by presenting
each as a separate gluNurbsSurface between a gluBeginSurface/gluEndSurface
pair. No more than one call to gluNurbsSurface for each of color, position, and
texture data can be made within a single gluBeginSurface/gluEndSurface pair.

Chapter 4: GLU 445

Exactly one call must be made to describe the position of the surface (a type of
GLU_MAP2_VERTEX_3 or GLU_MAP2_VERTEX_4).

A NURBS surface can be trimmed by using the commands gluNurbsCurve and
gluPwlCurve between calls to gluBeginTrim and gluEndTrim.

Note that a gluNurbsSurface with sKnotCount knots in the u direction and tKnot-
Count knots in the v direction with orders sOrder and tOrder must have (sKnotCount
- sOrder) times (tKnotCount - tOrder) control points.

[Function]void gluOrtho2D left right bottom top
Define a 2D orthographic projection matrix.

left
right Specify the coordinates for the left and right vertical clipping planes.

bottom
top Specify the coordinates for the bottom and top horizontal clipping planes.

gluOrtho2D sets up a two-dimensional orthographic viewing region. This is equivalent
to calling glOrtho with near=-1 and far=1.

[Function]void gluPartialDisk quad inner outer slices loops start sweep
Draw an arc of a disk.

quad Specifies a quadrics object (created with gluNewQuadric).

inner Specifies the inner radius of the partial disk (can be 0).

outer Specifies the outer radius of the partial disk.

slices Specifies the number of subdivisions around the z axis.

loops Specifies the number of concentric rings about the origin into which the
partial disk is subdivided.

start Specifies the starting angle, in degrees, of the disk portion.

sweep Specifies the sweep angle, in degrees, of the disk portion.

gluPartialDisk renders a partial disk on the z=0 plane. A partial disk is similar to
a full disk, except that only the subset of the disk from start through start + sweep
is included (where 0 degrees is along the +\f2y\f axis, 90 degrees along the +x axis,
180 degrees along the \-y axis, and 270 degrees along the \-x axis).

The partial disk has a radius of outer and contains a concentric circular hole with a
radius of inner. If inner is 0, then no hole is generated. The partial disk is subdivided
around the z axis into slices (like pizza slices) and also about the z axis into rings (as
specified by slices and loops, respectively).

With respect to orientation, the +z side of the partial disk is considered to be outside
(see gluQuadricOrientation). This means that if the orientation is set to GLU_

OUTSIDE, then any normals generated point along the +z axis. Otherwise, they point
along the \-z axis.

If texturing is turned on (with gluQuadricTexture), texture coordinates are gener-
ated linearly such that where r=outer, the value at (r, 0, 0) is (1.0, 0.5), at (0, r, 0)
it is (0.5, 1.0), at (\-r, 0, 0) it is (0.0, 0.5), and at (0, \-r, 0) it is (0.5, 0.0).

Chapter 4: GLU 446

[Function]void gluPerspective fovy aspect zNear zFar
Set up a perspective projection matrix.

fovy Specifies the field of view angle, in degrees, in the y direction.

aspect Specifies the aspect ratio that determines the field of view in the x direc-
tion. The aspect ratio is the ratio of x (width) to y (height).

zNear Specifies the distance from the viewer to the near clipping plane (always
positive).

zFar Specifies the distance from the viewer to the far clipping plane (always
positive).

gluPerspective specifies a viewing frustum into the world coordinate system. In
general, the aspect ratio in gluPerspective should match the aspect ratio of the
associated viewport. For example, aspect=2.0 means the viewer’s angle of view is
twice as wide in x as it is in y. If the viewport is twice as wide as it is tall, it displays
the image without distortion.

The matrix generated by gluPerspective is multipled by the current matrix, just
as if glMultMatrix were called with the generated matrix. To load the perspective
matrix onto the current matrix stack instead, precede the call to gluPerspective

with a call to glLoadIdentity.

Given f defined as follows:

f=cotangent(fovy/2,) The generated matrix is

((f /aspect 0 0 0), (0 f 0 0), (0 0 zFar+zNear,/zNear-zFar, 2zFarzNear,/zNear-zFar,),
(0 0 -1 0),)

[Function]void gluPickMatrix x y delX delY viewport
Define a picking region.

x
y Specify the center of a picking region in window coordinates.

delX
delY Specify the width and height, respectively, of the picking region in window

coordinates.

viewport Specifies the current viewport (as from a glGetIntegerv call).

gluPickMatrix creates a projection matrix that can be used to restrict drawing to a
small region of the viewport. This is typically useful to determine what objects are
being drawn near the cursor. Use gluPickMatrix to restrict drawing to a small region
around the cursor. Then, enter selection mode (with glRenderMode) and rerender
the scene. All primitives that would have been drawn near the cursor are identified
and stored in the selection buffer.

The matrix created by gluPickMatrix is multiplied by the current matrix just as if
glMultMatrix is called with the generated matrix. To effectively use the generated
pick matrix for picking, first call glLoadIdentity to load an identity matrix onto
the perspective matrix stack. Then call gluPickMatrix, and, finally, call a command
(such as gluPerspective) to multiply the perspective matrix by the pick matrix.

Chapter 4: GLU 447

When using gluPickMatrix to pick NURBS, be careful to turn off the NURBS prop-
erty GLU_AUTO_LOAD_MATRIX. If GLU_AUTO_LOAD_MATRIX is not turned off, then any
NURBS surface rendered is subdivided differently with the pick matrix than the way
it was subdivided without the pick matrix.

[Function]GLint gluProject objX objY objZ model proj view winX winY winZ
Map object coordinates to window coordinates.

objX
objY
objZ Specify the object coordinates.

model Specifies the current modelview matrix (as from a glGetDoublev call).

proj Specifies the current projection matrix (as from a glGetDoublev call).

view Specifies the current viewport (as from a glGetIntegerv call).

winX
winY
winZ Return the computed window coordinates.

gluProject transforms the specified object coordinates into window coordinates using
model, proj, and view. The result is stored in winX, winY, and winZ. A return value
of GLU_TRUE indicates success, a return value of GLU_FALSE indicates failure.

To compute the coordinates, let v=(objX,objYobjZ1.0) represented as a matrix with
4 rows and 1 column. Then gluProject computes v^ as follows:

v^=PMv

where P is the current projection matrix proj and M is the current modelview matrix
model (both represented as 44 matrices in column-major order).

The window coordinates are then computed as follows:

winX=view(0,)+view(2,)(v^(0,)+1,)/2winY=view(1,)+view(3,)(v^(1,)+1,)/2
winZ=(v^(2,)+1,)/2

[Function]void gluPwlCurve nurb count data stride type
Describe a piecewise linear NURBS trimming curve.

nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

count Specifies the number of points on the curve.

data Specifies an array containing the curve points.

stride Specifies the offset (a number of single-precision floating-point values)
between points on the curve.

type Specifies the type of curve. Must be either GLU_MAP1_TRIM_2 or GLU_

MAP1_TRIM_3.

gluPwlCurve describes a piecewise linear trimming curve for a NURBS surface. A
piecewise linear curve consists of a list of coordinates of points in the parameter space
for the NURBS surface to be trimmed. These points are connected with line segments
to form a curve. If the curve is an approximation to a curve that is not piecewise

Chapter 4: GLU 448

linear, the points should be close enough in parameter space that the resulting path
appears curved at the resolution used in the application.

If type is GLU_MAP1_TRIM_2, then it describes a curve in two-dimensional (u and
v) parameter space. If it is GLU_MAP1_TRIM_3, then it describes a curve in two-
dimensional homogeneous (u, v, and w) parameter space. See the gluBeginTrim

reference page for more information about trimming curves.

[Function]void gluQuadricCallback quad which CallBackFunc
Define a callback for a quadrics object.

quad Specifies the quadrics object (created with gluNewQuadric).

which Specifies the callback being defined. The only valid value is GLU_ERROR.

CallBackFunc
Specifies the function to be called.

gluQuadricCallback is used to define a new callback to be used by a quadrics object.
If the specified callback is already defined, then it is replaced. If CallBackFunc is
NULL, then any existing callback is erased.

The one legal callback is GLU_ERROR:

GLU_ERROR

The function is called when an error is encountered. Its single argu-
ment is of type GLenum, and it indicates the specific error that oc-
curred. Character strings describing these errors can be retrieved with
the gluErrorString call.

[Function]void gluQuadricDrawStyle quad draw
Specify the draw style desired for quadrics.

quad Specifies the quadrics object (created with gluNewQuadric).

draw Specifies the desired draw style. Valid values are GLU_FILL, GLU_LINE,
GLU_SILHOUETTE, and GLU_POINT.

gluQuadricDrawStyle specifies the draw style for quadrics rendered with quad. The
legal values are as follows:

GLU_FILL Quadrics are rendered with polygon primitives. The polygons are drawn
in a counterclockwise fashion with respect to their normals (as defined
with gluQuadricOrientation).

GLU_LINE Quadrics are rendered as a set of lines.

GLU_SILHOUETTE

Quadrics are rendered as a set of lines, except that edges separating
coplanar faces will not be drawn.

GLU_POINT

Quadrics are rendered as a set of points.

[Function]void gluQuadricNormals quad normal
Specify what kind of normals are desired for quadrics.

Chapter 4: GLU 449

quad Specifies the quadrics object (created with gluNewQuadric).

normal Specifies the desired type of normals. Valid values are GLU_NONE, GLU_
FLAT, and GLU_SMOOTH.

gluQuadricNormals specifies what kind of normals are desired for quadrics rendered
with quad. The legal values are as follows:

GLU_NONE No normals are generated.

GLU_FLAT One normal is generated for every facet of a quadric.

GLU_SMOOTH

One normal is generated for every vertex of a quadric. This is the initial
value.

[Function]void gluQuadricOrientation quad orientation
Specify inside/outside orientation for quadrics.

quad Specifies the quadrics object (created with gluNewQuadric).

orientation
Specifies the desired orientation. Valid values are GLU_OUTSIDE and GLU_

INSIDE.

gluQuadricOrientation specifies what kind of orientation is desired for quadrics
rendered with quad. The orientation values are as follows:

GLU_OUTSIDE

Quadrics are drawn with normals pointing outward (the initial value).

GLU_INSIDE

Quadrics are drawn with normals pointing inward.

Note that the interpretation of outward and inward depends on the quadric being
drawn.

[Function]void gluQuadricTexture quad texture
Specify if texturing is desired for quadrics.

quad Specifies the quadrics object (created with gluNewQuadric).

texture Specifies a flag indicating if texture coordinates should be generated.

gluQuadricTexture specifies if texture coordinates should be generated for quadrics
rendered with quad. If the value of texture is GLU_TRUE, then texture coordinates are
generated, and if texture is GLU_FALSE, they are not. The initial value is GLU_FALSE.

The manner in which texture coordinates are generated depends upon the specific
quadric rendered.

[Function]GLint gluScaleImage format wIn hIn typeIn dataIn wOut hOut
typeOut dataOut

Scale an image to an arbitrary size.

Chapter 4: GLU 450

format Specifies the format of the pixel data. The following symbolic values are
valid: GLU_COLOR_INDEX, GLU_STENCIL_INDEX, GLU_DEPTH_COMPONENT,
GLU_RED, GLU_GREEN, GLU_BLUE, GLU_ALPHA, GLU_RGB, GLU_RGBA, GLU_
BGR, GLU_BGRA, GLU_LUMINANCE, and GLU_LUMINANCE_ALPHA.

wIn
hIn Specify in pixels the width and height, respectively, of the source image.

typeIn Specifies the data type for dataIn. Must be one of GLU_UNSIGNED_

BYTE, GLU_BYTE, GLU_BITMAP, GLU_UNSIGNED_SHORT, GLU_SHORT,
GLU_UNSIGNED_INT, GLU_INT, GLU_FLOAT, GLU_UNSIGNED_BYTE_3_3_2,
GLU_UNSIGNED_BYTE_2_3_3_REV, GLU_UNSIGNED_SHORT_5_6_5,
GLU_UNSIGNED_SHORT_5_6_5_REV, GLU_UNSIGNED_SHORT_4_4_4_4,
GLU_UNSIGNED_SHORT_4_4_4_4_REV, GLU_UNSIGNED_SHORT_5_5_5_1,
GLU_UNSIGNED_SHORT_1_5_5_5_REV, GLU_UNSIGNED_INT_8_8_8_8,
GLU_UNSIGNED_INT_8_8_8_8_REV, GLU_UNSIGNED_INT_10_10_10_2, or
GLU_UNSIGNED_INT_2_10_10_10_REV.

dataIn Specifies a pointer to the source image.

wOut
hOut Specify the width and height, respectively, in pixels of the destination

image.

typeOut Specifies the data type for dataOut. Must be one of GLU_UNSIGNED_

BYTE, GLU_BYTE, GLU_BITMAP, GLU_UNSIGNED_SHORT, GLU_SHORT,
GLU_UNSIGNED_INT, GLU_INT, GLU_FLOAT, GLU_UNSIGNED_BYTE_3_3_2,
GLU_UNSIGNED_BYTE_2_3_3_REV, GLU_UNSIGNED_SHORT_5_6_5,
GLU_UNSIGNED_SHORT_5_6_5_REV, GLU_UNSIGNED_SHORT_4_4_4_4,
GLU_UNSIGNED_SHORT_4_4_4_4_REV, GLU_UNSIGNED_SHORT_5_5_5_1,
GLU_UNSIGNED_SHORT_1_5_5_5_REV, GLU_UNSIGNED_INT_8_8_8_8,
GLU_UNSIGNED_INT_8_8_8_8_REV, GLU_UNSIGNED_INT_10_10_10_2, or
GLU_UNSIGNED_INT_2_10_10_10_REV.

dataOut Specifies a pointer to the destination image.

gluScaleImage scales a pixel image using the appropriate pixel store modes to unpack
data from the source image and pack data into the destination image.

When shrinking an image, gluScaleImage uses a box filter to sample the source
image and create pixels for the destination image. When magnifying an image, the
pixels from the source image are linearly interpolated to create the destination image.

A return value of zero indicates success, otherwise a GLU error code is returned (see
gluErrorString).

See the glReadPixels reference page for a description of the acceptable values for
the format, typeIn, and typeOut parameters.

GLU_INVALID_VALUE is returned if wIn, hIn, wOut, or hOut is negative.

GLU_INVALID_ENUM is returned if format, typeIn, or typeOut is not legal.

GLU_INVALID_OPERATION is returned if typeIn or typeOut is GLU_UNSIGNED_BYTE_3_
3_2 or GLU_UNSIGNED_BYTE_2_3_3_REV and format is not GLU_RGB.

Chapter 4: GLU 451

GLU_INVALID_OPERATION is returned if typeIn or typeOut is GLU_UNSIGNED_SHORT_
5_6_5 or GLU_UNSIGNED_SHORT_5_6_5_REV and format is not GLU_RGB.

GLU_INVALID_OPERATION is returned if typeIn or typeOut is GLU_UNSIGNED_SHORT_
4_4_4_4 or GLU_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GLU_RGBA nor
GLU_BGRA.

GLU_INVALID_OPERATION is returned if typeIn or typeOut is GLU_UNSIGNED_SHORT_
5_5_5_1 or GLU_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GLU_RGBA nor
GLU_BGRA.

GLU_INVALID_OPERATION is returned if typeIn or typeOut is GLU_UNSIGNED_INT_

8_8_8_8 or GLU_UNSIGNED_INT_8_8_8_8_REV and format is neither GLU_RGBA nor
GLU_BGRA.

GLU_INVALID_OPERATION is returned if typeIn or typeOut is GLU_UNSIGNED_INT_10_
10_10_2 or GLU_UNSIGNED_INT_2_10_10_10_REV and format is neither GLU_RGBA nor
GLU_BGRA.

[Function]void gluSphere quad radius slices stacks
Draw a sphere.

quad Specifies the quadrics object (created with gluNewQuadric).

radius Specifies the radius of the sphere.

slices Specifies the number of subdivisions around the z axis (similar to lines of
longitude).

stacks Specifies the number of subdivisions along the z axis (similar to lines of
latitude).

gluSphere draws a sphere of the given radius centered around the origin. The sphere
is subdivided around the z axis into slices and along the z axis into stacks (similar to
lines of longitude and latitude).

If the orientation is set to GLU_OUTSIDE (with gluQuadricOrientation), then any
normals generated point away from the center of the sphere. Otherwise, they point
toward the center of the sphere.

If texturing is turned on (with gluQuadricTexture), then texture coordinates are
generated so that t ranges from 0.0 at z=-radius to 1.0 at z=radius (t increases
linearly along longitudinal lines), and s ranges from 0.0 at the +y axis, to 0.25 at the
+x axis, to 0.5 at the \-y axis, to 0.75 at the \-x axis, and back to 1.0 at the +y axis.

[Function]void gluTessBeginContour tess
[Function]void gluTessEndContour tess

Delimit a contour description.

tess Specifies the tessellation object (created with gluNewTess).

gluTessBeginContour and gluTessEndContour delimit the definition of a polygon
contour. Within each gluTessBeginContour/gluTessEndContour pair, there can be
zero or more calls to gluTessVertex. The vertices specify a closed contour (the last
vertex of each contour is automatically linked to the first). See the gluTessVertex

reference page for more details. gluTessBeginContour can only be called between
gluTessBeginPolygon and gluTessEndPolygon.

Chapter 4: GLU 452

[Function]void gluTessBeginPolygon tess data
Delimit a polygon description.

tess Specifies the tessellation object (created with gluNewTess).

data Specifies a pointer to user polygon data.

gluTessBeginPolygon and gluTessEndPolygon delimit the defini-
tion of a convex, concave or self-intersecting polygon. Within each
gluTessBeginPolygon/gluTessEndPolygon pair, there must be one or
more calls to gluTessBeginContour/gluTessEndContour. Within each contour,
there are zero or more calls to gluTessVertex. The vertices specify a closed
contour (the last vertex of each contour is automatically linked to the first). See the
gluTessVertex, gluTessBeginContour, and gluTessEndContour reference pages
for more details.

data is a pointer to a user-defined data structure. If the appropriate callback(s)
are specified (see gluTessCallback), then this pointer is returned to the callback
function(s). Thus, it is a convenient way to store per-polygon information.

Once gluTessEndPolygon is called, the polygon is tessellated, and the resulting tri-
angles are described through callbacks. See gluTessCallback for descriptions of the
callback functions.

[Function]void gluTessCallback tess which CallBackFunc
Define a callback for a tessellation object.

tess Specifies the tessellation object (created with gluNewTess).

which Specifies the callback being defined. The following values are valid:
GLU_TESS_BEGIN, GLU_TESS_BEGIN_DATA, GLU_TESS_EDGE_FLAG,
GLU_TESS_EDGE_FLAG_DATA, GLU_TESS_VERTEX, GLU_TESS_VERTEX_

DATA, GLU_TESS_END, GLU_TESS_END_DATA, GLU_TESS_COMBINE,
GLU_TESS_COMBINE_DATA, GLU_TESS_ERROR, and GLU_TESS_ERROR_DATA.

CallBackFunc
Specifies the function to be called.

gluTessCallback is used to indicate a callback to be used by a tessellation object.
If the specified callback is already defined, then it is replaced. If CallBackFunc is
NULL, then the existing callback becomes undefined.

These callbacks are used by the tessellation object to describe how a polygon specified
by the user is broken into triangles. Note that there are two versions of each callback:
one with user-specified polygon data and one without. If both versions of a particular
callback are specified, then the callback with user-specified polygon data will be used.
Note that the polygon data parameter used by some of the functions is a copy of
the pointer that was specified when gluTessBeginPolygon was called. The legal
callbacks are as follows:

GLU_TESS_BEGIN

The begin callback is invoked like glBegin to indicate the start of a (tri-
angle) primitive. The function takes a single argument of type GLenum.
If the GLU_TESS_BOUNDARY_ONLY property is set to GLU_FALSE, then the

Chapter 4: GLU 453

argument is set to either GLU_TRIANGLE_FAN, GLU_TRIANGLE_STRIP, or
GLU_TRIANGLES. If the GLU_TESS_BOUNDARY_ONLY property is set to GLU_
TRUE, then the argument will be set to GLU_LINE_LOOP. The function
prototype for this callback is:

GLU_TESS_BEGIN_DATA

The same as the GLU_TESS_BEGIN callback except that it takes an addi-
tional pointer argument. This pointer is identical to the opaque pointer
provided when gluTessBeginPolygon was called. The function proto-
type for this callback is:

GLU_TESS_EDGE_FLAG

The edge flag callback is similar to glEdgeFlag. The function takes a
single boolean flag that indicates which edges lie on the polygon boundary.
If the flag is GLU_TRUE, then each vertex that follows begins an edge that
lies on the polygon boundary, that is, an edge that separates an interior
region from an exterior one. If the flag is GLU_FALSE, then each vertex
that follows begins an edge that lies in the polygon interior. The edge
flag callback (if defined) is invoked before the first vertex callback.

Since triangle fans and triangle strips do not support edge flags, the begin
callback is not called with GLU_TRIANGLE_FAN or GLU_TRIANGLE_STRIP if
a non-NULL edge flag callback is provided. (If the callback is initialized
to NULL, there is no impact on performance). Instead, the fans and
strips are converted to independent triangles. The function prototype for
this callback is:

GLU_TESS_EDGE_FLAG_DATA

The same as the GLU_TESS_EDGE_FLAG callback except that it takes an ad-
ditional pointer argument. This pointer is identical to the opaque pointer
provided when gluTessBeginPolygon was called. The function proto-
type for this callback is:

GLU_TESS_VERTEX

The vertex callback is invoked between the begin and end callbacks. It is
similar to glVertex, and it defines the vertices of the triangles created by
the tessellation process. The function takes a pointer as its only argument.
This pointer is identical to the opaque pointer provided by the user when
the vertex was described (see gluTessVertex). The function prototype
for this callback is:

GLU_TESS_VERTEX_DATA

The same as the GLU_TESS_VERTEX callback except that it takes an addi-
tional pointer argument. This pointer is identical to the opaque pointer
provided when gluTessBeginPolygon was called. The function proto-
type for this callback is:

GLU_TESS_END

The end callback serves the same purpose as glEnd. It indicates the end
of a primitive and it takes no arguments. The function prototype for this
callback is:

Chapter 4: GLU 454

GLU_TESS_END_DATA

The same as the GLU_TESS_END callback except that it takes an additional
pointer argument. This pointer is identical to the opaque pointer provided
when gluTessBeginPolygon was called. The function prototype for this
callback is:

GLU_TESS_COMBINE

The combine callback is called to create a new vertex when the tessellation
detects an intersection or wishes to merge features. The function takes
four arguments: an array of three elements each of type GLdouble, an
array of four pointers, an array of four elements each of type GLfloat,
and a pointer to a pointer. The prototype is:

The vertex is defined as a linear combination of up to four existing ver-
tices, stored in vertex data. The coefficients of the linear combination are
given by weight; these weights always add up to 1. All vertex pointers
are valid even when some of the weights are 0. coords gives the location
of the new vertex.

The user must allocate another vertex, interpolate parameters using ver-
tex data and weight, and return the new vertex pointer in outData. This
handle is supplied during rendering callbacks. The user is responsible for
freeing the memory some time after gluTessEndPolygon is called.

For example, if the polygon lies in an arbitrary plane in 3-space, and
a color is associated with each vertex, the GLU_TESS_COMBINE callback
might look like this:

If the tessellation detects an intersection, then the GLU_TESS_COMBINE

or GLU_TESS_COMBINE_DATA callback (see below) must be defined, and it
must write a non-NULL pointer into dataOut. Otherwise the GLU_TESS_
NEED_COMBINE_CALLBACK error occurs, and no output is generated.

GLU_TESS_COMBINE_DATA

The same as the GLU_TESS_COMBINE callback except that it takes an addi-
tional pointer argument. This pointer is identical to the opaque pointer
provided when gluTessBeginPolygon was called. The function proto-
type for this callback is:

GLU_TESS_ERROR

The error callback is called when an error is encountered. The one
argument is of type GLenum; it indicates the specific error that
occurred and will be set to one of GLU_TESS_MISSING_BEGIN_POLYGON,
GLU_TESS_MISSING_END_POLYGON, GLU_TESS_MISSING_BEGIN_CONTOUR,
GLU_TESS_MISSING_END_CONTOUR, GLU_TESS_COORD_TOO_LARGE,
GLU_TESS_NEED_COMBINE_CALLBACK, or GLU_OUT_OF_MEMORY. Character
strings describing these errors can be retrieved with the gluErrorString
call. The function prototype for this callback is:

The GLU library will recover from the first four errors by inserting the
missing call(s). GLU_TESS_COORD_TOO_LARGE indicates that some vertex
coordinate exceeded the predefined constant GLU_TESS_MAX_COORD in ab-
solute value, and that the value has been clamped. (Coordinate values

Chapter 4: GLU 455

must be small enough so that two can be multiplied together without
overflow.) GLU_TESS_NEED_COMBINE_CALLBACK indicates that the tessel-
lation detected an intersection between two edges in the input data, and
the GLU_TESS_COMBINE or GLU_TESS_COMBINE_DATA callback was not pro-
vided. No output is generated. GLU_OUT_OF_MEMORY indicates that there
is not enough memory so no output is generated.

GLU_TESS_ERROR_DATA

The same as the GLU_TESS_ERROR callback except that it takes an addi-
tional pointer argument. This pointer is identical to the opaque pointer
provided when gluTessBeginPolygon was called. The function proto-
type for this callback is:

void begin(GLenum type);

void beginData(GLenum type, void *polygon_data);

void edgeFlag(GLboolean flag);

void edgeFlagData(GLboolean flag, void *polygon_data);

void vertex(void *vertex_data);

void vertexData(void *vertex_data, void *polygon_data);

void end(void);

void endData(void *polygon_data);

void combine(GLdouble coords[3], void *vertex_data[4],

GLfloat weight[4], void **outData);

void myCombine(GLdouble coords[3], VERTEX *d[4],

GLfloat w[4], VERTEX **dataOut)

{

VERTEX *new = new_vertex();

new->x = coords[0];

new->y = coords[1];

new->z = coords[2];

new->r = w[0]*d[0]->r + w[1]*d[1]->r + w[2]*d[2]->r + w[3]*d[3]->r;

new->g = w[0]*d[0]->g + w[1]*d[1]->g + w[2]*d[2]->g + w[3]*d[3]->g;

new->b = w[0]*d[0]->b + w[1]*d[1]->b + w[2]*d[2]->b + w[3]*d[3]->b;

new->a = w[0]*d[0]->a + w[1]*d[1]->a + w[2]*d[2]->a + w[3]*d[3]->a;

*dataOut = new;

Chapter 4: GLU 456

}

void combineData(GLdouble coords[3], void *vertex_data[4],

GLfloat weight[4], void **outData,

void *polygon_data);

void error(GLenum errno);

void errorData(GLenum errno, void *polygon_data);

[Function]void gluTessEndPolygon tess
Delimit a polygon description.

tess Specifies the tessellation object (created with gluNewTess).

gluTessBeginPolygon and gluTessEndPolygon delimit the defini-
tion of a convex, concave, or self-intersecting polygon. Within each
gluTessBeginPolygon/gluTessEndPolygon pair, there must be one or more calls
to gluTessBeginContour/gluTessEndContour. Within each contour, there are zero
or more calls to gluTessVertex. The vertices specify a closed contour (the last
vertex of each contour is automatically linked to the first). See the gluTessVertex,
gluTessBeginContour, and gluTessEndContour reference pages for more details.

Once gluTessEndPolygon is called, the polygon is tessellated, and the resulting tri-
angles are described through callbacks. See gluTessCallback for descriptions of the
callback functions.

[Function]void gluTessNormal tess valueX valueY valueZ
Specify a normal for a polygon.

tess Specifies the tessellation object (created with gluNewTess).

valueX Specifies the first component of the normal.

valueY Specifies the second component of the normal.

valueZ Specifies the third component of the normal.

gluTessNormal describes a normal for a polygon that the program is defining. All
input data will be projected onto a plane perpendicular to one of the three coor-
dinate axes before tessellation and all output triangles will be oriented CCW with
respect to the normal (CW orientation can be obtained by reversing the sign of the
supplied normal). For example, if you know that all polygons lie in the x-y plane, call
gluTessNormal(tess, 0.0, 0.0, 1.0) before rendering any polygons.

If the supplied normal is (0.0, 0.0, 0.0) (the initial value), the normal is determined
as follows. The direction of the normal, up to its sign, is found by fitting a plane to
the vertices, without regard to how the vertices are connected. It is expected that
the input data lies approximately in the plane; otherwise, projection perpendicular
to one of the three coordinate axes may substantially change the geometry. The sign
of the normal is chosen so that the sum of the signed areas of all input contours is
nonnegative (where a CCW contour has positive area).

The supplied normal persists until it is changed by another call to gluTessNormal.

Chapter 4: GLU 457

[Function]void gluTessProperty tess which data
Set a tessellation object property.

tess Specifies the tessellation object (created with gluNewTess).

which Specifies the property to be set. Valid values are GLU_TESS_WINDING_

RULE, GLU_TESS_BOUNDARY_ONLY, and GLU_TESS_TOLERANCE.

data Specifies the value of the indicated property.

gluTessProperty is used to control properties stored in a tessellation object. These
properties affect the way that the polygons are interpreted and rendered. The legal
values for which are as follows:

GLU_TESS_WINDING_RULE

Determines which parts of the polygon are on the “interior”. data may be
set to one of GLU_TESS_WINDING_ODD, GLU_TESS_WINDING_NONZERO, GLU_
TESS_WINDING_POSITIVE, GLU_TESS_WINDING_NEGATIVE, or GLU_TESS_

WINDING_ABS_GEQ_TWO.

To understand how the winding rule works, consider that the input con-
tours partition the plane into regions. The winding rule determines which
of these regions are inside the polygon.

For a single contour C, the winding number of a point x is simply the
signed number of revolutions we make around x as we travel once around
C (where CCW is positive). When there are several contours, the indi-
vidual winding numbers are summed. This procedure associates a signed
integer value with each point x in the plane. Note that the winding
number is the same for all points in a single region.

The winding rule classifies a region as “inside” if its winding number
belongs to the chosen category (odd, nonzero, positive, negative, or abso-
lute value of at least two). The previous GLU tessellator (prior to GLU
1.2) used the “odd” rule. The “nonzero” rule is another common way
to define the interior. The other three rules are useful for polygon CSG
operations.

GLU_TESS_BOUNDARY_ONLY

Is a boolean value (“value” should be set to GL TRUE or GL FALSE).
When set to GL TRUE, a set of closed contours separating the polygon
interior and exterior are returned instead of a tessellation. Exterior con-
tours are oriented CCW with respect to the normal; interior contours are
oriented CW. The GLU_TESS_BEGIN and GLU_TESS_BEGIN_DATA callbacks
use the type GL LINE LOOP for each contour.

GLU_TESS_TOLERANCE

Specifies a tolerance for merging features to reduce the size of the out-
put. For example, two vertices that are very close to each other might
be replaced by a single vertex. The tolerance is multiplied by the largest
coordinate magnitude of any input vertex; this specifies the maximum
distance that any feature can move as the result of a single merge opera-
tion. If a single feature takes part in several merge operations, the total
distance moved could be larger.

Chapter 4: GLU 458

Feature merging is completely optional; the tolerance is only a hint. The
implementation is free to merge in some cases and not in others, or to
never merge features at all. The initial tolerance is 0.

The current implementation merges vertices only if they are exactly co-
incident, regardless of the current tolerance. A vertex is spliced into an
edge only if the implementation is unable to distinguish which side of the
edge the vertex lies on. Two edges are merged only when both endpoints
are identical.

[Function]void gluTessVertex tess location data
Specify a vertex on a polygon.

tess Specifies the tessellation object (created with gluNewTess).

location Specifies the location of the vertex.

data Specifies an opaque pointer passed back to the program with the vertex
callback (as specified by gluTessCallback).

gluTessVertex describes a vertex on a polygon that the program defines. Successive
gluTessVertex calls describe a closed contour. For example, to describe a quadrilat-
eral, gluTessVertex should be called four times. gluTessVertex can only be called
between gluTessBeginContour and gluTessEndContour.

data normally points to a structure containing the vertex location, as well as other
per-vertex attributes such as color and normal. This pointer is passed back to the user
through the GLU_TESS_VERTEX or GLU_TESS_VERTEX_DATA callback after tessellation
(see the gluTessCallback reference page).

[Function]GLint gluUnProject4 winX winY winZ clipW model proj view nearVal
farVal objX objY objZ objW

Map window and clip coordinates to object coordinates.

winX
winY
winZ Specify the window coordinates to be mapped.

clipW Specify the clip w coordinate to be mapped.

model Specifies the modelview matrix (as from a glGetDoublev call).

proj Specifies the projection matrix (as from a glGetDoublev call).

view Specifies the viewport (as from a glGetIntegerv call).

nearVal
farVal Specifies the near and far planes (as from a glGetDoublev call).

objX
objY
objZ
objW Returns the computed object coordinates.

gluUnProject4 maps the specified window coordinatesi: winX, winY, and winZ and
its clip w coordinate clipW into object coordinates (objX,objYobjZobjW) using

Chapter 4: GLU 459

model, proj, and view. clipW can be other than 1 as for vertices in glFeedbackBuffer

when data type GLU_4D_COLOR_TEXTURE is returned. This also handles the case where
the nearVal and farVal planes are different from the default, 0 and 1, respectively.
A return value of GLU_TRUE indicates success; a return value of GLU_FALSE indicates
failure.

To compute the coordinates (objX,objYobjZobjW), gluUnProject4 multiplies the
normalized device coordinates by the inverse of model * proj as follows:

((objX), (objY), (objZ), (objW),)=INV (PM,)((2(winX-view [0,],),/view [2,],-1),
(2(winY-view [1,],),/view [3,],-1), (2(winZ-nearVal,),/(farVal-nearVal,),-1), (clipW),)

INV denotes matrix inversion.

gluUnProject4 is equivalent to gluUnProject when clipW is 1, nearVal is 0, and
farVal is 1.

[Function]GLint gluUnProject winX winY winZ model proj view objX objY objZ
Map window coordinates to object coordinates.

winX
winY
winZ Specify the window coordinates to be mapped.

model Specifies the modelview matrix (as from a glGetDoublev call).

proj Specifies the projection matrix (as from a glGetDoublev call).

view Specifies the viewport (as from a glGetIntegerv call).

objX
objY
objZ Returns the computed object coordinates.

gluUnProject maps the specified window coordinates into object coordinates using
model, proj, and view. The result is stored in objX, objY, and objZ. A return value
of GLU_TRUE indicates success; a return value of GLU_FALSE indicates failure.

To compute the coordinates (objX,objYobjZ), gluUnProject multiplies the normal-
ized device coordinates by the inverse of model * proj as follows:

((objX), (objY), (objZ), (W),)=INV (PM,)((2(winX-view [0,],),/view [2,],-1),
(2(winY-view [1,],),/view [3,],-1), (2(winZ,)-1), (1),)INV denotes matrix inversion. W
is an unused variable, included for consistent matrix notation.

Chapter 5: GLX 460

5 GLX

5.1 GLX API

Import the GLX module to have access to these procedures:

(use-modules (glx))

The GLX specification is available at http://www.opengl.org/registry/doc/glx1.
3.pdf.

5.2 GLX Enumerations

The functions from this section may be had by loading the module:

(use-modules (glx enums)

[Macro]glx-string-name enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

vendor, version, extensions.

[Macro]glx-error-code enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

bad-screen, bad-attribute, no-extension, bad-visual, bad-context,
bad-value, bad-enum, bad-hyperpipe-config-sgix, bad-hyperpipe-sgix.

[Macro]glx-drawable-type-mask enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

window-bit, pixmap-bit, pbuffer-bit, window-bit-sgix, pixmap-bit-sgix,
pbuffer-bit-sgix.

[Macro]glx-render-type-mask enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

rgba-bit, color-index-bit, rgba-bit-sgix, color-index-bit-sgix,
rgba-float-bit-arb, rgba-unsigned-float-bit-ext.

[Macro]glx-sync-type enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

sync-frame-sgix, sync-swap-sgix.

http://www.opengl.org/registry/doc/glx1.3.pdf
http://www.opengl.org/registry/doc/glx1.3.pdf

Chapter 5: GLX 461

[Macro]glx-event-mask enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pbuffer-clobber-mask, buffer-clobber-mask-sgix, buffer-swap-complete-

intel-mask.

[Macro]glx-pbuffer-clobber-mask enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

front-left-buffer-bit, front-right-buffer-bit, back-left-buffer-bit,
back-right-buffer-bit, aux-buffers-bit, depth-buffer-bit, stencil-buffer-
bit, accum-buffer-bit, front-left-buffer-bit-sgix, front-right-buffer-

bit-sgix, back-left-buffer-bit-sgix, back-right-buffer-bit-sgix,
aux-buffers-bit-sgix, depth-buffer-bit-sgix, stencil-buffer-bit-sgix,
accum-buffer-bit-sgix, sample-buffers-bit-sgix.

[Macro]glx-hyperpipe-type-mask enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

hyperpipe-display-pipe-sgix, hyperpipe-render-pipe-sgix.

[Macro]glx-hyperpipe-attrib enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

pipe-rect-sgix, pipe-rect-limits-sgix, hyperpipe-stereo-sgix,
hyperpipe-pixel-average-sgix.

[Macro]glx-hyperpipe-misc enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

hyperpipe-pipe-name-length-sgix.

[Macro]glx-bind-to-texture-target-mask enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

texture-1d-bit-ext, texture-2d-bit-ext, texture-rectangle-bit-ext.

[Macro]glx-context-flags enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

context-debug-bit-arb, context-forward-compatible-bit-arb,
context-robust-access-bit-arb, context-reset-isolation-bit-arb.

Chapter 5: GLX 462

[Macro]glx-context-profile-mask enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

context-core-profile-bit-arb, context-compatibility-profile-bit-arb,
context-es-profile-bit-ext, context-es2-profile-bit-ext.

[Macro]glx-attribute enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

use-gl, buffer-size, level, rgba, doublebuffer, stereo, aux-buffers,
red-size, green-size, blue-size, alpha-size, depth-size, stencil-size,
accum-red-size, accum-green-size, accum-blue-size, accum-alpha-size,
config-caveat, x-visual-type, transparent-type, transparent-index-value,
transparent-red-value, transparent-green-value, transparent-blue-

value, transparent-alpha-value, dont-care, none, slow-config,
true-color, direct-color, pseudo-color, static-color, gray-scale,
static-gray, transparent-rgb, transparent-index, visual-id, screen,
non-conformant-config, drawable-type, render-type, x-renderable,
fbconfig-id, rgba-type, color-index-type, max-pbuffer-width,
max-pbuffer-height, max-pbuffer-pixels, preserved-contents,
largest-pbuffer, width, height, event-mask, damaged, saved, window, pbuffer,
pbuffer-height, pbuffer-width, visual-caveat-ext, x-visual-type-ext,
transparent-type-ext, transparent-index-value-ext, transparent-red-

value-ext, transparent-green-value-ext, transparent-blue-value-ext,
transparent-alpha-value-ext, none-ext, slow-visual-ext, true-color-ext,
direct-color-ext, pseudo-color-ext, static-color-ext, gray-scale-

ext, static-gray-ext, transparent-rgb-ext, transparent-index-ext,
share-context-ext, visual-id-ext, screen-ext, non-conformant-visual-ext,
drawable-type-sgix, render-type-sgix, x-renderable-sgix, fbconfig-id-

sgix, rgba-type-sgix, color-index-type-sgix, max-pbuffer-width-sgix,
max-pbuffer-height-sgix, max-pbuffer-pixels-sgix, optimal-pbuffer-

width-sgix, optimal-pbuffer-height-sgix, preserved-contents-sgix,
largest-pbuffer-sgix, width-sgix, height-sgix, event-mask-sgix,
damaged-sgix, saved-sgix, window-sgix, pbuffer-sgix, digital-media-

pbuffer-sgix, blended-rgba-sgis, multisample-sub-rect-width-

sgis, multisample-sub-rect-height-sgis, visual-select-group-sgix,
hyperpipe-id-sgix, sample-buffers-sgis, samples-sgis, sample-buffers-

arb, samples-arb, sample-buffers, samples, coverage-samples-nv,
context-major-version-arb, context-minor-version-arb, context-flags-arb,
context-allow-buffer-byte-order-mismatch-arb, float-components-

nv, rgba-unsigned-float-type-ext, framebuffer-srgb-capable-arb,
framebuffer-srgb-capable-ext, color-samples-nv, rgba-float-type-arb,
video-out-color-nv, video-out-alpha-nv, video-out-depth-nv, video-out-

color-and-alpha-nv, video-out-color-and-depth-nv, video-out-frame-nv,
video-out-field-1-nv, video-out-field-2-nv, video-out-stacked-fields-

Chapter 5: GLX 463

1-2-nv, video-out-stacked-fields-2-1-nv, device-id-nv, unique-id-nv,
num-video-capture-slots-nv, bind-to-texture-rgb-ext, bind-to-texture-

rgba-ext, bind-to-mipmap-texture-ext, bind-to-texture-targets-ext,
y-inverted-ext, texture-format-ext, texture-target-ext, mipmap-texture-

ext, texture-format-none-ext, texture-format-rgb-ext, texture-format-

rgba-ext, texture-1d-ext, texture-2d-ext, texture-rectangle-ext,
front-left-ext, front-right-ext, back-left-ext, back-right-ext, front-ext,
back-ext, aux0-ext, aux1-ext, aux2-ext, aux3-ext, aux4-ext, aux5-ext,
aux6-ext, aux7-ext, aux8-ext, aux9-ext.

[Macro]nv-present-video enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

num-video-slots-nv.

[Macro]ext-swap-control enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

swap-interval-ext, max-swap-interval-ext.

[Macro]ext-swap-control-tear enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

late-swaps-tear-ext.

[Macro]ext-buffer-age enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

back-buffer-age-ext.

[Macro]glx-amd-gpu-association enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

gpu-vendor-amd, gpu-renderer-string-amd, gpu-opengl-version-string-amd,
gpu-fastest-target-gpus-amd, gpu-ram-amd, gpu-clock-amd, gpu-num-pipes-

amd, gpu-num-simd-amd, gpu-num-rb-amd, gpu-num-spi-amd.

[Macro]glx-arb-create-context-robustness enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

lose-context-on-reset-arb, context-reset-notification-strategy-arb,
no-reset-notification-arb.

Chapter 5: GLX 464

[Macro]arb-create-context-profile enum
Enumerated value. The symbolic enum argument is replaced with its corresponding
numeric value at compile-time. The symbolic arguments known to this enumerated
value form are:

context-profile-mask-arb.

5.3 Low-Level GLX

The functions from this section may be had by loading the module:

(use-modules (glx low-level)

This section of the manual was derived from the upstream OpenGL documentation.
Each function’s documentation has its own copyright statement; for full details, see the
upstream documentation. The copyright notices and licenses present in this section are as
follows.

Copyright c© 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI
Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

[Function]GLXFBConfig-* glXChooseFBConfig dpy screen attrib list nelements
Return a list of GLX frame buffer configurations that match the specified attributes.

dpy Specifies the connection to the X server.

screen Specifies the screen number.

attrib list Specifies a list of attribute/value pairs. The last attribute must be None.

nelements Returns the number of elements in the list returned by
glXChooseFBConfig.

glXChooseFBConfig returns GLX frame buffer configurations that match the at-
tributes specified in attrib list, or NULL if no matches are found. If attrib list is NULL,
then glXChooseFBConfig returns an array of GLX frame buffer configurations that
are available on the specified screen. If an error occurs, no frame buffer configura-
tions exist on the specified screen, or if no frame buffer configurations match the
specified attributes, then NULL is returned. Use XFree to free the memory returned
by glXChooseFBConfig.

All attributes in attrib list, including boolean attributes, are immediately followed by
the corresponding desired value. The list is terminated with None. If an attribute is
not specified in attrib list, then the default value (see below) is used (and the attribute
is said to be specified implicitly). For example, if GLX_STEREO is not specified, then it
is assumed to be False. For some attributes, the default is GLX_DONT_CARE, meaning
that any value is OK for this attribute, so the attribute will not be checked.

Attributes are matched in an attribute-specific manner. Some of the attributes, such
as GLX_LEVEL, must match the specified value exactly; others, such as, GLX_RED_SIZE
must meet or exceed the specified minimum values. If more than one GLX frame
buffer configuration is found, then a list of configurations, sorted according to the
“best” match criteria, is returned. The match criteria for each attribute and the
exact sorting order is defined below.

The interpretations of the various GLX visual attributes are as follows:

http://oss.sgi.com/projects/FreeB/

Chapter 5: GLX 465

GLX_FBCONFIG_ID

Must be followed by a valid XID that indicates the desired GLX frame
buffer configuration. When a GLX_FBCONFIG_ID is specified, all attributes
are ignored. The default value is GLX_DONT_CARE.

GLX_BUFFER_SIZE

Must be followed by a nonnegative integer that indicates the desired color
index buffer size. The smallest index buffer of at least the specified size
is preferred. This attribute is ignored if GLX_COLOR_INDEX_BIT is not set
in GLX_RENDER_TYPE. The default value is 0.

GLX_LEVEL

Must be followed by an integer buffer-level specification. This specifica-
tion is honored exactly. Buffer level 0 corresponds to the default frame
buffer of the display. Buffer level 1 is the first overlay frame buffer, level
two the second overlay frame buffer, and so on. Negative buffer levels
correspond to underlay frame buffers. The default value is 0.

GLX_DOUBLEBUFFER

Must be followed by True or False. If True is specified, then only double-
buffered frame buffer configurations are considered; if False is specified,
then only single-buffered frame buffer configurations are considered. The
default value is GLX_DONT_CARE.

GLX_STEREO

Must be followed by True or False. If True is specified, then only stereo
frame buffer configurations are considered; if False is specified, then only
monoscopic frame buffer configurations are considered. The default value
is False.

GLX_AUX_BUFFERS

Must be followed by a nonnegative integer that indicates the desired
number of auxiliary buffers. Configurations with the smallest number of
auxiliary buffers that meet or exceed the specified number are preferred.
The default value is 0.

GLX_RED_SIZE, GLX_GREEN_SIZE, GLX_BLUE_SIZE, GLX_ALPHA_SIZE
Each attribute, if present, must be followed by a nonnegative minimum
size specification or GLX_DONT_CARE. The largest available total RGBA
color buffer size (sum of GLX_RED_SIZE, GLX_GREEN_SIZE, GLX_BLUE_

SIZE, and GLX_ALPHA_SIZE) of at least the minimum size specified for
each color component is preferred. If the requested number of bits for a
color component is 0 or GLX_DONT_CARE, it is not considered. The default
value for each color component is 0.

GLX_DEPTH_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, frame buffer configurations with no depth buffer are pre-
ferred. Otherwise, the largest available depth buffer of at least the mini-
mum size is preferred. The default value is 0.

Chapter 5: GLX 466

GLX_STENCIL_SIZE

Must be followed by a nonnegative integer that indicates the desired num-
ber of stencil bitplanes. The smallest stencil buffer of at least the specified
size is preferred. If the desired value is zero, frame buffer configurations
with no stencil buffer are preferred. The default value is 0.

GLX_ACCUM_RED_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, frame buffer configurations with no red accumulation buffer
are preferred. Otherwise, the largest possible red accumulation buffer of
at least the minimum size is preferred. The default value is 0.

GLX_ACCUM_GREEN_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, frame buffer configurations with no green accumulation
buffer are preferred. Otherwise, the largest possible green accumulation
buffer of at least the minimum size is preferred. The default value is 0.

GLX_ACCUM_BLUE_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, frame buffer configurations with no blue accumulation buffer
are preferred. Otherwise, the largest possible blue accumulation buffer of
at least the minimum size is preferred. The default value is 0.

GLX_ACCUM_ALPHA_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, frame buffer configurations with no alpha accumulation
buffer are preferred. Otherwise, the largest possible alpha accumulation
buffer of at least the minimum size is preferred. The default value is 0.

GLX_RENDER_TYPE

Must be followed by a mask indicating which OpenGL rendering modes
the frame buffer configuration must support. Valid bits are GLX_RGBA_

BIT and GLX_COLOR_INDEX_BIT. If the mask is set to GLX_RGBA_BIT |

GLX_COLOR_INDEX_BIT, then only frame buffer configurations that can be
bound to both RGBA contexts and color index contexts will be consid-
ered. The default value is GLX_RGBA_BIT.

GLX_DRAWABLE_TYPE

Must be followed by a mask indicating which GLX drawable types the
frame buffer configuration must support. Valid bits are GLX_WINDOW_BIT,
GLX_PIXMAP_BIT, and GLX_PBUFFER_BIT. For example, if mask is set
to GLX_WINDOW_BIT | GLX_PIXMAP_BIT, only frame buffer configurations
that support both windows and GLX pixmaps will be considered. The
default value is GLX_WINDOW_BIT.

GLX_X_RENDERABLE

Must be followed by True or False. If True is specified, then only frame
buffer configurations that have associated X visuals (and can be used to
render to Windows and/or GLX pixmaps) will be considered. The default
value is GLX_DONT_CARE.

Chapter 5: GLX 467

GLX_X_VISUAL_TYPE

Must be followed by one of GLX_TRUE_COLOR, GLX_DIRECT_COLOR, GLX_
PSEUDO_COLOR, GLX_STATIC_COLOR, GLX_GRAY_SCALE, or GLX_STATIC_

GRAY, indicating the desired X visual type. Not all frame buffer configu-
rations have an associated X visual. If GLX_DRAWABLE_TYPE is specified
in attrib list and the mask that follows does not have GLX_WINDOW_BIT

set, then this value is ignored. It is also ignored if GLX_X_RENDERABLE
is specified as False. RGBA rendering may be supported for visuals of
type GLX_TRUE_COLOR, GLX_DIRECT_COLOR, GLX_PSEUDO_COLOR, or GLX_
STATIC_COLOR, but color index rendering is only supported for visuals of
type GLX_PSEUDO_COLOR or GLX_STATIC_COLOR (i.e., single-channel visu-
als). The tokens GLX_GRAY_SCALE and GLX_STATIC_GRAY will not match
current OpenGL enabled visuals, but are included for future use. The
default value for GLX_X_VISUAL_TYPE is GLX_DONT_CARE.

GLX_CONFIG_CAVEAT

Must be followed by one of GLX_NONE, GLX_SLOW_CONFIG, GLX_NON_

CONFORMANT_CONFIG. If GLX_NONE is specified, then only frame buffer
configurations with no caveats will be considered; if GLX_SLOW_CONFIG is
specified, then only slow frame buffer configurations will be considered;
if GLX_NON_CONFORMANT_CONFIG is specified, then only nonconformant
frame buffer configurations will be considered. The default value is
GLX_DONT_CARE.

GLX_TRANSPARENT_TYPE

Must be followed by one of GLX_NONE, GLX_TRANSPARENT_RGB,
GLX_TRANSPARENT_INDEX. If GLX_NONE is specified, then only opaque
frame buffer configurations will be considered; if GLX_TRANSPARENT_RGB
is specified, then only transparent frame buffer configurations that
support RGBA rendering will be considered; if GLX_TRANSPARENT_INDEX
is specified, then only transparent frame buffer configurations that
support color index rendering will be considered. The default value is
GLX_NONE.

GLX_TRANSPARENT_INDEX_VALUE

Must be followed by an integer value indicating the transparent index
value; the value must be between 0 and the maximum frame buffer value
for indices. Only frame buffer configurations that use the specified trans-
parent index value will be considered. The default value is GLX_DONT_

CARE. This attribute is ignored unless GLX_TRANSPARENT_TYPE is included
in attrib list and specified as GLX_TRANSPARENT_INDEX.

GLX_TRANSPARENT_RED_VALUE

Must be followed by an integer value indicating the transparent red value;
the value must be between 0 and the maximum frame buffer value for red.
Only frame buffer configurations that use the specified transparent red
value will be considered. The default value is GLX_DONT_CARE. This at-
tribute is ignored unless GLX_TRANSPARENT_TYPE is included in attrib list
and specified as GLX_TRANSPARENT_RGB.

Chapter 5: GLX 468

GLX_TRANSPARENT_GREEN_VALUE

Must be followed by an integer value indicating the transparent green
value; the value must be between 0 and the maximum frame buffer value
for green. Only frame buffer configurations that use the specified trans-
parent green value will be considered. The default value is GLX_DONT_

CARE. This attribute is ignored unless GLX_TRANSPARENT_TYPE is included
in attrib list and specified as GLX_TRANSPARENT_RGB.

GLX_TRANSPARENT_BLUE_VALUE

Must be followed by an integer value indicating the transparent blue
value; the value must be between 0 and the maximum frame buffer value
for blue. Only frame buffer configurations that use the specified transpar-
ent blue value will be considered. The default value is GLX_DONT_CARE.
This attribute is ignored unless GLX_TRANSPARENT_TYPE is included in
attrib list and specified as GLX_TRANSPARENT_RGB.

GLX_TRANSPARENT_ALPHA_VALUE

Must be followed by an integer value indicating the transparent alpha
value; the value must be between 0 and the maximum frame buffer value
for alpha. Only frame buffer configurations that use the specified trans-
parent alpha value will be considered. The default value is GLX_DONT_

CARE.

When more than one GLX frame buffer configuration matches the specified attributes,
a list of matching configurations is returned. The list is sorted according to the
following precedence rules, which are applied in ascending order (i.e., configurations
that are considered equal by a lower numbered rule are sorted by the higher numbered
rule):

1. By GLX_CONFIG_CAVEAT where the precedence is GLX_NONE, GLX_SLOW_
CONFIG, and GLX_NON_CONFORMANT_CONFIG.

2. Larger total number of RGBA color components (GLX_RED_SIZE, GLX_
GREEN_SIZE, GLX_BLUE_SIZE, plus GLX_ALPHA_SIZE) that have higher
number of bits. If the requested number of bits in attrib list is zero or
GLX_DONT_CARE for a particular color component, then the number of bits
for that component is not considered.

3. Smaller GLX_BUFFER_SIZE.

4. Single buffered configuration (GLX_DOUBLEBUFFER being False precedes
a double buffered one.

5. Smaller GLX_AUX_BUFFERS.

6. Larger GLX_DEPTH_SIZE.

7. Smaller GLX_STENCIL_SIZE.

8. Larger total number of accumulation buffer color components (GLX_
ACCUM_RED_SIZE, GLX_ACCUM_GREEN_SIZE, GLX_ACCUM_BLUE_SIZE,
plus GLX_ACCUM_ALPHA_SIZE) that have higher number of bits. If the
requested number of bits in attrib list is zero or GLX_DONT_CARE for a

Chapter 5: GLX 469

particular color component, then the number of bits for that component
is not considered.

9. By GLX_X_VISUAL_TYPE where the precedence order is GLX_TRUE_COLOR,
GLX_DIRECT_COLOR, GLX_PSEUDO_COLOR, GLX_STATIC_COLOR, GLX_GRAY_
SCALE, GLX_STATIC_GRAY.

NULL is returned if an undefined GLX attribute is encountered in attrib list, if screen
is invalid, or if dpy does not support the GLX extension.

[Function]XVisualInfo* glXChooseVisual dpy screen attribList
Return a visual that matches specified attributes.

dpy Specifies the connection to the X server.

screen Specifies the screen number.

attribList Specifies a list of boolean attributes and integer attribute/value pairs.
The last attribute must be None.

glXChooseVisual returns a pointer to an XVisualInfo structure describing the visual
that best meets a minimum specification. The boolean GLX attributes of the visual
that is returned will match the specified values, and the integer GLX attributes will
meet or exceed the specified minimum values. If all other attributes are equivalent,
then TrueColor and PseudoColor visuals have priority over DirectColor and Static-
Color visuals, respectively. If no conforming visual exists, NULL is returned. To free
the data returned by this function, use XFree.

All boolean GLX attributes default to False except GLX_USE_GL, which defaults to
True. All integer GLX attributes default to zero. Default specifications are super-
seded by attributes included in attribList. Boolean attributes included in attribList
are understood to be True. Integer attributes and enumerated type attributes are
followed immediately by the corresponding desired or minimum value. The list must
be terminated with None.

The interpretations of the various GLX visual attributes are as follows:

GLX_USE_GL

Ignored. Only visuals that can be rendered with GLX are considered.

GLX_BUFFER_SIZE

Must be followed by a nonnegative integer that indicates the desired color
index buffer size. The smallest index buffer of at least the specified size
is preferred. Ignored if GLX_RGBA is asserted.

GLX_LEVEL

Must be followed by an integer buffer-level specification. This specifica-
tion is honored exactly. Buffer level zero corresponds to the main frame
buffer of the display. Buffer level one is the first overlay frame buffer,
level two the second overlay frame buffer, and so on. Negative buffer
levels correspond to underlay frame buffers.

GLX_RGBA If present, only TrueColor and DirectColor visuals are considered. Oth-
erwise, only PseudoColor and StaticColor visuals are considered.

Chapter 5: GLX 470

GLX_DOUBLEBUFFER

If present, only double-buffered visuals are considered. Otherwise, only
single-buffered visuals are considered.

GLX_STEREO

If present, only stereo visuals are considered. Otherwise, only monoscopic
visuals are considered.

GLX_AUX_BUFFERS

Must be followed by a nonnegative integer that indicates the desired
number of auxiliary buffers. Visuals with the smallest number of auxiliary
buffers that meets or exceeds the specified number are preferred.

GLX_RED_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, the smallest available red buffer is preferred. Otherwise,
the largest available red buffer of at least the minimum size is preferred.

GLX_GREEN_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, the smallest available green buffer is preferred. Otherwise,
the largest available green buffer of at least the minimum size is preferred.

GLX_BLUE_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, the smallest available blue buffer is preferred. Otherwise,
the largest available blue buffer of at least the minimum size is preferred.

GLX_ALPHA_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, the smallest available alpha buffer is preferred. Otherwise,
the largest available alpha buffer of at least the minimum size is preferred.

GLX_DEPTH_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, visuals with no depth buffer are preferred. Otherwise, the
largest available depth buffer of at least the minimum size is preferred.

GLX_STENCIL_SIZE

Must be followed by a nonnegative integer that indicates the desired
number of stencil bitplanes. The smallest stencil buffer of at least the
specified size is preferred. If the desired value is zero, visuals with no
stencil buffer are preferred.

GLX_ACCUM_RED_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, visuals with no red accumulation buffer are preferred. Oth-
erwise, the largest possible red accumulation buffer of at least the mini-
mum size is preferred.

GLX_ACCUM_GREEN_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, visuals with no green accumulation buffer are preferred.

Chapter 5: GLX 471

Otherwise, the largest possible green accumulation buffer of at least the
minimum size is preferred.

GLX_ACCUM_BLUE_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, visuals with no blue accumulation buffer are preferred.
Otherwise, the largest possible blue accumulation buffer of at least the
minimum size is preferred.

GLX_ACCUM_ALPHA_SIZE

Must be followed by a nonnegative minimum size specification. If this
value is zero, visuals with no alpha accumulation buffer are preferred.
Otherwise, the largest possible alpha accumulation buffer of at least the
minimum size is preferred.

NULL is returned if an undefined GLX attribute is encountered in attribList.

[Function]void glXCopyContext dpy src dst mask
Copy state from one rendering context to another.

dpy Specifies the connection to the X server.

src Specifies the source context.

dst Specifies the destination context.

mask Specifies which portions of src state are to be copied to dst.

glXCopyContext copies selected groups of state variables from src to dst. mask indi-
cates which groups of state variables are to be copied. mask contains the bitwise OR
of the same symbolic names that are passed to the GL command glPushAttrib. The
single symbolic constant GLX_ALL_ATTRIB_BITS can be used to copy the maximum
possible portion of rendering state.

The copy can be done only if the renderers named by src and dst share an address
space. Two rendering contexts share an address space if both are nondirect using the
same server, or if both are direct and owned by a single process. Note that in the
nondirect case it is not necessary for the calling threads to share an address space,
only for their related rendering contexts to share an address space.

Not all values for GL state can be copied. For example, pixel pack and unpack state,
render mode state, and select and feedback state are not copied. The state that can
be copied is exactly the state that is manipulated by the GL command glPushAttrib.

An implicit glFlush is done by glXCopyContext if src is the current context for the
calling thread.

BadMatch is generated if rendering contexts src and dst do not share an address space
or were not created with respect to the same screen.

BadAccess is generated if dst is current to any thread (including the calling thread)
at the time glXCopyContext is called.

GLXBadCurrentWindow is generated if src is the current context and the current draw-
able is a window that is no longer valid.

GLXBadContext is generated if either src or dst is not a valid GLX context.

Chapter 5: GLX 472

[Function]GLXContext glXCreateContext dpy vis shareList direct
Create a new GLX rendering context.

dpy Specifies the connection to the X server.

vis Specifies the visual that defines the frame buffer resources available to
the rendering context. It is a pointer to an XVisualInfo structure, not
a visual ID or a pointer to a Visual.

shareList Specifies the context with which to share display lists. NULL indicates
that no sharing is to take place.

direct Specifies whether rendering is to be done with a direct connection to the
graphics system if possible (True) or through the X server (False).

glXCreateContext creates a GLX rendering context and returns its handle.
This context can be used to render into both windows and GLX pixmaps. If
glXCreateContext fails to create a rendering context, NULL is returned.

If direct is True, then a direct rendering context is created if the implementation
supports direct rendering, if the connection is to an X server that is local, and if
a direct rendering context is available. (An implementation may return an indirect
context when direct is True.) If direct is False, then a rendering context that renders
through the X server is always created. Direct rendering provides a performance
advantage in some implementations. However, direct rendering contexts cannot be
shared outside a single process, and they may be unable to render to GLX pixmaps.

If shareList is not NULL, then all display-list indexes and definitions are shared by
context shareList and by the newly created context. An arbitrary number of contexts
can share a single display-list space. However, all rendering contexts that share
a single display-list space must themselves exist in the same address space. Two
rendering contexts share an address space if both are nondirect using the same server,
or if both are direct and owned by a single process. Note that in the nondirect case,
it is not necessary for the calling threads to share an address space, only for their
related rendering contexts to share an address space.

If the GL version is 1.1 or greater, then all texture objects except object 0 are shared
by any contexts that share display lists.

NULL is returned if execution fails on the client side.

BadMatch is generated if the context to be created would not share the address space
or the screen of the context specified by shareList.

BadValue is generated if vis is not a valid visual (for example, if a particular GLX
implementation does not support it).

GLXBadContext is generated if shareList is not a GLX context and is not NULL.

BadAlloc is generated if the server does not have enough resources to allocate the
new context.

[Function]GLXPixmap glXCreateGLXPixmap dpy vis pixmap
Create an off-screen GLX rendering area.

dpy Specifies the connection to the X server.

Chapter 5: GLX 473

vis Specifies the visual that defines the structure of the rendering area. It is
a pointer to an XVisualInfo structure, not a visual ID or a pointer to a
Visual.

pixmap Specifies the X pixmap that will be used as the front left color buffer of
the off-screen rendering area.

glXCreateGLXPixmap creates an off-screen rendering area and returns its XID. Any
GLX rendering context that was created with respect to vis can be used to render
into this off-screen area. Use glXMakeCurrent to associate the rendering area with a
GLX rendering context.

The X pixmap identified by pixmap is used as the front left buffer of the resulting
off-screen rendering area. All other buffers specified by vis, including color buffers
other than the front left buffer, are created without externally visible names. GLX
pixmaps with double-buffering are supported. However, glXSwapBuffers is ignored
by these pixmaps.

Some implementations may not support GLX pixmaps with direct rendering contexts.

BadMatch is generated if the depth of pixmap does not match the depth value reported
by core X11 for vis, or if pixmap was not created with respect to the same screen as
vis.

BadValue is generated if vis is not a valid XVisualInfo pointer (for example, if a
particular GLX implementation does not support this visual).

BadPixmap is generated if pixmap is not a valid pixmap.

BadAlloc is generated if the server cannot allocate the GLX pixmap.

[Function]GLXContext glXCreateNewContext dpy config render type share list
direct

Create a new GLX rendering context.

dpy Specifies the connection to the X server.

config Specifies the GLXFBConfig structure with the desired attributes for the
context.

render type
Specifies the type of the context to be created. Must be one of GLX_RGBA_
TYPE or GLX_COLOR_INDEX_TYPE.

share list Specifies the context with which to share display lists. NULL indicates
that no sharing is to take place.

share list Specifies whether rendering is to be done with a direct connection to the
graphics system if possible (True) or through the X server (False).

glXCreateNewContext creates a GLX rendering context and returns its handle. This
context can be used to render into GLX windows, pixmaps, or pixel buffers. If
glXCreateNewContext fails to create a rendering context, NULL is returned.

If render type is GLX_RGBA_TYPE, then a context that supports RGBA rendering is
created. If config is GLX_COLOR_INDEX_TYPE, then context supporting color-index
rendering is created.

Chapter 5: GLX 474

If render type is not NULL, then all display-list indexes and definitions are shared
by context render type and by the newly created context. An arbitrary number of
contexts can share a single display-list space. However, all rendering contexts that
share a single display-list space must themselves exist in the same address space. Two
rendering contexts share an address space if both are nondirect using the same server,
or if both are direct and owned by a single process. Note that in the nondirect case,
it is not necessary for the calling threads to share an address space, only for their
related rendering contexts to share an address space.

If share list is True, then a direct-rendering context is created if the implementation
supports direct rendering, if the connection is to an X server that is local, and if
a direct-rendering context is available. (An implementation may return an indirect
context when share list is True.) If share list is False, then a rendering context
that renders through the X server is always created. Direct rendering provides a
performance advantage in some implementations. However, direct-rendering contexts
cannot be shared outside a single process, and they may be unable to render to GLX
pixmaps.

NULL is returned if execution fails on the client side.

GLXBadContext is generated if render type is not a GLX context and is not NULL.

GLXBadFBConfig is generated if config is not a valid GLXFBConfig.

BadMatch is generated if the context to be created would not share the address space
or the screen of the context specified by render type.

BadAlloc is generated if the server does not have enough resources to allocate the
new context.

BadValue is generated if config is not a valid visual (for example, if a particular GLX
implementation does not support it).

[Function]GLXPbuffer glXCreatePbuffer dpy config attrib list
Create an off-screen rendering area.

dpy Specifies the connection to the X server.

config Specifies a GLXFBConfig structure with the desired attributes for the
window.

attrib list Specifies a list of attribute value pairs, which must be terminated
with None or NULL. Accepted attributes are GLX_PBUFFER_WIDTH,
GLX_PBUFFER_HEIGHT, GLX_PRESERVED_CONTENTS, and GLX_LARGEST_

PBUFFER.

glXCreatePbuffer creates an off-screen rendering area and returns its XID. Any
GLX rendering context that was created with respect to config can be used to render
into this window. Use glXMakeContextCurrent to associate the rendering area with
a GLX rendering context.

The accepted attributes for a GLXPbuffer are:

GLX_PBUFFER_WIDTH

Specify the pixel width of the requested GLXPbuffer. The default value
is 0.

Chapter 5: GLX 475

GLX_PBUFFER_HEIGHT

Specify the pixel height of the requested GLXPbuffer. The default value
is 0.

GLX_LARGEST_PBUFFER

Specify to obtain the largest available pixel buffer, if the requested alloca-
tion would have failed. The width and height of the allocated pixel buffer
will never exceed the specified GLX_PBUFFER_WIDTH or GLX_PBUFFER_

HEIGHT, respectively. Use glXQueryDrawable to retrieve the dimensions
of the allocated pixel buffer. The default value is False.

GLX_PRESERVED_CONTENTS

Specify if the contents of the pixel buffer should be preserved when a
resource conflict occurs. If set to False, the contents of the pixel buffer
may be lost at any time. If set to True, or not specified in attrib list,
then the contents of the pixel buffer will be preserved (most likely by
copying the contents into main system memory from the frame buffer).
In either case, the client can register (using glXSelectEvent, to receive
pixel buffer clobber events that are generated when the pbuffer contents
have been preserved or damaged.

GLXPbuffers contain the color and ancillary buffers specified by config. It is pos-
sible to create a pixel buffer with back buffers and to swap those buffers using
glXSwapBuffers.

BadAlloc is generated if there are insufficient resources to allocate the requested
GLXPbuffer.

GLXBadFBConfig is generated if config is not a valid GLXFBConfig.

BadMatch is generated if config does not support rendering to pixel buffers (e.g.,
GLX_DRAWABLE_TYPE does not contain GLX_PBUFFER_BIT).

[Function]GLXPixmap glXCreatePixmap dpy config pixmap attrib list
Create an off-screen rendering area.

dpy Specifies the connection to the X server.

config Specifies a GLXFBConfig structure with the desired attributes for the
window.

pixmap Specifies the X pixmap to be used as the rendering area.

attrib list Currently unused. This must be set to NULL or be an empty list (i.e., one
in which the first element is None).

glXCreatePixmap creates an off-screen rendering area and returns its XID. Any GLX
rendering context that was created with respect to config can be used to render
into this window. Use glXMakeCurrent to associate the rendering area with a GLX
rendering context.

BadMatch is generated if pixmap was not created with a visual that corresponds to
config.

BadMatch is generated if config does not support rendering to windows (e.g., GLX_
DRAWABLE_TYPE does not contain GLX_WINDOW_BIT).

Chapter 5: GLX 476

BadWindow is generated if pixmap is not a valid window XID. BadAlloc is generated
if there is already a GLXFBConfig associated with pixmap.

BadAlloc is generated if the X server cannot allocate a new GLX window.

GLXBadFBConfig is generated if config is not a valid GLXFBConfig.

[Function]GLXWindow glXCreateWindow dpy config win attrib list
Create an on-screen rendering area.

dpy Specifies the connection to the X server.

config Specifies a GLXFBConfig structure with the desired attributes for the
window.

win Specifies the X window to be used as the rendering area.

attrib list Currently unused. This must be set to NULL or be an empty list (i.e., one
in which the first element is None).

glXCreateWindow creates an on-screen rendering area from an existing X window
that was created with a visual matching config. The XID of the GLXWindow is
returned. Any GLX rendering context that was created with respect to config can
be used to render into this window. Use glXMakeContextCurrent to associate the
rendering area with a GLX rendering context.

BadMatch is generated if win was not created with a visual that corresponds to config.

BadMatch is generated if config does not support rendering to windows (i.e., GLX_
DRAWABLE_TYPE does not contain GLX_WINDOW_BIT).

BadWindow is generated if win is not a valid pixmap XID.

BadAlloc is generated if there is already a GLXFBConfig associated with win.

BadAlloc is generated if the X server cannot allocate a new GLX window.

GLXBadFBConfig is generated if config is not a valid GLXFBConfig.

[Function]void glXDestroyContext dpy ctx
Destroy a GLX context.

dpy Specifies the connection to the X server.

ctx Specifies the GLX context to be destroyed.

If the GLX rendering context ctx is not current to any thread, glXDestroyContext
destroys it immediately. Otherwise, ctx is destroyed when it becomes not current to
any thread. In either case, the resource ID referenced by ctx is freed immediately.

GLXBadContext is generated if ctx is not a valid GLX context.

[Function]void glXDestroyGLXPixmap dpy pix
Destroy a GLX pixmap.

dpy Specifies the connection to the X server.

pix Specifies the GLX pixmap to be destroyed.

If the GLX pixmap pix is not current to any client, glXDestroyGLXPixmap destroys it
immediately. Otherwise, pix is destroyed when it becomes not current to any client.
In either case, the resource ID is freed immediately.

GLXBadPixmap is generated if pix is not a valid GLX pixmap.

Chapter 5: GLX 477

[Function]void glXDestroyPbuffer dpy pbuf
Destroy an off-screen rendering area.

dpy Specifies the connection to the X server.

pbuf Specifies the GLXPbuffer to be destroyed.

glXDestroyPbuffer destroys a GLXPbuffer created by glXCreatePbuffer.

GLXBadPbuffer is generated if pbuf is not a valid GLXPbuffer.

[Function]void glXDestroyPixmap dpy pixmap
Destroy an off-screen rendering area.

dpy Specifies the connection to the X server.

pixmap Specifies the GLXPixmap to be destroyed.

glXDestroyPixmap destroys a GLXPixmap created by glXCreatePixmap.

GLXBadPixmap is generated if pixmap is not a valid GLXPixmap.

[Function]void glXDestroyWindow dpy win
Destroy an on-screen rendering area.

dpy Specifies the connection to the X server.

win Specifies the GLXWindow to be destroyed.

glXDestroyWindow destroys a GLXWindow created by glXCreateWindow.

GLXBadWindow is generated if win is not a valid GLXPixmap.

[Function]void glXFreeContextEXT dpy ctx
Free client-side memory for imported context.

dpy Specifies the connection to the X server.

ctx Specifies a GLX rendering context.

glXFreeContextEXT frees the client-side part of a GLXContext that was created with
glXImportContextEXT. glXFreeContextEXT does not free the server-side context
information or the XID associated with the server-side context.

glXFreeContextEXT is part of the EXT_import_context extension, not part of the
core GLX command set. If glxextstring(EXT import context) is included in the
string returned by glXQueryExtensionsString, when called with argument GLX_

EXTENSIONS, extension EXT_vertex_array is supported.

GLXBadContext is generated if ctx does not refer to a valid context.

[Function]const-char-* glXGetClientString dpy name
Return a string describing the client.

dpy Specifies the connection to the X server.

name Specifies which string is returned. The symbolic constants GLX_VENDOR,
GLX_VERSION, and GLX_EXTENSIONS are accepted.

Chapter 5: GLX 478

glXGetClientString returns a string describing some aspect of the client library.
The possible values for name are GLX_VENDOR, GLX_VERSION, and GLX_EXTENSIONS.
If name is not set to one of these values, glXGetClientString returns NULL. The
format and contents of the vendor string is implementation dependent.

The extensions string is null-terminated and contains a space-separated list of exten-
sion names. (The extension names never contain spaces.) If there are no extensions
to GLX, then the empty string is returned.

The version string is laid out as follows:

<major version.minor version><space><vendor-specific info>

Both the major and minor portions of the version number are of arbitrary length.
The vendor-specific information is optional. However, if it is present, the format and
contents are implementation specific.

[Function]int glXGetConfig dpy vis attrib value
Return information about GLX visuals.

dpy Specifies the connection to the X server.

vis Specifies the visual to be queried. It is a pointer to an XVisualInfo

structure, not a visual ID or a pointer to a Visual.

attrib Specifies the visual attribute to be returned.

value Returns the requested value.

glXGetConfig sets value to the attrib value of windows or GLX pixmaps created
with respect to vis. glXGetConfig returns an error code if it fails for any reason.
Otherwise, zero is returned.

attrib is one of the following:

GLX_USE_GL

True if OpenGL rendering is supported by this visual, False otherwise.

GLX_BUFFER_SIZE

Number of bits per color buffer. For RGBA visuals, GLX_BUFFER_SIZE is
the sum of GLX_RED_SIZE, GLX_GREEN_SIZE, GLX_BLUE_SIZE, and GLX_

ALPHA_SIZE. For color index visuals, GLX_BUFFER_SIZE is the size of the
color indexes.

GLX_LEVEL

Frame buffer level of the visual. Level zero is the default frame buffer.
Positive levels correspond to frame buffers that overlay the default buffer,
and negative levels correspond to frame buffers that underlay the default
buffer.

GLX_RGBA True if color buffers store red, green, blue, and alpha values. False if
they store color indexes.

GLX_DOUBLEBUFFER

True if color buffers exist in front/back pairs that can be swapped, False
otherwise.

Chapter 5: GLX 479

GLX_STEREO

True if color buffers exist in left/right pairs, False otherwise.

GLX_AUX_BUFFERS

Number of auxiliary color buffers that are available. Zero indicates that
no auxiliary color buffers exist.

GLX_RED_SIZE

Number of bits of red stored in each color buffer. Undefined if GLX_RGBA
is False.

GLX_GREEN_SIZE

Number of bits of green stored in each color buffer. Undefined if GLX_RGBA
is False.

GLX_BLUE_SIZE

Number of bits of blue stored in each color buffer. Undefined if GLX_RGBA
is False.

GLX_ALPHA_SIZE

Number of bits of alpha stored in each color buffer. Undefined if GLX_RGBA
is False.

GLX_DEPTH_SIZE

Number of bits in the depth buffer.

GLX_STENCIL_SIZE

Number of bits in the stencil buffer.

GLX_ACCUM_RED_SIZE

Number of bits of red stored in the accumulation buffer.

GLX_ACCUM_GREEN_SIZE

Number of bits of green stored in the accumulation buffer.

GLX_ACCUM_BLUE_SIZE

Number of bits of blue stored in the accumulation buffer.

GLX_ACCUM_ALPHA_SIZE

Number of bits of alpha stored in the accumulation buffer.

The X protocol allows a single visual ID to be instantiated with different numbers
of bits per pixel. Windows or GLX pixmaps that will be rendered with OpenGL,
however, must be instantiated with a color buffer depth of GLX_BUFFER_SIZE.

Although a GLX implementation can export many visuals that support GL render-
ing, it must support at least one RGBA visual. This visual must have at least one
color buffer, a stencil buffer of at least 1 bit, a depth buffer of at least 12 bits, and
an accumulation buffer. Alpha bitplanes are optional in this visual. However, its
color buffer size must be as great as that of the deepest TrueColor, DirectColor,
PseudoColor, or StaticColor visual supported on level zero, and it must itself be
made available on level zero.

In addition, if the X server exports a PseudoColor or StaticColor visual on frame-
buffer level 0, a color index visual is also required on that level. It must have at least

Chapter 5: GLX 480

one color buffer, a stencil buffer of at least 1 bit, and a depth buffer of at least 12
bits. This visual must have as many color bitplanes as the deepest PseudoColor or
StaticColor visual supported on level 0.

Applications are best written to select the visual that most closely meets their re-
quirements. Creating windows or GLX pixmaps with unnecessary buffers can result
in reduced rendering performance as well as poor resource allocation.

GLX_NO_EXTENSION is returned if dpy does not support the GLX extension.

GLX_BAD_SCREEN is returned if the screen of vis does not correspond to a screen.

GLX_BAD_ATTRIBUTE is returned if attrib is not a valid GLX attribute.

GLX_BAD_VISUAL is returned if vis doesn’t support GLX and an attribute other than
GLX_USE_GL is requested.

[Function]GLXContextID glXGetContextIDEXT ctx
Get the XID for a context..

ctx Specifies a GLX rendering context.

glXGetContextIDEXT returns the XID associated with a GLXContext.

No round trip is forced to the server; unlike most X calls that return a value,
glXGetContextIDEXT does not flush any pending events.

glXGetContextIDEXT is part of the EXT_import_context extension, not part of the
core GLX command set. If glxextstring(EXT import context) is included in the
string returned by glXQueryExtensionsString, when called with argument GLX_

EXTENSIONS, extension EXT_import_context is supported.

GLXBadContext is generated if ctx does not refer to a valid context.

[Function]GLXContext glXGetCurrentContext
Return the current context.

glXGetCurrentContext returns the current context, as specified by glXMakeCurrent.
If there is no current context, NULL is returned.

glXGetCurrentContext returns client-side information. It does not make a round
trip to the server.

[Function]Display-* glXGetCurrentDisplay
Get display for current context.

glXGetCurrentDisplay returns the display for the current context. If no context is
current, NULL is returned.

glXGetCurrentDisplay returns client-side information. It does not make a round-
trip to the server, and therefore does not flush any pending events.

[Function]GLXDrawable glXGetCurrentDrawable
Return the current drawable.

glXGetCurrentDrawable returns the current drawable, as specified by
glXMakeCurrent. If there is no current drawable, None is returned.

glXGetCurrentDrawable returns client-side information. It does not make a round
trip to the server.

Chapter 5: GLX 481

[Function]GLXDrawable glXGetCurrentReadDrawable
Return the current drawable.

glXGetCurrentReadDrawable returns the current read drawable, as specified by read

parameter of glXMakeContextCurrent. If there is no current drawable, None is re-
turned.

glXGetCurrentReadDrawable returns client-side information. It does not make a
round-trip to the server.

[Function]int glXGetFBConfigAttrib dpy config attribute value
Return information about a GLX frame buffer configuration.

dpy Specifies the connection to the X server.

config Specifies the GLX frame buffer configuration to be queried.

attribute Specifies the attribute to be returned.

value Returns the requested value.

glXGetFBConfigAttrib sets value to the attribute value of GLX drawables created
with respect to config. glXGetFBConfigAttrib returns an error code if it fails for
any reason. Otherwise, Success is returned.

attribute is one of the following:

GLX_FBCONFIG_ID

XID of the given GLXFBConfig.

GLX_BUFFER_SIZE

Number of bits per color buffer. If the frame buffer configuration supports
RGBA contexts, then GLX_BUFFER_SIZE is the sum of GLX_RED_SIZE,
GLX_GREEN_SIZE, GLX_BLUE_SIZE, and GLX_ALPHA_SIZE. If the frame
buffer configuration supports only color index contexts, GLX_BUFFER_

SIZE is the size of the color indexes.

GLX_LEVEL

Frame buffer level of the configuration. Level zero is the default frame
buffer. Positive levels correspond to frame buffers that overlay the default
buffer, and negative levels correspond to frame buffers that underlie the
default buffer.

GLX_DOUBLEBUFFER

True if color buffers exist in front/back pairs that can be swapped, False
otherwise.

GLX_STEREO

True if color buffers exist in left/right pairs, False otherwise.

GLX_AUX_BUFFERS

Number of auxiliary color buffers that are available. Zero indicates that
no auxiliary color buffers exist.

GLX_RED_SIZE

Number of bits of red stored in each color buffer. Undefined if RGBA
contexts are not supported by the frame buffer configuration.

Chapter 5: GLX 482

GLX_GREEN_SIZE

Number of bits of green stored in each color buffer. Undefined if RGBA
contexts are not supported by the frame buffer configuration.

GLX_BLUE_SIZE

Number of bits of blue stored in each color buffer. Undefined if RGBA
contexts are not supported by the frame buffer configuration.

GLX_ALPHA_SIZE

Number of bits of alpha stored in each color buffer. Undefined if RGBA
contexts are not supported by the frame buffer configuration.

GLX_DEPTH_SIZE

Number of bits in the depth buffer.

GLX_STENCIL_SIZE

Number of bits in the stencil buffer.

GLX_ACCUM_RED_SIZE

Number of bits of red stored in the accumulation buffer.

GLX_ACCUM_GREEN_SIZE

Number of bits of green stored in the accumulation buffer.

GLX_ACCUM_BLUE_SIZE

Number of bits of blue stored in the accumulation buffer.

GLX_ACCUM_ALPHA_SIZE

Number of bits of alpha stored in the accumulation buffer.

GLX_RENDER_TYPE

Mask indicating what type of GLX contexts can be made current to the
frame buffer configuration. Valid bits are GLX_RGBA_BIT and GLX_COLOR_

INDEX_BIT.

GLX_DRAWABLE_TYPE

Mask indicating what drawable types the frame buffer configuration
supports. Valid bits are GLX_WINDOW_BIT, GLX_PIXMAP_BIT, and
GLX_PBUFFER_BIT.

GLX_X_RENDERABLE

True if drawables created with the frame buffer configuration can be
rendered to by X.

GLX_VISUAL_ID

XID of the corresponding visual, or zero if there is no associated visual
(i.e., if GLX_X_RENDERABLE is False or GLX_DRAWABLE_TYPE does not have
the GLX_WINDOW_BIT bit set).

GLX_X_VISUAL_TYPE

Visual type of associated visual. The returned value will be one of:
GLX_TRUE_COLOR, GLX_DIRECT_COLOR, GLX_PSEUDO_COLOR, GLX_STATIC_
COLOR, GLX_GRAY_SCALE, GLX_STATIC_GRAY, or GLX_NONE, if there is no
associated visual (i.e., if GLX_X_RENDERABLE is False or GLX_DRAWABLE_
TYPE does not have the GLX_WINDOW_BIT bit set).

Chapter 5: GLX 483

GLX_CONFIG_CAVEAT

One of GLX_NONE, GLX_SLOW_CONFIG, or GLX_NON_CONFORMANT_CONFIG,
indicating that the frame buffer configuration has no caveats, some as-
pect of the frame buffer configuration runs slower than other frame buffer
configurations, or some aspect of the frame buffer configuration is non-
conformant, respectively.

GLX_TRANSPARENT_TYPE

One of GLX_NONE, GLX_TRANSPARENT_RGB, GLX_TRANSPARENT_INDEX, in-
dicating that the frame buffer configuration is opaque, is transparent for
particular values of red, green, and blue, or is transparent for particular
index values, respectively.

GLX_TRANSPARENT_INDEX_VALUE

Integer value between 0 and the maximum frame buffer value for indices,
indicating the transparent index value for the frame buffer configuration.
Undefined if GLX_TRANSPARENT_TYPE is not GLX_TRANSPARENT_INDEX.

GLX_TRANSPARENT_RED_VALUE

Integer value between 0 and the maximum frame buffer value for red,
indicating the transparent red value for the frame buffer configuration.
Undefined if GLX_TRANSPARENT_TYPE is not GLX_TRANSPARENT_RGB.

GLX_TRANSPARENT_GREEN_VALUE

Integer value between 0 and the maximum frame buffer value for green,
indicating the transparent green value for the frame buffer configuration.
Undefined if GLX_TRANSPARENT_TYPE is not GLX_TRANSPARENT_RGB.

GLX_TRANSPARENT_BLUE_VALUE

Integer value between 0 and the maximum frame buffer value for blue,
indicating the transparent blue value for the frame buffer configuration.
Undefined if GLX_TRANSPARENT_TYPE is not GLX_TRANSPARENT_RGB.

GLX_TRANSPARENT_ALPHA_VALUE

Integer value between 0 and the maximum frame buffer value for alpha,
indicating the transparent blue value for the frame buffer configuration.
Undefined if GLX_TRANSPARENT_TYPE is not GLX_TRANSPARENT_RGB.

GLX_MAX_PBUFFER_WIDTH

The maximum width that can be specified to glXCreatePbuffer.

GLX_MAX_PBUFFER_HEIGHT

The maximum height that can be specified to glXCreatePbuffer.

GLX_MAX_PBUFFER_PIXELS

The maximum number of pixels (width times height) for a pixel buffer.
Note that this value may be less than GLX_MAX_PBUFFER_WIDTH times
GLX_MAX_PBUFFER_HEIGHT. Also, this value is static and assumes that
no other pixel buffers or X resources are contending for the frame buffer
memory. As a result, it may not be possible to allocate a pixel buffer of
the size given by GLX_MAX_PBUFFER_PIXELS.

Chapter 5: GLX 484

Applications should choose the frame buffer configuration that most closely meets
their requirements. Creating windows, GLX pixmaps, or GLX pixel buffers with un-
necessary buffers can result in reduced rendering performance as well as poor resource
allocation.

GLX_NO_EXTENSION is returned if dpy does not support the GLX extension. GLX_

BAD_ATTRIBUTE is returned if attribute is not a valid GLX attribute.

[Function]GLXFBConfig-* glXGetFBConfigs dpy screen nelements
List all GLX frame buffer configurations for a given screen.

dpy Specifies the connection to the X server.

screen Specifies the screen number.

nelements Returns the number of GLXFBConfigs returned.

glXGetFBConfigs returns a list of all GLXFBConfigs available on the screen specified
by screen. Use glXGetFBConfigAttrib to obtain attribute values from a specific
GLXFBConfig.

[Function]void(*)() glXGetProcAddress procName
Obtain a pointer to an OpenGL or GLX function.

procName Specifies the name of the OpenGL or GLX function whose address is to
be returned.

glXGetProcAddress returns the address of the function specified in procName. This
is necessary in environments where the OpenGL link library exports a different set of
functions than the runtime library.

[Function]void glXGetSelectedEvent dpy draw event mask
Returns GLX events that are selected for a window or a GLX pixel buffer.

dpy Specifies the connection to the X server.

draw Specifies a GLX drawable. Must be a GLX pixel buffer or a window.

event mask
Returns the events that are selected for draw.

glXGetSelectedEvent returns in event mask the events selected for draw.

GLXBadDrawable is generated if draw is not a valid window or a valid GLX pixel
buffer.

[Function]XVisualInfo-* glXGetVisualFromFBConfig dpy config
Return visual that is associated with the frame buffer configuration.

dpy Specifies the connection to the X server.

config Specifies the GLX frame buffer configuration.

If config is a valid GLX frame buffer configuration and it has an associated X Visual,
then information describing that visual is returned; otherwise NULL is returned. Use
XFree to free the data returned.

Returns NULL if config is not a valid GLXFBConfig.

Chapter 5: GLX 485

[Function]GLXContext glXImportContextEXT dpy contextID
Import another process’s indirect rendering context..

dpy Specifies the connection to the X server.

contextID Specifies a GLX rendering context.

glXImportContextEXT creates a GLXContext given the XID of an existing GLX-
Context. It may be used in place of glXCreateContext, to share another process’s
indirect rendering context.

Only the server-side context information can be shared between X clients; client-side
state, such as pixel storage modes, cannot be shared. Thus, glXImportContextEXT
must allocate memory to store client-side information. This memory is freed by calling
glXFreeContextEXT.

This call does not create a new XID. It merely makes an existing object available to
the importing client (Display *). Like any XID, it goes away when the creating client
drops its connection or the ID is explicitly deleted. Note that this is when the XID
goes away. The object goes away when the XID goes away AND the context is not
current to any thread.

If contextID refers to a direct rendering context then no error is generated but
glXImportContextEXT returns NULL.

glXImportContextEXT is part of the EXT_import_context extension, not part of the
core GLX command set. If glxextstring(EXT import context) is included in the
string returned by glXQueryExtensionsString, when called with argument GLX_

EXTENSIONS, extension EXT_import_context is supported.

GLXBadContext is generated if contextID does not refer to a valid context.

[Function]Bool glXIsDirect dpy ctx
Indicate whether direct rendering is enabled.

dpy Specifies the connection to the X server.

ctx Specifies the GLX context that is being queried.

glXIsDirect returns True if ctx is a direct rendering context, False otherwise. Di-
rect rendering contexts pass rendering commands directly from the calling process’s
address space to the rendering system, bypassing the X server. Nondirect rendering
contexts pass all rendering commands to the X server.

GLXBadContext is generated if ctx is not a valid GLX context.

[Function]Bool glXMakeContextCurrent display draw read ctx
Attach a GLX context to a GLX drawable.

display Specifies the connection to the X server.

draw Specifies a GLX drawable to render into. Must be an XID representing
a GLXWindow, GLXPixmap, or GLXPbuffer.

read Specifies a GLX drawable to read from. Must be an XID representing a
GLXWindow, GLXPixmap, or GLXPbuffer.

ctx Specifies the GLX context to be bound to read and ctx.

Chapter 5: GLX 486

glXMakeContextCurrent binds ctx to the current rendering thread and to the draw
and read GLX drawables. draw and read may be the same.

draw is used for all OpenGL operations except:

Any pixel data that are read based on the value of GLX_READ_BUFFER. Note that
accumulation operations use the value of GLX_READ_BUFFER, but are not allowed unless
draw is identical to read.

Any depth values that are retrieved by glReadPixels or glCopyPixels.

Any stencil values that are retrieved by glReadPixels or glCopyPixels.

Frame buffer values are taken from draw.

If the current rendering thread has a current rendering context, that context is flushed
and replaced by ctx.

The first time that ctx is made current, the viewport and scissor dimensions are set
to the size of the draw drawable. The viewport and scissor are not modified when
ctx is subsequently made current.

To release the current context without assigning a new one, call
glXMakeContextCurrent with draw and read set to None and ctx set to
NULL.

glXMakeContextCurrent returns True if it is successful, False otherwise. If False
is returned, the previously current rendering context and drawable (if any) remain
unchanged.

BadMatch is generated if draw and read are not compatible.

BadAccess is generated if ctx is current to some other thread.

GLXContextState is generated if there is a current rendering context and its render
mode is either GLX_FEEDBACK or GLX_SELECT.

GLXBadContext is generated if ctx is not a valid GLX rendering context.

GLXBadDrawable is generated if draw or read is not a valid GLX drawable.

GLXBadWindow is generated if the underlying X window for either draw or read is no
longer valid.

GLXBadCurrentDrawable is generated if the previous context of the calling thread
has unflushed commands and the previous drawable is no longer valid.

BadAlloc is generated if the X server does not have enough resources to allocate the
buffers.

BadMatch is generated if:

draw and read cannot fit into frame buffer memory simultaneously.

draw or read is a GLXPixmap and ctx is a direct-rendering context.

draw or read is a GLXPixmap and ctx was previously bound to a GLXWindow or
GLXPbuffer.

draw or read is a GLXWindow or GLXPbuffer and ctx was previously bound to a
GLXPixmap.

[Function]Bool glXMakeCurrent dpy drawable ctx
Attach a GLX context to a window or a GLX pixmap.

Chapter 5: GLX 487

dpy Specifies the connection to the X server.

drawable Specifies a GLX drawable. Must be either an X window ID or a GLX
pixmap ID.

ctx Specifies a GLX rendering context that is to be attached to drawable.

glXMakeCurrent does two things: It makes ctx the current GLX rendering context
of the calling thread, replacing the previously current context if there was one, and
it attaches ctx to a GLX drawable, either a window or a GLX pixmap. As a result of
these two actions, subsequent GL rendering calls use rendering context ctx to modify
GLX drawable drawable (for reading and writing). Because glXMakeCurrent always
replaces the current rendering context with ctx, there can be only one current context
per thread.

Pending commands to the previous context, if any, are flushed before it is released.

The first time ctx is made current to any thread, its viewport is set to the full size
of drawable. Subsequent calls by any thread to glXMakeCurrent with ctx have no
effect on its viewport.

To release the current context without assigning a new one, call glXMakeCurrent
with drawable set to None and ctx set to NULL.

glXMakeCurrent returns True if it is successful, False otherwise. If False is returned,
the previously current rendering context and drawable (if any) remain unchanged.

BadMatch is generated if drawable was not created with the same X screen and visual
as ctx. It is also generated if drawable is None and ctx is not NULL.

BadAccess is generated if ctx was current to another thread at the time
glXMakeCurrent was called.

GLXBadDrawable is generated if drawable is not a valid GLX drawable.

GLXBadContext is generated if ctx is not a valid GLX context.

GLXBadContextState is generated if glXMakeCurrent is executed between the exe-
cution of glBegin and the corresponding execution of glEnd.

GLXBadContextState is also generated if the rendering context current to the calling
thread has GL renderer state GLX_FEEDBACK or GLX_SELECT.

GLXBadCurrentWindow is generated if there are pending GL commands for the previ-
ous context and the current drawable is a window that is no longer valid.

BadAlloc may be generated if the server has delayed allocation of ancillary buffers un-
til glXMakeCurrent is called, only to find that it has insufficient resources to complete
the allocation.

[Function]int glXQueryContextInfoEXT dpy ctx attribute value
Query context information.

dpy Specifies the connection to the X server.

ctx Specifies a GLX rendering context.

attribute Specifies that a context parameter should be retrieved. Must be one of
GLX_SHARED_CONTEXT_EXT, GLX_VISUAL_ID_EXT, or GLX_SCREEN_EXT.

value Contains the return value for attribute.

Chapter 5: GLX 488

glXQueryContextInfoEXT sets value to the value of attribute with respect to ctx.
glXQueryContextInfoEXT returns an error code if it fails for any reason. Otherwise,
Success is returned.

attribute may be one of the following:

GLX_SHARED_CONTEXT_EXT

Returns the XID of the share list context associated with ctx at its cre-
ation.

GLX_VISUAL_ID_EXT

Returns the XID of the GLX Visual associated with ctx.

GLX_SCREEN_EXT

Returns the screen number associated with ctx.

This call may cause a round-trip to the server.

glXQueryContextInfoEXT is part of the EXT_import_context extension, not part
of the core GLX command set. If glxextstring(EXT import context) is included
in the string returned by glXQueryExtensionsString, when called with argument
GLX_EXTENSIONS, extension EXT_import_context is supported.

GLXBadContext is generated if ctx does not refer to a valid context.

GLX_BAD_ATTRIBUTE is returned if attribute is not a valid GLX context attribute.

fred GLX_BAD_CONTEXT is returned if attribute is not a valid context.

[Function]int glXQueryContext dpy ctx attribute value
Query context information.

dpy Specifies the connection to the X server.

ctx Specifies a GLX rendering context.

attribute Specifies that a context parameter should be retrieved. Must be one of
GLX_FBCONFIG_ID, GLX_RENDER_TYPE, or GLX_SCREEN.

value Contains the return value for attribute.

glXQueryContext sets value to the value of attribute with respect to ctx. attribute
may be one of the following:

GLX_FBCONFIG_ID

Returns the XID of the GLXFBConfig associated with ctx.

GLX_RENDER_TYPE

Returns the rendering type supported by ctx.

GLX_SCREEN

Returns the screen number associated with ctx.

Success is returned unless attribute is not a valid GLX context attribute, in which
case GLX_BAD_ATTRIBUTE is returned.

This call may cause a round-trip to the server.

GLXBadContext is generated if ctx does not refer to a valid context.

Chapter 5: GLX 489

[Function]int glXQueryDrawable dpy draw attribute value
Returns an attribute assoicated with a GLX drawable.

dpy Specifies the connection to the X server.

draw Specifies the GLX drawable to be queried.

attribute Specifies the attribute to be returned. Must be one of GLX_WIDTH,
GLX_HEIGHT, GLX_PRESERVED_CONTENTS, GLX_LARGEST_PBUFFER, or
GLX_FBCONFIG_ID.

value Contains the return value for attribute.

glXQueryDrawable sets value to the value of attribute with respect to the GLXDraw-
able draw.

attribute may be one of the following:

GLX_WIDTH

Returns the width of ctx.

GLX_HEIGHT

Returns the height of ctx.

GLX_PRESERVED_CONTENTS

Returns True if the contents of a GLXPbuffer are preserved when a re-
source conflict occurs; False otherwise.

GLX_LARGEST_PBUFFER

Returns the value set when glXCreatePbuffer was called to create the
GLXPbuffer. If False is returned, then the call to glXCreatePbuffer

will fail to create a GLXPbuffer if the requested size is larger than the
implementation maximum or available resources. If True is returned,
a GLXPbuffer of the maximum availble size (if less than the requested
width and height) is created.

GLX_FBCONFIG_ID

Returns the XID for draw.

If draw is a GLXWindow or GLXPixmap and attribute is set to GLX_PRESERVED_

CONTENTS or GLX_LARGETST_PBUFFER, the contents of value are undefined. If attribute
is not one of the attributes listed above, the contents of value are unedfined.

A GLXBadDrawable is generated if draw is not a valid GLXDrawable.

[Function]const-char-* glXQueryExtensionsString dpy screen
Return list of supported extensions.

dpy Specifies the connection to the X server.

screen Specifies the screen number.

glXQueryExtensionsString returns a pointer to a string describing which GLX ex-
tensions are supported on the connection. The string is null-terminated and contains
a space-separated list of extension names. (The extension names themselves never
contain spaces.) If there are no extensions to GLX, then the empty string is returned.

Chapter 5: GLX 490

[Function]Bool glXQueryExtension dpy errorBase eventBase
Indicate whether the GLX extension is supported.

dpy Specifies the connection to the X server.

errorBase Returns the base error code of the GLX server extension.

eventBase Returns the base event code of the GLX server extension.

glXQueryExtension returns True if the X server of connection dpy supports the GLX
extension, False otherwise. If True is returned, then errorBase and eventBase return
the error base and event base of the GLX extension. These values should be added
to the constant error and event values to determine the actual event or error values.
Otherwise, errorBase and eventBase are unchanged.

errorBase and eventBase do not return values if they are specified as NULL.

[Function]const-char-* glXQueryServerString dpy screen name
Return string describing the server.

dpy Specifies the connection to the X server.

screen Specifies the screen number.

name Specifies which string is returned: one of GLX_VENDOR, GLX_VERSION, or
GLX_EXTENSIONS.

glXQueryServerString returns a pointer to a static, null-terminated string describ-
ing some aspect of the server’s GLX extension. The possible values for name and the
format of the strings is the same as for glXGetClientString. If name is not set to a
recognized value, NULL is returned.

[Function]Bool glXQueryVersion dpy major minor
Return the version numbers of the GLX extension.

dpy Specifies the connection to the X server.

major Returns the major version number of the GLX server extension.

minor Returns the minor version number of the GLX server extension.

glXQueryVersion returns the major and minor version numbers of the GLX extension
implemented by the server associated with connection dpy. Implementations with the
same major version number are upward compatible, meaning that the implementation
with the higher minor number is a superset of the version with the lower minor
number.

major and minor do not return values if they are specified as NULL.

glXQueryVersion returns False if it fails, True otherwise.

major and minor are not updated when False is returned.

[Function]void glXSelectEvent dpy draw event mask
Select GLX events for a window or a GLX pixel buffer.

dpy Specifies the connection to the X server.

draw Specifies a GLX drawable. Must be a GLX pixel buffer or a window.

Chapter 5: GLX 491

event mask
Specifies the events to be returned for draw.

glXSelectEvent sets the GLX event mask for a GLX pixel buffer or a window.
Calling glXSelectEvent overrides any previous event mask that was set by the client
for draw. Note that it does not affect the event masks that other clients may have
specified for draw since each client rendering to draw has a separate event mask for
it.

Currently, only one GLX event, GLX_PBUFFER_CLOBBER_MASK, can be selected. The
following data is returned to the client when a GLX_PBUFFER_CLOBBER_MASK event
occurs:

typedef struct {

int event type;
/* GLX DAMAGED or GLX SAVED */

int draw type;
/* GLX WINDOW or GLX PBUFFER */

unsigned long serial;
/* # of last request processed by server */

Bool send event;
/* true if this came for SendEvent request */

Display *display ;
/* display the event was read from */

GLXDrawable drawable;
/* i.d. of Drawable */

unsigned int buffer mask;
/* mask indicating affected buffers */

int x, y ;

int width, height;
int count; /* if nonzero, at least this many more */

} GLXPbufferClobberEvent; The valid bit masks used in buffer mask are:

Bitmask Corresponding Buffer

GLX_FRONT_LEFT_BUFFER_BIT

Front left color buffer

GLX_FRONT_RIGHT_BUFFER_BIT

Front right color buffer

GLX_BACK_LEFT_BUFFER_BIT

Back left color buffer

GLX_BACK_RIGHT_BUFFER_BIT

Back right color buffer

Chapter 5: GLX 492

GLX_AUX_BUFFERS_BIT

Auxiliary buffer

GLX_DEPTH_BUFFER_BIT

Depth buffer

GLX_STENCIL_BUFFER_BIT

Stencil buffer

GLX_ACCUM_BUFFER_BIT

Accumulation buffer

A single X server operation can cause several buffer clobber events to be sent. (e.g., a
single GLX pixel buffer may be damaged and cause multiple buffer clobber events to
be generated). Each event specifies one region of the GLX drawable that was affected
by the X Server operation. The buffer mask field indicates which color buffers and
ancillary buffers were affected. All the buffer clobber events generated by a single
X server action are guaranteed to be contiguous in the event queue. The conditions
under which this event is generated and the event type varies, depending on the type
of the GLX drawable.

When the GLX_AUX_BUFFERS_BIT is set in buffer mask, then aux buffer is set to
indicate which buffer was affected. If more than one aux buffer was affected, then
additional events are generated as part of the same contiguous event group. Each
additional event will have only the GLX_AUX_BUFFERS_BIT set in buffer mask, and
the aux buffer field will be set appropriately. For nonstereo drawables, GLX_FRONT_
LEFT_BUFFER_BIT and GLX_BACK_LEFT_BUFFER_BIT are used to specify the front and
back color buffers.

For preserved GLX pixel buffers, a buffer clobber event with type GLX_SAVED is gener-
ated whenever the contents of the GLX pixel buffer is moved out of offscreen memory.
The event(s) describes which portions of the GLX pixel buffer were affected. Clients
who receive many buffer clobber events, referring to different save actions, should
consider freeing the GLX pixel buffer resource in order to prevent the system from
thrashing due to insufficient resources.

For an unpreserved GLXPbuffer, a buffer clobber event, with type GLX_DAMAGED, is
generated whenever a portion of the GLX pixel buffer becomes invalid. The client
may wish to regenerate the invalid portions of the GLX pixel buffer.

For Windows, buffer clobber events, with type GLX_SAVED, occur whenever an ancil-
lary buffer, associated with the window, gets clobbered or moved out of off-screen
memory. The event contains information indicating which color buffers and ancillary
buffers\(emand which portions of those buffers\(emwere affected.

GLXBadDrawable is generated if draw is not a valid window or a valid GLX pixel
buffer.

[Function]void glXSwapBuffers dpy drawable
Exchange front and back buffers.

dpy Specifies the connection to the X server.

drawable Specifies the drawable whose buffers are to be swapped.

Chapter 5: GLX 493

glXSwapBuffers promotes the contents of the back buffer of drawable to become
the contents of the front buffer of drawable. The contents of the back buffer then
become undefined. The update typically takes place during the vertical retrace of the
monitor, rather than immediately after glXSwapBuffers is called.

glXSwapBuffers performs an implicit glFlush before it returns. Subsequent OpenGL
commands may be issued immediately after calling glXSwapBuffers, but are not
executed until the buffer exchange is completed.

If drawable was not created with respect to a double-buffered visual, glXSwapBuffers
has no effect, and no error is generated.

GLXBadDrawable is generated if drawable is not a valid GLX drawable.

GLXBadCurrentWindow is generated if dpy and drawable are respectively the display
and drawable associated with the current context of the calling thread, and drawable
identifies a window that is no longer valid.

[Function]void glXUseXFont font first count listBase
Create bitmap display lists from an X font.

font Specifies the font from which character glyphs are to be taken.

first Specifies the index of the first glyph to be taken.

count Specifies the number of glyphs to be taken.

listBase Specifies the index of the first display list to be generated.

glXUseXFont generates count display lists, named listBase through listBase+count-
1, each containing a single glBitmap command. The parameters of the glBitmap

command of display list listBase+i are derived from glyph first+i. Bitmap parameters
xorig , yorig , width, and height are computed from font metrics as descent-1, -lbearing ,
rbearing-lbearing , and ascent+descent, respectively. xmove is taken from the glyph’s
width metric, and ymove is set to zero. Finally, the glyph’s image is converted to the
appropriate format for glBitmap.

Using glXUseXFont may be more efficient than accessing the X font and generating
the display lists explicitly, both because the display lists are created on the server
without requiring a round trip of the glyph data, and because the server may choose
to delay the creation of each bitmap until it is accessed.

Empty display lists are created for all glyphs that are requested and are not defined
in font. glXUseXFont is ignored if there is no current GLX context.

BadFont is generated if font is not a valid font.

GLXBadContextState is generated if the current GLX context is in display-list con-
struction mode.

GLXBadCurrentWindow is generated if the drawable associated with the current con-
text of the calling thread is a window, and that window is no longer valid.

[Function]void glXWaitGL
Complete GL execution prior to subsequent X calls.

GL rendering calls made prior to glXWaitGL are guaranteed to be executed before
X rendering calls made after glXWaitGL. Although this same result can be achieved

Chapter 5: GLX 494

using glFinish, glXWaitGL does not require a round trip to the server, and it is
therefore more efficient in cases where client and server are on separate machines.

glXWaitGL is ignored if there is no current GLX context.

GLXBadCurrentWindow is generated if the drawable associated with the current con-
text of the calling thread is a window, and that window is no longer valid.

[Function]void glXWaitX
Complete X execution prior to subsequent GL calls.

X rendering calls made prior to glXWaitX are guaranteed to be executed before GL
rendering calls made after glXWaitX. Although the same result can be achieved using
XSync, glXWaitX does not require a round trip to the server, and it is therefore more
efficient in cases where client and server are on separate machines.

glXWaitX is ignored if there is no current GLX context.

GLXBadCurrentWindow is generated if the drawable associated with the current con-
text of the calling thread is a window, and that window is no longer valid.

Chapter 6: GLUT 495

6 GLUT

Import the GLUT module to have access to these procedures:

(use-modules (glut))

The GLUT specification is available at http: / / www . opengl . org / resources /

libraries/glut/glut-3.spec.pdf.

6.1 GLUT Initialization

[Function]set-initial-display-mode mode

[Function]set-initial-window-position x y

[Function]set-initial-window-size width height

[Function]initialize-glut [args] [#:window-position] [#:window-size]
[#:display-mode]

6.2 Beginning Event Processing

[Function]glut-main-loop

6.3 Window Management

[Function]window-id

[Function]window-live?

[Function]window?

[Function]set-window-cursor! window cursor

[Function]set-window-icon-title! window str

[Function]set-window-title! window str

[Function]show-window [window]

[Function]sub-window? window

[Function]swap-buffers [window]

[Function]top-level-window? window

[Macro]with-window window body1 body2 ...

[Function]with-window*

[Function]make-sub-window window x y width height

[Function]make-window str

[Function]pop-window

[Function]position-window window x y

[Function]post-redisplay [window]

http://www.opengl.org/resources/libraries/glut/glut-3.spec.pdf
http://www.opengl.org/resources/libraries/glut/glut-3.spec.pdf

Chapter 6: GLUT 496

[Function]push-window

[Function]reshape-window window width height

[Function]current-window

[Function]destroy-window window

[Function]full-screen window full-screen?

[Function]hide-window [window]

[Function]iconify-window [window]

6.4 Overlay Management

6.5 Menu Management

6.6 Callback Registration

[Function]set-button-box-callback func

[Function]set-current-window window

[Function]set-dials-callback func

[Function]set-display-callback func

[Function]set-entry-callback func

[Function]set-idle-callback func

[Function]set-keyboard-callback func

[Function]set-menu-status-callback func

[Function]set-motion-callback func

[Function]set-mouse-callback func

[Function]set-overlay-display-callback func

[Function]set-passive-motion-callback func

[Function]set-reshape-callback func

[Function]set-spaceball-button-callback func

[Function]set-spaceball-motion-callback func

[Function]set-spaceball-rotate-callback func

[Function]set-special-callback func

[Function]set-tablet-button-callback func

[Function]set-tablet-motion-callback func

[Function]set-visibility-callback func

[Function]add-timer-callback msecs func value

Chapter 6: GLUT 497

6.7 Color Index Colormap Management

6.8 State Retrieval

[Function]window-alpha-size window

[Function]window-blue-size window

[Function]window-color-buffer-size window

[Function]window-colormap-size window

[Function]window-depth-buffer-size window

[Function]window-double-buffered? window

[Function]window-green-size window

[Function]window-height width

[Function]window-number-of-children window

[Function]window-number-of-samples window

[Function]window-parent window

[Function]window-position window

[Function]window-red-size window

[Function]window-size window

[Function]window-stencil-buffer-size window

[Function]window-stereo? window

[Function]window-rgba window

[Function]window-width width

[Function]window-x width

[Function]window-y width

[Function]screen-height

[Function]screen-height-mm

[Function]screen-size

[Function]screen-size-mm

[Function]screen-width

[Function]screen-width-mm

[Function]display-mode-possible?

[Function]initial-display-mode

[Function]initial-window-height

Chapter 6: GLUT 498

[Function]initial-window-position

[Function]initial-window-size

[Function]initial-window-width

[Function]initial-window-x

[Function]initial-window-y

[Function]elapsed-time

6.9 Font Rendering

6.10 Geometric Object Rendering

Appendix A: GNU General Public License 499

Appendix A GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

Appendix A: GNU General Public License 500

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix A: GNU General Public License 501

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

Appendix A: GNU General Public License 502

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix A: GNU General Public License 503

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

Appendix A: GNU General Public License 504

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix A: GNU General Public License 505

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

Appendix A: GNU General Public License 506

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix A: GNU General Public License 507

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

Appendix A: GNU General Public License 508

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix A: GNU General Public License 509

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Appendix B: GNU Lesser General Public License 510

Appendix B GNU Lesser General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and
conditions of version 3 of the GNU General Public License, supplemented by the additional
permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public
License, and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Appli-
cation or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library,
but which is not otherwise based on the Library. Defining a subclass of a class defined
by the Library is deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with
the Library. The particular version of the Library with which the Combined Work was
made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding
Source for the Combined Work, excluding any source code for portions of the Combined
Work that, considered in isolation, are based on the Application, and not on the Linked
Version.

The “Corresponding Application Code” for a Combined Work means the object code
and/or source code for the Application, including any data and utility programs needed
for reproducing the Combined Work from the Application, but excluding the System
Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being
bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a
function or data to be supplied by an Application that uses the facility (other than as
an argument passed when the facility is invoked), then you may convey a copy of the
modified version:

a. under this License, provided that you make a good faith effort to ensure that, in
the event an Application does not supply the function or data, the facility still
operates, and performs whatever part of its purpose remains meaningful, or

b. under the GNU GPL, with none of the additional permissions of this License
applicable to that copy.

http://fsf.org/

Appendix B: GNU Lesser General Public License 511

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that
is part of the Library. You may convey such object code under terms of your choice,
provided that, if the incorporated material is not limited to numerical parameters, data
structure layouts and accessors, or small macros, inline functions and templates (ten
or fewer lines in length), you do both of the following:

a. Give prominent notice with each copy of the object code that the Library is used
in it and that the Library and its use are covered by this License.

b. Accompany the object code with a copy of the GNU GPL and this license docu-
ment.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together,
effectively do not restrict modification of the portions of the Library contained in the
Combined Work and reverse engineering for debugging such modifications, if you also
do each of the following:

a. Give prominent notice with each copy of the Combined Work that the Library is
used in it and that the Library and its use are covered by this License.

b. Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c. For a Combined Work that displays copyright notices during execution, include
the copyright notice for the Library among these notices, as well as a reference
directing the user to the copies of the GNU GPL and this license document.

d. Do one of the following:

0. Convey the Minimal Corresponding Source under the terms of this License,
and the Corresponding Application Code in a form suitable for, and under
terms that permit, the user to recombine or relink the Application with a mod-
ified version of the Linked Version to produce a modified Combined Work, in
the manner specified by section 6 of the GNU GPL for conveying Correspond-
ing Source.

1. Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (a) uses at run time a copy of the Library
already present on the user’s computer system, and (b) will operate properly
with a modified version of the Library that is interface-compatible with the
Linked Version.

e. Provide Installation Information, but only if you would otherwise be required to
provide such information under section 6 of the GNU GPL, and only to the extent
that such information is necessary to install and execute a modified version of
the Combined Work produced by recombining or relinking the Application with
a modified version of the Linked Version. (If you use option 4d0, the Installation
Information must accompany the Minimal Corresponding Source and Correspond-
ing Application Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.)

Appendix B: GNU Lesser General Public License 512

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in
a single library together with other library facilities that are not Applications and are
not covered by this License, and convey such a combined library under terms of your
choice, if you do both of the following:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities, conveyed under the terms of
this License.

b. Give prominent notice with the combined library that part of it is a work based
on the Library, and explaining where to find the accompanying uncombined form
of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU
Lesser General Public License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library as you received
it specifies that a certain numbered version of the GNU Lesser General Public License
“or any later version” applies to it, you have the option of following the terms and
conditions either of that published version or of any later version published by the
Free Software Foundation. If the Library as you received it does not specify a version
number of the GNU Lesser General Public License, you may choose any version of the
GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions
of the GNU Lesser General Public License shall apply, that proxy’s public statement
of acceptance of any version is permanent authorization for you to choose that version
for the Library.

Function Index 513

Function Index

3
3dfx-multisample . 12
3dfx-texture-compression-fxt1 77

A
accum-op . 21
add-timer-callback . 496
alpha-function . 21
amd-blend-minmax-factor 110
amd-compressed-3dc-texture 83
amd-compressed-atc-texture 82
amd-debug-output . 114
amd-depth-clamp-separate 111
amd-name-gen-delete . 114
amd-performance-monitor . 97
amd-pinned-memory . 114
amd-program-binary-z400 . 79
amd-query-buffer-object 114
amd-sample-positions . 85
amd-sparse-texture . 115
amd-stencil-operation-extended 80
amd-vertex-shader-tesselator 110
angle-depth-texture . 117
angle-framebuffer-blit . 101
angle-framebuffer-multisample 101
angle-instanced-arrays . 90
angle-pack-reverse-row-order 117
angle-texture-compression-dxt-3 64
angle-texture-compression-dxt-5 64
angle-texture-usage . 116
angle-translated-shader-source 116
apple-aux-depth-stencil . 93
apple-client-storage . 73
apple-element-array . 92
apple-fence . 92
apple-float-pixels . 35
apple-flush-buffer-range 93
apple-object-purgeable . 74
apple-rgb-422 . 93
apple-row-bytes . 93
apple-specular-vector . 73
apple-sync . 93
apple-texture-range . 74
apple-transform-hint . 73
apple-vertex-array-object 74
apple-vertex-array-range 71
apple-vertex-program-evaluators 92
apple-ycbcr-422 . 74
arb-blend-func-extended . 89
arb-cl-event . 59
arb-color-buffer-float . 84
arb-compressed-texture-pixel-storage 113
arb-compute-shader . 16

arb-copy-buffer . 109
arb-create-context-profile 464
arb-debug-output . 60
arb-depth-buffer-float . 102
arb-depth-clamp . 75
arb-depth-texture . 57
arb-draw-buffers . 84
arb-draw-indirect . 109
arb-es2-compatibility . 35
arb-es3-compatibility . 103
arb-explicit-uniform-location 60
arb-fragment-program . 76
arb-fragment-shader . 95
arb-framebuffer-no-attachments 116
arb-framebuffer-object . 25
arb-framebuffer-s-rgb . 104
arb-geometry-shader-4 . 19
arb-get-program-binary . 60
arb-gpu-shader-5 . 87
arb-gpu-shader-fp-64 . 109
arb-half-float-pixel . 35
arb-half-float-vertex . 35
arb-instanced-arrays . 90
arb-internalformat-query 116
arb-internalformat-query-2 60
arb-map-buffer-alignment 112
arb-map-buffer-range . 15
arb-matrix-palette . 85
arb-multisample . 11
arb-multitexture . 67
arb-occlusion-query . 86
arb-occlusion-query-2 . 98
arb-pixel-buffer-object . 88
arb-point-parameters . 52
arb-point-sprite . 86
arb-program-interface-query 116
arb-provoking-vertex . 107
arb-robustness . 15
arb-sample-shading . 98
arb-sampler-objects . 90
arb-seamless-cube-map . 85
arb-separate-shader-objects 16
arb-shader-atomic-counters 115
arb-shader-image-load-store 17
arb-shader-objects . 94
arb-shader-storage-buffer-object 17
arb-shader-subroutine . 105
arb-shading-language-include 104
arb-shadow . 85
arb-stencil-texturing . 113
arb-sync . 113
arb-tessellation-shader . 20
arb-texture-border-clamp 53
arb-texture-buffer-object 98
arb-texture-buffer-range 115

Function Index 514

arb-texture-compression . 68
arb-texture-compression-bptc 108
arb-texture-compression-rgtc 104
arb-texture-cube-map . 71
arb-texture-cube-map-array 110
arb-texture-env-combine . 68
arb-texture-env-dot-3 . 77
arb-texture-float . 83
arb-texture-gather . 108
arb-texture-mirrored-repeat 64
arb-texture-multisample 107
arb-texture-rectangle . 69
arb-texture-rg . 59
arb-texture-rgb-10-a-2-ui 111
arb-texture-storage . 113
arb-texture-swizzle . 107
arb-texture-view . 61
arb-timer-query . 88
arb-transform-feedback-2 106
arb-transform-feedback-3 108
arb-transpose-matrix . 68
arb-uniform-buffer-object 92
arb-vertex-array-bgra . 52
arb-vertex-array-object . 74
arb-vertex-attrib-binding 61
arb-vertex-blend . 76
arb-vertex-buffer-object 81
arb-vertex-program . 66
arb-vertex-shader . 94
arb-vertex-type-2-10-10-10-rev 104
arb-viewport-array . 60
arm-mali-shader-binary . 109
ati-draw-buffers . 84
ati-element-array . 81
ati-envmap-bumpmap . 81
ati-fragment-shader . 90
ati-meminfo . 83
ati-pixel-format-float . 84
ati-pn-triangles . 82
ati-separate-stencil . 83
ati-text-fragment-shader 59
ati-texture-env-combine-3 79
ati-texture-float . 83
ati-texture-mirror-once . 79
ati-vertex-array-object . 80
ati-vertex-streams . 81
attrib-mask . 10

B
begin-mode . 18
blend-equation-mode-ext . 21
blending-factor-dest . 21
blending-factor-src . 21
boolean . 18

C
clear-buffer-mask . 12
client-attrib-mask . 12
clip-plane-name . 44
color-material-face . 22
color-material-parameter 22
color-pointer-type . 22
color-table-parameter-p-name-sgi 22
color-table-target-sgi . 22
convolution-border-mode-ext 22
convolution-parameter-ext 22
convolution-target-ext . 23
cull-face-mode . 23
current-window . 496

D
data-type . 34
depth-function . 23
destroy-window . 496
display-mode-possible? . 497
dmp-shader-binary . 115
draw-buffer-mode . 23

E
elapsed-time . 498
enable-cap . 24
error-code . 25
ext-422-pixels . 52
ext-abgr . 44
ext-bgra . 52
ext-bindable-uniform . 105
ext-blend-color . 45
ext-blend-equation-separate 47
ext-blend-func-separate . 51
ext-blend-minmax . 46
ext-blend-subtract . 47
ext-buffer-age . 463
ext-cmyka . 47
ext-color-buffer-half-float 59
ext-compiled-vertex-array 57
ext-convolution . 47
ext-cull-vertex . 57
ext-debug-label . 93
ext-depth-bounds-test . 88
ext-direct-state-access 106
ext-discard-framebuffer . 37
ext-fog-coord . 66
ext-framebuffer-blit . 101
ext-framebuffer-multisample 101
ext-framebuffer-multisample-blit-scaled

. 112
ext-framebuffer-object . 26
ext-framebuffer-s-rgb . 104
ext-geometry-shader-4 . 97
ext-gpu-shader-4 . 105
ext-histogram . 48

Function Index 515

ext-index-array-formats . 57
ext-index-func . 57
ext-index-material . 58
ext-light-texture . 63
ext-map-buffer-range . 15
ext-multisample . 11
ext-multisampled-render-to-texture 103
ext-multiview-draw-buffers 32
ext-occlusion-query-boolean 87
ext-packed-depth-stencil 69
ext-packed-float . 99
ext-packed-pixels . 48
ext-pixel-buffer-object . 88
ext-pixel-transform . 63
ext-point-parameters . 53
ext-polygon-offset . 48
ext-provoking-vertex . 107
ext-rescale-normal . 48
ext-secondary-color . 66
ext-separate-shader-objects 16
ext-separate-specular-color 59
ext-shader-framebuffer-fetch 93
ext-shader-image-load-store 16
ext-shadow-samplers . 85
ext-shared-texture-palette 59
ext-stencil-clear-tag . 89
ext-stencil-two-side . 90
ext-stencil-wrap . 70
ext-swap-control . 463
ext-swap-control-tear . 463
ext-texture . 48
ext-texture-3d . 49
ext-texture-array . 85
ext-texture-buffer-object 98
ext-texture-compression-latc 99
ext-texture-compression-rgtc 105
ext-texture-compression-s-3-tc 64
ext-texture-cube-map . 70
ext-texture-env-combine . 73
ext-texture-env-dot-3 . 79
ext-texture-filter-anisotropic 70
ext-texture-integer . 103
ext-texture-lod-bias . 70
ext-texture-mirror-clamp 79
ext-texture-object . 49
ext-texture-perturb-normal 73
ext-texture-rg . 38
ext-texture-s-rgb . 99
ext-texture-s-rgb-decode 93
ext-texture-shared-exponent 99
ext-texture-snorm . 110
ext-texture-swizzle . 107
ext-texture-type-2-10-10-10-rev 48
ext-timer-query . 88
ext-transform-feedback . 99
ext-unpack-subimage . 32
ext-vertex-array . 49
ext-vertex-attrib-64-bit 35

ext-vertex-shader . 81
ext-vertex-weighting . 70
ext-x-11-sync-object . 113

F
feed-back-token . 27
feedback-type . 27
ffd-mask-sgix . 27
ffd-target-sgix . 27
fj-shader-binary-gccso . 115
fog-mode . 28
fog-parameter . 28
fragment-light-model-parameter-sgix 28
front-face-direction . 28
full-screen . 496

G
get-color-table-parameter-p-name-sgi 28
get-convolution-parameter 28
get-histogram-parameter-p-name-ext 28
get-map-query . 29
get-minmax-parameter-p-name-ext 29
get-p-name . 29
get-pixel-map . 29
get-pointerv-p-name . 29
get-texture-parameter . 32
gl-begin . 6
gl-clear . 9
gl-color . 7
gl-copy-pixels . 10
gl-depth-range . 7
gl-disable . 8
gl-edge-flag . 6
gl-enable . 8
gl-fog-coordinate . 7
gl-frustum . 8
gl-index . 7
gl-khr-texture-compression-astc-ldr 117
gl-load-identity . 8
gl-load-matrix . 7
gl-multi-texture-coordinates 7
gl-multiply-matrix . 7
gl-normal . 7
gl-ortho . 8
gl-rectangle . 7
gl-rotate . 8
gl-scale . 8
gl-secondary-color . 7
gl-texture-coordinates . 6
gl-translate . 8
gl-vertex . 6
gl-vertex-attribute . 7
gl-viewport . 7
glAccum . 118
glActiveTexture . 119
glAlphaFunc . 119

Function Index 516

glAreTexturesResident . 120
glArrayElement . 121
glAttachShader . 121
glBegin . 123
glBeginQuery . 122
glBindAttribLocation . 125
glBindBuffer . 126
glBindTexture . 127
glBitmap . 128
glBlendColor . 129
glBlendEquation . 131
glBlendEquationSeparate 130
glBlendFunc . 134
glBlendFuncSeparate . 132
glBufferData . 136
glBufferSubData . 137
glCallList . 139
glCallLists . 138
glClear . 141
glClearAccum . 140
glClearColor . 140
glClearDepth . 140
glClearIndex . 140
glClearStencil . 141
glClientActiveTexture . 141
glClipPlane . 142
glColor3b . 149
glColor3bv . 149
glColor3d . 149
glColor3dv . 149
glColor3f . 149
glColor3fv . 149
glColor3i . 149
glColor3iv . 149
glColor3s . 149
glColor3sv . 149
glColor3ub . 149
glColor3ubv . 149
glColor3ui . 149
glColor3uiv . 149
glColor3us . 149
glColor3usv . 149
glColor4b . 149
glColor4bv . 150
glColor4d . 149
glColor4dv . 150
glColor4f . 149
glColor4fv . 150
glColor4i . 149
glColor4iv . 150
glColor4s . 149
glColor4sv . 150
glColor4ub . 149
glColor4ubv . 150
glColor4ui . 149
glColor4uiv . 150
glColor4us . 149
glColor4usv . 150

glColorMask . 142
glColorMaterial . 143
glColorPointer . 143
glColorSubTable . 144
glColorTable . 146
glColorTableParameterfv 145
glColorTableParameteriv 145
glCompileShader . 150
glCompressedTexImage1D . 151
glCompressedTexImage2D . 152
glCompressedTexImage3D . 154
glCompressedTexSubImage1D 155
glCompressedTexSubImage2D 156
glCompressedTexSubImage3D 158
glConvolutionFilter1D . 159
glConvolutionFilter2D . 161
glConvolutionParameterf 164
glConvolutionParameterfv 164
glConvolutionParameteri 164
glConvolutionParameteriv 164
glCopyColorSubTable . 165
glCopyColorTable . 165
glCopyConvolutionFilter1D 167
glCopyConvolutionFilter2D 168
glCopyPixels . 170
glCopyTexImage1D . 173
glCopyTexImage2D . 174
glCopyTexSubImage1D . 176
glCopyTexSubImage2D . 177
glCopyTexSubImage3D . 178
glCreateProgram . 179
glCreateShader . 179
glCullFace . 180
glDeleteBuffers . 180
glDeleteLists . 181
glDeleteProgram . 181
glDeleteQueries . 181
glDeleteShader . 182
glDeleteTextures . 182
glDepthFunc . 182
glDepthMask . 183
glDepthRange . 183
glDetachShader . 184
glDisable . 198
glDisableClientState . 196
glDisableVertexAttribArray 197
glDrawArrays . 184
glDrawBuffer . 186
glDrawBuffers . 185
glDrawElements . 187
glDrawPixels . 188
glDrawRangeElements . 194
glEdgeFlag . 196
glEdgeFlagPointer . 195
glEdgeFlagv . 196
glEnable . 198
glEnableClientState . 196
glEnableVertexAttribArray 197

Function Index 517

glEnd . 123
glEndList . 322
glEndQuery . 122
glEvalCoord1d . 204
glEvalCoord1dv . 204
glEvalCoord1f . 204
glEvalCoord1fv . 204
glEvalCoord2d . 204
glEvalCoord2dv . 204
glEvalCoord2f . 204
glEvalCoord2fv . 204
glEvalMesh1 . 205
glEvalMesh2 . 205
glEvalPoint1 . 206
glEvalPoint2 . 206
glFeedbackBuffer . 207
glFinish . 209
glFlush . 209
glFogCoordd . 210
glFogCoorddv . 210
glFogCoordf . 210
glFogCoordfv . 210
glFogCoordPointer . 209
glFogf . 210
glFogfv . 210
glFogi . 210
glFogiv . 210
glFrontFace . 212
glFrustum . 212
glGenBuffers . 213
glGenLists . 213
glGenQueries . 214
glGenTextures . 214
glGetActiveAttrib . 214
glGetActiveUniform . 216
glGetAttachedShaders . 218
glGetAttribLocation . 218
glGetBooleanv . 258
glGetBufferParameteriv . 219
glGetBufferPointerv . 219
glGetBufferSubData . 220
glGetClipPlane . 220
glGetColorTable . 222
glGetColorTableParameterfv 221
glGetColorTableParameteriv 221
glGetCompressedTexImage 223
glGetConvolutionFilter . 224
glGetConvolutionParameterfv 226
glGetConvolutionParameteriv 226
glGetDoublev . 258
glGetError . 227
glGetFloatv . 258
glGetHistogram . 229
glGetHistogramParameterfv 228
glGetHistogramParameteriv 228
glGetIntegerv . 258
glGetLightfv . 230
glGetLightiv . 230

glGetMapdv . 232
glGetMapfv . 232
glGetMapiv . 232
glGetMaterialfv . 233
glGetMaterialiv . 233
glGetMinmax . 235
glGetMinmaxParameterfv . 235
glGetMinmaxParameteriv . 235
glGetPixelMapfv . 237
glGetPixelMapuiv . 237
glGetPixelMapusv . 237
glGetPointerv . 238
glGetPolygonStipple . 238
glGetProgramInfoLog . 239
glGetProgramiv . 239
glGetQueryiv . 240
glGetQueryObjectiv . 241
glGetQueryObjectuiv . 241
glGetSeparableFilter . 242
glGetShaderInfoLog . 243
glGetShaderiv . 244
glGetShaderSource . 244
glGetString . 245
glGetTexEnvfv . 246
glGetTexEnviv . 246
glGetTexGendv . 248
glGetTexGenfv . 248
glGetTexGeniv . 248
glGetTexImage . 249
glGetTexLevelParameterfv 251
glGetTexLevelParameteriv 251
glGetTexParameterfv . 253
glGetTexParameteriv . 253
glGetUniformfv . 255
glGetUniformiv . 255
glGetUniformLocation . 254
glGetVertexAttribdv . 256
glGetVertexAttribfv . 256
glGetVertexAttribiv . 256
glGetVertexAttribPointerv 256
glHint . 289
glHistogram . 290
glIndexd . 292
glIndexdv . 292
glIndexf . 292
glIndexfv . 292
glIndexi . 292
glIndexiv . 292
glIndexMask . 291
glIndexPointer . 291
glIndexs . 292
glIndexsv . 292
glIndexub . 292
glIndexubv . 292
glInitNames . 293
glInterleavedArrays . 293
glIsBuffer . 293
glIsEnabled . 294

Function Index 518

glIsList . 298
glIsProgram . 298
glIsQuery . 298
glIsShader . 298
glIsTexture . 298
glLightf . 300
glLightfv . 300
glLighti . 300
glLightiv . 300
glLightModelf . 299
glLightModelfv . 299
glLightModeli . 299
glLightModeliv . 299
glLineStipple . 303
glLineWidth . 303
glLinkProgram . 304
glListBase . 306
glLoadIdentity . 306
glLoadMatrixd . 306
glLoadMatrixf . 306
glLoadName . 306
glLoadTransposeMatrixd . 307
glLoadTransposeMatrixf . 307
glLogicOp . 307
glMap1d . 308
glMap1f . 308
glMap2d . 311
glMap2f . 311
glMapBuffer . 314
glMapGrid1d . 315
glMapGrid1f . 315
glMapGrid2d . 315
glMapGrid2f . 315
glMaterialf . 316
glMaterialfv . 316
glMateriali . 316
glMaterialiv . 316
glMatrixMode . 317
glMinmax . 318
glMultiDrawArrays . 319
glMultiDrawElements . 319
glMultiTexCoord1d . 320
glMultiTexCoord1dv . 320
glMultiTexCoord1f . 320
glMultiTexCoord1fv . 320
glMultiTexCoord1i . 320
glMultiTexCoord1iv . 320
glMultiTexCoord1s . 320
glMultiTexCoord1sv . 320
glMultiTexCoord2d . 320
glMultiTexCoord2dv . 321
glMultiTexCoord2f . 320
glMultiTexCoord2fv . 320
glMultiTexCoord2i . 320
glMultiTexCoord2iv . 320
glMultiTexCoord2s . 320
glMultiTexCoord2sv . 320
glMultiTexCoord3d . 320

glMultiTexCoord3dv . 321
glMultiTexCoord3f . 320
glMultiTexCoord3fv . 321
glMultiTexCoord3i . 320
glMultiTexCoord3iv . 321
glMultiTexCoord3s . 320
glMultiTexCoord3sv . 321
glMultiTexCoord4d . 320
glMultiTexCoord4dv . 321
glMultiTexCoord4f . 320
glMultiTexCoord4fv . 321
glMultiTexCoord4i . 320
glMultiTexCoord4iv . 321
glMultiTexCoord4s . 320
glMultiTexCoord4sv . 321
glMultMatrixd . 321
glMultMatrixf . 321
glMultTransposeMatrixd . 321
glMultTransposeMatrixf . 321
glNewList . 322
glNormal3b . 324
glNormal3bv . 324
glNormal3d . 324
glNormal3dv . 324
glNormal3f . 324
glNormal3fv . 324
glNormal3i . 324
glNormal3iv . 324
glNormal3s . 324
glNormal3sv . 324
glNormalPointer . 323
glOrtho . 324
glPassThrough . 325
glPixelMapfv . 325
glPixelMapuiv . 325
glPixelMapusv . 325
glPixelStoref . 328
glPixelStorei . 328
glPixelTransferf . 333
glPixelTransferi . 333
glPixelZoom . 337
glPointParameterf . 338
glPointParameterfv . 338
glPointParameteri . 338
glPointParameteriv . 338
glPointSize . 339
glPolygonMode . 340
glPolygonOffset . 340
glPolygonStipple . 341
glPopAttrib . 342
glPopClientAttrib . 348
glPopMatrix . 349
glPopName . 349
glPrioritizeTextures . 342
glPushAttrib . 342
glPushClientAttrib . 348
glPushMatrix . 349
glPushName . 349

Function Index 519

glRasterPos2d . 350
glRasterPos2dv . 350
glRasterPos2f . 350
glRasterPos2fv . 350
glRasterPos2i . 350
glRasterPos2iv . 350
glRasterPos2s . 350
glRasterPos2sv . 350
glRasterPos3d . 350
glRasterPos3dv . 350
glRasterPos3f . 350
glRasterPos3fv . 350
glRasterPos3i . 350
glRasterPos3iv . 350
glRasterPos3s . 350
glRasterPos3sv . 350
glRasterPos4d . 350
glRasterPos4dv . 350
glRasterPos4f . 350
glRasterPos4fv . 350
glRasterPos4i . 350
glRasterPos4iv . 350
glRasterPos4s . 350
glRasterPos4sv . 350
glReadBuffer . 351
glReadPixels . 352
glRectd . 356
glRectdv . 356
glRectf . 356
glRectfv . 356
glRecti . 356
glRectiv . 356
glRects . 356
glRectsv . 356
glRenderMode . 356
glResetHistogram . 357
glResetMinmax . 357
glRotated . 358
glRotatef . 358
glSampleCoverage . 358
glScaled . 359
glScalef . 359
glScissor . 359
glSecondaryColor3b . 360
glSecondaryColor3bv . 361
glSecondaryColor3d . 361
glSecondaryColor3dv . 361
glSecondaryColor3f . 361
glSecondaryColor3fv . 361
glSecondaryColor3i . 360
glSecondaryColor3iv . 361
glSecondaryColor3s . 360
glSecondaryColor3sv . 361
glSecondaryColor3ub . 361
glSecondaryColor3ubv . 361
glSecondaryColor3ui . 361
glSecondaryColor3uiv . 361
glSecondaryColor3us . 361

glSecondaryColor3usv . 361
glSecondaryColorPointer 360
glSelectBuffer . 361
glSeparableFilter2D . 362
glShadeModel . 365
glShaderSource . 366
glStencilFunc . 368
glStencilFuncSeparate . 366
glStencilMask . 369
glStencilMaskSeparate . 369
glStencilOp . 371
glStencilOpSeparate . 370
glTexCoord1d . 374
glTexCoord1dv . 374
glTexCoord1f . 374
glTexCoord1fv . 374
glTexCoord1i . 374
glTexCoord1iv . 374
glTexCoord1s . 374
glTexCoord1sv . 374
glTexCoord2d . 374
glTexCoord2dv . 374
glTexCoord2f . 374
glTexCoord2fv . 374
glTexCoord2i . 374
glTexCoord2iv . 374
glTexCoord2s . 374
glTexCoord2sv . 374
glTexCoord3d . 374
glTexCoord3dv . 374
glTexCoord3f . 374
glTexCoord3fv . 374
glTexCoord3i . 374
glTexCoord3iv . 374
glTexCoord3s . 374
glTexCoord3sv . 374
glTexCoord4d . 374
glTexCoord4dv . 374
glTexCoord4f . 374
glTexCoord4fv . 374
glTexCoord4i . 374
glTexCoord4iv . 374
glTexCoord4s . 374
glTexCoord4sv . 374
glTexCoordPointer . 373
glTexEnvf . 375
glTexEnvfv . 375
glTexEnvi . 375
glTexEnviv . 375
glTexGend . 380
glTexGendv . 380
glTexGenf . 380
glTexGenfv . 380
glTexGeni . 380
glTexGeniv . 380
glTexImage1D . 381
glTexImage2D . 386
glTexImage3D . 391

Function Index 520

glTexParameterf . 396
glTexParameterfv . 396
glTexParameteri . 396
glTexParameteriv . 396
glTexSubImage1D . 401
glTexSubImage2D . 402
glTexSubImage3D . 404
glTranslated . 406
glTranslatef . 406
glu-perspective . 418
gluBeginCurve . 418
gluBeginPolygon . 419
gluBeginSurface . 419
gluBeginTrim . 419
gluBuild1DMipmapLevels . 420
gluBuild1DMipmaps . 422
gluBuild2DMipmapLevels . 424
gluBuild2DMipmaps . 426
gluBuild3DMipmapLevels . 428
gluBuild3DMipmaps . 430
gluCheckExtension . 432
gluCylinder . 432
gluDeleteNurbsRenderer . 432
gluDeleteQuadric . 433
gluDeleteTess . 433
gluDisk . 433
gluEndCurve . 418
gluEndPolygon . 419
gluEndSurface . 419
gluEndTrim . 419
gluErrorString . 433
gluGetNurbsProperty . 434
gluGetString . 434
gluGetTessProperty . 434
gluLoadSamplingMatrices 435
gluLookAt . 435
gluNewNurbsRenderer . 436
gluNewQuadric . 436
gluNewTess . 436
gluNextContour . 436
glUniform1f . 406
glUniform1fv . 406
glUniform1i . 406
glUniform1iv . 407
glUniform2f . 406
glUniform2fv . 406
glUniform2i . 406
glUniform2iv . 407
glUniform3f . 406
glUniform3fv . 406
glUniform3i . 406
glUniform3iv . 407
glUniform4f . 406
glUniform4fv . 407
glUniform4i . 406
glUniform4iv . 407
glUniformMatrix2fv . 407
glUniformMatrix2x3fv . 407

glUniformMatrix2x4fv . 407
glUniformMatrix3fv . 407
glUniformMatrix3x2fv . 407
glUniformMatrix3x4fv . 407
glUniformMatrix4fv . 407
glUniformMatrix4x2fv . 407
glUniformMatrix4x3fv . 407
glUnmapBuffer . 314
gluNurbsCallback . 437
gluNurbsCallbackData . 437
gluNurbsCallbackDataEXT 437
gluNurbsCurve . 441
gluNurbsProperty . 441
gluNurbsSurface . 444
gluOrtho2D . 445
gluPartialDisk . 445
gluPerspective . 446
gluPickMatrix . 446
gluProject . 447
gluPwlCurve . 447
gluQuadricCallback . 448
gluQuadricDrawStyle . 448
gluQuadricNormals . 448
gluQuadricOrientation . 449
gluQuadricTexture . 449
gluScaleImage . 449
glUseProgram . 408
gluSphere . 451
glut-main-loop . 495
gluTessBeginContour . 451
gluTessBeginPolygon . 452
gluTessCallback . 452
gluTessEndContour . 451
gluTessEndPolygon . 456
gluTessNormal . 456
gluTessProperty . 457
gluTessVertex . 458
gluUnProject . 459
gluUnProject4 . 458
glValidateProgram . 410
glVertex2d . 415
glVertex2dv . 415
glVertex2f . 415
glVertex2fv . 415
glVertex2i . 415
glVertex2iv . 415
glVertex2s . 415
glVertex2sv . 415
glVertex3d . 415
glVertex3dv . 415
glVertex3f . 415
glVertex3fv . 415
glVertex3i . 415
glVertex3iv . 415
glVertex3s . 415
glVertex3sv . 415
glVertex4d . 415
glVertex4dv . 415

Function Index 521

glVertex4f . 415
glVertex4fv . 415
glVertex4i . 415
glVertex4iv . 415
glVertex4s . 415
glVertex4sv . 415
glVertexAttrib1d . 412
glVertexAttrib1dv . 412
glVertexAttrib1f . 412
glVertexAttrib1fv . 412
glVertexAttrib1s . 412
glVertexAttrib1sv . 412
glVertexAttrib2d . 412
glVertexAttrib2dv . 412
glVertexAttrib2f . 412
glVertexAttrib2fv . 412
glVertexAttrib2s . 412
glVertexAttrib2sv . 412
glVertexAttrib3d . 412
glVertexAttrib3dv . 412
glVertexAttrib3f . 412
glVertexAttrib3fv . 412
glVertexAttrib3s . 412
glVertexAttrib3sv . 412
glVertexAttrib4bv . 412
glVertexAttrib4d . 412
glVertexAttrib4dv . 412
glVertexAttrib4f . 412
glVertexAttrib4fv . 412
glVertexAttrib4iv . 412
glVertexAttrib4Nbv . 412
glVertexAttrib4Niv . 412
glVertexAttrib4Nsv . 412
glVertexAttrib4Nub . 412
glVertexAttrib4Nubv . 412
glVertexAttrib4Nuiv . 412
glVertexAttrib4Nusv . 412
glVertexAttrib4s . 412
glVertexAttrib4sv . 412
glVertexAttrib4ubv . 412
glVertexAttrib4uiv . 412
glVertexAttrib4usv . 412
glVertexAttribPointer . 411
glVertexPointer . 414
glViewport . 415
glWindowPos2d . 416
glWindowPos2dv . 416
glWindowPos2f . 416
glWindowPos2fv . 416
glWindowPos2i . 416
glWindowPos2iv . 416
glWindowPos2s . 416
glWindowPos2sv . 416
glWindowPos3d . 416
glWindowPos3dv . 416
glWindowPos3f . 416
glWindowPos3fv . 416
glWindowPos3i . 416

glWindowPos3iv . 416
glWindowPos3s . 416
glWindowPos3sv . 416
glx-amd-gpu-association 463
glx-arb-create-context-robustness 463
glx-attribute . 462
glx-bind-to-texture-target-mask 461
glx-context-flags . 461
glx-context-profile-mask 462
glx-drawable-type-mask . 460
glx-error-code . 460
glx-event-mask . 461
glx-hyperpipe-attrib . 461
glx-hyperpipe-misc . 461
glx-hyperpipe-type-mask 461
glx-pbuffer-clobber-mask 461
glx-render-type-mask . 460
glx-string-name . 460
glx-sync-type . 460
glXChooseFBConfig . 464
glXChooseVisual . 469
glXCopyContext . 471
glXCreateContext . 472
glXCreateGLXPixmap . 472
glXCreateNewContext . 473
glXCreatePbuffer . 474
glXCreatePixmap . 475
glXCreateWindow . 476
glXDestroyContext . 476
glXDestroyGLXPixmap . 476
glXDestroyPbuffer . 477
glXDestroyPixmap . 477
glXDestroyWindow . 477
glXFreeContextEXT . 477
glXGetClientString . 477
glXGetConfig . 478
glXGetContextIDEXT . 480
glXGetCurrentContext . 480
glXGetCurrentDisplay . 480
glXGetCurrentDrawable . 480
glXGetCurrentReadDrawable 481
glXGetFBConfigAttrib . 481
glXGetFBConfigs . 484
glXGetProcAddress . 484
glXGetSelectedEvent . 484
glXGetVisualFromFBConfig 484
glXImportContextEXT . 485
glXIsDirect . 485
glXMakeContextCurrent . 485
glXMakeCurrent . 486
glXQueryContext . 488
glXQueryContextInfoEXT . 487
glXQueryDrawable . 489
glXQueryExtension . 490
glXQueryExtensionsString 489
glXQueryServerString . 490
glXQueryVersion . 490
glXSelectEvent . 490

Function Index 522

glXSwapBuffers . 492
glXUseXFont . 493
glXWaitGL . 493
glXWaitX . 494

H
hide-window . 496
hint-mode . 33
hint-target . 33
histogram-target-ext . 33
hp-convolution-border-modes 54

I
ibm-texture-mirrored-repeat 64
iconify-window . 496
img-multisampled-render-to-texture 114
img-program-binary . 114
img-shader-binary . 98
img-texture-compression-pvrtc 98
img-texture-compression-pvrtc-2 114
img-texture-env-enhanced-fixed-function . . 77
index-pointer-type . 33
ingr-color-clamp . 72
ingr-interlace-read . 72
initial-display-mode . 497
initial-window-height . 497
initial-window-position 498
initial-window-size . 498
initial-window-width . 498
initial-window-x . 498
initial-window-y . 498
initialize-glut . 495
intel-map-texture . 18
intel-parallel-arrays . 65
interleaved-array-format 44

K
khr-debug . 15

L
light-env-mode-sgix . 33
light-env-parameter-sgix 34
light-model-color-control 34
light-model-parameter . 34
light-name . 44
light-parameter . 34
list-mode . 34
list-name-type . 36
list-parameter-name . 36
logic-op . 36

M
make-sub-window . 495
make-window . 495
map-target . 36
material-face . 36
material-parameter . 37
matrix-mode . 37
mesa-pack-invert . 80
mesa-packed-depth-stencil 80
mesa-program-debug . 97
mesa-shader-debug . 80
mesa-trace . 80
mesa-ycbcr-texture . 74
mesax-texture-stack . 80
mesh-mode-1 . 37
mesh-mode-2 . 37
minmax-target-ext . 37

N
normal-pointer-type . 37
nv-compute-program-5 . 113
nv-conditional-render . 106
nv-copy-depth-to-color . 87
nv-coverage-sample . 108
nv-deep-texture-3d . 113
nv-depth-buffer-float . 104
nv-depth-clamp . 75
nv-depth-nonlinear . 106
nv-draw-buffers . 84
nv-evaluators . 77
nv-explicit-multisample 107
nv-fbo-color-attachments 102
nv-fence . 68
nv-float-buffer . 87
nv-fog-distance . 72
nv-fragment-program . 87
nv-fragment-program-2 . 89
nv-framebuffer-blit . 101
nv-framebuffer-multisample 101
nv-framebuffer-multisample-coverage 102
nv-geometry-program-4 . 20
nv-gpu-program-4 . 90
nv-gpu-program-5 . 108
nv-gpu-shader-5 . 21
nv-half-float . 35
nv-instanced-arrays . 90
nv-light-max-exponent . 70
nv-multisample-coverage . 50
nv-occlusion-query . 86
nv-packed-depth-stencil . 69
nv-parameter-buffer-object 104
nv-path-rendering . 111
nv-pixel-data-range . 87
nv-point-sprite . 86
nv-present-video . 106, 463
nv-primitive-restart . 72
nv-read-buffer . 32

Function Index 523

nv-register-combiners . 71
nv-register-combiners-2 . 72
nv-s-rgb-formats . 89
nv-shader-buffer-load . 109
nv-shader-buffer-store . 88
nv-shadow-samplers-array 105
nv-shadow-samplers-cube 105
nv-tessellation-program-5 78
nv-texgen-emboss . 72
nv-texgen-reflection . 71
nv-texture-border-clamp . 33
nv-texture-env-combine-4 73
nv-texture-expand-normal 88
nv-texture-multisample . 111
nv-texture-rectangle . 69
nv-texture-shader . 78
nv-texture-shader-2 . 79
nv-texture-shader-3 . 86
nv-transform-feedback . 100
nv-transform-feedback-2 106
nv-vdpau-interop . 78
nv-vertex-array-range . 71
nv-vertex-attrib-integer-64-bit 36
nv-vertex-buffer-unified-memory 109
nv-vertex-program . 75
nv-vertex-program-2-option 89
nv-vertex-program-3 . 96
nv-vertex-program-4 . 89
nv-video-capture . 111

O
oes-blend-equation-separate 47
oes-blend-func-separate . 51
oes-blend-subtract . 47
oes-compressed-etc1-rgb8-texture 103
oes-compressed-paletted-texture 97
oes-depth-24 . 57
oes-depth-32 . 57
oes-depth-texture . 38
oes-draw-texture . 97
oes-egl-image-external . 103
oes-element-index-uint . 34
oes-fixed-point . 36
oes-framebuffer-object . 23
oes-get-program-binary . 79
oes-mapbuffer . 88
oes-matrix-get . 92
oes-matrix-palette . 77
oes-packed-depth-stencil 69
oes-point-size-array . 91
oes-point-sprite . 86
oes-read-format . 97
oes-rgb-8-rgba-8 . 44
oes-standard-derivatives 96
oes-stencil-1 . 102
oes-stencil-4 . 102
oes-stencil-8 . 102

oes-stencil-wrap . 70
oes-surfaceless-context . 59
oes-texture-3d . 49
oes-texture-cube-map . 42
oes-texture-env-crossbar 67
oes-texture-float . 34
oes-texture-mirrored-repeat 64
oes-vertex-half-float . 102
oes-vertex-type-10-10-10-2 106
oml-interlace . 91
oml-resample . 91
oml-subsample . 91

P
pixel-copy-type . 37
pixel-format . 38
pixel-internal-format . 43
pixel-map . 38
pixel-store-parameter . 38
pixel-store-resample-mode 38
pixel-store-subsample-rate 39
pixel-tex-gen-mode . 39
pixel-tex-gen-parameter-name-sgis 39
pixel-transfer-parameter 39
pixel-type . 39
point-parameter-name-sgis 40
polygon-mode . 40
pop-window . 495
position-window . 495
post-redisplay . 495
push-window . 496

Q
qcom-alpha-test . 32
qcom-binning-control . 110
qcom-driver-control . 110
qcom-extended-get . 98
qcom-writeonly-rendering 84

R
read-buffer-mode . 40
rend-screen-coordinates . 67
rendering-mode . 40
reshape-window . 496

S
s3-s-3-tc . 64
sample-pattern-sgis . 40
screen-height . 497
screen-height-mm . 497
screen-size . 497
screen-size-mm . 497
screen-width . 497

Function Index 524

screen-width-mm . 497
separable-target-ext . 40
set-button-box-callback 496
set-current-window . 496
set-dials-callback . 496
set-display-callback . 496
set-entry-callback . 496
set-gl-accumulation-buffer-operation 10
set-gl-active-texture . 8
set-gl-alpha-function . 9
set-gl-blend-color . 9
set-gl-blend-equation . 8
set-gl-blend-function . 9
set-gl-clear-accumulation-color 10
set-gl-clear-color . 10
set-gl-clear-depth . 10
set-gl-clear-index . 10
set-gl-clear-stencil-value 10
set-gl-color-mask . 9
set-gl-depth-function . 9
set-gl-depth-mask . 9
set-gl-draw-buffer . 9
set-gl-draw-buffers . 9
set-gl-index-mask . 9
set-gl-logic-operation . 9
set-gl-matrix-mode . 7
set-gl-read-buffer . 10
set-gl-sample-coverage . 9
set-gl-scissor . 9
set-gl-shade-model . 8
set-gl-stencil-function . 8
set-gl-stencil-mask . 9
set-gl-stencil-operation . 8
set-idle-callback . 496
set-initial-display-mode 495
set-initial-window-position 495
set-initial-window-size 495
set-keyboard-callback . 496
set-menu-status-callback 496
set-motion-callback . 496
set-mouse-callback . 496
set-overlay-display-callback 496
set-passive-motion-callback 496
set-reshape-callback . 496
set-spaceball-button-callback 496
set-spaceball-motion-callback 496
set-spaceball-rotate-callback 496
set-special-callback . 496
set-tablet-button-callback 496
set-tablet-motion-callback 496
set-visibility-callback 496
set-window-cursor! . 495
set-window-icon-title! . 495
set-window-title! . 495
sgi-color-matrix . 50
sgi-color-table . 52
sgi-texture-color-table . 51
sgis-detail-texture . 50

sgis-fog-function . 53
sgis-generate-mipmap . 56
sgis-multisample . 50
sgis-pixel-texture . 63
sgis-point-line-texgen . 58
sgis-point-parameters . 53
sgis-sharpen-texture . 50
sgis-texture-4d . 54
sgis-texture-border-clamp 53
sgis-texture-color-mask . 58
sgis-texture-edge-clamp . 53
sgis-texture-filter-4 . 54
sgis-texture-lod . 54
sgis-texture-select . 52
sgix-async . 62
sgix-async-histogram . 62
sgix-async-pixel . 63
sgix-blend-alpha-minmax . 62
sgix-calligraphic-fragment 55
sgix-clipmap . 55
sgix-convolution-accuracy 62
sgix-depth-pass-instrument 61
sgix-depth-texture . 57
sgix-fog-offset . 56
sgix-fragment-lighting . 65
sgix-fragments-instrument 62
sgix-framezoom . 56
sgix-icc-texture . 67
sgix-impact-pixel-texture 56
sgix-instruments . 55
sgix-interlace . 50
sgix-ir-instrument-1 . 55
sgix-line-quality-hint . 63
sgix-list-priority . 55
sgix-pixel-texture . 54
sgix-pixel-tiles . 54
sgix-polynomial-ffd . 56
sgix-reference-plane . 55
sgix-resample . 65
sgix-scalebias-hint . 62
sgix-shadow . 56
sgix-shadow-ambient . 51
sgix-slim . 62
sgix-sprite . 54
sgix-subsample . 73
sgix-texture-add-env . 51
sgix-texture-coordinate-clamp 63
sgix-texture-lod-bias . 56
sgix-texture-multi-buffer 53
sgix-texture-scale-bias . 55
sgix-vertex-preclip . 64
sgix-ycrcb . 58
sgix-ycrcba . 62
shading-model . 40
show-window . 495
stencil-function . 40
stencil-op . 41
string-name . 41

Function Index 525

sub-window? . 495
sun-global-alpha . 58
sun-mesh-array . 74
sun-slice-accum . 74
sunx-constant-data . 58
sunx-general-triangle-list 58
swap-buffers . 495

T
tex-coord-pointer-type . 41
texture-coord-name . 41
texture-env-mode . 41
texture-env-parameter . 41
texture-env-target . 41
texture-filter-func-sgis 41
texture-gen-mode . 42
texture-gen-parameter . 42
texture-mag-filter . 42
texture-min-filter . 42
texture-parameter-name . 43
texture-target . 43
texture-wrap-mode . 43
top-level-window? . 495

V
version-1-2 . 44
version-1-3 . 11
version-1-4 . 51
version-1-5 . 65
version-2-0 . 46
version-2-1 . 67
version-3-0 . 12
version-3-1 . 68

version-3-2 . 18
version-3-3 . 89
version-4-1 . 102
version-4-3 . 15
vertex-pointer-type . 44
viv-shader-binary . 110

W
window-alpha-size . 497
window-blue-size . 497
window-color-buffer-size 497
window-colormap-size . 497
window-depth-buffer-size 497
window-double-buffered? 497
window-green-size . 497
window-height . 497
window-id . 495
window-live? . 495
window-number-of-children 497
window-number-of-samples 497
window-parent . 497
window-position . 497
window-red-size . 497
window-rgba . 497
window-size . 497
window-stencil-buffer-size 497
window-stereo? . 497
window-width . 497
window-x . 497
window-y . 497
window? . 495
with-gl-push-attrib . 10
with-gl-push-matrix . 7
with-window . 495
with-window* . 495

