GNU Emacs Manual

GNU Emacs Manual

Updated for Emacs Version 29.2

Richard Stallman et al.

This is the GNU Emacs Manual, updated for Emacs version 29.2.
Copyright (©) 1985-2024 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “The GNU Manifesto,” “Distribution” and “GNU GENERAL PUBLIC
LICENSE,” with the Front-Cover Texts being “A GNU Manual,” and with the
Back-Cover Texts as in (a) below. A copy of the license is included in the section
entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor

Boston, MA 02110-1301 USA

ISBN 978-0-9831592-8-5

Cover art by Etienne Suvasa; cover design by FSF staff.

Short Contents

Preface.o 1
Distribution. e 2
Introduction e 5
1 The Organization of the Screen 6
2 Characters, Keys and Commands. 11
3 Entering and Exiting Emacs.............. 14
4 Basic Editing Commands o .. 16
5 The Minibuffer. 27
6 Running Commands by Name 39
T Help .o 41
8 The Mark and the Region........... 51
9 Killing and Moving Text, 58
10 Registers 71
11 Controlling the Displayo ... 76
12 Searching and Replacement 104
13 Commands for Fixing Typos. 131
14 Keyboard Macros., 138
15 File Handling i 146
16 Using Multiple Buffers 177
17 Multiple Windowso 187
18 Frames and Graphical Displays 196
19 International Character Set Support 218
20 Major and Minor Modes 243
21 Indentation............. .. 249
22 Commands for Human Languages 256
23 Editing Programs. 290
24 Compiling and Testing Programs 314
25 Maintaining Large Programs. 337
26 Abbrevs ... 377
27 Dired, the Directory Editor............... 384
28 The Calendar and the Diary....... 405
29 Sending Mail 424
30 Reading Mail with Rmail 433

11

31 Miscellaneous Commands, 453
32 Emacs Lisp Packages....... i i 492
33 Customization, 501
34 Dealing with Common Problems 537
A GNU GENERAL PUBLIC LICENSE 556
B GNU Free Documentation License 567
C Command Line Arguments for Emacs Invocation 975
D X Options and Resources, 592
E Emacs 28 Antinews 600
F Emacs and macOS / GNUstep..........ot 602
G Emacsand Haiku........ i 606

Emacs and Microsoft Windows/MS-DOS 608
The GNU Manifesto 619
GloSSary .« v oo e 627
Key (Character) Indexo 651
Command and Function Index.......... 662
Variable Indexo 678

Concept Indexo e 688

Table of Contents

Preface........... 1
Distribution.................. 2
Acknowledgments. 2
Introduction 5
1 The Organization of the Screen................ 6
1.1 Point. ... e 6
1.2 The Echo Area e 7
1.3 The Mode Line. ... e 8
1.4 The Menu Bar...... ... 9
2 Characters, Keys and Commands............. 11
2.1 Kindsof User Input ... 11
2. KOS .ttt 11
2.3 Mouse Input ...t 12
24 Keysand Commandscoouuuiiiiiitenniiienniieannn.. 13
3 Entering and Exiting Emacs 14
3.1 Entering Emacs 14
3.2 Exiting Emacs. 15
4 Basic Editing Commands...................... 16
4.1 Inserting Text..... ..o 16
4.2 Changing the Location of Point............... 17
4.3 Erasing Text ... 20
4.4 Undoing Changes.ooiuiiiitiniini i, 21
4.5 FIleS o 21
A6 TEID « e e 22
4.7 Blank Lines 22
4.8 Continuation Lines 22
4.9 Cursor Position Information................................... 23
4.10 Numeric Argumentsouutmnitiit i, 24
4.11 Repeating a Command ..., 25
5 The Minibuffer................................. 27
5.1 Using the Minibuffer i i 27
5.2 Minibuffers for File Names...............co ... 27

5.3 Editing in the Minibuffer L 29

iv

5.4 Completion.ouue et 30
5.4.1 Completion Example i i 30
5.4.2 Completion Commandsc.ooiiiiiiiiiiiea .. 30
5.4.3 Completion Exit...... .o 32
5.4.4 How Completion Alternatives Are Chosen................. 33
5.4.5 Completion Optionscoviiiiiiiiie ... 34

5.5 Minibuffer History......... ..o i 35

5.6 Repeating Minibuffer Commands 37

5.7 Entering passwords......... ... e 38

5.8 Yesor NoPrompts........cooiiiiiii . 38

Running Commands by Name 39
Help....... ... 41

7.1 Documentation for a Key............o i i 44

7.2 Help by Command or Variable Name 44

0 N 7 o o Yo = T 45

7.4 Help Mode Commands ..., 47

7.5 Keyword Search for Packages.................. 48

7.6 Help for International Language Support....................... 48

7.7 Other Help Commands 49

7.8 Help Files 50

7.9 Help on Active Text and Tooltips................ooiiiiii. ... 50

The Mark and the Region..................... 51

8.1 Setting the Marko i 51

8.2 Commands to Mark Textual Objects............. 53

8.3 Operating on the Region 54

8.4 The Mark Ring. ... 55

8.5 The Global Mark Ringo o i 55

8.6 Shift Selection..........ouiiiiii 56

8.7 Disabling Transient Mark Mode 56

Killing and Moving Text 58

9.1 Deletion and Killing, 58
9.1.1 Deletiono 58
9.1.2 Killing by Lineso 59
9.1.3 Other Kill Commandscooiiiiiiiiiiiinenn... 60
9.1.4 Options for Killing................ i 61

9.2 YanKingiiii 61
921 The Kill Ring ..ot e 62
9.2.2 Yanking Earlier Killsoo il 62
9.2.3 Appending Kills........... i 63

9.3 “Cut and Paste” Operations on Graphical Displays 64

9.3.1 Using the Clipboardo i 64

9.3.2 Cut and Paste with Other Window Applications 65

9.3.3 Secondary Selection..............coiiiiiiiiiiii 66
9.4 Accumulating Text ... 66
9.5 Rectangles ... 67
9.6 CUA Bindings.ouuuiiriiii e 70

10 Registers. ... 71
10.1 Saving Positions in Registers 71
10.2 Saving Text in Registers.ot 72
10.3 Saving Rectangles in Registers................................ 72
10.4 Saving Window and Frame Configurations in Registers........ 73
10.5 Keeping Numbers in Registers...........t 73
10.6 Keeping File and Buffer Names in Registers................... 73
10.7 Keyboard Macro Registers..............cooiiiiiiii .. 74
10.8 Bookmarks. e 74

11 Controlling the Display....................... 76
11.1 0 Scrolling ..o 76
11.2 Recenteringoooiiiimi e 77
11.3 Automatic Scrollingo 78
11.4 Horizontal Scrolling ..., 79
11.5 NAITOWINE. . .ottt t ettt e e e e e 80
11.6 View Mode. ...t e 81
11.7 Follow Modeo e 81
11.8 Text Faces 82
11.9 Colors for Faceso.uoueii 82

11.9.1 Color Namesoouuiiiii e 82

11.9.2 RGB Triplets. ... e 83
11.10 Standard Faces...........ccooiiiiiiiii i 83
I o0 86
11.12 Text Scale ... 87
11.13 Font Lock mode.o 88

11.13.1 Traditional Font Lock o i i 89

11.13.2 Parser-based Font Lock...........ol 89
11.14 Interactive Highlighting i .. 90
11.15 Window Fringes. ... 92
11.16 Displaying Boundaries., 93
11.17 Useless Whitespace.oouuiiiiiiiiiiii .. 94
11.18 Selective Displaycoouiii 95
11.19 Optional Mode Line Features...............t 96
11.20 How Text Is Displayed ..o, 97
11.21 Displaying the Cursor......... ..o ... 98
11.22 Line Truncation.......... .o, 99
11.23 Visual Line Modeo i 100

11.24 Customization of Display.................ooiiiiiii. 101

vi

12 Searching and Replacement................. 104
12.1 Incremental Search............ i i 104
12.1.1 Basics of Incremental Search............................ 104
12.1.2 Repeating Incremental Search 105
12.1.3 Isearch Yankingcc.ooiiiiii i, 106
12.1.4 FErrors in Incremental Search 107
12.1.5 Special Input for Incremental Search.................... 108
12.1.6 Not Exiting Incremental Search......................... 109
12.1.7 Searching the Minibuffer................................ 111
12.2 Nonincremental Search.............. 111
12.3 Word Search ... 112
12.4 Symbol Searcho 112
12.5 Regular Expression Search i, 113
12.6 Syntax of Regular Expressions...............ooiiviiiiia.n. 114
12.7 Backslash in Regular Expressions.................... 117
12.8 Regular Expression Example 119
12.9 Lax Matching During Searching 119
12.10 Replacement Commandscooiiiiiiieennninnnn. 121
12.10.1 Unconditional Replacement............................ 121
12.10.2 Regexp Replacement L. 122
12.10.3 Replace Commands and Lax Matches.................. 123
12.10.4 Query Replaceo 124
12.11 Other Search-and-Loop Commands......................... 126
12.12 Tailoring Search to Your Needs..............., 128
13 Commands for Fixing Typos............... 131
13,1 UNdO . vvee et e 131
13.2 Transposing Text. ...t 132
13.3 Case Conversionouiuueeineenniie e, 133
13.4 Checking and Correcting Spelling................, 134
14 Keyboard Macros............................ 138
14.1 Basic USe ... 138
14.2 The Keyboard Macro Ring 140
14.3 The Keyboard Macro Counter.................oooiiiiina... 141
14.4 Executing Macros with Variations........................... 142
14.5 Naming and Saving Keyboard Macros....................... 143
14.6 Editing a Keyboard Macro.................ooiiiiiiiiiian. 144

14.7 Stepwise Editing a Keyboard Macro......................... 144

vii

15 File Handling 146
15.1 File Names. ... e e 146
15.2 Visiting Files. 147
15.3 Saving Files. ... 150

15.3.1 Commands for Saving Files............... 150
15.3.2 Backup Files ... 152
15.3.2.1 Single or Numbered Backups 153
15.3.2.2 Automatic Deletion of Backups.................... 154
15.3.2.3 Copying vs. Renaming............................. 154
15.3.3 Customizing Saving of Files, 155
15.3.4 Protection against Simultaneous Editing 156
15.3.5 Shadowing Files.............o i 157
15.3.6 Updating Time Stamps Automatically.................. 158
15.4 Reverting a Buffer....... 158
15.5 Auto Revert: Keeping buffers automatically up-to-date 159
15.6 Auto-Saving: Protection Against Disasters................... 160
15.6.1 Auto-Save Fileso 160
15.6.2 Controlling Auto-Saving.......... ..., 161
15.6.3 Recovering Data from Auto-Saves 162
15.7 File Name AlAsesot 162
15.8 File Directories.coouiiiiiii i 163
15.9 Comparing Files ... 164
1510 Diff Mode. ..o 165
15.11 Copying, Naming and Renaming Files...................... 167
15.12 Miscellaneous File Operationscooiiiia.n. 168
15.13 Accessing Compressed Files ...t 169
15.14 File Archives.o 169
15.15 Remote Files.o 170
15.16 Quoted File Names....... ..o 171
15.17 File Name Cache...... i 172
15.18 Convenience Features for Finding Files..................... 172
15.19 Viewing Image Files......... ... i i, 173
15.20 Filesetso 175

16 Using Multiple Buffers...................... 177
16.1 Creating and Selecting Buffers.............. 177
16.2 Listing Existing Buffers oo 179
16.3 Miscellaneous Buffer Operations............................. 179
16.4 Killing Bufferso i 180
16.5 Operating on Several Buffers............ 181
16.6 Indirect Buffers......... ... i 183
16.7 Convenience Features and Customization of Buffer Handling. . 184

16.7.1 Making Buffer Names Unique........................... 184
16.7.2 Fast minibuffer selection.............. L 185

16.7.3 Customizing Buffer Menus.............................. 186

viii

17 Multiple Windows........................... 187
17.1 Concepts of Emacs Windowst 187
17.2 Splitting Windowso 187
17.3 Using Other Windows..........ccvviiiiiiiiin i, 188
17.4 Displaying in Another Window, 189
17.5 Deleting and Resizing Windows 190
17.6 Displaying a Buffer in a Window 191

17.6.1 How display-buffer works.................. 192
17.6.2 Displaying non-editable buffers.......................... 193
17.7 Convenience Features for Window Handling 193
17.8 Window Tab Line........... i 194

18 Frames and Graphical Displays............. 196
18.1 Mouse Commands for Editing oot 196
18.2 Mouse Commands for Words and Lines...................... 198
18.3 Following References with the Mouse 199
18.4 Mouse Clicks for Menuscooiiiiiiiiiniiiienn.. 200
18.5 Mode Line Mouse Commandsccooiiiiin... 200
18.6 Creating Frames ... 201
18.7 Frame Commands..........c.ouiiiiiiiiiiiii .. 202
18.8 oMt ..ot 203
18.9 Speedbar Frames......... ... i 206
18.10 Multiple Displaysouuiiiieiiii e 207
18.11 Frame Parameters.............. ... i i 207
18.12 Scroll Bars. ..o 208
18.13 Window Dividers.ooviiiiiii i 209
18.14 Dragand Drop.........oouiiiiiiiiiii i 210
18.15 Menu Bars.o 211
18.16 Tool Bars. ..o 211
1817 Tab Bars. ... 211
18.18 Using Dialog Boxes ... 214
18.19 ToOlbiPS. o 215
18.20 Mouse Avoidance ... 216
18.21 Text Terminals. ... 216
18.22 Using a Mouse in Text Terminals........................... 217

19 International Character Set Support....... 218
19.1 Introduction to International Character Sets................. 218
19.2 Language Environments............. ... i 220
19.3 Input Methods....... .o 222
19.4 Selecting an Input Method, 224
19.5 Coding Systemscouiuuiiiii i 225
19.6 Recognizing Coding Systemsccoiiiiiiiii... 227
19.7 Specifying a File’s Coding System 228
19.8 Choosing Coding Systems for Output........................ 229

19.9 Specifying a Coding System for File Text.................... 230

19.10 Coding Systems for Interprocess Communication 231
19.11 Coding Systems for File Names............................. 232
19.12 Coding Systems for X Keyboard Input 233
19.13 Coding Systems for Terminal I/O, 233
19.14 FontSets .o 234
19.15 Defining Fontsetso 235
19.16 Modifying Fontsets. ... 236
19.17 Undisplayable Characters, 237
19.18 Unibyte Editing Modec i 238
19.19 Charsetst 239
19.20 Bidirectional Editing.......... i 240
20 Major and Minor Modes.................... 243
20.1 Major Modes.t 243
20.2 Minor Modes.vvurriiit e 244
20.3 Choosing File Modes..........ccooiiiiiiiiiii i, 246
21 Indentation............................ 249
21.1 Indentation Commands..............coiiiiiiiiieiiiiiiiiin. 249
21,2 Tab StOPS . ettt e 250
21.3 Tabs V8. SPACES .« .\ttt 251
21.4 Convenience Features for Indentation........................ 251
21.5 Code ALgNment..........ouuuiiiite i 252
22 Commands for Human Languages 256
22. 1 WOrdsS .o oottt 256
22,2 SENbEICES . .\ttt i ettt 257
22.3 Paragraphs. ... 258
22,4 PageS .ottt e 259
22.5 Quotation Marks........ .o 260
22.6 FIlling Text .. .ooutiit it e 261
22.6.1 AutoFill Mode.............ooiii 261
22.6.2 Explicit Fill Commandso ... 262
22.6.3 The Fill Prefix oo 263
22.6.4 Adaptive Filling............. i 264
22.7 Case Conversion Commands.covviiiirenninen.n. 265
22.8 Text Mode. ... 266
22.9 Outline Mode ... 267
22.9.1 Outline Minor Mode. ..., 267
22.9.2 Format of OQutlines............... i, 267
22.9.3 Outline Motion Commands............................. 268
22.9.4 Outline Visibility Commands........................... 269
22.9.5 Viewing One Outline in Multiple Views................. 270

22.9.6 Folding Editing. ... 271

2210 Org Mode. ..o 272
22.10.1 Org as an Organizercooueeuueenieneennnenn.. 272
22.10.2 Org as an authoring system 273

2211 TEX MOAe .. e et 273
22.11.1 TgX Editing Commands.cooooiiiiiiaa.. 274
22.11.2 IEX Editing Commands, 275
22.11.3 TgX Printing Commands................coooiiiia... 275
22.11.4 TgX Mode Miscellanyocooiiiiiiii .. 278

22.12 SGML and HTML Modesccoviiiiiiiii .. 278

22.13 Nroff Mode . ..ot 279

22.14 Enriched Text. ... 280
22.14.1 Enriched Mode........ ..ot 280
22.14.2 Hard and Soft Newlinest 281
22.14.3 Editing Format Information........................... 281
22.14.4 Faces in Enriched Text il 281
22.14.5 Indentation in Enriched Text....................... ... 282
22.14.6 Justification in Enriched Text 283
22.14.7 Setting Other Text Properties......................... 283

22.15 Editing Text-based Tables...............coo i, 284
22.15.1 What is a Text-based Table? 284
22.15.2 Creating a Table.............co i, 285
22.15.3 Table Recognition................cooiiiiiiiiiL. 285
22.15.4 Commands for Table Cells............., 285
22.15.5 Cell Justification i 286
22.15.6 Table Rows and Columns................oooiiia.... 286
22.15.7 Converting Between Plain Text and Tables 287
22.15.8 Table Miscellany, 288

22.16 Two-Column Editing.......... ... i i 288

23 Editing Programs............................ 290

23.1 Major Modes for Programming Languages................... 290

23.2 Top-Level Definitions, or Defuns............................. 291
23.2.1 Left Margin Conventiono, 291
23.2.2 Moving by Defuns. ... 291
23.2.3 Imenu......cooiii e 292
23.2.4 Which Function Mode. ...t 293

23.3 Indentation for Programs............ ...t 293
23.3.1 Basic Program Indentation Commands 293
23.3.2 Indenting Several Lines........., 294
23.3.3 Customizing Lisp Indentation........................... 294
23.3.4 Commands for C Indentation........................... 295
23.3.5 Customizing C Indentation 296

23.4 Commands for Editing with Parentheses..................... 297
23.4.1 Expressions with Balanced Parentheses................. 297
23.4.2 Moving in the Parenthesis Structure.................... 298

23.4.3 Matching Parentheseso L 299

23.5 Manipulating Comments ... 300
23.5.1 Comment Commands.coviiiiiieiiiineann... 300
23.5.2 Multiple Lines of Comments............................ 302
23.5.3 Options Controlling Commentsco... 302

23.6 Documentation Lookup i 303
23.6.1 Info Documentation Lookup............................ 303
23.6.2 Man Page Lookup............coiiiii i 304
23.6.3 Programming Language Documentation Lookup 304

23.7 Hideshow minor mode........ ..., 306

23.8 Completion for Symbol Names 307

23.9 MixedCase WOrdsooviuriteii i 308

2310 SemMAaNtIC. . .o vv vttt e 308

23.11 Other Features Useful for Editing Programs 309

23.12 C and Related Modes ..., 310
23.12.1 C Mode Motion Commandsccooviee.... 310
23.12.2 Electric C Charactersc.ooiiiiiiiiiiennnnn... 311
23.12.3 Hungry Delete Featurein C.......... 311
23.12.4 Other Commands for C Mode 312

2313 Asm Mode. ... 313

24 Compiling and Testing Programs 314

24.1 Running Compilations under Emacs......................... 314

24.2 Compilation Mode ...t 315

24.3 Subshells for Compilation i, 318

24.4 Searching with Grep under Emacs........................... 318

24.5 Finding Syntax FErrors On The Fly 320

24.6 Running Debuggers Under Emacs 320
24.6.1 Starting GUD ... oo i 320
24.6.2 Debugger Operation........ ..., 321
24.6.3 Commands of GUD 322
24.6.4 GUD Customization..............ooiiiiiiiiiiiiia.. 324
24.6.5 GDB Graphical Interface............................... 325

24.6.5.1 GDB User Interface Layout........................ 325
24.6.5.2 Source Buffers.......... 326
24.6.5.3 Breakpoints Bufferl 327
24.6.5.4 Threads Buffer.......... 327
24.6.5.5 Stack Buffer...........l 328
24.6.5.6 Other GDB Buffers................................ 328
24.6.5.7 Watch Expressionso 329
24.6.5.8 Multithreaded Debugging.......................... 330

24.7 Executing Lisp Expressions.............ccooiiiiiiiiiiii.. 331

24.8 Libraries of Lisp Code for Emacs................... 331

24.9 Evaluating Emacs Lisp Expressions.......................... 333

24.10 Lisp Interaction Buffers.......... i 335

24.11 Running an External Lisp...........coooiiiiiiiii., 335

xi

xii

25 DMaintaining Large Programs............... 337
25.1 Version Controlo 337
25.1.1 Introduction to Version Control......................... 338
25.1.1.1 Understanding the Problems it Addresses.......... 338
25.1.1.2 Supported Version Control Systems................ 338
25.1.1.3 Concepts of Version Control 339
25.1.1.4 Merge-based vs Lock-based Version Control........ 339
25.1.1.5 Changeset-based vs File-based Version Control..... 340
25.1.1.6 Decentralized vs Centralized Repositories.......... 340
25.1.1.7 Typesof Log File.............. ..o i, 341
25.1.2 Version Control and the Mode Line..................... 341
25.1.3 Basic Editing under Version Control.................... 342
25.1.3.1 Basic Version Control with Merging................ 342
25.1.3.2 Basic Version Control with Locking................ 343
25.1.3.3 Advanced Control in C=x v voooiuu... 344
25.1.4 Features of the Log Entry Buffer........................ 344
25.1.5 Registering a File for Version Control................... 345
25.1.6 Examining And Comparing Old Revisions 346
25.1.7 VC Change Logooiinii i 348
25.1.8 Undoing Version Control Actions....................... 350
25.1.9 Ignore Version Control Files............., 351
25.1.10 VC Directory Mode 351
25.1.10.1 The VC Directory Buffer 351
25.1.10.2 VC Directory Commands.............cooveue... 352
25.1.11 Version Control Branches.............................. 354
25.1.11.1 Switching between Branches...................... 354
25.1.11.2 Pulling/Pushing Changes into/from a Branch..... 355
25.1.11.3 Merging Branchesol 355
25.1.11.4 Creating New Branches........................... 356

25.2 Working with Projects oo i i 357
25.2.1 Project Commands That Operate on Files.............. 357
25.2.2 Project Commands That Operate on Buffers............ 359
25.2.3 Switching Projects ... 359
25.2.4 Managing the Project List File 360
25.3 Change Logsot 360
25.3.1 Change Log Commandscooiiiiiiaa... 360
25.3.2 Format of Changelogo it 361
25.4 Find Identifier Referencest 362
25.4.1 Find Identifiers.........o 362
25.4.1.1 Looking Up Identifiers.......... ...t 363
25.4.1.2 Commands Available in the *xref* Buffer......... 364
25.4.1.3 Searching and Replacing with Identifiers........... 365
25.4.1.4 Identifier Inquiries.............. ..., 367
25.4.2 Tags Tables ..o 367
25.4.2.1 Source File Tag Syntaxc.oooviiiii... 368

25.4.2.2 Creating Tags Tables.......... 370

25.4.2.3 FEtags Regexps.......ccoviiiiiiiiiiiiiiiiii .. 371
25.4.3 Selecting a Tags Table....... ... in, 373
25.5 Emacs Development Environment 374
25.6 Bug Reference......... ..o 374
26 Abbrevs............... . 377
26.1 ADbbrev Concepts.ttt e 377
26.2 Defining Abbrevs. 377
26.3 Controlling Abbrev Expansion.............., 378
26.4 Abbrevs Suggestions 379
26.5 Examining and Editing Abbrevs............., 380
26.6 Saving AbDrevso 381
26.7 Dynamic Abbrev Expansion..............oooiiiiiiiiiin... 381
26.8 Customizing Dynamic Abbreviation 382
27 Dired, the Directory Editor................. 384
27.1 Entering Dired 384
27.2 Navigation in the Dired Buffer............... 385
27.3 Deleting Files with Dired.........o oL, 386
27.4 Flagging Many Files at Once............. 387
27.5 Visiting Files in Dired.............c. i i 388
27.6 Dired Marks vs. Flags ..., 389
27.7 Operatingon Files i i i 391
27.8 Shell Commands in Dired oL 395
27.9 Shell Command GUeSSING.oouiiiiiiiininanen 396
27.10 Transforming File Names in Dired............ 397
27.11 File Comparison with Dired, 398
27.12 Subdirectories in Dired o i 398
27.13 Moving Over Subdirectories...............cooiiiiiiii. .. 398
27.14 Hiding Subdirectories ... 399
27.15 Updating the Dired Buffer 399
27.16 Dired and findottt 400
27.17 Editing the Dired Buffer L 401
27.18 Viewing Image Thumbnails in Dired........................ 401
27.19 Other Dired Features............. ..., 403
28 The Calendar and the Diary................ 405
28.1 Movement in the Calendar 405
28.1.1 Motion by Standard Lengths of Time................... 405
28.1.2 Beginning or End of Week, Month or Year.............. 406
28.1.3 Specified Dates. ... 406
28.2 Scrolling in the Calendar o ... 407
28.3 Counting Days..... ..o 407
28.4 Miscellaneous Calendar Commands.............. ..., 407
28.5 Writing Calendar Files oo i, 408

xiii

xiv

28.6 Holidaysoouuiiiii i 409
28.7 Times of Sunrise and Sunset............ 410
28.8 Phases of the Moon i i 411
28.9 Conversion To and From Other Calendars 412
28.9.1 Supported Calendar Systemsvviin.. 412
28.9.2 Converting To Other Calendars......................... 413
28.9.3 Converting From Other Calendars...................... 414
28.10 The Diary ... 415
28.10.1 The Diary File......o.ooiiii i 415
28.10.2 Displaying the Diary ... 416
28.10.3 Date Formatso 417
28.10.4 Commands to Add to the Diary 418
28.10.5 Special Diary Entries..............oo i, 418
28.10.6 Appointments.coouiiiiiiiii i 420
28.10.7 Importing and Exporting Diary Entries................ 421
28.11 Daylight Saving Time, 421
28.12 Summing Time Intervalst 422
29 Sending Mail................................. 424
29.1 The Format of the Mail Buffer................... 424
29.2 Mail Header Fields ... 425
290.3 Mail AlASES. ...ttt 426
29.4 Mail Commands.uuuiriteeii i 427
29.4.1 Mail Sending.........covuiiiiiiii 427
29.4.2 Mail Header Editing............coii i, 428
29.4.3 Citing Mail.o 429
29.4.4 Mail Miscellany ... 429
29.5 Mail Signature 430
29.6 Mail Amusements 431
29.7 Mail-Composition Methods................. ..o .. 431
30 Reading Mail with Rmail 433
30.1 Basic Concepts of Rmail il 433
30.2 Scrolling Within a Message..........c.coooiiiiiiiiiiiii... 433
30.3 Moving Among Messagesccoueiiiiiiiiiiiiiiii.. 434
30.4 Deleting Messages.oouuiim i 435
30.5 Rmail Files and Inboxes..............ooi i 436
30.6 Multiple Rmail Files oo i 437
30.7 Copying Messages Out to Files................. 438
30.8 Labelso 440
30.9 Rmail Attributes....... ... 441
30.10 Sending Replies........ccouiuiiiiiiiiiii i 441
30. 11 SUMIMATIES . .. v v e ettt e 443
30.11.1 Making Summaries. ...t 443
30.11.2 Editing in Summaries, 444

30.12 Sorting the Rmail File i, 446

30.13 Display of Messagesoueuitiiiiniiiiiiin., 447
30.14 Rmail and Coding Systems. ..., 448
30.15 Editing Within a Message ..., 449
30.16 Digest MeSSagesvvvvee ettt ettt 449
30.17 Reading Rot13 Messagescooviiiiiiiiiiiinie... 449
30.18 movemail Programl...........ooiiuuiuiiiiiiii 450
30.19 Retrieving Mail from Remote Mailboxes.................... 451

30.20 Retrieving Mail from Local Mailboxes in Various Formats. .. 452

31 Miscellaneous Commands................... 453
31.1 Email and Usenet News with Gnus 453
31.1.1 Gnus Buffers....... .o 453
31.1.2 When Gnus Starts Up ..o, 453
31.1.3 Using the Gnus Group Buffer........................... 454
31.1.4 Using the Gnus Summary Buffer........................ 454
31.2 Host Securitycovvnti 455
31.3 Network Security.......ccooiiii i 455
31.4 Document VIewing..........c.ooooiiiiiiiiiiiiiiiiiinnn.. 457
31.4.1 DocView Navigation........... ..., 458
31.4.2 DocView Searching........... ... i, 459
31.4.3 DocView Slicing.........cooviiiiiiiiiiiiiii i 459
31.4.4 DocView CONversioncceeuiiieennneeennnn.. 459
31.5 Running Shell Commands from Emacs....................... 460
31.5.1 Single Shell Commands..............cooiiiiiiiiii... 460
31.5.2 Interactive Subshell L. 462
31.5.3 Shell Mode. ..o 463
31.5.4 Shell Prompts........cooviiiiiii i 466
31.5.5 Shell Command Historyooooiiiiiiin. 466
31.5.5.1 Shell History Ring......... ... 466
31.5.5.2 Shell History Copyingccoovuieiiiiiennna... 467
31.5.5.3 Shell History References.................... 468
31.5.6 Directory Tracking 468
31.5.7 Shell Mode Optionsccoviiiiiiiiiiiiiann. 469
31.5.8 Emacs Terminal Emulator.............................. 470
31.5.9 Term Mode ...t 470
31.5.10 Remote Host Shell it 471
31.5.11 Serial Terminal.............cooiiiiiiiiiiii ., 471
31.6 Using Emacs as a Servercoiiiiiiiiinianen. 471
31.6.1 TCP Emacs Serveroueuuiieeiiieaniieannn.. 473
31.6.2 Invoking emacsclient...........covviiiiiiiieeennnn... 474
31.6.3 emacsclient Optionscoeiiiiiiiiiiann. 475
31.7 Printing Hard Copies.cooiiiiiii i 478
31.7.1 PostScript Hardcopycovviiii 479
31.7.2 Variables for PostScript Hardcopy 480
31.7.3 Printing Package i 481

31.8 Sorting Text ..o 482

XV

xVi

31.9 Editing Binary Files.......... .o i 484
31.10 Saving Emacs Sessionseeiiiiiiiiiieiiiaa. 485
31.11 Recursive Editing Levels oL, 486
31.12 Hyperlinking and Web Navigation Features................. 487
31.12.1 Web Browsing with EWW........ 487
31.12.2 Embedded WebKit Widgetsoooitt. 487
31.12.3 Following URLS ... 488
31.12.4 Activating URLs 489
31.12.5 Finding Files and URLs at Point 489
31.13 Games and Other Amusements............................. 490
32 Emacs Lisp Packages........................ 492
32.1 The Package Menu Buffer................ 492
32.2 Package Statuses.........coouiiiiiii 494
32.3 Package Installation................ .. i i 495
32.4 Package Files and Directory Layout 498
32.5 Fetching Package Sources......... ... i 498
32.5.1 Specifying Package Sources................ 499
33 Customization 501
33.1 Easy Customization Interface................................ 501
33.1.1 Customization Groups...........cooviiiieiiiieeennnn... 501
33.1.2 Browsing and Searching for Settings.................... 502
33.1.3 Changing a Variable................ 502
33.1.4 Saving Customizations, 505
33.1.5 Customizing Faces........ ..., 505
33.1.6 Customizing Specific Items 506
33.1.7 Custom Themes. ..., 507
33.1.8 Creating Custom Themes............... 509
33.2 Variables. 509
33.2.1 Examining and Setting Variables 510
33.2.2 HOOKS . ..ttt 511
33.2.3 Local Variables.............ooooiiiiiiiii i 513
33.2.4 Local Variablesin Files.............., 514
33.2.4.1 Specifying File Variables............. 514
33.2.4.2 Safety of File Variables............................ 516
33.2.5 Per-Directory Local Variables........................... 517
33.2.6 Per-Connection Local Variables......................... 519
33.3 Customizing Key Bindingso i 520
33.3.1 Keymaps. . ..ottt 520
33.3.2 Prefix Keymapso 521
33.3.3 Local Keymaps.cooouuiiiiiiiiiii i 522
33.3.4 Minibuffer Keymaps............c..ooiiiiiiiiiiL 522
33.3.5 Changing Key Bindings Interactively 522
33.3.6 Rebinding Keys in Your Init File....................... 524

33.3.7 Modifier Keyso 525

Xvii

33.3.8 Rebinding Function Keys............ ... 525
33.3.9 Named ASCII Control Characters....................... 526
33.3.10 Rebinding Mouse Buttons............................. 527
33.3.11 Disabling Commands............c.c.coiiiiiiiiii... 529
33.4 The Emacs Initialization File............. 529
33.4.1 Init File Syntax ... 530
33.4.2 Init File Examples...........o i 531
33.4.3 Terminal-specific Initialization.......................... 534
33.4.4 How Emacs Finds Your Init File........................ 534
33.4.5 Non-ASCII Characters in Init Files...................... 535
33.4.6 The Early Init File........ ... oot 536
33.5 Keeping Persistent Authentication Information 536
34 Dealing with Common Problems........... 537
34.1 Quitting and Aborting 537
34.2 Dealing with Emacs Trouble.............o .. 538
34.2.1 Recursive Editing Levels........... ... oo 538
34.2.2 Garbage on the Screeno, 539
34.2.3 Garbage inthe Text. ..., 539
34.2.4 Running out of Memory ..., 539
34.2.5° When Emacs Crashes ...t 540
34.2.6 Recovery After a Crash........... oot 541
34.2.7 Emergency Escapeo i 542
34.2.8 IfDEL Fails to Delete ..., 542
34.3 Reporting Bugs ... 543
34.3.1 Reading Existing Bug Reports and Known Problems. ... 543
34.3.2 WhenIs Therea Bug................o.ooiiiiiiiit. 544
34.3.3 Understanding Bug Reporting 545
34.3.4 Checklist for Bug Reports ... 546
34.3.5 Sending Patches for GNU Emacs 551
34.4 Contributing to Emacs Development......................... 553
34.4.1 Coding Standardscooiiiiiiiiiiii 554
34.4.2 Copyright Assignment........... ..., 555
34.5 How To Get Help with GNU Emacs......................... 555

Appendix A GNU GENERAL
PUBLIC LICENSE 556

Appendix B GNU Free Documentation License .. 567

xviil

Appendix C Command Line Arguments

for Emacs Invocation 575
C.1 Action Argumentsoouiurimmiir i, 575
C.2 Initial Options.oouiiii e 577
C.3 Command Argument Example 580
C.4 Environment Variables............o i, 580
C.4.1 General Variables........... ... i i 581
C.4.2 Miscellaneous Variablescooiiiiiiiiiann. 584
C.4.3 The MS-Windows System Registry...................... 584
C.5 Specifying the Display Name............o...... 585
C.6 Font Specification Options............coooiiiiiiiiiiiiiian. 586
C.7 Window Color Options.cooviiiiiiiiiiiiiiiiinnne... 586
C.8 Options for Window Size and Position........................ 587
C.9 Internal and Outer Borderscooiiiiiiiiiit. 589
C.10 Frame Titles. ... e 589
Cll TCOMS - ettt 590
C.12 Other Display Options..........cooviiiiiiiiiiiiiiiiee. .. 590
Appendix D X Options and Resources........ 592
Dl X RESOUICES . o oo ettt 592
D.2 Table of X Resources for Emacs.............................. 593
D.3 GTEKAH TESOUICES . . vttt ettt ettt et 595
D.3.1 GTK+ Resource Basics..........ccooiiiiiiiiiii... 596
D.3.2 GTK+ widget names ..., 596
D.3.3 GTK+ Widget Names in Emacs 597
D34 GTKH styles ..o 598
Appendix E Emacs 28 Antinews............... 600

Appendix F Emacs and macOS / GNUstep .. 602

F.1 Basic Emacs usage under macOS and GNUstep............... 602
F.1.1 Grabbing environment variables......................... 602
F.2 Mac / GNUstep Customization............................... 603
F.2.1 Modifier keysoouiiii 603
F.2.2 Frame Variables.............. i 603
F.2.3 macOS Trackpad/Mousewheel Variables................. 604
F.3 Windowing System Events under macOS / GNUstep 604
F.4 GNUStep SUpport.....o.vveii e 605
Appendix G Emacs and Haiku................. 606
G.1 Installation and usage peculiarities under Haiku.............. 606
G.1.1 What to do when Emacs crashes........................ 607

G.2 Font and font backend selection on Haiku.................... 607

Appendix H Emacs and Microsoft

Windows/MS-DOS............................. 608
H.1 How to Start Emacs on MS-Windows 608
H.2 Text Files and Binary Files.........o i 609
H.3 File Names on MS-Windows ..., 610
H.4 Emulation of 1s on MS-Windowscoiiiiit. 611
H.5 HOME and Startup Directories on MS-Windows 611
H.6 Keyboard Usage on MS-Windowscoooiii.... 612
H.7 Mouse Usage on MS-Windows ..., 613
H.8 Subprocesses on Windows 9X/ME and Windows
NT/2K/XP/Vista/T/8/10 . ..o 613
H.9 Printing and MS-Windows, 614
H.10 Specifying Fonts on MS-Windows 616
H.11 Miscellaneous Windows-specific features..................... 618
The GNU Manifesto.............................. 619
What’s GNU? Gnu’s Not Unix!...... i 619
Why I Must Write GNUo 620
Why GNU Will Be Compatible with Unix 620
How GNU Will Be Available. ..., 620
Why Many Other Programmers Want to Help...................... 620
How You Can Contribute.......... ... 621
Why All Computer Users Will Benefit 621
Some Easily Rebutted Objections to GNU’s Goals 622
Glossary 627
Key (Character) Index........................... 651
Command and Function Index 662
Variable Index 678

Concept Index i, 688

xix

Preface

This manual documents the use and simple customization of the Emacs editor. Simple
Emacs customizations do not require you to be a programmer, but if you are not interested
in customizing, you can ignore the customization hints.

This is primarily a reference manual, but can also be used as a primer. If you are new to
Emacs, we recommend you start with the integrated, learn-by-doing tutorial, before reading
the manual. To run the tutorial, start Emacs and type C-h t (which is “control h and then
t”). The tutorial describes commands, tells you when to try them, and explains the results.
The tutorial is available in several languages.

On first reading, just skim chapters 1 and 2, which describe the notational conventions of
the manual and the general appearance of the Emacs display screen. Note which questions
are answered in these chapters, so you can refer back later. After reading chapter 4, you
should practice the commands shown there. The next few chapters describe fundamental
techniques and concepts that are used constantly. You need to understand them thoroughly,
so experiment with them until you are fluent.

Chapters 14 through 19 describe intermediate-level features that are useful for many
kinds of editing. Chapter 20 and following chapters describe optional but useful features;
read those chapters when you need them.

Read the Common Problems chapter if Emacs does not seem to be working properly. It
explains how to cope with several common problems (see Section 34.2 [Dealing with Emacs
Trouble], page 538), as well as when and how to report Emacs bugs (see Section 34.3 [Bugs],
page 543).

To find the documentation of a particular command, look in the index. Keys (character
commands) and command names have separate indexes. There is also a glossary, with a
cross reference for each term.

This manual is available as a printed book and also as an Info file. The Info file is
for reading from Emacs itself, or with the Info program. Info is the principal format for
documentation in the GNU system. The Info file and the printed book contain substantially
the same text and are generated from the same source files, which are also distributed with
GNU Emacs.

GNU Emacs is a member of the Emacs editor family. There are many Emacs editors, all
sharing common principles of organization. For information on the underlying philosophy of
Emacs and the lessons learned from its development, see Emacs, the Extensible, Customiz-
able Self-Documenting Display Editor, available from https://dspace.mit.edu/handle/
1721.1/5736.

This version of the manual is mainly intended for use with GNU Emacs installed on
GNU and Unix systems. GNU Emacs can also be used on MS-DOS, Microsoft Windows,
and Macintosh systems. The Info file version of this manual contains some more information
about using Emacs on those systems. Those systems use different file name syntax; in
addition MS-DOS does not support all GNU Emacs features. See Appendix H [Microsoft
Windows], page 608, for information about using Emacs on Windows. See Appendix F [Mac
OS / GNUstep], page 602, for information about using Emacs on Macintosh (and GNUstep).

https://dspace.mit.edu/handle/1721.1/5736
https://dspace.mit.edu/handle/1721.1/5736

2 GNU Emacs Manual

Distribution

GNU Emacs is free software; this means that everyone is free to use it and free to redistribute
it under certain conditions. GNU Emacs is not in the public domain; it is copyrighted
and there are restrictions on its distribution, but these restrictions are designed to permit
everything that a good cooperating citizen would want to do. What is not allowed is to try
to prevent others from further sharing any version of GNU Emacs that they might get from
you. The precise conditions are found in the GNU General Public License that comes with
Emacs and also appears in this manual'. See Appendix A [Copying], page 556.

One way to get a copy of GNU Emacs is from someone else who has it. You need not
ask for our permission to do so, or tell anyone else; just copy it. If you have access to the
Internet, you can get the latest distribution version of GNU Emacs by anonymous FTP; see
https://www.gnu.org/software/emacs on our website for more information.

You may also receive GNU Emacs when you buy a computer. Computer manufacturers
are free to distribute copies on the same terms that apply to everyone else. These terms
require them to give you the full sources, including whatever changes they may have made,
and to permit you to redistribute the GNU Emacs received from them under the usual terms
of the General Public License. In other words, the program must be free for you when you
get it, not just free for the manufacturer.

If you find GNU Emacs useful, please send a donation to the Free Software Foundation
to support our work. Donations to the Free Software Foundation are tax-deductible in the
US. If you use GNU Emacs at your workplace, please suggest that the company make a
donation. To donate, see https://my.fsf.org/donate/. For other ways in which you can
help, see https://www.gnu.org/help/help.html.

We also sell hardcopy versions of this manual and An Introduction to Programming in
Emacs Lisp, by Robert J. Chassell. You can visit our online store at https://shop.fsf.
org/. The income from sales goes to support the foundation’s purpose: the development of
new free software, and improvements to our existing programs including GNU Emacs.

If you need to contact the Free Software Foundation, see https://www.fsf.org/about/
contact/, or write to

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301

USA

Acknowledgments

Contributors to GNU Emacs include Jari Aalto, Eric Abrahamsen, Per Abrahamsen, Tomas
Abrahamsson, Jay K. Adams, Alon Albert, Michael Albinus, Nagy Andras, Benjamin
Andresen, Ralf Angeli, Dmitry Antipov, Joe Arceneaux, Emil Astrom, Miles Bader, David
Bakhash, Juanma Barranquero, Eli Barzilay, Thomas Baumann, Steven L. Baur, Jay
Belanger, Alexander L. Belikoff, Thomas Bellman, Scott Bender, Boaz Ben-Zvi, Sergey

! This manual is itself covered by the GNU Free Documentation License. This license is similar in spirit
to the General Public License, but is more suitable for documentation. See Appendix B [GNU Free
Documentation License], page 567.

https://www.gnu.org/software/emacs
https://my.fsf.org/donate/
https://www.gnu.org/help/help.html
https://shop.fsf.org/
https://shop.fsf.org/
https://www.fsf.org/about/contact/
https://www.fsf.org/about/contact/

Distribution 3

Berezin, Stephen Berman, Jonas Bernoulli, Karl Berry, Anna M. Bigatti, Ray Blaak, Martin
Blais, Jim Blandy, Johan Bockgard, Jan Bocker, Joel Boehland, Lennart Borgman, Per
Bothner, Terrence Brannon, Frank Bresz, Peter Breton, Emmanuel Briot, Kevin Broadey,
Vincent Broman, Michael Brouwer, David M. Brown, Ken Brown, Stefan Bruda, Damien
Cassou, Daniel Colascione, Georges Brun-Cottan, Joe Buehler, Scott Byer, Wlodek Bzyl,
Tino Calancha, Bill Carpenter, Per Cederqvist, Hans Chalupsky, Chris Chase, Bob Chassell,
Andrew Choi, Chong Yidong, Sacha Chua, Stewart Clamen, James Clark, Mike Clarkson,
Glynn Clements, Andrea Corallo, Andrew Cohen, Daniel Colascione, Christoph Conrad,
Ludovic Courtes, Andrew Csillag, Toby Cubitt, Baogiu Cui, Doug Cutting, Mathias Dahl,
Yue Daian, Julien Danjou, Satyaki Das, Vivek Dasmohapatra, Dan Davison, Michael
DeCorte, Gary Delp, Nachum Dershowitz, Dave Detlefs, Matthieu Devin, Christophe de
Dinechin, Eri Ding, Jan Djarv, Lawrence R. Dodd, Carsten Dominik, Scott Draves, Benjamin
Drieu, Viktor Dukhovni, Jacques Duthen, Dmitry Dzhus, John Eaton, Rolf Ebert, Carl
Edman, David Edmondson, Paul Eggert, Stephen Eglen, Christian Egli, Torbjorn Einarsson,
Tsugutomo Enami, David Engster, Hans Henrik Eriksen, Michael Ernst, Ata Etemadi,
Frederick Farnbach, Oscar Figueiredo, Fred Fish, Steve Fisk, Thomas Fitzsimmons, Karl
Fogel, Gary Foster, Eric S. Fraga, Romain Francoise, Noah Friedman, Andreas Fuchs,
Shigeru Fukaya, Xue Fuqgiao, Hallvard Furuseth, Keith Gabryelski, Peter S. Galbraith, Kevin
Gallagher, Fabian E. Gallina, Kevin Gallo, Juan Leén Lahoz Garcia, Howard Gayle, Daniel
German, Stephen Gildea, Julien Gilles, David Gillespie, Bob Glickstein, Nicolas Goaziou,
Deepak Goel, David De La Harpe Golden, Boris Goldowsky, David Goodger, Chris Gray,
Kevin Greiner, Michelangelo Grigni, Odd Gripenstam, Kai Groffjohann, Michael Gschwind,
Bastien Guerry, Henry Guillaume, Dmitry Gutov, Doug Gwyn, Bruno Haible, Ken’ichi
Handa, Lars Hansen, Chris Hanson, Jesper Harder, Alexandru Harsanyi, K. Shane Hartman,
John Heidemann, Jon K. Hellan, Magnus Henoch, Markus Heritsch, Dirk Herrmann, Karl
Heuer, Manabu Higashida, Konrad Hinsen, Torsten Hilbrich, Anders Holst, Jeffrey C. Honig,
Jiirgen Hotzel, Tassilo Horn, Kurt Hornik, Khaled Hosny, Tom Houlder, Joakim Hove, Denis
Howe, Lars Ingebrigtsen, Andrew Innes, Seiichiro Inoue, Philip Jackson, Martyn Jago, Pavel
Janik, Paul Jarc, Ulf Jasper, Thorsten Jolitz, Michael K. Johnson, Kyle Jones, Terry Jones,
Simon Josefsson, Alexandre Julliard, Arne Jgrgensen, Tomoji Kagatani, Brewster Kahle,
Tokuya Kameshima, Lute Kamstra, Stefan Kangas, Ivan Kanis, David Kastrup, David
Kaufman, Henry Kautz, Taichi Kawabata, Taro Kawagishi, Howard Kaye, Michael Kifer,
Richard King, Peter Kleiweg, Karel Kli¢, Shuhei Kobayashi, Pavel Kobyakov, Larry K.
Kolodney, David M. Koppelman, Koseki Yoshinori, Robert Krawitz, Sebastian Kremer,
Ryszard Kubiak, Tak Kunihiro, Igor Kuzmin, David Kagedal, Daniel LaLiberte, Karl
Landstrom, Mario Lang, Aaron Larson, James R. Larus, Gemini Lasswell, Vinicius Jose
Latorre, Werner Lemberg, Frederic Lepied, Peter Liljenberg, Christian Limpach, Lars
Lindberg, Chris Lindblad, Anders Lindgren, Thomas Link, Juri Linkov, Francis Litterio,
Sergey Litvinov, Leo Liu, Emilio C. Lopes, Martin Lorentzson, Dave Love, Eric Ludlam,
Karoly Lérentey, Sascha Liidecke, Greg McGary, Roland McGrath, Michael McNamara,
Alan Mackenzie, Christopher J. Madsen, Neil M. Mager, Arni Magnusson, Artur Malabarba,
Ken Manheimer, Bill Mann, Brian Marick, Simon Marshall, Bengt Martensson, Charlie
Martin, Yukihiro Matsumoto, Tomohiro Matsuyama, David Maus, Thomas May, Will
Mengarini, David Megginson, Jimmy Aguilar Mena, Stefan Merten, Ben A. Mesander,
Wayne Mesard, Brad Miller, Lawrence Mitchell, Richard Mlynarik, Gerd Méllmann, Dani
Moncayo, Stefan Monnier, Keith Moore, Jan Moringen, Morioka Tomohiko, Glenn Morris,
Don Morrison, Diane Murray, Riccardo Murri, Sen Nagata, Erik Naggum, Gergely Nagy,

4 GNU Emacs Manual

Nobuyoshi Nakada, Thomas Neumann, Mike Newton, Thien-Thi Nguyen, Jurgen Nickelsen,
Dan Nicolaescu, Hrvoje Niksi¢, Jeff Norden, Andrew Norman, Theresa O’Connor, Kentaro
Ohkouchi, Christian Ohler, Kenichi Okada, Alexandre Oliva, Bob Olson, Michael Olson,
Takaaki Ota, Mark Oteiza, Pieter E. J. Pareit, Ross Patterson, David Pearson, Juan Pechiar,
Jeff Peck, Damon Anton Permezel, Tom Perrine, William M. Perry, Per Persson, Jens
Petersen, Nicolas Petton, Daniel Pfeiffer, Justus Piater, Richard L. Pieri, Fred Pierresteguy,
Francgois Pinard, Daniel Pittman, Christian Plaunt, Alexander Pohoyda, David Ponce, Noam
Postavsky, Francesco A. Potorti, Michael D. Prange, Mukesh Prasad, Steve Purcell, Ken
Raeburn, Marko Rahamaa, Ashwin Ram, Eric S. Raymond, Paul Reilly, Edward M. Reingold,
David Reitter, Alex Rezinsky, Rob Riepel, Lara Rios, Adrian Robert, Nick Roberts, Roland
B. Roberts, John Robinson, Denis B. Roegel, Danny Roozendaal, Sebastian Rose, William
Rosenblatt, Markus Rost, Guillermo J. Rozas, Martin Rudalics, Ivar Rummelhoff, Jason
Rumney, Wolfgang Rupprecht, Benjamin Rutt, Kevin Ryde, Phil Sainty, James B. Salem,
Masahiko Sato, Timo Savola, Jorgen Schéfer, Holger Schauer, William Schelter, Ralph
Schleicher, Gregor Schmid, Michael Schmidt, Ronald S. Schnell, Philippe Schnoebelen, Jan
Schormann, Alex Schroeder, Stefan Schoef, Rainer Schopf, Raymond Scholz, Eric Schulte,
Andreas Schwab, Randal Schwartz, Oliver Seidel, Manuel Serrano, Paul Sexton, Hovav
Shacham, Stanislav Shalunov, Marc Shapiro, Richard Sharman, Olin Shivers, Tibor Simko,
Espen Skoglund, Rick Sladkey, Lynn Slater, Chris Smith, David Smith, JD Smith, Paul D.
Smith, Wilson Snyder, William Sommerfeld, Simon South, Andre Spiegel, Michael Staats,
Thomas Steffen, Ulf Stegemann, Reiner Steib, Sam Steingold, Ake Stenhoff, Philipp Stephani,
Peter Stephenson, Ken Stevens, Andy Stewart, Jonathan Stigelman, Martin Stjernholm, Kim
F. Storm, Steve Strassmann, Christopher Suckling, Olaf Sylvester, Naoto Takahashi, Steven
Tamm, Jan Tatarik, Joao Téavora, Luc Teirlinck, Jean-Philippe Theberge, Jens T. Berger
Thielemann, Spencer Thomas, Jim Thompson, Toru Tomabechi, David O’Toole, Markus
Triska, Tom Tromey, Eli Tziperman, Daiki Ueno, Masanobu Umeda, Rajesh Vaidheeswarran,
Neil W. Van Dyke, Didier Verna, Joakim Verona, Ulrik Vieth, Geoffrey Voelker, Johan
Vromans, Inge Wallin, John Paul Wallington, Colin Walters, Barry Warsaw, Christoph
Wedler, Ilja Weis, Zhang Weize, Morten Welinder, Joseph Brian Wells, Rodney Whitby, John
Wiegley, Sascha Wilde, Ed Wilkinson, Mike Williams, Roland Winkler, Bill Wohler, Steven
A. Wood, Dale R. Worley, Francis J. Wright, Felix S. T. Wu, Tom Wurgler, Yamamoto
Mitsuharu, Katsumi Yamaoka, Masatake Yamato, Jonathan Yavner, Ryan Yeske, Ilya
Zakharevich, Milan Zamazal, Victor Zandy, Eli Zaretskii, Jamie Zawinski, Andrew Zhilin,
Shenghuo Zhu, Piotr Zielinski, lan T. Zimmermann, Reto Zimmermann, Neal Ziring, Teodor
Zlatanov, and Detlev Zundel.

Introduction

You are reading about GNU Emacs, the GNU incarnation of the advanced, self-documenting,
customizable, extensible editor Emacs. (The ‘G’ in GNU (GNU’s Not Unix) is not silent.)

We call Emacs advanced because it can do much more than simple insertion and deletion
of text. It can control subprocesses, indent programs automatically, show multiple files at
once, edit remote files like they were local files, and more. Emacs editing commands operate
in terms of characters, words, lines, sentences, paragraphs, and pages, as well as expressions
and comments in various programming languages.

Self-documenting means that at any time you can use special commands, known as help
commands, to find out what your options are, or to find out what any command does, or to
find all the commands that pertain to a given topic. See Chapter 7 [Help], page 41.

Customizable means that you can easily alter the behavior of Emacs commands in simple
ways. For instance, if you use a programming language in which comments start with ‘<*x’
and end with ‘**>’) you can tell the Emacs comment manipulation commands to use those
strings (see Section 23.5 [Comments|, page 300). To take another example, you can rebind
the basic cursor motion commands (up, down, left and right) to any keys on the keyboard
that you find comfortable. See Chapter 33 [Customization], page 501.

Extensible means that you can go beyond simple customization and create entirely new
commands. New commands are simply programs written in the Lisp language, which are run
by Emacs’s own Lisp interpreter. Existing commands can even be redefined in the middle
of an editing session, without having to restart Emacs. Most of the editing commands in
Emacs are written in Lisp; the few exceptions could have been written in Lisp but use C
instead for efficiency. Writing an extension is programming, but non-programmers can use
it afterwards. See Section “Preface” in An Introduction to Programming in Emacs Lisp, if
you want to learn Emacs Lisp programming.

6 GNU Emacs Manual

1 The Organization of the Screen

On a graphical display, such as on GNU/Linux using the X Window System, Emacs occupies
a graphical window. On a text terminal, Emacs occupies the entire terminal screen. We
will use the term frame to mean a graphical window or terminal screen occupied by Emacs.
Emacs behaves very similarly on both kinds of frames. It normally starts out with just one
frame, but you can create additional frames if you wish (see Chapter 18 [Frames]|, page 196).

Each frame consists of several distinct regions. At the top of the frame is a menu bar,
which allows you to access commands via a series of menus. On a graphical display, directly
below the menu bar is a tool bar, a row of icons that perform editing commands when you
click on them. At the very bottom of the frame is an echo area, where informative messages
are displayed and where you enter information when Emacs asks for it.

The main area of the frame, below the tool bar (if one exists) and above the echo area, is
called the window. Henceforth in this manual, we will use the word “window” in this sense.
Graphical display systems commonly use the word “window” with a different meaning; but,
as stated above, we refer to those graphical windows as “frames”.

An Emacs window is where the buffer—the text or other graphics you are editing or
viewing—is displayed. On a graphical display, the window possesses a scroll bar on one
side, which can be used to scroll through the buffer. The last line of the window is a mode
line. This displays various information about what is going on in the buffer, such as whether
there are unsaved changes, the editing modes that are in use, the current line number, and
so forth.

When you start Emacs, there is normally only one window in the frame. However, you
can subdivide this window horizontally or vertically to create multiple windows, each of
which can independently display a buffer (see Chapter 17 [Windows], page 187).

At any time, one window is the selected window. On a graphical display, the selected
window shows a more prominent cursor (usually solid and blinking); other windows show a
less prominent cursor (usually a hollow box). On a text terminal, there is only one cursor,
which is shown in the selected window. The buffer displayed in the selected window is
called the current buffer, and it is where editing happens. Most Emacs commands implicitly
apply to the current buffer; the text displayed in unselected windows is mostly visible for
reference. If you use multiple frames on a graphical display, selecting a particular frame
selects a window in that frame.

1.1 Point

The cursor in the selected window shows the location where most editing commands take
effect, which is called point'. Many Emacs commands move point to different places in
the buffer; for example, you can place point by clicking mouse button 1 (normally the left
button) at the desired location.

By default, the cursor in the selected window is drawn as a solid block and appears to

be on a character, but you should think of point as between two characters; it is situated
before the character under the cursor. For example, if your text looks like ‘frob’ with the

1 The term “point” comes from the character ‘.’, which was the command in TECO (the language in
which the original Emacs was written) for accessing the editing position.

Chapter 1: The Organization of the Screen 7

cursor over the ‘b’, then point is between the ‘o’ and the ‘b’. If you insert the character ‘!’
at that position, the result is ‘fro!b’, with point between the ‘!’ and the ‘b’. Thus, the
cursor remains over the ‘b’, as before.

If you are editing several files in Emacs, each in its own buffer, each buffer has its own
value of point. A buffer that is not currently displayed remembers its value of point if you
later display it again. Furthermore, if a buffer is displayed in multiple windows, each of
those windows has its own value of point.

See Section 11.21 [Cursor Display], page 98, for options that control how Emacs displays
the cursor.

1.2 The Echo Area

The line at the very bottom of the frame is the echo area. It is used to display small amounts
of text for various purposes.

The echo area is so-named because one of the things it is used for is echoing, which
means displaying the characters of a multi-character command as you type. Single-character
commands are not echoed. Multi-character commands (see Section 2.2 [Keys|, page 11)
are echoed if you pause for more than a second in the middle of a command. Emacs then
echoes all the characters of the command so far, to prompt you for the rest. Once echoing
has started, the rest of the command echoes immediately as you type it. This behavior is
designed to give confident users fast response, while giving hesitant users maximum feedback.

The echo area is also used to display an error message when a command cannot do its
job. Error messages may be accompanied by beeping or by flashing the screen.

Some commands display informative messages in the echo area to tell you what the
command has done, or to provide you with some specific information. These informative
messages, unlike error messages, are not accompanied with a beep or flash. For example,
C-x = (hold down Ctrl and type x, then let go of Ctrl and type =) displays a message
describing the character at point, its position in the buffer, and its current column in the
window. Commands that take a long time often display messages ending in ‘...’ while they
are working (sometimes also indicating how much progress has been made, as a percentage),
and add ‘done’ when they are finished.

Informative echo area messages are saved in a special buffer named *Messages*. (We
have not explained buffers yet; see Chapter 16 [Buffers], page 177, for more information
about them.) If you miss a message that appeared briefly on the screen, you can switch to
the *Messagesx* buffer to see it again. The *Messages* buffer is limited to a certain number
of lines, specified by the variable message-log-max. (We have not explained variables either;
see Section 33.2 [Variables|, page 509, for more information about them.) Beyond this limit,
one line is deleted from the beginning whenever a new message line is added at the end.

See Section 11.24 [Display Custom]|, page 101, for options that control how Emacs uses
the echo area.

The echo area is also used to display the minibuffer, a special window where you can
input arguments to commands, such as the name of a file to be edited. When the minibuffer
is in use, the text displayed in the echo area begins with a prompt string, and the active
cursor appears within the minibuffer, which is temporarily considered the selected window.
You can always get out of the minibuffer by typing C-g. See Chapter 5 [Minibuffer], page 27.

8 GNU Emacs Manual

1.3 The Mode Line

At the bottom of each window is a mode line, which describes what is going on in the current
buffer. When there is only one window, the mode line appears right above the echo area; it
is the next-to-last line in the frame. On a graphical display, the mode line is drawn with a
3D box appearance. Emacs also usually draws the mode line of the selected window with a
different color from that of unselected windows, in order to make it stand out.

The text displayed in the mode line has the following format:
cs:ch-fr buf pos line (major minor)

On a text terminal, this text is followed by a series of dashes extending to the right edge of
the window. These dashes are omitted on a graphical display.

The cs string and the colon character after it describe the character set and newline
convention used for the current buffer. Normally, Emacs automatically handles these settings
for you, but it is sometimes useful to have this information.

cs describes the character set of the text in the buffer (see Section 19.5 [Coding Systems],
page 225). If it is a dash (‘-’), that indicates no special character set handling (with the
possible exception of end-of-line conventions, described in the next paragraph). ‘=’ means
no conversion whatsoever, and is usually used for files containing non-textual data. Other
characters represent various coding systems—for example, ‘1’ represents ISO Latin-1.

On a text terminal, cs is preceded by two additional characters that describe the coding
systems for keyboard input and terminal output. Furthermore, if you are using an input
method, cs is preceded by a string that identifies the input method (see Section 19.3 [Input
Methods], page 222).

The character after cs is usually a colon. If a different string is displayed, that indicates
a nontrivial end-of-line convention for encoding a file. Usually, lines of text are separated by
newline characters in a file, but two other conventions are sometimes used. The MS-DOS
convention uses a carriage return character followed by a linefeed character; when editing
such files, the colon changes to either a backslash (‘\’) or ‘(D0S)’, depending on the operating
system. Another convention, employed by older Macintosh systems, uses a carriage return
character instead of a newline; when editing such files, the colon changes to either a forward
slash (‘/?) or ‘(Mac)’. On some systems, Emacs displays ‘(Unix)’ instead of the colon for
files that use newline as the line separator.

On frames created for emacsclient (see Section 31.6.2 [Invoking emacsclient], page 474),
the next character is ‘@’. This indication is typical for frames of an Emacs process running
as a daemon (see Section 31.6 [Emacs Server], page 471).

The next element on the mode line is the string indicated by ch. This shows two dashes
(‘==") if the buffer displayed in the window has the same contents as the corresponding file
on the disk; i.e., if the buffer is unmodified. If the buffer is modified, it shows two stars
(‘*x*”). For a read-only buffer, it shows ‘%*’ if the buffer is modified, and ‘%%’ otherwise.

The character after ch is normally a dash (‘-’). However, if default-directory (see
Section 15.1 [File Names|, page 146) for the current buffer is on a remote machine, ‘@’ is
displayed instead.

fr gives the selected frame name (see Chapter 18 [Frames], page 196). It appears only on
text terminals. The initial frame’s name is ‘F1’.

Chapter 1: The Organization of the Screen 9

buf is the name of the buffer displayed in the window. Usually, this is the same as the
name of a file you are editing. See Chapter 16 [Buffers|, page 177.

pos tells you whether there is additional text above the top of the window, or below the
bottom. If your buffer is small and all of it is visible in the window, pos is ‘A11’. Otherwise,
it is ‘Top’ if you are looking at the beginning of the buffer, ‘Bot’ if you are looking at the end
of the buffer, or ‘nn}%’, where nn is the percentage of the buffer above the top of the window.
With Size Indication mode, you can display the size of the buffer as well. See Section 11.19
[Optional Mode Line|, page 96.

line is the character ‘L’ followed by the line number at point. (You can display the current
column number too, by turning on Column Number mode. See Section 11.19 [Optional
Mode Line], page 96.)

major is the name of the major mode used in the buffer. A major mode is a principal
editing mode for the buffer, such as Text mode, Lisp mode, C mode, and so forth. See
Section 20.1 [Major Modes], page 243. Some major modes display additional information
after the major mode name. For example, Compilation buffers and Shell buffers display the
status of the subprocess.

minor is a list of some of the enabled minor modes, which are optional editing modes
that provide additional features on top of the major mode. See Section 20.2 [Minor Modes],
page 244.

Some features are listed together with the minor modes whenever they are turned on,
even though they are not really minor modes. ‘Narrow’ means that the buffer being displayed
has editing restricted to only a portion of its text (see Section 11.5 [Narrowing], page 80).
‘Def’ means that a keyboard macro is currently being defined (see Chapter 14 [Keyboard
Macros], page 138).

In addition, if Emacs is inside a recursive editing level, square brackets (‘[...]’) appear
around the parentheses that surround the modes. If Emacs is in one recursive editing level
within another, double square brackets appear, and so on. Since recursive editing levels
affect Emacs globally, such square brackets appear in the mode line of every window. See
Section 31.11 [Recursive Edit], page 486.

You can change the appearance of the mode line as well as the format of its contents. See
Section 11.19 [Optional Mode Line], page 96. In addition, the mode line is mouse-sensitive;
clicking on different parts of the mode line performs various commands. See Section 18.5
[Mode Line Mouse|, page 200. Also, hovering the mouse pointer above mouse-sensitive
portions of the mode line shows tooltips (see Section 18.19 [Tooltips], page 215) with
information about commands you can invoke by clicking on the mode line.

1.4 The Menu Bar

Each Emacs frame normally has a menu bar at the top which you can use to perform
common operations. There’s no need to list them here, as you can more easily see them
yourself.

On a display that supports a mouse, you can use the mouse to choose a command from
the menu bar. An arrow on the right edge of a menu item means it leads to a subsidiary
menu, or submenu. A ‘...’ at the end of a menu item means that the command will prompt
you for further input before it actually does anything.

10 GNU Emacs Manual

Some of the commands in the menu bar have ordinary key bindings as well; if so, a key
binding is shown after the item itself. To view the full command name and documentation
for a menu item, type C-h k, and then select the menu bar with the mouse in the usual way
(see Section 7.1 [Key Help], page 44).

Instead of using the mouse, you can also invoke the first menu bar item by pressing F10
(to run the command menu-bar-open). You can then navigate the menus with the arrow
keys or with C-b, C-f (left/right), C-p, and C-n (up/down). To activate a selected menu
item, press RET; to cancel menu navigation, press C-g or ESC ESC ESC. (However, note that
when Emacs was built with a GUI toolkit, the menus are drawn and controlled by the
toolkit, and the key sequences to cancel menu navigation might be different from the above
description.)

On a text terminal, you can optionally access the menu-bar menus in the echo area. To
this end, customize the variable tty-menu-open-use-tmm to a non-nil value. Then typing
F10 will run the command tmm-menubar instead of dropping down the menu. (You can also
type M-", which always invokes tmm-menubar.) tmm-menubar lets you select a menu item
with the keyboard. A provisional choice appears in the echo area. You can use the up and
down arrow keys to move through the menu to different items, and then you can type RET
to select the item. Each menu item is also designated by a letter or digit (usually the initial
of some word in the item’s name). This letter or digit is separated from the item name by
‘==>". You can type the item’s letter or digit to select the item.

11

2 Characters, Keys and Commands

This chapter explains the character sets used by Emacs for input commands, and the
fundamental concepts of keys and commands, whereby Emacs interprets your keyboard and
mouse input.

2.1 Kinds of User Input

GNU Emacs is primarily designed for use with the keyboard. While it is possible to use the
mouse to issue editing commands through the menu bar and tool bar, that is usually not as
efficient as using the keyboard.

Keyboard input into Emacs is based on a heavily-extended version of ASCII. Simple
characters, like ‘a’, ‘B’, ‘3’, ‘=", and the space character (denoted as SPC), are entered by
typing the corresponding key. Control characters, such as RET, TAB, DEL, ESC, F1, Home, and
LEFT, are also entered this way, as are certain characters found on non-English keyboards
(see Chapter 19 [International], page 218).

Emacs also recognizes control characters that are entered using modifier keys. Two
commonly-used modifier keys are Control (usually labeled Ctrl), and Meta (usually labeled
Alt)!'. For example, Control-a is entered by holding down the Ctrl key while pressing a; we
will refer to this as C-a for short. Similarly, Meta-a, or M-a for short, is entered by holding
down the Alt key and pressing a. Modifier keys can also be applied to non-alphanumerical
characters, e.g., C-F1 or M-LEFT.

You can also type Meta characters using two-character sequences starting with ESC. Thus,
you can enter M-a by typing ESC a. You can enter C-M-a (holding down both Ctrl and Alt,
then pressing a) by typing ESC C-a. Unlike Meta, ESC is entered as a separate character.
You don’t hold down ESC while typing the next character; instead, press ESC and release it,
then enter the next character. This feature is useful on certain text terminals where the
Meta key does not function reliably.

Emacs supports 3 additional modifier keys, see Section 33.3.7 [Modifier Keys|, page 525.

Emacs has extensive support for using mouse buttons, mouse wheels and other pointing
devices like touchpads and touch screens. See Section 2.3 [Mouse Input], page 12, for details.

On graphical displays, the window manager might block some keyboard inputs, including
M-TAB, M-SPC, C-M-d and C-M-1. If you have this problem, you can either customize your
window manager to not block those keys, or rebind the affected Emacs commands (see
Chapter 33 [Customization], page 501).

Simple characters and control characters, as well as certain non-keyboard inputs such
as mouse clicks, are collectively referred to as input events. For details about how Emacs
internally handles input events, see Section “Input Events” in The Emacs Lisp Reference
Manual.

2.2 Keys

Some Emacs commands are invoked by just one input event; for example, C-f moves forward
one character in the buffer. Other commands take two or more input events to invoke, such
as C-x C-f and C-x 4 C-f.

L We refer to Alt as Meta for historical reasons.

12 GNU Emacs Manual

A key sequence, or key for short, is a sequence of one or more input events that is
meaningful as a unit. If a key sequence invokes a command, we call it a complete key; for
example, C-f, C-x C-f and C-x 4 C-f are all complete keys. If a key sequence isn’t long
enough to invoke a command, we call it a prefix key; from the preceding example, we see
that C-x and C-x 4 are prefix keys. Every key sequence is either a complete key or a prefix
key.

A prefix key combines with the following input event to make a longer key sequence.
For example, C-x is a prefix key, so typing C-x alone does not invoke a command; instead,
Emacs waits for further input (if you pause for longer than a second, it echoes the C-x key
to prompt for that input; see Section 1.2 [Echo Areal, page 7). C-x combines with the next
input event to make a two-event key sequence, which could itself be a prefix key (such as C-x
4), or a complete key (such as C-x C-f). There is no limit to the length of key sequences,
but in practice they are seldom longer than three or four input events.

You can’t add input events onto a complete key. For example, because C-f is a complete
key, the two-event sequence C-f C-k is two key sequences, not one.

By default, the prefix keys in Emacs are C-c, C-h, C-x, C-x RET, C-x @, C-x a, C-x n,
C-xr, C-x t, C-x v, C-x 4, C-x 5, C-x 6, ESC, and M-g. (F1 and F2 are aliases for C-h and
C-x 6.) This list is not cast in stone; if you customize Emacs, you can make new prefix
keys. You could even eliminate some of the standard ones, though this is not recommended
for most users; for example, if you remove the prefix definition of C-x 4, then C-x 4 C-f
becomes an invalid key sequence. See Section 33.3 [Key Bindings], page 520.

Typing the help character (C-h or F1) after a prefix key displays a list of the commands
starting with that prefix. The sole exception to this rule is ESC: ESC C-h is equivalent to
C-M-h, which does something else entirely. You can, however, use F1 to display a list of
commands starting with ESC.

2.3 Mouse Input

By default, Emacs supports all the normal mouse actions like setting the cursor by clicking
on the left mouse button, and selecting an area by dragging the mouse pointer. All mouse
actions can be used to bind commands in the same way you bind them to keyboard events
(see Section 2.2 [Keys|, page 11). This section provides a general overview of using the
mouse in Emacs; see Section 18.1 [Mouse Commands], page 196, and the sections that follow
it, for more details about mouse commands in Emacs.

When you click the left mouse button, Emacs receives a mouse-1 event. To see what
command is bound to that event, you can type C-h c and then press the left mouse button.
Similarly, the middle mouse button is mouse-2 and the right mouse button is mouse-3. If you
have a mouse with a wheel, the wheel events are commonly bound to either wheel-down or
wheel-up, or mouse-4 and mouse-5, but that depends on the operating system configuration.

In general, legacy X systems and terminals (see Section 18.22 [Text-Only Mouse|, page 217)
will report mouse-4 and mouse-5, while all other systems will report wheel-down and
wheel-up.

Some mice also have a horizontal scroll wheel, and touchpads usually support scrolling
horizontally as well. These events are reported as wheel-left and wheel-right on all
systems other than terminals and legacy X systems, where they are mouse-6 and mouse-7.

Chapter 2: Characters, Keys and Commands 13

You can also combine keyboard modifiers with mouse events, so you can bind a special
command that triggers when you, for instance, holds down the Meta key and then uses the
middle mouse button. In that case, the event name will be M-mouse-2.

On some systems, you can also bind commands for handling touch screen events. In that
case, the events are called touchscreen-update and touchscreen-end.

2.4 Keys and Commands

This manual is full of passages that tell you what particular keys do. But Emacs does not
assign meanings to keys directly. Instead, Emacs assigns meanings to named commands,
and then gives keys their meanings by binding them to commands.

Every command has a name chosen by a programmer. The name is usually made of a few
English words separated by dashes; for example, next-line or forward-word. Internally,
each command is a special type of Lisp function, and the actions associated with the
command are performed by running the function. See Section “What Is a Function” in The
Emacs Lisp Reference Manual.

The bindings between keys and commands are recorded in tables called keymaps. See
Section 33.3.1 [Keymaps], page 520.

When we say that “C-n moves down vertically one line” we are glossing over a subtle
distinction that is irrelevant in ordinary use, but vital for Emacs customization. The
command next-line does a vertical move downward. C-n has this effect because it is bound
to next-line. If you rebind C-n to the command forward-word, C-n will move forward
one word instead.

In this manual, we will often speak of keys like C-n as commands, even though strictly
speaking the key is bound to a command. Usually, we state the name of the command which
really does the work in parentheses after mentioning the key that runs it. For example, we
will say that “The command C-n (next-line) moves point vertically down”, meaning that
the command next-line moves vertically down, and the key C-n is normally bound to it.

Since we are discussing customization, we should tell you about variables. Often the
description of a command will say, “To change this, set the variable mumble-foo.” A variable
is a name used to store a value. Most of the variables documented in this manual are meant
for customization: some command or other part of Emacs examines the variable and behaves
differently according to the value that you set. You can ignore the information about
variables until you are interested in customizing them. Then read the basic information on
variables (see Section 33.2 [Variables], page 509) and the information about specific variables
will make sense.

14 GNU Emacs Manual

3 Entering and Exiting Emacs
This chapter explains how to enter Emacs, and how to exit it.

3.1 Entering Emacs

The usual way to invoke Emacs is with the shell command emacs. From a terminal window
running a Unix shell on a GUI terminal, you can run Emacs in the background with emacs
&; this way, Emacs won’t tie up the terminal window, so you can use it to run other shell
commands. (For comparable methods of starting Emacs on MS-Windows, see Section H.1
[Windows Startup|, page 608.)

When Emacs starts up, the initial frame displays a special buffer named ‘*GNU Emacs*’.
This startup screen contains information about Emacs and links to common tasks that are
useful for beginning users. For instance, activating the ‘Emacs Tutorial’ link opens the
Emacs tutorial; this does the same thing as the command C-h t (help-with-tutorial).
To activate a link, either move point onto it and type RET, or click on it with mouse-1 (the
left mouse button).

Using a command line argument, you can tell Emacs to visit one or more files as soon as
it starts up. For example, emacs foo.txt starts Emacs with a buffer displaying the contents
of the file ‘foo.txt’. This feature exists mainly for compatibility with other editors, which
are designed to be launched from the shell for short editing sessions. If you call Emacs this
way, the initial frame is split into two windows—one showing the specified file, and the other
showing the startup screen. See Chapter 17 [Windows], page 187.

Generally, it is unnecessary and wasteful to start Emacs afresh each time you want to
edit a file. The recommended way to use Emacs is to start it just once, just after you log in,
and do all your editing in the same Emacs session. See Chapter 15 [Files|, page 146, for
information on visiting more than one file. If you use Emacs this way, the Emacs session
accumulates valuable context, such as the kill ring, registers, undo history, and mark ring
data, which together make editing more convenient. These features are described later in
the manual.

To edit a file from another program while Emacs is running, you can use the emacsclient
helper program to open a file in the existing Emacs session. See Section 31.6 [Emacs Server],
page 471.

Emacs accepts other command line arguments that tell it to load certain Lisp files, where
to put the initial frame, and so forth. See Appendix C [Emacs Invocation], page 575.

If the variable inhibit-startup-screen is non-nil, Emacs does not display the startup
screen. In that case, if one or more files were specified on the command line, Emacs
simply displays those files; otherwise, it displays a buffer named *scratch#, which can be
used to evaluate Emacs Lisp expressions interactively. See Section 24.10 [Lisp Interaction],
page 335. You can set the variable inhibit-startup-screen using the Customize facility
(see Section 33.1 [Easy Customization|, page 501), or by editing your initialization file (see
Section 33.4 [Init File], page 529).!

1 Setting inhibit-startup-screen in site-start.el doesn’t work, because the startup screen is set up be-
fore reading site-start.el. See Section 33.4 [Init File], page 529, for information about site-start.el.

Chapter 3: Entering and Exiting Emacs 15

You can also force Emacs to display a file or directory at startup by setting the vari-
able initial-buffer-choice to a string naming that file or directory. The value of
initial-buffer-choice may also be a function (of no arguments) that should return a
buffer which is then displayed. If initial-buffer-choice is non-nil, then if you specify
any files on the command line, Emacs still visits them, but does not display them initially.

3.2 Exiting Emacs

C-x C-c¢ Kill Emacs (save-buffers-kill-terminal).

C-z On a text terminal, suspend Emacs; on a graphical display, iconify (or “mini-
mize”) the selected frame (suspend-frame).

Killing Emacs means terminating the Emacs program. To do this, type C-x C-c
(save-buffers-kill-terminal). A two-character key sequence is used to make it harder to
type by accident. If there are any modified file-visiting buffers when you type C-x C-c, Emacs
first offers to save these buffers. If you do not save them all, it asks for confirmation again,
since the unsaved changes will be lost. Emacs also asks for confirmation if any subprocesses
are still running, since killing Emacs will also kill the subprocesses (see Section 31.5 [Shell],
page 460).

C-x C-c behaves specially if you are using Emacs as a server. If you type it from a client
frame, it closes the client connection. See Section 31.6 [Emacs Server|, page 471.

Emacs can, optionally, record certain session information when you kill it, such as the
files you were visiting at the time. This information is then available the next time you start
Emacs. See Section 31.10 [Saving Emacs Sessions], page 485.

If the value of the variable confirm-kill-emacs is non-nil, C-x C-c assumes that its
value is a predicate function, and calls that function. If the result of the function call is
non-nil, the session is killed, otherwise Emacs continues to run. One convenient function to
use as the value of confirm-kill-emacs is the function yes-or-no-p. The default value of
confirm-kill-emacs is nil.

If the value of the variable confirm-kill-processes is nil, C-x C-c does not ask for
confirmation before killing subprocesses started by Emacs. The value is t by default.

To further customize what happens when Emacs is exiting, see Section “Killing Emacs”
in The GNU Emacs Lisp Reference Manual.

To kill Emacs without being prompted about saving, type M-x kill-emacs.

C-z runs the command suspend-frame. On a graphical display, this command minimizes
(or iconifies) the selected Emacs frame, hiding it in a way that lets you bring it back later
(exactly how this hiding occurs depends on the window system). On a text terminal, the
C-z command suspends Emacs, stopping the program temporarily and returning control to
the parent process (usually a shell); in most shells, you can resume Emacs after suspending
it with the shell command %emacs.

Text terminals usually listen for certain special characters whose meaning is to kill or
suspend the program you are running. This terminal feature is turned off while you are in
Emacs. The meanings of C-z and C-x C-c as keys in Emacs were inspired by the use of C-z
and C-c on several operating systems as the characters for stopping or killing a program,
but that is their only relationship with the operating system. You can customize these keys
to run any commands of your choice (see Section 33.3.1 [Keymaps], page 520).

16 GNU Emacs Manual

4 Basic Editing Commands

Here we explain the basics of how to enter text, make corrections, and save the text in a file.
If this material is new to you, we suggest you first run the Emacs learn-by-doing tutorial, by
typing C-h t (help-with-tutorial).

4.1 Inserting Text

You can insert an ordinary graphic character (e.g., ‘a’, ‘B’, ‘3’, and ‘=’) by typing the
associated key. This adds the character to the buffer at point. Insertion moves point forward,
so that point remains just after the inserted text. See Section 1.1 [Point], page 6.

To end a line and start a new one, type RET (newline). (The RET key may be labeled
Return, or Enter, or with a funny-looking left-pointing arrow on your keyboard, but we
refer to it as RET in this manual.) This command inserts a newline character into the buffer,
then indents (see Chapter 21 [Indentation], page 249) according to the major mode. If
point is at the end of the line, the effect is to create a new blank line after it and indent
the new line; if point is in the middle of a line, the line is split at that position. To turn
off the auto-indentation, you can either disable Electric Indent mode (see Section 21.4
[Indent Convenience], page 251) or type C-j, which inserts just a newline, without any
auto-indentation.

As we explain later in this manual, you can change the way Emacs handles text insertion
by turning on minor modes. For instance, the minor mode called Auto Fill mode splits
lines automatically when they get too long (see Section 22.6 [Filling], page 261). The minor
mode called Overwrite mode causes inserted characters to replace (overwrite) existing text,
instead of shoving it to the right. See Section 20.2 [Minor Modes], page 244.

Only graphic characters can be inserted by typing the associated key; other keys act
as editing commands and do not insert themselves. For instance, DEL runs the command
delete-backward-char by default (some modes bind it to a different command); it does
not insert a literal ‘DEL’ character (ASCII character code 127).

To insert a non-graphic character, or a character that your keyboard does not support,
first quote it by typing C-q (quoted-insert). There are two ways to use C-q:

e C-q followed by any non-graphic character (even C-g) inserts that character. For
instance, C-q DEL inserts a literal ‘DEL’ character.

e C-q followed by a sequence of octal digits inserts the character with the specified octal
character code. You can use any number of octal digits; any non-digit terminates
the sequence. If the terminating character is RET, that RET serves only to terminate
the sequence. Any other non-digit terminates the sequence and then acts as normal
input—thus, C-q 1 0 1 B inserts ‘AB’.

The use of octal sequences is disabled in ordinary non-binary Overwrite mode, to give
you a convenient way to insert a digit instead of overwriting with it.

To use decimal or hexadecimal instead of octal, set the variable read-quoted-char-radix
to 10 or 16. If the radix is 16, the letters a to f serve as part of a character code, just like
digits. Case is ignored.

A few common Unicode characters can be inserted via a command starting with C-x 8.
For example, C-x 8 [inserts ¢ which is Unicode code-point U+2018 LEFT SINGLE QUOTATION

Chapter 4: Basic Editing Commands 17

MARK, sometimes called a left single “curved quote” or “curly quote”. Similarly, C-x 8 1],
C-x 8 { and C-x 8 } insert the curved quotes ’, ¢“ and *’, respectively. Also, a working Alt
key acts like C-x 8 (unless followed by RET); e.g., A-[acts like C-x 8 [and inserts ‘. To see
which characters have C-x 8 shorthands, type C-x 8 C-h.

Alternatively, you can use the command C-x 8 RET (insert-char). This prompts for
the Unicode name or code-point of a character, using the minibuffer. If you enter a name,
the command provides completion (see Section 5.4 [Completion], page 30). If you enter a
code-point, it should be as a hexadecimal number (the convention for Unicode), or a number
with a specified radix, e.g., #023072 (octal); See Section “Integer Basics” in The Emacs Lisp
Reference Manual. The command then inserts the corresponding character into the buffer.

For example, the following all insert the same character:

8 RET left single quotation mark RET
8 RET left sin TAB RET

8 RET 2018 RET

8 [

(if the Alt key works)

(in Electric Quote mode)

A numeric argument to C-q or C-x 8 ... specifies how many copies of the character to
insert (see Section 4.10 [Arguments|, page 24).

As an alternative to C-x 8, you can select the corresponding transient input method by
typing C-u C-x \ iso-transl RET, then temporarily activating this transient input method
by typing C-x \ [will insert the same character ¢ (see [transient input method], page 225).

In addition, in some contexts, if you type a quotation using grave accent and apostrophe
“like this', it is converted to a form ‘like this’ using single quotation marks, even
without C-x 8 commands. Similarly, typing a quotation ~~1like this'' using double grave
accent and apostrophe converts it to a form ‘“like this’’ using double quotation marks.
See Section 22.5 [Quotation Marks], page 260.

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point (see Section 1.1
[Point], page 6). The keyboard commands C-f, C-b, C-n, and C-p move point to the right,
left, down, and up, respectively. You can also move point using the arrow keys present on
most keyboards: RIGHT, LEFT, DOWN, and UP; however, many Emacs users find that it is
slower to use the arrow keys than the control keys, because you need to move your hand to
the area of the keyboard where those keys are located.

You can also click the left mouse button to move point to the position clicked. Emacs also
provides a variety of additional keyboard commands that move point in more sophisticated
ways.

C-f Move forward one character (forward-char).

RIGHT This command (right-char) behaves like C-f, except when point is in a right-
to-left paragraph (see Section 19.20 [Bidirectional Editing], page 240).

C-b Move backward one character (backward-char).

18

LEFT

C-n
DOWN

C-p
UP

C-a
Home

C-e
End

M-£

C-RIGHT
M-RIGHT

M-b

C-LEFT
M-LEFT

M->

C-v
PageDown
next

GNU Emacs Manual

This command (left-char) behaves like C-b, except if the current paragraph
is right-to-left (see Section 19.20 [Bidirectional Editing], page 240).

Move down one screen line (next-line). This command attempts to keep the
horizontal position unchanged, so if you start in the middle of one line, you
move to the middle of the next.

Move up one screen line (previous-1line). This command preserves position
within the line, like C-n.

Move to the beginning of the line (move-beginning-of-1line).

Move to the end of the line (move-end-of-1line).

Move forward one word (forward-word). See Section 22.1 [Words], page 256.

This command (right-word) behaves like M-f, except it moves backward by one
word if the current paragraph is right-to-left. See Section 19.20 [Bidirectional
Editing], page 240.

Move backward one word (backward-word). See Section 22.1 [Words|, page 256.

This command (left-word) behaves like M-b, except it moves forward by one
word if the current paragraph is right-to-left. See Section 19.20 [Bidirectional
Editing], page 240.

Without moving the text on the screen, reposition point on the left margin of
the center-most text line of the window; on subsequent consecutive invocations,
move point to the left margin of the top-most line, the bottom-most line, and
so forth, in cyclic order (move-to-window-line-top-bottom).

A numeric argument says which screen line to place point on, counting downward
from the top of the window (zero means the top line). A negative argument
counts lines up from the bottom (—1 means the bottom line). See Section 4.10
[Arguments|, page 24, for more information on numeric arguments.

Move to the top of the buffer (beginning-of-buffer). With numeric argument
n, move to n/10 of the way from the top. On graphical displays, C-HOME does
the same.

Move to the end of the buffer (end-of-buffer). On graphical displays, C-END
does the same.

Scroll the display one screen forward, and move point onscreen if necessary
(scroll-up-command). See Section 11.1 [Scrolling], page 76.

Chapter 4: Basic Editing Commands 19

M-v

PageUp

prior Scroll one screen backward, and move point onscreen if necessary (scroll-down-
command). See Section 11.1 [Scrolling], page 76.

M-g c Read a number n and move point to buffer position n. Position 1 is the beginning
of the buffer. If point is on or just after a number in the buffer, that is the
default for n. Just type RET in the minibuffer to use it. You can also specify n
by giving M-g ¢ a numeric prefix argument.

M-g M-g

M-g g Read a number n and move point to the beginning of line number n (goto-1line).

Line 1 is the beginning of the buffer. If point is on or just after a number in the
buffer, that is the default for n. Just type RET in the minibuffer to use it. You
can also specify n by giving M-g M-g a numeric prefix argument. See Section 16.1
[Select Buffer|, page 177, for the behavior of M-g M-g when you give it a plain
prefix argument. Alternatively, you can use the command goto-line-relative
to move point to the line relative to the accessible portion of the narrowed
buffer.

goto-line has its own history list (see Section 5.5 [Minibuffer History], page 35).
You can have either a single list shared between all buffers (the default) or
a separate list for each buffer, by customizing the user option goto-line-
history-local.

M-g TAB Read a number n and move to column n in the current line. Column 0 is the
leftmost column. If called with a prefix argument, move to the column number
specified by the argument’s numeric value.

C-x C-n Use the current column of point as the semipermanent goal column (set-goal-
column) in the current buffer. When a semipermanent goal column is in effect,
C-n, C-p, <prior> and <next> always try to move to this column, or as close
as possible to it, after moving vertically. The goal column remains in effect until
canceled.

C-u C-x C-n
Cancel the goal column. Henceforth, C-n and C-p try to preserve the horizontal
position, as usual.

When a line of text in the buffer is longer than the width of the window, Emacs usually
displays it on two or more screen lines, a.k.a. visual lines. For convenience, C-n and C-p
move point by screen lines, as do the equivalent keys down and up. You can force these
commands to move according to logical lines (i.e., according to the text lines in the buffer)
by setting the variable 1ine-move-visual to nil; if a logical line occupies multiple screen
lines, the cursor then skips over the additional screen lines. For details, see Section 4.8
[Continuation Lines|, page 22. See Section 33.2 [Variables|, page 509, for how to set variables
such as line-move-visual.

Unlike C-n and C-p, most of the Emacs commands that work on lines work on logical lines.
For instance, C-a (move-beginning-of-line) and C-e (move-end-of-line) respectively
move to the beginning and end of the logical line. Whenever we encounter commands that
work on screen lines, such as C-n and C-p, we will point these out.

20 GNU Emacs Manual

When line-move-visual is nil, you can also set the variable track-eol to a non-nil
value. Then C-n and C-p, when starting at the end of the logical line, move to the end of
the next logical line. Normally, track-eol is nil.

C-n normally stops at the end of the buffer when you use it on the last line in the buffer.
However, if you set the variable next-line-add-newlines to a non-nil value, C-n on the
last line of a buffer creates an additional line at the end and moves down into it.

4.3 FErasing Text

DEL

BACKSPACE
Delete the character before point, or the region if it is active (delete-backward-
char).

Delete Delete the character after point, or the region if it is active (delete-forward-
char).

C-d Delete the character after point (delete-char).

C-k Kill to the end of the line (kill-1line).

M-d Kill forward to the end of the next word (kill-word).

M-DEL

M-BACKSPACE
Kill back to the beginning of the previous word (backward-kill-word).

The DEL (delete-backward-char) command removes the character before point, moving
the cursor and the characters after it backwards. If point was at the beginning of a line, this
deletes the preceding newline, joining this line to the previous one.

If, however, the region is active, DEL instead deletes the text in the region. See Chapter 8
[Mark], page 51, for a description of the region.

On most keyboards, DEL is labeled BACKSPACE, but we refer to it as DEL in this manual.
(Do not confuse DEL with the Delete key; we will discuss Delete momentarily.) On some
text terminals, Emacs may not recognize the DEL key properly. See Section 34.2.8 [DEL
Does Not Delete], page 542, if you encounter this problem.

The Delete (delete-forward-char) command deletes in the opposite direction: it
deletes the character after point, i.e., the character under the cursor. If point was at the
end of a line, this joins the following line onto this one. Like DEL, it deletes the text in the
region if the region is active (see Chapter 8 [Mark], page 51).

C-d (delete-char) deletes the character after point, similar to Delete, but regardless
of whether the region is active.

See Section 9.1.1 [Deletion], page 58, for more detailed information about the above
deletion commands.

C-k (kill-line) erases (kills) a line at a time. If you type C-k at the beginning or
middle of a line, it kills all the text up to the end of the line. If you type C-k at the end of a
line, it joins that line with the following line.

See Chapter 9 [Killing], page 58, for more information about C-k and related commands.

Chapter 4: Basic Editing Commands 21

4.4 Undoing Changes
c-/

C-xu
C-_ Undo one entry of the undo records—usually, one command worth (undo). (The
first key might be unavailable on text-mode displays.)

Emacs records a list of changes made in the buffer text, so you can undo recent changes.
This is done using the undo command, which is bound to C-/ (as well as C-x u and C-_).
Normally, this command undoes the last change, moving point back to where it was before
the change. The undo command applies only to changes in the buffer; you can’t use it to
undo cursor motion.

On a terminal that supports the Control modifier on all other keys, the easiest way to
invoke undo is with C-/, since that doesn’t need the Shift modifier. On terminals which
allow only the ASCII control characters, C-/ does not exist, but for many of them C-/ still
works because it actually sends C-_ to Emacs, while many others allow you to omit the
Shift modifier when you type C-_ (in effect pressing C--), making that the most convenient
way to invoke undo.

Although each editing command usually makes a separate entry in the undo records, very
simple commands may be grouped together. Sometimes, an entry may cover just part of a
complex command.

If you repeat C-/ (or its aliases), each repetition undoes another, earlier change, back
to the limit of the undo information available. If all recorded changes have already been
undone, the undo command displays an error message and does nothing.

To learn more about the undo command, see Section 13.1 [Undo], page 131.

4.5 Files

Text that you insert in an Emacs buffer lasts only as long as the Emacs session. To keep
any text permanently, you must put it in a file.

Suppose there is a file named test.emacs in your home directory. To begin editing this
file in Emacs, type

C-x C-f test.emacs RET

Here the file name is given as an argument to the command C-x C-f (find-file). That
command uses the minibuffer to read the argument, and you type RET to terminate the
argument (see Chapter 5 [Minibuffer], page 27).

Emacs obeys this command by visiting the file: it creates a buffer, copies the contents of
the file into the buffer, and then displays the buffer for editing. If you alter the text, you
can save the new text in the file by typing C-x C-s (save-buffer). This copies the altered
buffer contents back into the file test.emacs, making them permanent. Until you save, the
changed text exists only inside Emacs, and the file test.emacs is unaltered.

To create a file, just visit it with C-x C-f as if it already existed. This creates an empty
buffer, in which you can insert the text you want to put in the file. Emacs actually creates
the file the first time you save this buffer with C-x C-s.

To learn more about using files in Emacs, see Chapter 15 [Files]|, page 146.

22 GNU Emacs Manual

4.6 Help

If you forget what a key does, you can find out by typing C-h k (describe-key), followed
by the key of interest; for example, C-h k C-n tells you what C-n does.

The prefix key C-h stands for “help”. The key F1 serves as an alias for C-h. Apart from
C-h k, there are many other help commands providing different kinds of help.

See Chapter 7 [Help], page 41, for details.

4.7 Blank Lines

Here are special commands and techniques for inserting and deleting blank lines.
C-o Insert a blank line after the cursor (open-line).
C-x C-o Delete all but one of many consecutive blank lines (delete-blank-lines).

We have seen how RET (newline) starts a new line of text. However, it may be easier to
see what you are doing if you first make a blank line and then insert the desired text into it.
This is easy to do using the key C-o (open-line), which inserts a newline after point but
leaves point in front of the newline. After C-o, type the text for the new line.

You can make several blank lines by typing C-o several times, or by giving it a numeric
argument specifying how many blank lines to make. See Section 4.10 [Arguments], page 24,
for how. If you have a fill prefix, the C-o command inserts the fill prefix on the new line, if
typed at the beginning of a line. See Section 22.6.3 [Fill Prefix], page 263.

The easy way to get rid of extra blank lines is with the command C-x C-o (delete-blank-
lines). If point lies within a run of several blank lines, C-x C-o deletes all but one of them.
If point is on a single blank line, C-x C-o deletes it. If point is on a nonblank line, C-x C-o
deletes all following blank lines, if any exists.

4.8 Continuation Lines

Sometimes, a line of text in the buffer—a logical line—is too long to fit in the window, and
Emacs displays it as two or more screen lines, or visual lines. This is called line wrapping
or continuation, and the long logical line is called a continued line. On a graphical display,
Emacs indicates line wrapping with small bent arrows in the left and right window fringes.
On a text terminal, Emacs indicates line wrapping by displaying a ‘\’ character at the right
margin.

Most commands that act on lines act on logical lines, not screen lines. For instance,
C-k kills a logical line. As described earlier, C-n (next-1line) and C-p (previous-line)
are special exceptions: they move point down and up, respectively, by one screen line (see
Section 4.2 [Moving Point], page 17).

Emacs can optionally truncate long logical lines instead of continuing them. This means
that every logical line occupies a single screen line; if it is longer than the width of the
window, the rest of the line is not displayed. On a graphical display, a truncated line is
indicated by a small straight arrow in the right fringe; on a text terminal, it is indicated by
a ‘¢’ character in the right margin. See Section 11.22 [Line Truncation|, page 99.

By default, continued lines are wrapped at the right window edge. Since the wrapping
may occur in the middle of a word, continued lines can be difficult to read. The usual

Chapter 4: Basic Editing Commands 23

solution is to break your lines before they get too long, by inserting newlines. If you prefer,
you can make Emacs insert a newline automatically when a line gets too long, by using
Auto Fill mode. See Section 22.6 [Filling], page 261.

Sometimes, you may need to edit files containing many long logical lines, and it may
not be practical to break them all up by adding newlines. In that case, you can use Visual
Line mode, which enables word wrapping: instead of wrapping long lines exactly at the
right window edge, Emacs wraps them at the word boundaries (i.e., space or tab characters)
nearest to the right window edge. Visual Line mode also redefines editing commands such
as C-a, C-n, and C-k to operate on screen lines rather than logical lines. See Section 11.23
[Visual Line Mode], page 100.

4.9 Cursor Position Information

Here are commands to get information about the size and position of parts of the buffer,
and to count words and lines.

M-x what-line
Display the line number of point.

M-x line-number-mode

M-x column-number-mode
Toggle automatic display of the current line number or column number. See
Section 11.19 [Optional Mode Line], page 96. If you want to have a line number
displayed before each line, see Section 11.24 [Display Custom], page 101.

M-= Display the number of lines, sentences, words, and characters that are present
in the region (count-words-region). See Chapter 8 [Mark|, page 51, for
information about the region.

M-x count-words
Display the number of lines, sentences, words, and characters that are present
in the buffer. If the region is active (see Chapter 8 [Mark], page 51), display the
numbers for the region instead.

C-x = Display the character code of character after point, character position of point,
and column of point (what-cursor-position).

M-x hl-line-mode
Enable or disable highlighting of the current line. See Section 11.21 [Cursor
Display], page 98.

M-x size-indication-mode
Toggle automatic display of the size of the buffer. See Section 11.19 [Optional
Mode Line|, page 96.

M-x what-line displays the current line number in the echo area. This command is
usually redundant because the current line number is shown in the mode line (see Section 1.3
[Mode Line], page 8). However, if you narrow the buffer, the mode line shows the line
number relative to the accessible portion (see Section 11.5 [Narrowing], page 80). By contrast,
what-1line displays both the line number relative to the narrowed region and the line number
relative to the whole buffer.

24 GNU Emacs Manual

M-= (count-words-region) displays a message reporting the number of lines, sentences,
words, and characters in the region (see Chapter 8 [Mark], page 51, for an explanation of
the region). With a prefix argument, C-u M-=, the command displays a count for the entire
buffer.

The command M-x count-words does the same job, but with a different calling convention.
It displays a count for the region if the region is active, and for the buffer otherwise.

The command C-x = (what-cursor-position) shows information about the current
cursor position and the buffer contents at that position. It displays a line in the echo area
that looks like this:

Char: c (99, #0143, #x63) point=28062 of 36168 (78%) column=53

After ‘Char:’, this shows the character in the buffer at point. The text inside the
parenthesis shows the corresponding decimal, octal and hex character codes; for more
information about how C-x = displays character information, see Section 19.1 [International
Chars], page 218. After ‘point=’ is the position of point as a character count (the first
character in the buffer is position 1, the second character is position 2, and so on). The
number after that is the total number of characters in the buffer, and the number in
parenthesis expresses the position as a percentage of the total. After ‘column=’ is the
horizontal position of point, in columns counting from the left edge of the window.

If the user option what-cursor-show-names is non-nil, the name of the character, as
defined by the Unicode Character Database, is shown as well. The part in parentheses would
then become:

(99, #0143, #x63, LATIN SMALL LETTER C)

If the buffer has been narrowed, making some of the text at the beginning and the end
temporarily inaccessible, C-x = displays additional text describing the currently accessible
range. For example, it might display this:

Char: C (67, #0103, #x43) point=252 of 889 (28%) <231-599> column=0
where the two extra numbers give the smallest and largest character position that point is
allowed to assume. The characters between those two positions are the accessible ones. See
Section 11.5 [Narrowing], page 80.

Related, but different feature is display-line-numbers-mode (see Section 11.24 [Display
Custom], page 101).

4.10 Numeric Arguments

In the terminology of mathematics and computing, argument means “data provided to a
function or operation”. You can give any Emacs command a numeric argument (also called
a prefix argument). Some commands interpret the argument as a repetition count. For
example, giving C-f an argument of ten causes it to move point forward by ten characters
instead of one. With these commands, no argument is equivalent to an argument of one,
and negative arguments cause them to move or act in the opposite direction.

The easiest way to specify a numeric argument is to type a digit and/or a minus sign
while holding down the Meta key. For example,

M-5 C-n

moves down five lines. The keys M-1, M-2, and so on, as well as M--, are bound to commands
(digit-argument and negative-argument) that set up an argument for the next command.
M-- without digits normally means —1.

Chapter 4: Basic Editing Commands 25

If you enter more than one digit, you need not hold down the Meta key for the second
and subsequent digits. Thus, to move down fifty lines, type

M-5 0 C-n
Note that this does not insert five copies of ‘0’ and move down one line, as you might
expect—the ‘0’ is treated as part of the prefix argument.

(What if you do want to insert five copies of ‘0’7 Type M-5 C-u 0. Here, C-u terminates
the prefix argument, so that the next keystroke begins the command that you want to
execute. Note that this meaning of C-u applies only to this case. For the usual role of C-u,
see below.)

Instead of typing M-1, M-2, and so on, another way to specify a numeric argument is to
type C-u (universal-argument) followed by some digits, or (for a negative argument) a
minus sign followed by digits. A minus sign without digits normally means —1.

C-u alone has the special meaning of “four times”: it multiplies the argument for the
next command by four. C-u C-u multiplies it by sixteen. Thus, C-u C-u C-f moves forward
sixteen characters. Other useful combinations are C-u C-n, C-u C-u C-n (move down a good
fraction of a screen), C-u C-u C-o (make sixteen blank lines), and C-u C-k (kill four lines).

You can use a numeric argument before a self-inserting character to insert multiple copies
of it. This is straightforward when the character is not a digit; for example, C-u 6 4 a inserts
64 copies of the character ‘a’. But this does not work for inserting digits; C-u 6 4 1 specifies
an argument of 641. You can separate the argument from the digit to insert with another
C-u; for example, C-u 6 4 C-u 1 does insert 64 copies of the character ‘1°.

Some commands care whether there is an argument, but ignore its value. For example,
the command M-q (fill-paragraph) fills text; with an argument, it justifies the text as well.
(See Section 22.6 [Filling], page 261, for more information on M-q.) For these commands, it
is enough to specify the argument with a single C-u.

Some commands use the value of the argument as a repeat count but do something special
when there is no argument. For example, the command C-k (kill-line) with argument n
kills n lines, including their terminating newlines. But C-k with no argument is special: it
kills the text up to the next newline, or, if point is right at the end of the line, it kills the
newline itself. Thus, two C-k commands with no arguments can kill a nonblank line, just
like C-k with an argument of one. (See Chapter 9 [Killing], page 58, for more information
on C-k.)

A few commands treat a plain C-u differently from an ordinary argument. A few others
may treat an argument of just a minus sign differently from an argument of —1. These
unusual cases are described when they come up; they exist to make an individual command
more convenient, and they are documented in that command’s documentation string.

We use the term prefix argument to emphasize that you type such arguments before the
command, and to distinguish them from minibuffer arguments (see Chapter 5 [Minibuffer],
page 27), which are entered after invoking the command.

On graphical displays, C-0, C-1, etc. act the same as M-0, M-1, etc.

4.11 Repeating a Command

Many simple commands, such as those invoked with a single key or with
M-x command-name RET, can be repeated by invoking them with a numeric argument that

26 GNU Emacs Manual

serves as a repeat count (see Section 4.10 [Arguments], page 24). However, if the command
you want to repeat prompts for input, or uses a numeric argument in another way, that
method won’t work.

The command C-x z (repeat) provides another way to repeat an Emacs command many
times. This command repeats the previous Emacs command, whatever that was. Repeating
a command uses the same arguments that were used before; it does not read new arguments
each time.

To repeat the command more than once, type additional z’s: each z repeats the command
one more time. Repetition ends when you type a character other than z or press a mouse
button.

For example, suppose you type C-u 2 0 C-d to delete 20 characters. You can repeat that
command (including its argument) three additional times, to delete a total of 80 characters,
by typing C-x z z z. The first C-x z repeats the command once, and each subsequent z
repeats it once again.

You can also activate repeat-mode which allows repeating commands bound to sequences
of two or more keys by typing a single character. For example, after typing C-x u (undo, see
Section 13.1 [Undo], page 131) to undo the most recent edits, you can undo many more edits
by typing u u u.... Similarly, type C-x 0 0 0. .. instead of C-x 0 C-x 0 C-x o... to switch
to the window several windows away. This works by entering a transient repeating mode
after you type the full key sequence that invokes the command; the single-key shortcuts are
shown in the echo area.

Only some commands support repetition in repeat-mode; type M-x describe-repeat-maps RET]]
to see which ones.

The single-character shortcuts enabled by the transient repeating mode do not need to
be identical: for example, after typing C-x {, either { or } or ~ or v, or any series that mixes
these characters in any order, will resize the selected window in respective ways. Similarly,
after M-g n or M-g p, typing any sequence of n and/or p in any mix will repeat next-error
and previous-error to navigate in a *compilation* or xgrepx buffer (see Section 24.2
[Compilation Mode], page 315).

Typing any key other than those defined to repeat the previous command exits the
transient repeating mode, and then the key you typed is executed normally. You can also
define a key which will exit the transient repeating mode without executing the key which
caused the exit. To this end, customize the user option repeat-exit-key to name a key; one
natural value is RET. Finally, it’s possible to break the repetition chain automatically after
some amount of idle time: customize the user option repeat-exit-timeout to specify the
idle time in seconds after which this transient repetition mode will be turned off automatically.

27

5 The Minibuffer

The minibuffer is where Emacs commands read complicated arguments, such as file names,
buffer names, Emacs command names, or Lisp expressions. We call it the “minibuffer”
because it’s a special-purpose buffer with a small amount of screen space. You can use the
usual Emacs editing commands in the minibuffer to edit the argument text.

5.1 Using the Minibuffer

When the minibuffer is in use, it appears in the echo area, with a cursor. The minibuffer
starts with a prompt, usually ending with a colon. The prompt states what kind of input is
expected, and how it will be used. The prompt is highlighted using the minibuffer-prompt
face (see Section 11.8 [Faces], page 82).

The simplest way to enter a minibuffer argument is to type the text, then RET to submit
the argument and exit the minibuffer. Alternatively, you can type C-g to exit the minibuffer
by canceling the command asking for the argument (see Section 34.1 [Quitting], page 537).

Sometimes, the prompt shows a default argument, inside parentheses before the colon.
This default will be used as the argument if you just type RET. For example, commands that
read buffer names usually show a buffer name as the default; you can type RET to operate
on that default buffer. You can customize how the default argument is shown with the user
option minibuffer-default-prompt-format.

If you enable Minibuffer Electric Default mode, a global minor mode, Emacs hides
the default argument as soon as you modify the contents of the minibuffer (since typing
RET would no longer submit that default). If you ever bring back the original minibuf-
fer text, the prompt again shows the default. To enable this minor mode, type M-x
minibuffer-electric-default-mode.

Since the minibuffer appears in the echo area, it can conflict with other uses of the echo
area. If an error message or an informative message is emitted while the minibuffer is active,
the message is displayed in brackets after the minibuffer text for a few seconds, or until you
type something; then the message disappears. While the minibuffer is in use, Emacs does
not echo keystrokes.

While using the minibuffer, you can switch to a different frame, perhaps to note text
you need to enter (see Section 18.7 [Frame Commands], page 202). By default, the active
minibuffer moves to this new frame. If you set the user option minibuffer-follows-
selected-frame to nil, then the minibuffer stays in the frame where you opened it, and
you must switch back to that frame in order to complete (or abort) the current command.
If you set that option to a value which is neither nil nor t, the minibuffer moves frame
only after a recursive minibuffer has been opened in the current command (see Section
“Recursive Mini” in elisp). This option is mainly to retain (approximately) the behavior
prior to Emacs 28.1. Note that the effect of the command, when you finally finish using the
minibuffer, always takes place in the frame where you first opened it. The sole exception is
that when that frame no longer exists, the action takes place in the currently selected frame.

5.2 Minibuffers for File Names

Commands such as C-x C-f (find-file) use the minibuffer to read a file name argument
(see Section 4.5 [Basic Files], page 21). When the minibuffer is used to read a file name, it

28 GNU Emacs Manual

typically starts out with some initial text ending in a slash. This is the default directory.
For example, it may start out like this:

Find file: /u2/emacs/src/

Here, ‘Find file: ’is the prompt and ‘/u2/emacs/src/’ is the default directory. If you now
type buffer.c as input, that specifies the file /u2/emacs/src/buffer.c. See Section 15.1
[File Names], page 146, for information about the default directory.

Alternative defaults for the file name you may want are available by typing M-n, see
Section 5.5 [Minibuffer History|, page 35.

You can specify a file in the parent directory with ..: /a/b/../foo.el is equivalent
to /a/foo.el. Alternatively, you can use M-DEL to kill directory names backwards (see
Section 22.1 [Words|, page 256).

To specify a file in a completely different directory, you can kill the entire default with C-a
C-k (see Section 5.3 [Minibuffer Edit], page 29). Alternatively, you can ignore the default,
and enter an absolute file name starting with a slash or a tilde after the default directory.
For example, you can specify /etc/termcap as follows:

Find file: /u2/emacs/src//etc/termcap

A double slash causes Emacs to ignore everything before the second slash in the pair. In the
example above, /u2/emacs/src/ is ignored, so the argument you supplied is /etc/termcap.
The ignored part of the file name is dimmed if the terminal allows it. (To disable this dimming,
turn off File Name Shadow mode with the command M-x file-name-shadow-mode.)

When completing remote file names (see Section 15.15 [Remote Files|, page 170), a double
slash behaves slightly differently: it causes Emacs to ignore only the file-name part, leaving
the rest (method, host and username, etc.) intact. Typing three slashes in a row ignores
everything in remote file names. See Section “File name completion” in The Tramp Manual.

Emacs interprets ~/ as your home directory. Thus, ~/foo/bar.txt specifies a file named
bar.txt, inside a directory named foo, which is in turn located in your home directory.
In addition, “user-id/ means the home directory of a user whose login name is user-id.
Any leading directory name in front of the ~ is ignored: thus, /u2/emacs/~/foo/bar.txt
is equivalent to “/foo/bar.txt.

On MS-Windows and MS-DOS systems, where a user doesn’t always have a home
directory, Emacs uses several alternatives. For MS-Windows, see Section H.5 [Windows
HOME], page 611; for MS-DOS, see Section “MS-DOS File Names” in the digital version of
the Emacs Manual. On these systems, the “user-id/ construct is supported only for the
current user, i.e., only if user-id is the current user’s login name.

To prevent Emacs from inserting the default directory when reading file names, change
the variable insert-default-directory to nil. In that case, the minibuffer starts out
empty. Nonetheless, relative file name arguments are still interpreted based on the same
default directory.

You can also enter remote file names in the minibuffer. See Section 15.15 [Remote Files],
page 170.

Chapter 5: The Minibuffer 29

5.3 Editing in the Minibuffer

The minibuffer is an Emacs buffer, albeit a peculiar one, and the usual Emacs commands
are available for editing the argument text. (The prompt, however, is read-only, and cannot
be changed.)

Since RET in the minibuffer submits the argument, you can’t use it to insert a newline.
You can do that with C-q C-j, which inserts a C-j control character, which is formally
equivalent to a newline character (see Section 4.1 [Inserting Text], page 16). Alternatively,
you can use the C-o (open-line) command (see Section 4.7 [Blank Lines|, page 22).

Inside a minibuffer, the keys TAB, SPC, and 7 are often bound to completion commands,
which allow you to easily fill in the desired text without typing all of it. See Section 5.4
[Completion], page 30. As with RET, you can use C-q to insert a TAB, SPC, or ‘?’ character.
If you want to make SPC and 7 insert normally instead of starting completion, you can put
the following in your init file:

(keymap-unset minibuffer-local-completion-map "SPC")
(keymap-unset minibuffer-local-completion-map "7")

For convenience, C-a (move-beginning-of-line) in a minibuffer moves point to the
beginning of the argument text, not the beginning of the prompt. For example, this allows
you to erase the entire argument with C-a C-k.

When the minibuffer is active, the echo area is treated much like an ordinary Emacs
window. For instance, you can switch to another window (with C-x o), edit text there, then
return to the minibuffer window to finish the argument. You can even kill text in another
window, return to the minibuffer window, and yank the text into the argument. There are
some restrictions on the minibuffer window, however: for instance, you cannot split it. See
Chapter 17 [Windows], page 187.

Normally, the minibuffer window occupies a single screen line. However, if you add two or
more lines’ worth of text into the minibuffer, it expands automatically to accommodate the
text. The variable resize-mini-windows controls the resizing of the minibuffer. The default
value is grow-only, which means the behavior we have just described. If the value is t, the
minibuffer window will also shrink automatically if you remove some lines of text from the
minibuffer, down to a minimum of one screen line. If the value is nil, the minibuffer window
never changes size automatically, but you can use the usual window-resizing commands on
it (see Chapter 17 [Windows|, page 187).

The variable max-mini-window-height controls the maximum height for resizing the
minibuffer window. A floating-point number specifies a fraction of the frame’s height; an
integer specifies the maximum number of lines; nil means do not resize the minibuffer
window automatically. The default value is 0.25.

The C-M-v command in the minibuffer scrolls the help text from commands that display
help text of any sort in another window. You can also scroll the help text with M-PageUp
and M-PageDown (or, equivalently, M-prior and M-next). This is especially useful with long
lists of possible completions. See Section 17.3 [Other Window], page 188.

Emacs normally disallows most commands that use the minibuffer while the minibuffer
is active. To allow such commands in the minibuffer, set the variable enable-recursive-
minibuffers to t. You might need also to enable minibuffer-depth-indicate-mode to
show the current recursion depth in the minibuffer prompt on recursive use of the minibuffer.

30 GNU Emacs Manual

When active, the minibuffer is usually in minibuffer-mode. This is an internal Emacs
mode without any special features.

When not active, the minibuffer is in minibuffer-inactive-mode, and clicking mouse-1
there shows the *Messages* buffer. If you use a dedicated frame for minibuffers, Emacs
also recognizes certain keys there, for example, n to make a new frame.

5.4 Completion

You can often use a feature called completion to help enter arguments. This means that
after you type part of the argument, Emacs can fill in the rest, or some of it, based on what
was typed so far.

When completion is available, certain keys (usually TAB, RET, and SPC) are rebound in
the minibuffer to special completion commands (see Section 5.4.2 [Completion Commands],
page 30). These commands attempt to complete the text in the minibuffer, based on a set
of completion alternatives provided by the command that requested the argument. You can
usually type ? to see a list of completion alternatives.

Although completion is usually done in the minibuffer, the feature is sometimes available
in ordinary buffers too. See Section 23.8 [Symbol Completion], page 307.

5.4.1 Completion Example

A simple example may help here. M-x uses the minibuffer to read the name of a command,
so completion works by matching the minibuffer text against the names of existing Emacs
commands. Suppose you wish to run the command auto-fill-mode. You can do that by
typing M-x auto-fill-mode RET, but it is easier to use completion.

If you type M-x a u TAB, the TAB looks for completion alternatives (in this case, com-
mand names) that start with ‘au’. There are several, including auto-fill-mode and
autoconf-mode, but they all begin with auto, so the ‘au’ in the minibuffer completes to
‘auto’. (More commands may be defined in your Emacs session. For example, if a command
called authorize-me was defined, Emacs could only complete as far as ‘aut’.)

If you type TAB again immediately, it cannot determine the next character; it could be
‘=’ ‘a’, or ‘c’. So it does not add any characters; instead, TAB displays a list of all possible
completions in another window.

Next, type =f. The minibuffer now contains ‘auto-f’, and the only command name that
starts with this is auto-fill-mode. If you now type TAB, completion fills in the rest of the
argument ‘auto-fill-mode’ into the minibuffer.

Hence, typing just a u TAB - £ TAB allows you to enter ‘auto-fill-mode’.

TAB also works while point is not at the end of the minibuffer. In that case, it will fill in
text both at point and at the end of the minibuffer. If you type M-x autocm, then press C-b
to move point before the ‘m’, you can type TAB to insert the text ‘onf-’ at point and ‘ode’
at the end of the minibuffer, so that the minibuffer contains ‘autoconf-mode’.

5.4.2 Completion Commands

Here is a list of the completion commands defined in the minibuffer when completion is
allowed.

Chapter 5: The Minibuffer 31

TAB Complete the text in the minibuffer as much as possible; if unable to complete,
display a list of possible completions (minibuffer-complete).

SPC Complete up to one word from the minibuffer text before point
(minibuffer-complete-word). This command is not available for arguments
that often include spaces, such as file names.

RET Submit the text in the minibuffer as the argument, possibly completing first
(minibuffer-complete-and-exit). See Section 5.4.3 [Completion Exit],
page 32.

? Display a list of completions (minibuffer-completion-help).

TAB (minibuffer-complete) is the most fundamental completion command. It searches
for all possible completions that match the existing minibuffer text, and attempts to complete
as much as it can. See Section 5.4.4 [Completion Styles], page 33, for how completion
alternatives are chosen.

SPC (minibuffer-complete-word) completes like TAB, but only up to the next hyphen
or space. If you have ‘auto-£f’ in the minibuffer and type SPC, it finds that the completion
is ‘auto-fill-mode’, but it only inserts ‘ill-’, giving ‘auto-fill-’". Another SPC at this
point completes all the way to ‘auto-fill-mode’.

If TAB or SPC is unable to complete, it displays a list of matching completion alter-
natives (if there are any) in another window. You can display the same list with ?
(minibuffer-completion-help). The following commands can be used with the completion
list:

M-DOWN

M-UP While in the minibuffer, M-DOWN (minibuffer-next-completion and M-UP
(minibuffer-previous-completion) navigate through the completions and
displayed in the completions buffer. When minibuffer-completion-auto-
choose is non-nil (which is the default), using these commands also inserts the
current completion candidate into the minibuffer. If minibuffer-completion-
auto-choose is nil, you can use the M-RET command (minibuffer-choose-
completion) to insert the completion candidates into the minibuffer. By default,
that exits the minibuffer, but with a prefix argument, C-u M-RET inserts the
currently active candidate without exiting the minibuffer.

M-v

PageUp

prior Typing M-v, while in the minibuffer, selects the window showing the completion
list (switch-to-completions). This paves the way for using the commands
below. PageUp, prior and M-g M-c do the same. You can also select the window
in other ways (see Chapter 17 [Windows]|, page 187).

RET

mouse-1

mouse-2 While in the completion list buffer, this chooses the completion at point
(choose-completion). With a prefix argument, C-u RET inserts the completion
at point into the minibuffer, but doesn’t exit the minibuffer—thus, you can
change your mind and choose another candidate.

32

TAB
RIGHT

S-TAB
LEFT

GNU Emacs Manual

While in the completion list buffer, these keys move point to the following
completion alternative (next-completion).

While in the completion list buffer, these keys move point to the previous
completion alternative (previous-completion).

While in the completion list buffer, this quits the window showing it and selects
the window showing the minibuffer (quit-window).

While in the completion list buffer, kill it and delete the window showing it
(kill-current-buffer).

5.4.3 Completion Exit

When a command reads an argument using the minibuffer with completion, it also con-
trols what happens when you type RET (minibuffer-complete-and-exit) to submit the
argument. There are four types of behavior:

e Strict completion accepts only exact completion matches. Typing RET exits the mini-

buffer only if the minibuffer text is an exact match, or completes to one. Otherwise,
Emacs refuses to exit the minibuffer; instead it tries to complete, and if no completion
can be done it momentarily displays ‘[No match]’ after the minibuffer text. (You can
still leave the minibuffer by typing C-g to cancel the command.)

An example of a command that uses this behavior is M-x, since it is meaningless for it
to accept a non-existent command name.

Cautious completion is like strict completion, except RET exits only if the text is already
an exact match. If the text completes to an exact match, RET performs that completion
but does not exit yet; you must type a second RET to exit.

Cautious completion is used for reading file names for files that must already exist, for
example.

Permissive completion allows any input; the completion candidates are just suggestions.
Typing RET does not complete, it just submits the argument as you have entered it.

Permissive completion with confirmation is like permissive completion, with an exception:
if you typed TAB and this completed the text up to some intermediate state (i.e., one that
is not yet an exact completion match), typing RET right afterward does not submit the
argument. Instead, Emacs asks for confirmation by momentarily displaying ‘ [Confirm]’
after the text; type RET again to confirm and submit the text. This catches a common
mistake, in which one types RET before realizing that TAB did not complete as far as
desired.

You can tweak the confirmation behavior by customizing the variable
confirm-nonexistent-file-or-buffer. The default value, after-completion,
gives the behavior we have just described. If you change it to nil, Emacs does not ask
for confirmation, falling back on permissive completion. If you change it to any other

Chapter 5: The Minibuffer 33

non-nil value, Emacs asks for confirmation whether or not the preceding command
was TAB.

This behavior is used by most commands that read file names, like C-x C-f, and
commands that read buffer names, like C-x b.

5.4.4 How Completion Alternatives Are Chosen

Completion commands work by narrowing a large list of possible completion alternatives
to a smaller subset that matches what you have typed in the minibuffer. In Section 5.4.1
[Completion Example], page 30, we gave a simple example of such matching. The procedure
of determining what constitutes a match is quite intricate. Emacs attempts to offer plausible
completions under most circumstances.

Emacs performs completion using one or more completion styles—sets of criteria for
matching minibuffer text to completion alternatives. During completion, Emacs tries each
completion style in turn. If a style yields one or more matches, that is used as the list of
completion alternatives. If a style produces no matches, Emacs falls back on the next style.

The list variable completion-styles specifies the completion styles to use. Each list
element is the name of a completion style (a Lisp symbol). The available style symbols are
stored in the variable completion-styles-alist (see Section “Completion Variables” in
The Emacs Lisp Reference Manual). The default completion styles are (in order):

basic A matching completion alternative must have the same beginning as the text in
the minibuffer before point. Furthermore, if there is any text in the minibuffer
after point, the rest of the completion alternative must contain that text as a
substring.

partial-completion
This aggressive completion style divides the minibuffer text into words separated
by hyphens or spaces, and completes each word separately. (For example, when
completing command names, ‘em-1-m’ completes to ‘emacs-1lisp-mode’.)
Furthermore, a ‘*’ in the minibuffer text is treated as a wildcard—it matches any
string of characters at the corresponding position in the completion alternative.

emacs22 This completion style is similar to basic, except that it ignores the text in the
minibuffer after point. It is so-named because it corresponds to the completion
behavior in Emacs 22.

The following additional completion styles are also defined, and you can add them to
completion-styles if you wish (see Chapter 33 [Customization], page 501):

substring
A matching completion alternative must contain the text in the minibuffer before
point, and the text in the minibuffer after point, as substrings (in that same
order).

Thus, if the text in the minibuffer is ‘foobar’, with point between ‘foo’ and
‘bar’, that matches ‘afoobbarc’, where a, b, and ¢ can be any string including
the empty string.

flex This aggressive completion style, also known as flx or fuzzy or scatter
completion, attempts to complete using in-order substrings. For example, it can
consider ‘foo’ to match ‘frodo’ or ‘fbarbazoo’.

34 GNU Emacs Manual

initials This very aggressive completion style attempts to complete acronyms and
initialisms. For example, when completing command names, it matches ‘1ch’ to
‘list-command-history’.

There is also a very simple completion style called emacs21. In this style, if the text in the
minibuffer is ‘foobar’, only matches starting with ‘foobar’ are considered.

You can use different completion styles in different situations, by setting the variable
completion-category-overrides. For example, the default setting says to use only basic
and substring completion for buffer names.

5.4.5 Completion Options

Case is significant when completing case-sensitive arguments, such as command names. For
example, when completing command names, ‘AU’ does not complete to ‘auto-fill-mode’.
Case differences are ignored when completing arguments in which case does not matter.

When completing file names, case differences are ignored if the variable read-file-
name-completion-ignore-case is non-nil. The default value is nil on systems that have
case-sensitive file-names, such as GNU/Linux; it is non-nil on systems that have case-
insensitive file-names, such as Microsoft Windows. When completing buffer names, case
differences are ignored if the variable read-buffer-completion-ignore-case is non-nil;
the default is nil.

When completing file names, Emacs usually omits certain alternatives that are considered
unlikely to be chosen, as determined by the list variable completion-ignored-extensions.
Each element in the list should be a string; any file name ending in such a string is ignored as
a completion alternative. Any element ending in a slash (/) represents a subdirectory name.
The standard value of completion-ignored-extensions has several elements including
".o", ".elc", and "~". For example, if a directory contains ‘foo.c’ and ‘foo.elc’, ‘foo’
completes to ‘foo.c’. However, if all possible completions end in otherwise-ignored strings,
they are not ignored: in the previous example, ‘foo.e’ completes to ‘foo.elc’. Emacs
disregards completion-ignored-extensions when showing completion alternatives in the
completion list.

Shell completion is an extended version of filename completion, see Section 31.5.7 [Shell
Options], page 469.

If completion-auto-help is set to nil, the completion commands never display the
completion list buffer; you must type ? to display the list. If the value is 1azy, Emacs only
shows the completion list buffer on the second attempt to complete. In other words, if there
is nothing to complete, the first TAB echoes ‘Next char not unique’; the second TAB shows
the completion list buffer. If the value is always, the completion list buffer is always shown
when completion is attempted.

The display of the completion list buffer after it is shown for the first time is also controlled
by completion-auto-help. If the value is t or lazy, the window showing the completions
pops down when Emacs is able to complete (and may pop up again if Emacs is again unable
to complete after you type some more text); if the value is always, the window pops down
only when you exit the completion. The value visible is a hybrid: it behaves like t when it
decides whether to pop up the window showing the completion list buffer, and like always
when it decides whether to pop it down.

Chapter 5: The Minibuffer 35

Emacs can optionally select the window showing the completions when it shows that
window. To enable this behavior, customize the user option completion-auto-select to t,
which changes the behavior of TAB when Emacs pops up the completions: pressing TAB will
switch to the completion list buffer, and you can then move to a candidate by cursor motion
commands and select it with RET. If the value of completion-auto-select is second-tab,
then the first TAB will pop up the completions list buffer, and the second one will switch to
it.

If completion-cycle-threshold is non-nil, completion commands can cycle through
completion alternatives. Normally, if there is more than one completion alternative for
the text in the minibuffer, a completion command completes up to the longest common
substring. If you change completion-cycle-threshold to t, the completion command
instead completes to the first of those completion alternatives; each subsequent invocation
of the completion command replaces that with the next completion alternative, in a cyclic
manner. If you give completion-cycle-threshold a numeric value n, completion commands
switch to this cycling behavior only when there are n or fewer alternatives.

When displaying completions, Emacs will normally pop up a new buffer to display
the completions. The completions will by default be sorted horizontally, using as many
columns as will fit in the window-width, but this can be changed by customizing the
completions-format user option. If its value is vertical, Emacs will sort the completions
vertically instead, and if it’s one-column, Emacs will use just one column.

The completions-sort user option controls the order in which the completions are sorted
in the ‘*Completions*’ buffer. The default is alphabetical, which sorts in alphabetical
order. The value nil disables sorting. The value can also be a function, which will be called
with the list of completions, and should return the list in the desired order.

When completions-max-height is non-nil, it limits the size of the completions window.
It is specified in lines and include mode, header line and a bottom divider, if any. For a more
complex control of the Completion window display properties, you can use display-buffer-
alist (see Section “Action Alists for Buffer Display” in The Emacs Lisp Reference Manual).

The variable completions-header-format is a format spec string to control the infor-
mative line shown before the completions list of candidates. If it contains a ‘%s’ construct,
that get replaced by the number of completions shown in the completion list buffer. To
suppress the display of the heading line, customize this variable to nil. The string that is
the value of this variable can have text properties to change the visual appearance of the
heading line; some useful properties face or cursor-intangible (see Section “Properties
with Special Meanings” in The Emacs Lisp Reference Manual).

When completions-highlight-face names a face, the current completion candidate,
the one that will be selected by typing RET or clicking the mouse, will be highlighted using
that face. The default value of this variable is completions-highlight; the value is nil
disables this highlighting. This feature uses the special text property cursor-face.

5.5 Minibuffer History

Everything you type in the minibuffer is saved in a minibuffer history list so you can easily
use it again later. This includes completion candidates (such as file names, buffer names,
command names, etc.) and any other kind of minibuffer input. You can use the following
commands to quickly fetch an earlier or alternative response into the minibuffer:

36 GNU Emacs Manual

M-p Move to the previous item in the minibuffer history, an earlier argument
(previous-history-element).

M-n Move to the next item in the minibuffer history (next-history-element).
UP
DOWN Like M-p and M-n, but move to the previous or next line of a multi-line item before

going to the previous history item (previous-line-or-history-element and
next-line-or-history-element) .

M-r regexp RET
Move to an earlier item in the minibuffer history that matches regexp
(previous-matching-history-element).

M-s regexp RET
Move to a later item in the minibuffer history that matches regexp
(next-matching-history-element).

While in the minibuffer, M-p (previous-history-element) moves through the minibuffer
history list, one item at a time. Each M-p fetches an earlier item from the history list into
the minibuffer, replacing its existing contents. Typing M-n (next-history-element) moves
through the minibuffer history list in the opposite direction, fetching later entries into the
minibuffer.

If you type M-n in the minibuffer when there are no later entries in the minibuffer
history (e.g., if you haven’t previously typed M-p), Emacs tries fetching from a list of default
arguments: values that you are likely to enter. You can think of this as moving through the
“future history”.

The “future history” for file names includes several possible alternatives you may find
useful, such as the file name or the URL at point in the current buffer. The defaults put into
the “future history” in this case are controlled by the functions mentioned in the value of the
option file-name-at-point-functions. By default, its value invokes the ffap package
(see Section 31.12.5 [FFAP], page 489), which tries to guess the default file or URL from the
text around point. To disable this guessing, customize the option to a nil value, then the
“future history” of file names will include only the file, if any, visited by the current buffer,
and the default directory.

The arrow keys UP and DOWN work like M-p and M-n, but if the current history item is
longer than a single line, they allow you to move to the previous or next line of the current
history item before going to the previous or next history item.

If you edit the text inserted by the M-p or M-n minibuffer history commands, this does
not change its entry in the history list. However, the edited argument does go at the end of
the history list when you submit it.

You can use M-r (previous-matching-history-element) to search through older ele-
ments in the history list, and M-s (next-matching-history-element) to search through
newer entries. Each of these commands asks for a regular expression as an argument, and
fetches the first matching entry into the minibuffer. See Section 12.6 [Regexps], page 114,
for an explanation of regular expressions. A numeric prefix argument n means to fetch the
nth matching entry. These commands are unusual, in that they use the minibuffer to read
the regular expression argument, even though they are invoked from the minibuffer. An

Chapter 5: The Minibuffer 37

upper-case letter in the regular expression makes the search case-sensitive (see Section 12.9
[Lax Search], page 119).

You can also search through the history using an incremental search. See Section 12.1.7
[Isearch Minibuffer], page 111.

Emacs keeps separate history lists for several different kinds of arguments. For example,
there is a list for file names, used by all the commands that read file names. Other history
lists include buffer names, command names (used by M-x), and command arguments (used
by commands like query-replace).

The variable history-length specifies the maximum length of a minibuffer history list;
adding a new element deletes the oldest element if the list gets too long. If the value is t,
there is no maximum length.

The variable history-delete-duplicates specifies whether to delete duplicates in
history. If it is non-nil, adding a new element deletes from the list all other elements that
are equal to it. The default is nil.

5.6 Repeating Minibuffer Commands

Every command that uses the minibuffer once is recorded on a special history list, the
command history, together with the values of its arguments, so that you can repeat the entire
command. In particular, every use of M-x is recorded there, since M-x uses the minibuffer to
read the command name.

C-x ESC ESC
Re-execute a recent minibuffer command from the command history
(repeat-complex-command).

M-x list-command-history
Display the entire command history, showing all the commands C-x ESC ESC
can repeat, most recent first.

C-x ESC ESC re-executes a recent command that used the minibuffer. With no argument,
it repeats the last such command. A numeric argument specifies which command to repeat;
1 means the last one, 2 the previous, and so on.

C-x ESC ESC works by turning the previous command into a Lisp expression and then
entering a minibuffer initialized with the text for that expression. Even if you don’t know
Lisp, it will probably be obvious which command is displayed for repetition. If you type just
RET, that repeats the command unchanged. You can also change the command by editing
the Lisp expression before you execute it. The executed command is added to the front of
the command history unless it is identical to the most recent item.

Once inside the minibuffer for C-x ESC ESC, you can use the usual minibuffer history
commands (see Section 5.5 [Minibuffer History|, page 35) to move through the history list.
After finding the desired previous command, you can edit its expression as usual and then
execute it by typing RET.

Incremental search does not, strictly speaking, use the minibuffer. Therefore, although
it behaves like a complex command, it normally does not appear in the history list for
C-x ESC ESC. You can make incremental search commands appear in the history by setting
isearch-resume-in-command-history to a non-nil value. See Section 12.1 [Incremental
Search], page 104.

38 GNU Emacs Manual

The list of previous minibuffer-using commands is stored as a Lisp list in the vari-
able command-history. Each element is a Lisp expression that describes one command
and its arguments. Lisp programs can re-execute a command by calling eval with the
command-history element.

5.7 Entering passwords

Sometimes, you may need to enter a password into Emacs. For instance, when you tell
Emacs to visit a file on another machine via a network protocol such as FTP, you often
need to supply a password to gain access to the machine (see Section 15.15 [Remote Files],
page 170).

Entering a password is similar to using a minibuffer. Emacs displays a prompt in the
echo area (such as ‘Password: ’); after you type the required password, press RET to submit
it. To prevent others from seeing your password, every character you type is displayed as an
asterisk (‘*’) instead of its usual form.

Most of the features and commands associated with the minibuffer cannot be used when
entering a password. There is no history or completion, and you cannot change windows or
perform any other action with Emacs until you have submitted the password.

While you are typing the password, you may press DEL to delete backwards, removing
the last character entered. C-u deletes everything you have typed so far. C-g quits the
password prompt (see Section 34.1 [Quitting], page 537). C-y inserts the current kill into
the password (see Chapter 9 [Killing], page 58). You may type either RET or ESC to submit
the password. Any other self-inserting character key inserts the associated character into
the password, and all other input is ignored.

5.8 Yes or No Prompts

An Emacs command may require you to answer a yes-or-no question during the course of its
execution. Such queries come in two main varieties.

For the first type of yes-or-no query, the prompt ends with ‘(y or n)’. You answer the
query by typing a single key, either ‘y’ or ‘n’, which immediately exits the minibuffer and
delivers the response. For example, if you type C-x C-w (write-file) to save a buffer, and
enter the name of an existing file, Emacs issues a prompt like this:

File ‘foo.el’ exists; overwrite? (y or n)

The second type of yes-or-no query is typically employed if giving the wrong answer
would have serious consequences; it thus features a longer prompt ending with ‘(yes or
no)’. For example, if you invoke C-x k (kill-buffer) on a file-visiting buffer with unsaved
changes, Emacs activates the minibuffer with a prompt like this:

Buffer foo.el modified; kill anyway? (yes or no)
To answer, you must type ‘yes’ or ‘no’ into the minibuffer, followed by RET.

With both types of yes-or-no query the minibuffer behaves as described in the previous
sections; you can recenter the selected window with C-1, scroll that window (C-v or PageDown
scrolls forward, M-v or PageUp scrolls backward), switch to another window with C-x o,
use the history commands M-p and M-n, etc. Type C-g to dismiss the query, and quit the
minibuffer and the querying command (see Section 34.1 [Quitting], page 537).

39

6 Running Commands by Name

Every Emacs command has a name that you can use to run it. For convenience, many
commands also have key bindings. You can run those commands by typing the keys, or run
them by name. Most Emacs commands have no key bindings, so the only way to run them
is by name. (See Section 33.3 [Key Bindings|, page 520, for how to set up key bindings.)

By convention, a command name consists of one or more words, separated by hyphens;
for example, auto-fill-mode or manual-entry. Command names mostly use complete
English words to make them easier to remember.

To run a command by name, start with M-x, type the command name, then terminate it
with RET. M-x uses the minibuffer to read the command name. The string ‘M-x’ appears at
the beginning of the minibuffer as a prompt to remind you to enter a command name to be
run. RET exits the minibuffer and runs the command. See Chapter 5 [Minibuffer], page 27,
for more information on the minibuffer.

You can use completion to enter the command name. For example, to invoke the command
forward-char, you can type

M-x forward-char RET
or
M-x forw TAB c RET

Note that forward-char is the same command that you invoke with the key C-f. The
existence of a key binding does not stop you from running the command by name.

When M-x completes on commands, it ignores the commands that were declared obsolete
in any previous major version of Emacs; for these, you will have to type their full name.
Commands that were marked obsolete in the current version of Emacs are listed. (Obsolete
commands are those for which newer, better alternatives exist, and which are slated for
removal in some future Emacs release.)

In addition, M-x completion can exclude commands that are not relevant to, and generally
cannot work with, the current buffer’s major mode (see Section 20.1 [Major Modes], page 243)
and minor modes (see Section 20.2 [Minor Modes], page 244). By default, no commands
are excluded, but you can customize the option read-extended-command-predicate to
exclude those irrelevant commands from completion results.

Conversely, Emacs can exclude all commands except those that are particularly relevant
to the current buffer. The M-S-x (that’s “meta shift x”) command works just like M-x, but
instead of listing all (or most) of the commands Emacs knows about, it will only list the
commands that have been marked as “belonging” to the current major mode, or any enabled
minor modes.

To cancel the M-x and not run a command, type C-g instead of entering the command
name. This takes you back to command level.

To pass a numeric argument to the command you are invoking with M-x, specify the
numeric argument before M-x. The argument value appears in the prompt while the command
name is being read, and finally M-x passes the argument to that command. For example, to
pass the numeric argument of 42 to the command forward-char you can type C-u 42 M-x
forward-char RET.

40 GNU Emacs Manual

When the command you run with M-x has a key binding, Emacs mentions this in the echo
area after running the command. For example, if you type M-x forward-word, the message
says that you can run the same command by typing M-f. You can turn off these messages by
setting the variable suggest-key-bindings to nil. The value of suggest-key-bindings
can also be a number, in which case Emacs will show the binding for that many seconds
before removing it from display. The default behavior is to display the binding for 2 seconds.

Additionally, when suggest-key-bindings is non-nil, the completion list of M-x shows
equivalent key bindings for all commands that have them.

Commands that don’t have key bindings, can still be invoked after typing less than
their full name at the ‘M-x’ prompt. Emacs mentions such shorthands in the echo area
if they are significantly shorter than the full command name, and extended-command-
suggest-shorter is non-nil. The setting of suggest-key-bindings affects these hints as
well.

In this manual, when we speak of running a command by name, we often omit the
RET that terminates the name. Thus we might say M-x auto-fill-mode rather than
M-x auto-fill-mode RET. We mention the RET only for emphasis, such as when the com-
mand is followed by arguments.

M-x works by running the command execute-extended-command, which is responsible
for reading the name of another command and invoking it.

41

7 Help

Emacs provides a wide variety of help commands, all accessible through the prefix key C-h
(or, equivalently, the function key F1). These help commands are described in the following
sections. You can also type C-h C-h to view a list of help commands (help-for-help). You
can scroll the list with SPC and DEL, then type the help command you want. To cancel, type
C-g.

Many help commands display their information in a special help buffer. In this buffer,
you can type SPC and DEL to scroll and type RET to follow hyperlinks. See Section 7.4 [Help
Mode], page 47.

By default, help commands display the help buffer in a separate window without selecting
that window. The variable help-window-select controls this: its default value is nil; if it’s
customized to the value t, the help window is unconditionally selected by help commands,
and if its value is other, the help window is selected only if there are more than two windows
on the selected frame.

Conversely, many commands in the ‘*Help#*’ buffer will pop up a new window to display
the results. For instance, clicking on the link to show the source code, or using the i command
to display the manual entry, will (by default) pop up a new window. If help-window-keep-
selected is changed to non-nil, the window displaying the ‘*Help*’ buffer will be reused
instead.

If you are looking for a certain feature, but don’t know what it is called or where to
look, we recommend three methods. First, try an apropos command, then try searching
the manual index, then look in the FAQ and the package keywords, and finally try listing
external packages.

C-h a topics RET
This searches for commands whose names match the argument topics. The
argument can be a keyword, a list of keywords, or a regular expression (see
Section 12.6 [Regexps]|, page 114). See Section 7.3 [Apropos|, page 45.

C-h i d m emacs RET i topic RET
This searches for topic in the indices of the Emacs Info manual, displaying the
first match found. Press , to see subsequent matches. You can use a regular
expression as topic.

C-h i d m emacs RET s topic RET
Similar, but searches the text of the manual rather than the indices.

C-h C-f This displays the Emacs FAQ, using Info.

C-hp This displays the available Emacs packages based on keywords. See Section 7.5
[Package Keywords], page 48.

M-x list-packages
This displays a list of external packages. See Chapter 32 [Packages|, page 492.

C-h or F1 mean “help” in various other contexts as well. For instance, you can type them
after a prefix key to view a list of the keys that can follow the prefix key. (You can also use
7 in this context. A few prefix keys don’t support C-h or 7 in this way, because they define
other meanings for those inputs, but they all support F1.)

42 GNU Emacs Manual

Here is a summary of help commands for accessing the built-in documentation. Most of
these are described in more detail in the following sections.

C-h a topics RET
Display a list of commands whose names match topics (apropos-command). See
Section 7.3 [Apropos|, page 45.

C-h b Display all active key bindings; minor mode bindings first, then those of the
major mode, then global bindings (describe-bindings). See Section 7.7 [Misc
Help], page 49.

C-h C—q Toggle display of a window showing popular commands and their key bindings.
See Section 7.7 [Misc Help], page 49.

C-h ¢ key Show the name of the command that the key sequence key is bound to
(describe-key-briefly). Here c stands for “character”. For more extensive
information on key, use C-h k. See Section 7.1 [Key Help]|, page 44.

C-h d topics RET
Display the commands and variables whose documentation matches topics
(apropos-documentation). See Section 7.3 [Apropos|, page 45.

C-h e Display the *Messages* buffer (view-echo-area-messages). See Section 7.7
[Misc Help|, page 49.

C-h £ function RET
Display documentation on the Lisp function named function
(describe-function). Since commands are Lisp functions, this
works for commands too, but you can also use C-h x. See Section 7.2 [Name
Help], page 44.

C-hh Display the HELLO file, which shows examples of various character sets.

C-hi Run Info, the GNU documentation browser (info). The Emacs manual is
available in Info. See Section 7.7 [Misc Help], page 49.

C-h k key Display the name and documentation of the command that key runs
(describe-key). See Section 7.1 [Key Help], page 44.

C-h1 Display a description of your last 300 keystrokes (view-lossage). See Section 7.7
[Misc Help|, page 49.

C-hm Display documentation of the current major mode and minor modes
(describe-mode). See Section 7.7 [Misc Help|, page 49.

C-hn Display news of recent Emacs changes (view-emacs-news). See Section 7.8
[Help Files], page 50.

C-h o symbol
Display documentation of the Lisp symbol named symbol (describe-symbol).
This will show the documentation of all kinds of symbols: functions, variables,
and faces. See Section 7.2 [Name Help]|, page 44.

C-hp Find packages by topic keyword (finder-by-keyword). See Section 7.5 [Package
Keywords|, page 48. This lists packages using a package menu buffer. See
Chapter 32 [Packages|, page 492.

Chapter 7: Help 43

C-h P package RET
Display documentation about the specified package (describe-package). See
Section 7.5 [Package Keywords]|, page 48.

C-hr Display the Emacs manual in Info (info-emacs-manual).

C-hs Display the contents of the current syntax table (describe-syntax). See
Section 7.7 [Misc Help], page 49. The syntax table says which characters are
opening delimiters, which are parts of words, and so on. See Section “Syntax
Tables” in The Emacs Lisp Reference Manual, for details.

C-h t Enter the Emacs interactive tutorial (help-with-tutorial).

C-h v var RET
Display the documentation of the Lisp variable var (describe-variable). See
Section 7.2 [Name Help], page 44.

C-h w command RET
Show which keys run the command named command (where-is). See Section 7.1
[Key Help], page 44.

C-h x command RET
Display documentation on the named command (describe-command). See
Section 7.2 [Name Help], page 44.

C-h C coding RET
Describe the coding system coding (describe-coding-system). See
Section 19.5 [Coding Systems|, page 225.

C-h C RET Describe the coding systems currently in use.

C-h F command RET
Enter Info and go to the node that documents the Emacs command command
(Info-goto-emacs-command-node). See Section 7.2 [Name Help], page 44.

C-h I method RET
Describe the input method method (describe-input-method). See Section 19.4
[Select Input Method], page 224.

C-h K key Enter Info and go to the node that documents the key sequence key (Info-goto-
emacs-key-command-node). See Section 7.1 [Key Help|, page 44.

C-h L language-env RET
Display information on the character sets, coding systems, and input
methods used in language environment language-env (describe-language-
environment). See Section 19.2 [Language Environments], page 220.

C-h S symbol RET
Display the Info documentation on symbol symbol according to the programming
language you are editing (info-lookup-symbol). See Section 7.7 [Misc Help],
page 49.

C-h . Display the help message for a special text area, if point is in one
(display-local-help). (These include, for example, links in *Help* buffers.)
See Section 7.9 [Help Echo], page 50. If you invoke this command with a prefix

44 GNU Emacs Manual

argument, C-u C-h ., and point is on a button or a widget, this command will
pop a new buffer that describes that button/widget.

7.1 Documentation for a Key

The help commands to get information about a key sequence are C-h ¢ (describe-key-
briefly) and C-h k (describe-key).

C-h c key displays in the echo area the name of the command that key is bound to. For
example, C-h ¢ C-f displays ‘forward-char’.

C-h k key is similar but gives more information: it displays a help buffer containing the
command’s documentation string, which describes exactly what the command does.

C-h K key displays the section of the Emacs manual that describes the command corre-
sponding to key.

C-h c, C-h k and C-h K work for any sort of key sequences, including function keys,
menus, and mouse events (except that C-h ¢ ignores mouse movement events). For instance,
after C-h k you can select a menu item from the menu bar, to view the documentation string
of the command it runs.

C-h w command RET lists the keys that are bound to command. It displays the list in the
echo area. If it says the command is not on any key, that means you must use M-x to run it.
C-h w runs the command where-is.

Some modes in Emacs use various buttons (see Section “Buttons” in The Emacs Lisp
Reference Manual) and widgets (see Section “Introduction” in Emacs Widgets) that can
be clicked to perform some action. To find out what function is ultimately invoked by
these buttons, Emacs provides the button-describe and widget-describe commands,
that should be run with point over the button.

7.2 Help by Command or Variable Name

C-h x command RET (describe-command) displays the documentation of the named
command, in a window. For example,

C-h x auto-fill-mode RET

displays the documentation of auto-fill-mode. This is how you would get the documenta-
tion of a command that is not bound to any key (one which you would normally run using
M-x).

C-h f function RET (describe-function) displays the documentation of Lisp function.
This command is intended for Lisp functions that you use in a Lisp program. For example, if
you have just written the expression (make-vector len) and want to check that you are using
make-vector properly, type C-h f make-vector RET. Additionally, since all commands are
Lisp functions, you can also use this command to view the documentation of any command.

If you type C-h £ RET, it describes the function called by the innermost Lisp expression
in the buffer around point, provided that function name is a valid, defined Lisp function.
(That name appears as the default while you enter the argument.) For example, if point is
located following the text ‘(make-vector (car x)’, the innermost list containing point is
the one that starts with ‘(make-vector’, so C-h f RET describes the function make-vector.

C-h £ is also useful just to verify that you spelled a function name correctly. If the
minibuffer prompt for C-h £ shows the function name from the buffer as the default, it

Chapter 7: Help 45

means that name is defined as a Lisp function. Type C-g to cancel the C-h £ command if
you don’t really want to view the documentation.

If you request help for an autoloaded function whose autoload form (see Section “Au-
toload” in The Emacs Lisp Reference Manual) doesn’t provide a doc string, the *Help*
buffer won’t have any doc string to display. In that case, if help-enable-symbol-autoload
is non-nil, Emacs will try to load the file in which the function is defined to see whether
there’s a doc string there.

You can get an overview of functions relevant for a particular topic by using the M-x
shortdoc command. This will prompt you for an area of interest, e.g., string, and pop
you to a buffer where many of the functions relevant for handling strings are listed.

C-h v (describe-variable) is like C-h f but describes Lisp variables instead of Lisp
functions. Its default is the Lisp symbol around or before point, if that is the name of a
defined Lisp variable. See Section 33.2 [Variables], page 509.

Help buffers that describe Emacs variables and functions normally have hyperlinks to
the corresponding source code, if you have the source files installed (see Section 31.12
[Hyperlinking], page 487).

To find a command’s documentation in a manual, use C-h F (Info-goto-emacs-command-
node). This knows about various manuals, not just the Emacs manual, and finds the right
one.

C-h o (describe-symbol) is like C-h f and C-h v, but it describes any symbol, be it a
function, a variable, or a face. If the symbol has more than one definition, like it has both
definition as a function and as a variable, this command will show the documentation of all
of them, one after the other.

If the completions-detailed user option is non-nil, some commands provide details
about the possible values when displaying completions. For instance, C-h o TAB will then
include the first line of the doc string, and will also say whether each symbol is a function or
a variable (and so on). Which details are included varies depending on the command used.

7.3 Apropos

The apropos commands answer questions like, “What are the commands for working with
files?” More precisely, you specify your query as an apropos pattern, which is either a word,
a list of words, or a regular expression.

Each of the following apropos commands reads an apropos pattern in the minibuffer,
searches for items that match the pattern, and displays the results in a different window.

C-h a Search for commands (apropos-command). With a prefix argument, search for
noninteractive functions too.

M-x apropos
Search for functions and variables. Both interactive functions (commands) and
noninteractive functions can be found by this.

M-x apropos—-user-option

Search for user-customizable variables. With a prefix argument, search for
non-customizable variables too.

46 GNU Emacs Manual

M-x apropos-variable
Search for variables. With a prefix argument, search for customizable variables
only.

M-x apropos-local-variable
Search for buffer-local variables.

M-x apropos-value
Search for variables whose values match the specified pattern. With a prefix
argument, search also for functions with definitions matching the pattern, and
Lisp symbols with properties matching the pattern.

M-x apropos-local-value
Search for buffer-local variables whose values match the specified pattern.

C-h d Search for functions and variables whose documentation strings match the
specified pattern (apropos-documentation).

The simplest kind of apropos pattern is one word. Anything containing that word matches
the pattern. Thus, to find commands that work on files, type C-h a file RET. This displays
a list of all command names that contain ‘file’, including copy-file, find-file, and so
on. Each command name comes with a brief description and a list of keys you can currently
invoke it with. In our example, it would say that you can invoke find-file by typing C-x
C-f.

By default, the window showing the apropos buffer with the results of the query is not
selected, but you can cause it to be selected by customizing the variable help-window-select
to any non-nil value.

For more information about a function definition, variable or symbol property listed in an
apropos buffer, you can click on it with mouse-1 or mouse-2, or move there and type RET.

When you specify more than one word in the apropos pattern, a name must contain
at least two of the words in order to match. Thus, if you are looking for commands to
kill a chunk of text before point, you could try C-h a kill back backward behind before
RET. The real command name kill-backward will match that; if there were a command
kill-text-before, it would also match, since it contains two of the specified words.

For even greater flexibility, you can specify a regular expression (see Section 12.6 [Regexps],
page 114). An apropos pattern is interpreted as a regular expression if it contains any of the
regular expression special characters, ‘~$*+7.\ [’

Following the conventions for naming Emacs commands, here are some words that you’ll
find useful in apropos patterns. By using them in C-h a, you will also get a feel for the
naming conventions.

char, line, word, sentence, paragraph, region, page, sexp, list, defun, rect, buffer,
frame, window, face, file, dir, register, mode, beginning, end, forward, backward,
next, previous, up, down, search, goto, kill, delete, mark, insert, yank, fill, indent,
case, change, set, what, list, find, view, describe, default.

If the variable apropos-do-all is non-nil, most apropos commands behave as if they had
been given a prefix argument. There is one exception: apropos-variable without a prefix
argument will always search for all variables, no matter what the value of apropos-do-all
is.

Chapter 7: Help 47

By default, all apropos commands except apropos-documentation list their results in
alphabetical order. If the variable apropos-sort-by-scores is non-nil, these commands
instead try to guess the relevance of each result, and display the most relevant ones first. The
apropos-documentation command lists its results in order of relevance by default; to list
them in alphabetical order, change the variable apropos-documentation-sort-by-scores
to nil.

7.4 Help Mode Commands

Help buffers have Help mode as their major mode. Help mode provides the same commands
as View mode (see Section 11.6 [View Mode|, page 81); for instance, SPC scrolls forward,
and DEL or S-SPC scrolls backward. It also provides a few special commands:

RET Follow a cross reference at point (help-follow).

TAB Move point forward to the next hyperlink (forward-button).
S-TAB Move point back to the previous hyperlink (backward-button).
mouse-1

mouse-2 Follow a hyperlink that you click on.

n

P Move forward and back between pages in the Help buffer.

C-c C-c¢ Show all documentation about the symbol at point (help-follow-symbol).

C-c C-£

r Go forward in history of help commands (help-go-forward).

C-c C-b

1 Go back in history of help commands (help-go-back).

s View the source of the current help topic (if any) (help-view-source).

i Look up the current topic in the manual(s) (help-goto-info).

I Look up the current topic in the Emacs Lisp manual (help-goto-lispref-
info).

c Customize the variable or the face (help-customize).

When a function name, variable name, or face name (see Section 11.8 [Faces], page 82)
appears in the documentation in the help buffer, it is normally an underlined hyperlink.
To view the associated documentation, move point there and type RET (help-follow), or
click on the hyperlink with mouse-1 or mouse-2. Doing so replaces the contents of the help
buffer; to retrace your steps, type C-c C-b or 1 (help-go-back). While retracing your steps,
you can go forward by using C-c C-f or r (help-go-forward).

To move between hyperlinks in a help buffer, use TAB (forward-button) to move forward
to the next hyperlink and S-TAB (backward-button) to move back to the previous hyperlink.
These commands act cyclically; for instance, typing TAB at the last hyperlink moves back to
the first hyperlink.

By default, many links in the help buffer are displayed surrounded by quote characters. If

the help-clean-buttons user option is non-nil, these quote characters are removed from
the buffer.

48 GNU Emacs Manual

Help buffers produced by some Help commands (like C-h b, which shows a long list
of key bindings) are divided into pages by the ‘"L’ character. In such buffers, the n
(help-goto-next-page) command will take you to the next start of page, and the p
(help-goto-previous-page) command will take you to the previous start of page. This
way you can quickly navigate between the different kinds of documentation in a help buffer.

A help buffer can also contain hyperlinks to Info manuals, source code definitions, and
URLs (web pages). The first two are opened in Emacs, and the third using a web browser
via the browse-url command (see Section 31.12.3 [Browse-URL], page 488).

To view all documentation about any symbol in the text, move point to the symbol and
type C-c C-c (help-follow-symbol). This shows the documentation for all the meanings
of the symbol—as a variable, as a function, and/or as a face.

7.5 Keyword Search for Packages

Most optional features in Emacs are grouped into packages. Emacs contains several hundred
built-in packages, and more can be installed over the network (see Chapter 32 [Packages],
page 492).

To make it easier to find packages related to a topic, most packages are associated with
one or more keywords based on what they do. Type C-h p (finder-by-keyword) to bring
up a list of package keywords, together with a description of what the keywords mean. To
view a list of packages for a given keyword, type RET on that line; this displays the list of
packages in a Package Menu buffer (see Section 32.1 [Package Menu|, page 492).

C-h P (describe-package) prompts for the name of a package (see Chapter 32 [Packages],
page 492), and displays a help buffer describing the attributes of the package and the features
that it implements. The buffer lists the keywords that relate to the package in the form
of buttons. Click on a button with mouse-1 or mouse-2 to see the list of other packages
related to that keyword.

7.6 Help for International Language Support

For information on a specific language environment (see Section 19.2 [Language Environ-
ments|, page 220), type C-h L (describe-language-environment). This displays a help
buffer describing the languages supported by the language environment, and listing the
associated character sets, coding systems, and input methods, as well as some sample text
for that language environment.

The command C-h h (view-hello-file) displays the file etc/HELLO, which demonstrates
various character sets by showing how to say “hello” in many languages.

The command C-h I (describe-input-method) describes an input method—either a
specified input method, or by default the input method currently in use. See Section 19.3
[Input Methods], page 222.

The command C-h C (describe-coding-system) describes coding systems—either a
specified coding system, or the ones currently in use. See Section 19.5 [Coding Systems],
page 225.

Chapter 7: Help 49

7.7 Other Help Commands

C-h i (info) runs the Info program, which browses structured documentation files. C-h 4 i
(info-other-window) does the same, but shows the Info buffer in another window. The
entire Emacs manual is available within Info, along with many other manuals for the GNU
system. Type h after entering Info to run a tutorial on using Info.

With a numeric argument n, C-h i selects the Info buffer ‘*info*<n>’. This is useful if
you want to browse multiple Info manuals simultaneously. If you specify just C-u as the
prefix argument, C-h i prompts for the name of a documentation file, so you can browse a
file which doesn’t have an entry in the top-level Info menu.

The help commands C-h F function RET and C-h K key, described above, enter Info and
go straight to the documentation of function or key.

When editing a program, if you have an Info version of the manual for the programming
language, you can use C-h S (info-lookup-symbol) to find an entry for a symbol (keyword,
function or variable) in the proper manual. The details of how this command works depend
on the major mode.

If something surprising happens, and you are not sure what you typed, use C-h 1
(view-lossage). C-h 1 displays your last input keystrokes and the commands they invoked.
By default, Emacs stores the last 300 keystrokes; if you wish, you can change this number
with the command lossage-size. If you see commands that you are not familiar with, you
can use C-h k or C-h £ to find out what they do.

To review recent echo area messages, use C-h e (view-echo-area-messages). This
displays the buffer *Messages*, where those messages are kept.

Each Emacs major mode typically redefines a few keys and makes other changes in how
editing works. C-h m (describe-mode) displays documentation on the current major mode,
which normally describes the commands and features that are changed in this mode, and
also its key bindings.

C-h b (describe-bindings) and C-h s (describe-syntax) show other information
about the current environment within Emacs. C-h b displays a list of all the key bindings
now in effect: first the local bindings of the current minor modes, then the local bindings
defined by the current major mode, and finally the global bindings (see Section 33.3 [Key
Bindings|, page 520). C-h s displays the contents of the syntax table, with explanations of
each character’s syntax (see Section “Syntax Tables” in The Emacs Lisp Reference Manual).

C-h C-q (help-quick-toggle) toggles on and off the display of a buffer showing the
most popular Emacs commands and their respective key bindings (a.k.a. “cheat sheet”). The
contents of that buffer are created by the command help-quick. Each key binding shown
in this buffer is a button: click on it with mouse-1 or mouse-2 to show the documentation
of the command bound to that key sequence.

You can get a list of subcommands for a particular prefix key by typing C-h, 7, or F1
(describe-prefix-bindings) after the prefix key. (There are a few prefix keys for which
not all of these keys work—those that provide their own bindings for that key. One of these
prefix keys is ESC, because ESC C-h and ESC ? are actually C-M-h (mark-defun) and M-7
(xref-find-references), respectively. However, ESC F1 works fine.)

Finally, M-x describe-keymap prompts for the name of a keymap, with completion, and
displays a listing of all key bindings in that keymap.

50 GNU Emacs Manual

7.8 Help Files

Apart from the built-in documentation and manuals, Emacs contains several other files
describing topics like copying conditions, release notes, instructions for debugging and
reporting bugs, and so forth. You can use the following commands to view these files. Apart
from C-h g, they all have the form C-h C-char.

C-h C-c Display the rules under which you can copy and redistribute Emacs
(describe-copying).

C-h C-d Display help for debugging Emacs (view-emacs-debugging).

C-h C-e Display information about where to get external packages (view-external-
packages).

C-h C-f Display the Emacs frequently-answered-questions list (view-emacs-FAQ).

C-hg Visit the page (https://www.gnu.org) with information about the GNU Project
(describe-gnu-project).

C-h C-m Display information about ordering printed copies of Emacs manuals
(view-order-manuals).

C-h C-n Display the news, which lists the new features in this version of Emacs
(view-emacs-news).

C-h C-o Display how to order or download the latest version of Emacs and other GNU
software (describe-distribution).

C-h C-p Display the list of known Emacs problems, sometimes with suggested worka-
rounds (view-emacs-problems).

C-h C-t Display the Emacs to-do list (view-emacs-todo).

C-h C-w Display the full details on the complete absence of warranty for GNU Emacs
(describe-no-warranty).

7.9 Help on Active Text and Tooltips

In Emacs, stretches of active text (text that does something special in response to mouse
clicks or RET) often have associated help text. This includes hyperlinks in Emacs buffers, as
well as parts of the mode line. On graphical displays, as well as some text terminals which
support mouse tracking, moving the mouse over the active text displays the help text as a
tooltip. See Section 18.19 [Tooltips], page 215.

On terminals that don’t support mouse-tracking, you can display the help text for active
buffer text at point by typing C-h . (display-local-help). This shows the help text in
the echo area. To display help text automatically whenever it is available at point, set the
variable help-at-pt-display-when-idle to t.

https://www.gnu.org

o1

8 The Mark and the Region

Emacs, like many other applications, lets you select some arbitrary part of the buffer text
and invoke commands that operate on such selected text. In Emacs, we call the selected
text the region; its handling is very similar to that of selected text in other programs, but
there are also important differences.

The region is the portion of the buffer between the mark and the current point. You
define a region by setting the mark somewhere (with, for instance, the C-SPC command),
and then moving point to where you want the region to end. (Or you can use the mouse to
define a region.)

The region always extends between point and the mark, no matter which of them comes
earlier in the text; each time you move point, the region changes.

Setting the mark at a position in the text activates it. When the mark is active, we say
also that the region is active; Emacs indicates its extent by highlighting the text within it,
using the region face (see Section 33.1.5 [Face Customization|, page 505).

After certain non-motion commands, including any command that changes the text in the
buffer, Emacs automatically deactivates the mark; this turns off the highlighting. You can
also explicitly deactivate the mark at any time, by typing C-g (see Section 34.1 [Quitting],
page 537).

Many commands limit the text on which they operate to the active region. For instance,
the M-% command (which replaces matching text) normally works on the entire accessible
portion of the buffer, but if you have an active region, it’ll work only on that region instead.

The mark is useful even if it is not active. For example, you can move to previous mark
locations using the mark ring. See Section 8.4 [Mark Ring], page 55. Additionally, some
commands will have an effect even on an inactive region (for example upcase-region). You
can also reactivate the region with commands like C-x C-x.

The above behavior, which is the default in interactive sessions, is known as Transient
Mark mode. Disabling Transient Mark mode switches Emacs to an alternative behavior,
in which the region is usually not highlighted. See Section 8.7 [Disabled Transient Mark],
page 56.

Setting the mark in one buffer has no effect on the marks in other buffers. When you
return to a buffer with an active mark, the mark is at the same place as before. When
multiple windows show the same buffer, they can have different values of point, and thus
different regions, but they all share one common mark position. See Chapter 17 [Windows],
page 187. Ordinarily, only the selected window highlights its region; however, if the variable
highlight-nonselected-windows is non-nil, each window highlights its own region.

There is another kind of region: the rectangular region. See Section 9.5 [Rectangles],
page 67.

8.1 Setting the Mark

Here are some commands for setting the mark:
C-SPC Set the mark at point, and activate it (set-mark-command).

Cc-@ The same.

52 GNU Emacs Manual

C-x C-x Set the mark at point, and activate it; then move point where the mark used to
be (exchange-point-and-mark).

Drag-mouse-1
Set point and the mark around the text you drag across.

mouse-3 Set the mark at point, then move point to where you click (mouse-save-then-
kill).

Shifted cursor motion keys
Set the mark at point if the mark is inactive, then move point. See Section 8.6
[Shift Selection], page 56.

The most common way to set the mark is with C-SPC (set-mark-command)’. This sets
the mark where point is, and activates it. You can then move point away, leaving the mark
behind.

For example, suppose you wish to convert part of the buffer to upper case. To accomplish
this, go to one end of the desired text, type C-SPC, and move point until the desired portion
of text is highlighted. Now type C-x C-u (upcase-region). This converts the text in the
region to upper case, and then deactivates the mark.

Whenever the mark is active, you can deactivate it by typing C-g (see Section 34.1
[Quitting], page 537). Most commands that operate on the region also automatically
deactivate the mark, like C-x C-u in the above example.

Instead of setting the mark in order to operate on a region, you can also use it to
remember a position in the buffer (by typing C-SPC C-SPC), and later jump back there (by
typing C-u C-SPC). See Section 8.4 [Mark Ring], page 55, for details.

The command C-x C-x (exchange-point-and-mark) exchanges the positions of point
and the mark. C-x C-x is useful when you are satisfied with the position of point but want
to move the other end of the region (where the mark is). Using C-x C-x a second time,
if necessary, puts the mark at the new position with point back at its original position.
Normally, if the mark is inactive, this command first reactivates the mark wherever it was
last set, to ensure that the region is left highlighted. However, if you call it with a prefix
argument, it leaves the mark inactive and the region unhighlighted; you can use this to jump
to the mark in a manner similar to C-u C-SPC.

You can also set the mark with the mouse. If you press the left mouse button
(down-mouse-1) and drag the mouse across a range of text, this sets the mark where
you first pressed the mouse button and puts point where you release it. Alternatively,
clicking the right mouse button (mouse-3) sets the mark at point and then moves point
to where you clicked. See Section 18.1 [Mouse Commands|, page 196, for a more detailed
description of these mouse commands.

Finally, you can set the mark by holding down the shift key while typing certain cursor
motion commands (such as S-RIGHT, S-C-f, S-C-n, etc.). This is called shift-selection. It
sets the mark at point before moving point, but only if there is no active mark set via a
previous shift-selection or mouse commands. The mark set by mouse commands and by

! There is no C-SPC character in ASCII; usually, typing C-SPC on a text terminal gives the character C-@.
This key is also bound to set-mark-command, so unless you are unlucky enough to have a text terminal
that behaves differently, you might as well think of C-@ as C-SPC.

Chapter 8: The Mark and the Region 53

shift-selection behaves slightly differently from the usual mark: any subsequent unshifted
cursor motion command deactivates it automatically. For details, see Section 8.6 [Shift
Selection], page 56.

Many commands that insert text, such as C-y (yank), set the mark at the other end of
the inserted text, without activating it. This lets you easily return to that position (see
Section 8.4 [Mark Ring], page 55). You can tell that a command does this when it shows
‘Mark set’ in the echo area.

Under X, every time the active region changes, Emacs saves the text in the region to
the primary selection. This lets you insert that text into other X applications with mouse-2
clicks. See Section 9.3.2 [Primary Selection], page 65.

8.2 Commands to Mark Textual Objects

Here are commands for placing point and the mark around a textual object such as a word,
list, paragraph or page:

M-Q Set mark at the end of the next word (mark-word). This does not move point.

C-M-@ Set mark after end of following balanced expression (mark-sexp). This does not
move point.

M-h Move point to the beginning of the current paragraph, and set mark at the end
(mark-paragraph).

C-M-h Move point to the beginning of the current defun, and set mark at the end
(mark-defun).

C-x C-p Move point to the beginning of the current page, and set mark at the end
(mark-page).

C-xh Move point to the beginning of the buffer, and set mark at the end (mark-whole-
buffer).

M-@ (mark-word) sets the mark at the end of the next word (see Section 22.1 [Words],
page 256, for information about words). Repeated invocations of this command extend the
region by advancing the mark one word at a time. As an exception, if the mark is active
and located before point, M-@ moves the mark backwards from its current position one word
at a time.

This command also accepts a numeric argument n, which tells it to advance the mark by
n words. A negative argument —n moves the mark back by n words.

Similarly, C-M-@ (mark-sexp) puts the mark at the end of the next balanced expression
(see Section 23.4.1 [Expressions]|, page 297). Repeated invocations extend the region to
subsequent expressions, while positive or negative numeric arguments move the mark forward
or backward by the specified number of expressions.

The other commands in the above list set both point and mark, so as to delimit an object
in the buffer. M-h (mark-paragraph) marks paragraphs (see Section 22.3 [Paragraphs],
page 258), C-M-h (mark-defun) marks top-level definitions (see Section 23.2.2 [Moving
by Defuns|, page 291), and C-x C-p (mark-page) marks pages (see Section 22.4 [Pages],
page 259). Repeated invocations again play the same role, extending the region to consecutive
objects; similarly, numeric arguments specify how many objects to move the mark by.

54 GNU Emacs Manual

C-x h (mark-whole-buffer) sets up the entire buffer as the region, by putting point at
the beginning and the mark at the end.

8.3 Operating on the Region

Once you have a region, here are some of the ways you can operate on it:
e Kill it with C-w (see Chapter 9 [Killing], page 58).
e Copy it to the kill ring with M-w (see Section 9.2 [Yanking], page 61).
e Convert case with C-x C-1 or C-x C-u (see Section 22.7 [Case|, page 265).
e Undo changes within it using C-u C-/ (see Section 13.1 [Undo], page 131).
e Replace text within it using M-% (see Section 12.10.4 [Query Replace|, page 124).
e Indent it with C-x TAB or C-M-\ (see Chapter 21 [Indentation], page 249).
e Fill it as text with M-x fill-region (see Section 22.6 [Filling], page 261).
e Check the spelling of words within it with M-$ (see Section 13.4 [Spelling], page 134).
e Evaluate it as Lisp code with M-x eval-region (see Section 24.9 [Lisp Eval|, page 333).
e Save it in a register with C-x r s (see Chapter 10 [Registers|, page 71).
e Save it in a buffer or a file (see Section 9.4 [Accumulating Text], page 66).

Some commands have a default behavior when the mark is inactive, but operate on the
region if the mark is active. For example, M-$ (ispell-word) normally checks the spelling of
the word at point, but it checks the text in the region if the mark is active (see Section 13.4
[Spelling], page 134). Normally, such commands use their default behavior if the region is
empty (i.e., if mark and point are at the same position). If you want them to operate on the
empty region, change the variable use-empty-active-region to t.

As described in Section 4.3 [Erasing], page 20, the DEL (backward-delete-char) and
Delete (delete-forward-char) commands also act this way. If the mark is active, they
delete the text in the region. (As an exception, if you supply a numeric argument n, where
n is not one, these commands delete n characters regardless of whether the mark is active).
If you change the variable delete-active-region to nil, then these commands don’t act
differently when the mark is active. If you change the value to kill, these commands kill
the region instead of deleting it (see Chapter 9 [Killing], page 58).

Other commands always operate on the region, and have no default behavior. Such
commands usually have the word region in their names, like C-w (kill-region) and C-x
C-u (upcase-region). If the mark is inactive, they operate on the inactive region—that is, on
the text between point and the position at which the mark was last set (see Section 8.4 [Mark
Ring], page 55). To disable this behavior, change the variable mark-even-if-inactive to
nil. Then these commands will instead signal an error if the mark is inactive.

By default, text insertion occurs normally even if the mark is active—for example, typing
a inserts the character ‘a’, then deactivates the mark. Delete Selection mode, a minor mode,
modifies this behavior: if you enable that mode, then inserting text while the mark is active
causes the text in the region to be deleted first. However, you can tune this behavior by
customizing the delete-selection-temporary-region option. Its default value is nil,
but you can set it to t, in which case only temporarily-active regions will be replaced:
those which are set by dragging the mouse (see Section 8.1 [Setting Mark], page 51) or
by shift-selection (see Section 8.6 [Shift Selection], page 56), as well as by C-u C-x C-x

Chapter 8: The Mark and the Region 55

when Transient Mark Mode is disabled. You can further tune the behavior by setting
delete-selection-temporary-region to selection: then temporary regions by C-u C-x
C-x won’t be replaced, only the ones activated by dragging the mouse or shift-selection. To
toggle Delete Selection mode on or off, type M-x delete-selection-mode.

8.4 The Mark Ring

Each buffer remembers previous locations of the mark, in the mark ring. Commands that
set the mark also push the old mark onto this ring. One of the uses of the mark ring is to
remember spots that you may want to go back to.

C-SPC C-SPC
Set the mark, pushing it onto the mark ring, without activating it.

C-u C-SPC Move point to where the mark was, and restore the mark from the ring of former
marks.

The command C-SPC C-SPC is handy when you want to use the mark to remember a
position to which you may wish to return. It pushes the current point onto the mark ring,
without activating the mark (which would cause Emacs to highlight the region). This is
actually two consecutive invocations of C-SPC (set-mark-command); the first C-SPC sets the
mark, and the second C-SPC deactivates it. (When Transient Mark mode is off, C-SPC C-SPC
instead activates Transient Mark mode temporarily; see Section 8.7 [Disabled Transient
Mark], page 56.)

To return to a marked position, use set-mark-command with a prefix argument: C-u
C-SPC. This moves point to where the mark was, and deactivates the mark if it was active.
Fach subsequent C-u C-SPC jumps to a prior position stored in the mark ring. The positions
you move through in this way are not lost; they go to the end of the ring.

If you set set-mark-command-repeat-pop to non-nil, then immediately after you type
C-u C-SPC, you can type C-SPC instead of C-u C-SPC to cycle through the mark ring. By
default, set-mark-command-repeat-pop is nil.

Each buffer has its own mark ring. All editing commands use the current buffer’s mark
ring. In particular, C-u C-SPC always stays in the same buffer.

The variable mark-ring-max specifies the maximum number of entries to keep in the
mark ring. This defaults to 16 entries. If that many entries exist and another one is pushed,
the earliest one in the list is discarded. Repeating C-u C-SPC cycles through the positions
currently in the ring.

If you want to move back to the same place over and over, the mark ring may not be
convenient enough. If so, you can record the position in a register for later retrieval (see
Section 10.1 [Saving Positions in Registers|, page 71).

8.5 The Global Mark Ring

In addition to the ordinary mark ring that belongs to each buffer, Emacs has a single global
mark ring. Each time you set a mark, this is recorded in the global mark ring in addition to
the current buffer’s own mark ring, if you have switched buffers since the previous mark
setting. Hence, the global mark ring records a sequence of buffers that you have been in,

56 GNU Emacs Manual

and, for each buffer, a place where you set the mark. The length of the global mark ring is
controlled by global-mark-ring-max, and is 16 by default.

The command C-x C-SPC (pop-global-mark) jumps to the buffer and position of the
latest entry in the global ring. It also rotates the ring, so that successive uses of C-x C-SPC
take you to earlier buffers and mark positions.

8.6 Shift Selection

If you hold down the shift key while typing a cursor motion command, this sets the mark
before moving point, so that the region extends from the original position of point to its
new position. This feature is referred to as shift-selection. It is similar to the way text is
selected in other editors.

The mark set via shift-selection behaves a little differently from what we have described
above. Firstly, in addition to the usual ways of deactivating the mark (such as changing the
buffer text or typing C-g), the mark is deactivated by any wunshifted cursor motion command.
Secondly, any subsequent shifted cursor motion command avoids setting the mark anew.
Therefore, a series of shifted cursor motion commands will continuously adjust the region.

Shift-selection only works if the shifted cursor motion key is not already bound to a
separate command (see Chapter 33 [Customization], page 501). For example, if you bind
S-C-f to another command, typing S-C-f runs that command instead of performing a
shift-selected version of C-f (forward-char).

A mark set via mouse commands behaves the same as a mark set via shift-selection (see
Section 8.1 [Setting Mark], page 51). For example, if you specify a region by dragging the
mouse, you can continue to extend the region using shifted cursor motion commands. In
either case, any unshifted cursor motion command deactivates the mark.

To turn off shift-selection, set shift-select-mode to nil. Doing so does not disable set-
ting the mark via mouse commands. If you set shift-select-mode to the value permanent,
cursor motion keys that were not shift-translated will not deactivate the mark, so, for
example, the region set by prior commands can be extended by shift-selection, and unshifted
cursor motion keys will extend the region set by shift-selection.

8.7 Disabling Transient Mark Mode

The default behavior of the mark and region, in which setting the mark activates it and
highlights the region, is called Transient Mark mode. This is a minor mode that is enabled
by default in interactive sessions. It can be toggled with M-x transient-mark-mode, or with
the ‘Highlight Active Region’ menu item in the ‘Options’ menu. Turning it off switches
Emacs to an alternative mode of operation:

e Setting the mark, with commands like C-SPC or C-x C-x, does not highlight the region.
Therefore, you can’t tell by looking where the mark is located; you have to remember.

The usual solution to this problem is to set the mark and then use it soon, before
you forget where it is. You can also check where the mark is by using C-x C-x, which
exchanges the positions of the point and the mark (see Section 8.1 [Setting Mark],
page 51).

e Some commands, which ordinarily act on the region when the mark is active, no longer
do so. For example, normally M-% (query-replace) performs replacements within the

Chapter 8: The Mark and the Region 57

region, if the mark is active. When Transient Mark mode is off, it always operates from
point to the end of the buffer. Commands that act this way are identified in their own
documentation.

While Transient Mark mode is off, you can activate it temporarily using C-SPC C-SPC or
C-u C-x C-x.

C-SPC C-SPC
Set the mark at point (like plain C-SPC) and enable Transient Mark mode just
once, until the mark is deactivated. (This is not really a separate command;
you are using the C-SPC command twice.)

C-u C-x C-x
Exchange point and mark, activate the mark and enable Transient Mark mode
temporarily, until the mark is next deactivated. (This is the C-x C-x command,
exchange-point-and-mark, with a prefix argument.)

These commands set or activate the mark, and enable Transient Mark mode only until
the mark is deactivated. One reason you may want to use them is that some commands
operate on the entire buffer instead of the region when Transient Mark mode is off. Enabling
Transient Mark mode momentarily gives you a way to use these commands on the region.

When you specify a region with the mouse (see Section 8.1 [Setting Mark], page 51),
or with shift-selection (see Section 8.6 [Shift Selection|, page 56), this likewise activates
Transient Mark mode temporarily and highlights the region.

58 GNU Emacs Manual

9 Killing and Moving Text

In Emacs, killing means erasing text and copying it into the kill ring. Yanking means
bringing text from the kill ring back into the buffer. (Some applications use the terms
“cutting” and “pasting” for similar operations.) The kill ring is so-named because it can be
visualized as a set of blocks of text arranged in a ring, which you can access in cyclic order.
See Section 9.2.1 [Kill Ring], page 62.

Killing and yanking are the most common way to move or copy text within Emacs. It
is very versatile, because there are commands for killing many different types of syntactic
units.

9.1 Deletion and Killing

Most commands which erase text from the buffer save it in the kill ring (see Section 9.2.1
[Kill Ring], page 62). These are known as kill commands, and their names normally contain
the word ‘kill’ (e.g., kill-line). The kill ring stores several recent kills, not just the last
one, so killing is a very safe operation: you don’t have to worry much about losing text that
you previously killed. The kill ring is shared by all buffers, so text that is killed in one buffer
can be yanked into another buffer.

When you use C-/ (undo) to undo a kill command (see Section 13.1 [Undo], page 131),
that brings the killed text back into the buffer, but does not remove it from the kill ring.

On graphical displays, killing text also copies it to the system clipboard. See Section 9.3
[Cut and Paste], page 64.

Commands that erase text but do not save it in the kill ring are known as delete commands;
their names usually contain the word ‘delete’. These include C-d (delete-char) and DEL
(delete-backward-char), which delete only one character at a time, and those commands
that delete only spaces or newlines. Commands that can erase significant amounts of
nontrivial data generally do a kill operation instead.

You can also use the mouse to kill and yank. See Section 9.3 [Cut and Paste], page 64.

9.1.1 Deletion

Deletion means erasing text and not saving it in the kill ring. For the most part, the Emacs
commands that delete text are those that erase just one character or only whitespace.

DEL

BACKSPACE
Delete the previous character, or the text in the region if it is active
(delete-backward-char).

Delete Delete the next character, or the text in the region if it is active
(delete-forward-char).

C-d Delete the next character (delete-char).

M-\ Delete spaces and tabs around point (delete-horizontal-space).

M-SPC Delete spaces and tabs around point, leaving one space (just-one-space).

C-x C-o Delete blank lines around the current line (delete-blank-lines).

Chapter 9: Killing and Moving Text 59

M-" Join two lines by deleting the intervening newline, along with any indentation
following it (delete-indentation).

We have already described the basic deletion commands DEL (delete-backward-char),
delete (delete-forward-char), and C-d (delete-char). See Section 4.3 [Erasing], page 20.
With a numeric argument, they delete the specified number of characters. If the numeric
argument is omitted or one, DEL and delete delete all the text in the region if it is active
(see Section 8.3 [Using Region], page 54).

The other delete commands are those that delete only whitespace characters: spaces, tabs
and newlines. M-\ (delete-horizontal-space) deletes all the spaces and tab characters
before and after point. With a prefix argument, this only deletes spaces and tab characters
before point.

just-one-space does likewise but leaves a single space before point, regardless of the
number of spaces that existed previously (even if there were none before). With a numeric
argument n, it leaves n spaces before point if n is positive; if n is negative, it deletes newlines
in addition to spaces and tabs, leaving —n spaces before point.

The command cycle-spacing (M-SPC) acts like a more flexible version of just-one-
space. It performs different space cleanup actions defined by cycle-spacing-actions, in
a cyclic manner, if you call it repeatedly in succession.

C-x C-o (delete-blank-lines) deletes all blank lines after the current line. If the
current line is blank, it deletes all blank lines preceding the current line as well (leaving one
blank line, the current line). On a solitary blank line, it deletes that line.

M-~ (delete-indentation) joins the current line and the previous line, by deleting
a newline and all surrounding spaces, usually leaving a single space. See Chapter 21
[Indentation|, page 249.

The command delete-duplicate-lines searches the region for identical lines, and
removes all but one copy of each. Normally it keeps the first instance of each repeated line,
but with a C-u prefix argument it keeps the last. With a C-u C-u prefix argument, it only
searches for adjacent identical lines. This is a more efficient mode of operation, useful when
the lines have already been sorted. With a C-u C-u C-u prefix argument, it retains repeated
blank lines.

9.1.2 Killing by Lines

C-k Kill rest of line or one or more lines (kill-line).

C-S-backspace
Kill an entire line at once (kill-whole-1line)

The simplest kill command is C-k (kill-1line). If used at the end of a line, it kills the
line-ending newline character, merging the next line into the current one (thus, a blank line
is entirely removed). Otherwise, C-k kills all the text from point up to the end of the line; if
point was originally at the beginning of the line, this leaves the line blank.

Spaces and tabs at the end of the line are ignored when deciding which case applies. As
long as point is after the last non-whitespace character in the line, you can be sure that
C-k will kill the newline. To kill an entire non-blank line, go to the beginning and type C-k
twice.

60 GNU Emacs Manual

In this context, “line” means a logical text line, not a screen line (see Section 4.8
[Continuation Lines|, page 22).

When C-k is given a positive argument n, it kills n lines and the newlines that follow
them (text on the current line before point is not killed). With a negative argument —n,
it kills n lines preceding the current line, together with the text on the current line before
point. C-k with an argument of zero kills the text before point on the current line.

If the variable kill-whole-1line is non-nil, C-k at the very beginning of a line kills the
entire line including the following newline. This variable is normally nil.

C-S-backspace (kill-whole-1line) kills a whole line including its newline, regardless of
the position of point within the line. Note that many text terminals will prevent you from
typing the key sequence C-S-backspace.

9.1.3 Other Kill Commands

C-w Kill the region (kill-region).

M-w Copy the region into the kill ring (kill-ring-save).

M-d Kill the next word (kill-word). See Section 22.1 [Words|, page 256.
M-DEL Kill one word backwards (backward-kill-word).

C-x DEL Kill back to beginning of sentence (backward-kill-sentence). See Section 22.2
[Sentences|, page 257.

M-k Kill to the end of the sentence (kill-sentence).

C-M-k Kill the following balanced expression (kill-sexp). See Section 23.4.1 [Expres-
sions], page 297.

M-z char Kill through the next occurrence of char (zap-to-char).

M-x zap-up-to-char char
Kill up to, but not including, the next occurrence of char.

One of the commonly-used kill commands is C-w (kill-region), which kills the text in
the region (see Chapter 8 [Mark], page 51). Similarly, M-w (kill-ring-save) copies the
text in the region into the kill ring without removing it from the buffer. If the mark is
inactive when you type C-w or M-w, the command acts on the text between point and where
you last set the mark (see Section 8.3 [Using Region], page 54).

Emacs also provides commands to kill specific syntactic units: words, with M-DEL and M-d
(see Section 22.1 [Words], page 256); balanced expressions, with C-M-k (see Section 23.4.1
[Expressions|, page 297); and sentences, with C-x DEL and M-k (see Section 22.2 [Sentences|,
page 257).

The command M-z (zap-to-char) combines killing with searching: it reads a character
and kills from point up to (and including) the next occurrence of that character in the buffer.
A numeric argument acts as a repeat count; a negative argument means to search backward
and kill text before point. A history of previously used characters is maintained and can be
accessed via the M-p/M-n keystrokes. This is mainly useful if the character to be used has to
be entered via a complicated input method. A similar command zap-up-to-char kills from
point up to, but not including the next occurrence of a character, with numeric argument
acting as a repeat count.

Chapter 9: Killing and Moving Text 61

9.1.4 Options for Killing

Some specialized buffers contain read-only text, which cannot be modified and therefore
cannot be killed. The kill commands work specially in a read-only buffer: they move over
text and copy it to the kill ring, without actually deleting it from the buffer. Normally,
they also beep and display an error message when this happens. But if you set the variable
kill-read-only-ok to a non-nil value, they just print a message in the echo area to explain
why the text has not been erased.

Before saving the kill to the kill ring, you can transform the string using kill-transform-
function. It’s called with the string to be killed, and it should return the string you want
to be saved. It can also return nil, in which case the string won’t be saved to the kill ring.
For instance, if you never want to save a pure white space string to the kill ring, you can say:

(setq kill-transform-function
(lambda (string)
(and (not (string-blank-p string))
string)))

If you change the variable kill-do-not-save-duplicates to a non-nil value, identical
subsequent Kkills yield a single kill-ring entry, without duplication.

9.2 Yanking

Yanking means reinserting text previously killed. The usual way to move or copy text is to
kill it and then yank it elsewhere.

C-y Yank the last kill into the buffer, at point (yank).

M-y Either replace the text just yanked with an earlier batch of killed text
(yank-pop), or allow to select from the list of previously-killed batches of text.
See Section 9.2.2 [Earlier Kills], page 62.

C-M-w Cause the following command, if it is a kill command, to append to the previous
kill (append-next-kill). See Section 9.2.3 [Appending Kills], page 63.

The basic yanking command is C-y (yank). It inserts the most recent kill, leaving the
cursor at the end of the inserted text. It also sets the mark at the beginning of the inserted
text, without activating the mark; this lets you jump easily to that position, if you wish,
with C-u C-SPC (see Section 8.4 [Mark Ring], page 55).

With a plain prefix argument (C-u C-y), the command instead leaves the cursor in front
of the inserted text, and sets the mark at the end. Using any other prefix argument specifies
an earlier kill; e.g., C-u 4 C-y reinserts the fourth most recent kill. See Section 9.2.2 [Earlier
Kills], page 62.

On graphical displays and on capable text-mode displays, C-y first checks if another
application has placed any text in the system clipboard more recently than the last Emacs
kill. If so, it inserts the clipboard’s text instead. Thus, Emacs effectively treats “cut” or
“copy” clipboard operations performed in other applications like Emacs kills, except that
they are not recorded in the kill ring. See Section 9.3 [Cut and Paste], page 64, for details.

62 GNU Emacs Manual

9.2.1 The Kill Ring

The kill ring is a list of blocks of text that were previously killed. There is only one kill ring,
shared by all buffers, so you can kill text in one buffer and yank it in another buffer. This is
the usual way to move text from one buffer to another. (There are several other methods:
for instance, you could store the text in a register; see Chapter 10 [Registers], page 71. See
Section 9.4 [Accumulating Text], page 66, for some other ways to move text around.)

The maximum number of entries in the kill ring is controlled by the variable kill-ring-
max. The default is 120. If you make a new kill when this limit has been reached, Emacs
makes room by deleting the oldest entry in the kill ring.

The actual contents of the kill ring are stored in a variable named kill-ring; you can
view the entire contents of the kill ring with C-h v kill-ring.

9.2.2 Yanking Earlier Kills

As explained in Section 9.2 [Yanking], page 61, you can use a numeric argument to C-y
to yank text that is no longer the most recent kill. This is useful if you remember which
kill ring entry you want. If you don’t, you can use the M-y (yank-pop) command to cycle
through the possibilities or to select one of the earlier kills.

If the previous command was a yank command, M-y takes the text that was yanked and
replaces it with the text from an earlier kill. So, to recover the text of the next-to-the-last
kill, first use C-y to yank the last kill, and then use M-y to replace it with the previous kill.
This works only after a C-y or another M-y. (If M-y is invoked after some other command, it
works differently, see below.)

You can understand this operation mode of M-y in terms of a last-yank pointer which
points at an entry in the kill ring. Each time you kill, the last-yank pointer moves to the
newly made entry at the front of the ring. C-y yanks the entry which the last-yank pointer
points to. M-y after a C-y or another M-y moves the last-yank pointer to the previous entry,
and the text in the buffer changes to match. Enough M-y commands one after another
can move the pointer to any entry in the ring, so you can get any entry into the buffer.
Eventually the pointer reaches the end of the ring; the next M-y loops back around to the
first entry again.

M-y moves the last-yank pointer around the ring, but it does not change the order of the
entries in the ring, which always runs from the most recent kill at the front to the oldest
one still remembered.

When used after C-y or M-y, M-y can take a numeric argument, which tells it how many
entries to advance the last-yank pointer by. A negative argument moves the pointer toward
the front of the ring; from the front of the ring, it moves around to the last entry and
continues forward from there.

Once the text you are looking for is brought into the buffer, you can stop doing M-y
commands and the last yanked text will stay there. It’s just a copy of the kill ring entry, so
editing it in the buffer does not change what’s in the ring. As long as no new killing is done,
the last-yank pointer remains at the same place in the kill ring, so repeating C-y will yank
another copy of the same previous kill.

When you call C-y with a numeric argument, that also sets the last-yank pointer to the
entry that it yanks.

Chapter 9: Killing and Moving Text 63

You can also invoke M-y after a command that is not a yank command. In that case,
M-y prompts you in the minibuffer for one of the previous kills. You can use the minibuffer
history commands (see Section 5.5 [Minibuffer History], page 35) to navigate or search
through the entries in the kill ring until you find the one you want to reinsert. Or you can
use completion commands (see Section 5.4.2 [Completion Commands|, page 30) to complete
on an entry from the list of entries in the kill ring or pop up the *Completions* buffer with
the candidate entries from which you can choose. After selecting the kill-ring entry, you
can optionally edit it in the minibuffer. Finally, type RET to exit the minibuffer and insert
the text of the selected kill-ring entry. Like in case of M-y after another yank command,
the last-yank pointer is left pointing at the text you just yanked, whether it is one of the
previous kills or an entry from the kill-ring that you edited before inserting it. (In the latter
case, the edited entry is added to the front of the kill-ring.) So here, too, typing C-y will
yank another copy of the text just inserted.

When invoked with a plain prefix argument (C-u M-y) after a command that is not a
yank command, M-y leaves the cursor in front of the inserted text, and sets the mark at the
end, like C-y does.

9.2.3 Appending Kills

Normally, each kill command pushes a new entry onto the kill ring. However, two or more
kill commands in a row combine their text into a single entry, so that a single C-y yanks all
the text as a unit, just as it was before it was killed.

Thus, if you want to yank text as a unit, you need not kill all of it with one command;
you can keep killing line after line, or word after word, until you have killed it all, and you
can still get it all back at once.

Commands that kill forward from point add onto the end of the previous killed text.
Commands that kill backward from point add text onto the beginning. This way, any
sequence of mixed forward and backward kill commands puts all the killed text into one
entry without rearrangement. Numeric arguments do not break the sequence of appending
kills. For example, suppose the buffer contains this text:

This is a line xof sample text.

with point shown by x. If you type M-d M-DEL M-d M-DEL, killing alternately forward
and backward, you end up with ‘a line of sample’ as one entry in the kill ring, and
‘This is text.’ in the buffer. (Note the double space between ‘is’ and ‘text’, which you
can clean up with M-SPC or M-q.)

Another way to kill the same text is to move back two words with M-b M-b, then Kkill all
four words forward with C-u M-d. This produces exactly the same results in the buffer and
in the kill ring. M-f M-f C-u M-DEL kills the same text, all going backward; once again, the
result is the same. The text in the kill ring entry always has the same order that it had in
the buffer before you killed it.

If a kill command is separated from the last kill command by other commands (not just
numeric arguments), it starts a new entry on the kill ring. But you can force it to combine
with the last killed text, by typing C-M-w (append-next-kill) right beforehand. The C-M-w
tells its following command, if it is a kill command, to treat the kill as part of the sequence
of previous kills. As usual, the kill is appended to the previous killed text if the command

64 GNU Emacs Manual

kills forward, and prepended if the command kills backward. In this way, you can kill several
separated pieces of text and accumulate them to be yanked back in one place.

A kill command following M-w (kill-ring-save) does not append to the text that M-w
copied into the kill ring.

9.3 “Cut and Paste” Operations on Graphical Displays

In most graphical desktop environments, you can transfer data (usually text) between
different applications using a system facility called the clipboard. On X, two other similar
facilities are available: the primary selection and the secondary selection. When Emacs is
run on a graphical display, its kill and yank commands integrate with these facilities, so
that you can easily transfer text between Emacs and other graphical applications.

By default, Emacs uses UTF-8 as the coding system for inter-program text transfers. If
you find that the pasted text is not what you expected, you can specify another coding system
by typing C-x RET x or C-x RET X. You can also request a different data type by customizing
x-select-request-type. See Section 19.10 [Communication Coding], page 231.

9.3.1 Using the Clipboard

The clipboard is the facility that most graphical applications use for “cutting and pasting”.
When the clipboard exists, the kill and yank commands in Emacs make use of it.

When you kill some text with a command such as C-w (kill-region), or copy it to
the kill ring with a command such as M-w (kill-ring-save), that text is also put in the
clipboard.

When an Emacs kill command puts text in the clipboard, the existing clipboard contents
are normally lost. Optionally, Emacs can save the existing clipboard contents to the kill ring,
preventing you from losing the old clipboard data. If save-interprogram-paste-before-
kill has been set to a number, then the data is copied over if it’s smaller (in characters)
than this number. If this variable is any other non-nil value, the data is always copied
over—at the risk of high memory consumption if that data turns out to be large.

Yank commands, such as C-y (yank), also use the clipboard. If another application
“owns” the clipboard—i.e., if you cut or copied text there more recently than your last kill
command in Emacs—then Emacs yanks from the clipboard instead of the kill ring.

Normally, rotating the kill ring with M-y (yank-pop) does not alter the clipboard. However,
if you change yank-pop-change-selection to t, then M-y saves the new yank to the
clipboard.

To prevent kill and yank commands from accessing the clipboard, change the variable
select-enable-clipboard to nil.

Programs can put other things than plain text on the clipboard. For instance, a web
browser will usually let you choose “Copy Image” on images, and this image will be put on
the clipboard. On capable platforms, Emacs can yank these objects with the yank-media
command—but only in modes that have support for it (see Section “Yanking Media” in The
Emacs Lisp Reference Manual).

Many X desktop environments support a feature called the clipboard manager. If you
exit Emacs while it is the current “owner” of the clipboard data, and there is a clipboard
manager running, Emacs transfers the clipboard data to the clipboard manager so that it is

Chapter 9: Killing and Moving Text 65

not lost. In some circumstances, this may cause a delay when exiting Emacs; if you wish
to prevent Emacs from transferring data to the clipboard manager, change the variable
x-select-enable-clipboard-manager to nil.

Since strings containing NUL bytes are usually truncated when passed through the
clipboard, Emacs replaces such characters with “\0” before transferring them to the system’s
clipboard.

Prior to Emacs 24, the kill and yank commands used the primary selection (see
Section 9.3.2 [Primary Selection], page 65), not the clipboard. If you prefer this behavior,
change select-enable-clipboard tonil, select-enable-primary to t, and mouse-drag-
copy-region to t. In this case, you can use the following commands to act explicitly on
the clipboard: clipboard-kill-region kills the region and saves it to the clipboard;
clipboard-kill-ring-save copies the region to the kill ring and saves it to the clipboard;
and clipboard-yank yanks the contents of the clipboard at point.

9.3.2 Cut and Paste with Other Window Applications

Under the X Window System, PGTK and Haiku, there exists a primary selection containing
the last stretch of text selected in an X application (usually by dragging the mouse). Typically,
this text can be inserted into other X applications by mouse-2 clicks. The primary selection
is separate from the clipboard. Its contents are more fragile; they are overwritten each time
you select text with the mouse, whereas the clipboard is only overwritten by explicit cut or
copy commands.

Under X, whenever the region is active (see Chapter 8 [Mark], page 51), the text in the
region is saved in the primary selection. This applies regardless of whether the region was
made by dragging or clicking the mouse (see Section 18.1 [Mouse Commands], page 196), or
by keyboard commands (e.g., by typing C-SPC and moving point; see Section 8.1 [Setting
Mark], page 51).

If you change the variable select-active-regions to only, Emacs saves only temporar-
ily active regions to the primary selection, i.e., those made with the mouse or with shift
selection (see Section 8.6 [Shift Selection], page 56). If you change select-active-regions
to nil, Emacs avoids saving active regions to the primary selection entirely.

To insert the primary selection into an Emacs buffer, click mouse-2 (mouse-yank-
primary) where you want to insert it. See Section 18.1 [Mouse Commands], page 196. You
can also use the normal Emacs yank command (C-y) to insert this text if select-enable-
primary is set (see Section 9.3.1 [Clipboard], page 64).

By default, Emacs keeps the region active even after text is selected in another pro-
gram; this is contrary to typical X behavior. To make Emacs deactivate the region after
another program places data in the primary selection, enable the global minor mode
lost-selection-mode.

MS-Windows provides no primary selection, but Emacs emulates it within a single Emacs
session by storing the selected text internally. Therefore, all the features and commands
related to the primary selection work on Windows as they do on X, for cutting and pasting
within the same session, but not across Emacs sessions or with other applications.

66 GNU Emacs Manual

9.3.3 Secondary Selection

In addition to the primary selection, the X Window System provides a second similar facility
known as the secondary selection. Nowadays, few X applications make use of the secondary
selection, but you can access it using the following Emacs commands:

M-Drag-mouse-1
Set the secondary selection, with one end at the place where you press down
the button, and the other end at the place where you release it (mouse-set-
secondary). The selected text is highlighted, using the secondary-selection
face, as you drag. The window scrolls automatically if you drag the mouse off
the top or bottom of the window, just like mouse-set-region (see Section 18.1
[Mouse Commands], page 196).

This command does not alter the kill ring.

M-mouse-1
Set one endpoint for the secondary selection (mouse-start-secondary); use
M-mouse-3 to set the other end and complete the selection. This command
cancels any existing secondary selection, when it starts a new one.

M-mouse-3
Set the secondary selection (mouse-secondary-save-then-kill), with one end
at the position you click M-mouse-3, and the other at the position specified
previously with M-mouse-1. This also puts the selected text in the kill ring. A
second M-mouse-3 at the same place kills the text selected by the secondary
selection just made.

M-mouse-2
Insert the secondary selection where you click, placing point at the end of the
yanked text (mouse-yank-secondary).

Double or triple clicking of M-mouse-1 operates on words and lines, much like mouse-1.

If mouse-yank-at-point is non-nil, M-mouse-2 yanks at point. Then it does not matter
precisely where you click, or even which of the frame’s windows you click on. See Section 18.1
[Mouse Commands], page 196. This user option also effects interactive search: if it is non-nil,
yanking with the mouse anywhere in the frame will add the text to the search string.

9.4 Accumulating Text

Usually we copy or move text by killing it and yanking it, but there are other convenient
methods for copying one block of text in many places, or for copying many scattered blocks
of text into one place. Here we describe the commands to accumulate scattered pieces of
text into a buffer or into a file.

M-x append-to-buffer

Append region to the contents of a specified buffer.
M-x prepend-to-buffer

Prepend region to the contents of a specified buffer.

M-x copy-to-buffer
Copy region into a specified buffer, deleting that buffer’s old contents.

Chapter 9: Killing and Moving Text 67

M-x insert-buffer
Insert the contents of a specified buffer into current buffer at point.

M-x append-to-file
Append region to the contents of a specified file, at the end.

To accumulate text into a buffer, use M-x append-to-buffer. This reads a buffer name,
then inserts a copy of the region into the buffer specified. If you specify a nonexistent buffer,
append-to-buffer creates the buffer. The text is inserted wherever point is in that buffer.
If you have been using the buffer for editing, the copied text goes into the middle of the
text of the buffer, starting from wherever point happens to be at that moment.

Point in that buffer is left at the end of the copied text, so successive uses of append-to-
buffer accumulate the text in the specified buffer in the same order as they were copied.
Strictly speaking, append-to-buffer does not always append to the text already in the
buffer—it appends only if point in that buffer is at the end. However, if append-to-buffer
is the only command you use to alter a buffer, then point is always at the end.

M-x prepend-to-buffer is just like append-to-buffer except that point in the other
buffer is left before the copied text, so successive uses of this command add text in reverse
order. M-x copy-to-buffer is similar, except that any existing text in the other buffer is
deleted, so the buffer is left containing just the text newly copied into it.

The command C-x x i (insert-buffer) can be used to retrieve the accumulated text
from another buffer. This prompts for the name of a buffer, and inserts a copy of all the text
in that buffer into the current buffer at point, leaving point at the beginning of the inserted
text. It also adds the position of the end of the inserted text to the mark ring, without
activating the mark. See Chapter 16 [Buffers|, page 177, for background information on
buffers.

Instead of accumulating text in a buffer, you can append text directly into a file with
M-x append-to-file. This prompts for a filename, and adds the text of the region to the
end of the specified file. The file is changed immediately on disk.

You should use append-to-file only with files that are not being visited in Emacs.
Using it on a file that you are editing in Emacs would change the file behind Emacs’s back,
which can lead to losing some of your editing.

Another way to move text around is to store it in a register. See Chapter 10 [Registers],
page 71.

9.5 Rectangles

Rectangle commands operate on rectangular areas of the text: all the characters between a
certain pair of columns, in a certain range of lines. Emacs has commands to kill rectangles,
yank killed rectangles, clear them out, fill them with blanks or text, or delete them. Rectangle
commands are useful with text in multicolumn formats, and for changing text into or out of
such formats.

To specify a rectangle for a command to work on, set the mark at one corner and point
at the opposite corner. The rectangle thus specified is called the region-rectangle. If point
and the mark are in the same column, the region-rectangle is empty. If they are in the same
line, the region-rectangle is one line high.

68 GNU Emacs Manual

The region-rectangle is controlled in much the same way as the region is controlled. But
remember that a given combination of point and mark values can be interpreted either as a
region or as a rectangle, depending on the command that uses them.

A rectangular region can also be marked using the mouse: click and drag C-M-mouse-1
from one corner of the rectangle to the opposite.

C-xrk Kill the text of the region-rectangle, saving its contents as the last killed rectangle
(kill-rectangle).

C-x r M-w Save the text of the region-rectangle as the last killed rectangle
(copy-rectangle-as-kill).

C-xrd Delete the text of the region-rectangle (delete-rectangle).

C-xry Yank the last killed rectangle with its upper left corner at point
(yank-rectangle).

C-xro Insert blank space to fill the space of the region-rectangle (open-rectangle).
This pushes the previous contents of the region-rectangle to the right.

C-xrN Insert line numbers along the left edge of the region-rectangle
(rectangle-number-lines). This pushes the previous contents of the
region-rectangle to the right.

C-xrc Clear the region-rectangle by replacing all of its contents with spaces
(clear-rectangle).

M-x delete-whitespace-rectangle
Delete whitespace in each of the lines on the specified rectangle, starting from
the left edge column of the rectangle.

C-x r t string RET
Replace rectangle contents with string on each line (string-rectangle).

M-x string-insert-rectangle RET string RET
Insert string on each line of the rectangle.

C-x SPC Toggle Rectangle Mark mode (rectangle-mark-mode). When this mode is
active, the region-rectangle is highlighted and can be shrunk/grown, and the
standard kill and yank commands operate on it.

The rectangle operations fall into two classes: commands to erase or insert rectangles,
and commands to make blank rectangles.

There are two ways to erase the text in a rectangle: C-x r d (delete-rectangle) to
delete the text outright, or C-x r k (kill-rectangle) to remove the text and save it as
the last killed rectangle. In both cases, erasing the region-rectangle is like erasing the
specified text on each line of the rectangle; if there is any following text on the line, it moves
backwards to fill the gap.

Killing a rectangle is not killing in the usual sense; the rectangle is not stored in the
kill ring, but in a special place that only records the most recent rectangle killed. This
is because yanking a rectangle is so different from yanking linear text that different yank
commands have to be used. Yank-popping is not defined for rectangles.

Chapter 9: Killing and Moving Text 69

C-x r M-w (copy-rectangle-as-kill) is the equivalent of M-w for rectangles: it records
the rectangle as the last killed rectangle, without deleting the text from the buffer.

To yank the last killed rectangle, type C-x r y (yank-rectangle). The rectangle’s first
line is inserted at point, the rectangle’s second line is inserted at the same horizontal position
one line vertically below, and so on. The number of lines affected is determined by the
height of the saved rectangle.

For example, you can convert two single-column lists into a double-column list by killing
one of the single-column lists as a rectangle, and then yanking it beside the other list.

You can also copy rectangles into and out of registers with C-x r r r and C-x r 1 r. See
Section 10.3 [Rectangle Registers|, page 72.

There are two commands you can use for making blank rectangles: C-xr c
(clear-rectangle) blanks out existing text in the region-rectangle, and C-xr o
(open-rectangle) inserts a blank rectangle.

M-x delete-whitespace-rectangle deletes horizontal whitespace starting from a par-
ticular column. This applies to each of the lines in the rectangle, and the column is specified
by the left edge of the rectangle. The right edge of the rectangle does not make any difference
to this command.

The command C-x r N (rectangle-number-lines) inserts line numbers along the left
edge of the region-rectangle. Normally, the numbering begins from 1 (for the first line of the
rectangle). With a prefix argument, the command prompts for a number to begin from, and
for a format string with which to print the numbers (see Section “Formatting Strings” in
The Emacs Lisp Reference Manual).

The command C-x r t (string-rectangle) replaces the contents of a region-rectangle
with a string on each line. The string’s width need not be the same as the width of the
rectangle. If the string’s width is less, the text after the rectangle shifts left; if the string is
wider than the rectangle, the text after the rectangle shifts right.

The command M-x string-insert-rectangle is similar to string-rectangle, but
inserts the string on each line, shifting the original text to the right.

The command C-x SPC (rectangle-mark-mode) toggles whether the region-rectangle or
the standard region is highlighted (first activating the region if necessary). When this mode
is enabled, commands that resize the region (C-£f, C-n etc.) do so in a rectangular fashion,
and killing and yanking operate on the rectangle. See Chapter 9 [Killing], page 58. The
mode persists only as long as the region is active.

The region-rectangle works only when the mark is active. In particular, when Transient
Mark mode is off (see Section 8.7 [Disabled Transient Mark], page 56), in addition to typing
C-x SPC you will need to activate the mark.

Unlike the standard region, the region-rectangle can have its corners extended past the
end of buffer, or inside stretches of white space that point normally cannot enter, like in the
middle of a TAB character.

When the region is active (see Chapter 8 [Mark], page 51) and in rectangle-mark-mode,
C-x C-x runs the command rectangle-exchange-point-and-mark, which cycles between
the four corners of the region-rectangle. This comes in handy if you want to modify the
dimensions of the region-rectangle before invoking an operation on the marked text.

70 GNU Emacs Manual

9.6 CUA Bindings

The command M-x cua-mode sets up key bindings that are compatible with the Common
User Access (CUA) system used in many other applications.

When CUA mode is enabled, the keys C-x, C-c, C-v, and C-z invoke commands that
cut (kill), copy, paste (yank), and undo respectively. The C-x and C-c keys perform cut
and copy only if the region is active. Otherwise, they still act as prefix keys, so that
standard Emacs commands like C-x C-c still work. Note that this means the variable
mark-even-if-inactive has no effect for C-x and C-c (see Section 8.3 [Using Region],
page 54).

To enter an Emacs command like C-x C-f while the mark is active, use one of the following
methods: either hold Shift together with the prefix key, e.g., S-C-x C-f, or quickly type
the prefix key twice, e.g., C-x C-x C-£.

To disable the overriding of standard Emacs binding by CUA mode, while retaining the
other features of CUA mode described below, set the variable cua-enable-cua-keys to
nil.

CUA mode by default activates Delete-Selection mode (see Section 18.1 [Mouse Com-
mands|, page 196) so that typed text replaces the active region. To use CUA without this
behavior, set the variable cua-delete-selection to nil.

CUA mode provides enhanced rectangle support with visible rectangle highlighting. Use
C-RET to start a rectangle, extend it using the movement commands, and cut or copy it
using C-x or C-c. RET moves the cursor to the next (clockwise) corner of the rectangle, so
you can easily expand it in any direction. Normal text you type is inserted to the left or
right of each line in the rectangle (on the same side as the cursor).

You can use this rectangle support without activating CUA by calling the cua-rectangle-
mark-mode command. There’s also the standard command rectangle-mark-mode, see
Section 9.5 [Rectangles], page 67.

With CUA you can easily copy text and rectangles into and out of registers by providing
a one-digit numeric prefix to the kill, copy, and yank commands, e.g., C-1 C-c copies the
region into register 1, and C-2 C-v yanks the contents of register 2.

CUA mode also has a global mark feature which allows easy moving and copying of text
between buffers. Use C-S-SPC to toggle the global mark on and off. When the global mark
is on, all text that you kill or copy is automatically inserted at the global mark, and text
you type is inserted at the global mark rather than at the current position.

For example, to copy words from various buffers into a word list in a given buffer, set the
global mark in the target buffer, then navigate to each of the words you want in the list,
mark it (e.g., with S-M-f), copy it to the list with C-c or M-w, and insert a newline after the
word in the target list by pressing RET.

71

10 Registers

Emacs registers are compartments where you can save text, rectangles, positions, and other
things for later use. Once you save text or a rectangle in a register, you can copy it into the
buffer once or many times; once you save a position in a register, you can jump back to that
position once or many times.

Each register has a name that consists of a single character, which we will denote by r; r
can be a letter (such as ‘a’) or a number (such as ‘1’); case matters, so register ‘a’ is not the
same as register ‘A’. You can also set a register in non-alphanumeric characters, for instance
‘*x” or ‘C-d’. Note, it’s not possible to set a register in ‘C-g’ or ‘ESC’, because these keys are
reserved for quitting (see Section 34.1 [Quitting], page 537).

A register can store a position, a piece of text, a rectangle, a number, a window or frame
configuration, a buffer name, or a file name, but only one thing at any given time. Whatever
you store in a register remains there until you store something else in that register. To see
what register r contains, use M-x view-register:

M-x view-register RET r
Display a description of what register r contains.

All of the commands that prompt for a register will display a preview window that lists
the existing registers (if there are any) after a short delay. To change the length of the delay,
customize register-preview-delay. To prevent this display, set that option to nil. You
can explicitly request a preview window by pressing C-h or F1.

Bookmarks record files and positions in them, so you can return to those positions when
you look at the file again. Bookmarks are similar in spirit to registers, so they are also
documented in this chapter.

10.1 Saving Positions in Registers

C-xr SPCr
Record the position of point and the current buffer in register r (point-to-
register).

C-xr j r Jump to the position and buffer saved in register r (jump-to-register).

Typing C-x r SPC (point-to-register), followed by a character r, saves both the
position of point and the current buffer in register r. The register retains this information
until you store something else in it.

The command C-x r j r switches to the buffer recorded in register r, pushes a mark, and
moves point to the recorded position. (The mark is not pushed if point was already at the
recorded position, or in successive calls to the command.) The contents of the register are
not changed, so you can jump to the saved position any number of times.

If you use C-x r j to go to a saved position, but the buffer it was saved from has been
killed, C-x r j tries to create the buffer again by visiting the same file. Of course, this works
only for buffers that were visiting files.

72 GNU Emacs Manual

10.2 Saving Text in Registers

When you want to insert a copy of the same piece of text several times, it may be inconvenient
to yank it from the kill ring, since each subsequent kill moves that entry further down the
ring. An alternative is to store the text in a register and later retrieve it.

C-xr s r Copy region into register r (copy-to-register).
C-xr ir Inserttext from register r (insert-register).

M-x append-to-register RET r
Append region to text in register r.

When register r contains text, you can use C-x r + (increment-register) to
append to that register. Note that command C-x r + behaves differently if r
contains a number. See Section 10.5 [Number Registers|, page 73.

M-x prepend-to-register RET r
Prepend region to text in register r.

C-x r s r stores a copy of the text of the region into the register named r. If the mark is
inactive, Emacs first reactivates the mark where it was last set. The mark is deactivated at
the end of this command. See Chapter 8 [Mark], page 51. C-u C-x r s r, the same command
with a prefix argument, copies the text into register r and deletes the text from the buffer
as well; you can think of this as moving the region text into the register.

M-x append-to-register RET r appends the copy of the text in the region to the text
already stored in the register named r. If invoked with a prefix argument, it deletes the
region after appending it to the register. The command prepend-to-register is similar,
except that it prepends the region text to the text in the register instead of appending it.

When you are collecting text using append-to-register and prepend-to-register,
you may want to separate individual collected pieces using a separator. In that case, configure
a register-separator and store the separator text in to that register. For example, to get
double newlines as text separator during the collection process, you can use the following
setting.

(setq register-separator 7+)
(set-register register-separator "\n\n")
C-x r i r inserts in the buffer the text from register r. Normally it leaves point after the

text and sets the mark before, without activating it. With a prefix argument, it instead puts
point before the text and the mark after.

10.3 Saving Rectangles in Registers

A register can contain a rectangle instead of linear text. See Section 9.5 [Rectangles], page 67,
for basic information on how to specify a rectangle in the buffer.

C-xr r r Copy the region-rectangle into register r (copy-rectangle-to-register). With
prefix argument, delete it as well.

C-xrir Insert the rectangle stored in register r (if it contains a rectangle)
(insert-register).

Chapter 10: Registers 73

The C-x r i r (insert-register) command, previously documented in Section 10.2
[Text Registers|, page 72, inserts a rectangle rather than a text string, if the register contains
a rectangle.

10.4 Saving Window and Frame Configurations in Registers

You can save the window configuration of the selected frame in a register, or even the
configuration of all windows in all frames, and restore the configuration later. See Section 17.7
[Window Convenience], page 193, for information about window configurations.

C-xrwr Save the state of the selected frame’s windows in register r
(window-configuration-to-register).

C-xr f r Save the state of all frames, including all their windows (a.k.a. frameset), in
register r (frameset-to-register).

Use C-x r j r to restore a window or frame configuration. This is the same command
used to restore a cursor position. When you restore a frame configuration, any existing
frames not included in the configuration become invisible. If you wish to delete these frames
instead, use C-u C-xr j r.

10.5 Keeping Numbers in Registers

There are commands to store a number in a register, to insert the number in the buffer
in decimal, and to increment it. These commands can be useful in keyboard macros (see
Chapter 14 [Keyboard Macros], page 138).

C-u number C-xrnr
Store number into register r (number-to-register).

C-u number C-x r + r
If r contains a number, increment the number in that register by number. Note
that command C-x r + (increment-register) behaves differently if r contains
text. See Section 10.2 [Text Registers|, page 72.

C-xr ir Insert the number from register r into the buffer.

C-x r i is the same command used to insert any other sort of register contents into the
buffer. C-x r + with no numeric argument increments the register value by 1; C-x r n with
no numeric argument stores zero in the register.

10.6 Keeping File and Buffer Names in Registers

If you visit certain file names frequently, you can visit them more conveniently if you put
their names in registers. Here’s the Lisp code used to put a file name into register r:

(set-register r '(file . name))

74 GNU Emacs Manual

For example,
(set-register 7z '(file . "/gd/gnu/emacs/19.0/src/Changelog"))
puts the file name shown in register ‘z’.
To visit the file whose name is in register r, type C-x r j r. (This is the same command
used to jump to a position or restore a frame configuration.)

Similarly, if there are certain buffers you visit frequently, you can put their names in
registers. For instance, if you visit the ‘*Messages*’ buffer often, you can use the following
snippet to put that buffer into the ‘m’ register:

(set-register 7m '(buffer . "*Messagesx*"))

To switch to the buffer whose name is in register r, type C-x r j r.

10.7 Keyboard Macro Registers

If you need to execute a keyboard macro (see Chapter 14 [Keyboard Macros|, page 138)
frequently, it is more convenient to put it in a register or save it (see Section 14.5 [Save
Keyboard Macro], page 143). C-x C-k x r (kmacro-to-register) stores the last keyboard
macro in register r.

To execute the keyboard macro in register r, type C-x r j r. (This is the same command
used to jump to a position or restore a frameset.)

10.8 Bookmarks

Bookmarks are somewhat like registers in that they record positions you can jump to. Unlike
registers, they have long names, and they persist automatically from one Emacs session to

the next. The prototypical use of bookmarks is to record where you were reading in various
files.

C-x r m RET
Set the bookmark for the visited file, at point.

C-x r m bookmark RET
Set the bookmark named bookmark at point (bookmark-set).

C-x r M bookmark RET
Like C-x r m, but don’t overwrite an existing bookmark.

C-x r b bookmark RET
Jump to the bookmark named bookmark (bookmark-jump).

C-xrl List all bookmarks (1ist-bookmarks).

M-x bookmark-save
Save all the current bookmark values in the default bookmark file.

To record the current position in the visited file, use the command C-x r m, which sets a
bookmark using the visited file name as the default for the bookmark name. If you name
each bookmark after the file it points to, then you can conveniently revisit any of those files
with C-x r b, and move to the position of the bookmark at the same time.

The command C-x r M (bookmark-set-no-overwrite) works like C-x r m, but it signals
an error if the specified bookmark already exists, instead of overwriting it.

Chapter 10: Registers 75

To display a list of all your bookmarks in a separate buffer, type C-xr 1l
(list-bookmarks). If you switch to that buffer, you can use it to edit your bookmark
definitions or annotate the bookmarks. Type C-hm in the bookmark buffer for more
information about its special editing commands.

When you kill Emacs, Emacs saves your bookmarks, if you have changed any bookmark
values. You can also save the bookmarks at any time with the M-x bookmark-save command.
Bookmarks are saved to the file “/ . emacs.d/bookmarks (for compatibility with older versions
of Emacs, if you have a file named ~/.emacs.bmk, that is used instead). The bookmark
commands load your default bookmark file automatically. This saving and loading is how
bookmarks persist from one Emacs session to the next.

If you set the variable bookmark-save-flag to 1, each command that sets a bookmark
will also save your bookmarks; this way, you don’t lose any bookmark values even if Emacs
crashes. The value, if a number, says how many bookmark modifications should go by
between saving. If you set this variable to nil, Emacs only saves bookmarks if you explicitly
use M-x bookmark-save.

The variable bookmark-default-file specifies the file in which to save bookmarks by
default.

If you set the variable bookmark-use-annotations to t, setting a bookmark will query
for an annotation. If a bookmark has an annotation, it is automatically shown in a separate
window when you jump to the bookmark.

Bookmark position values are saved with surrounding context, so that bookmark-jump can
find the proper position even if the file is modified slightly. The variable bookmark-search-
size says how many characters of context to record on each side of the bookmark’s position.
(In buffers that are visiting encrypted files, no context is saved in the bookmarks file no
matter the value of this variable.)

Here are some additional commands for working with bookmarks:

M-x bookmark-load RET filename RET
Load a file named filename that contains a list of bookmark values. You can use
this command, as well as bookmark-write, to work with other files of bookmark
values in addition to your default bookmark file.

M-x bookmark-write RET filename RET
Save all the current bookmark values in the file filename.

M-x bookmark-delete RET bookmark RET
Delete the bookmark named bookmark.

M-x bookmark-insert-location RET bookmark RET
Insert in the buffer the name of the file that bookmark bookmark points to.

M-x bookmark-insert RET bookmark RET
Insert in the buffer the contents of the file that bookmark bookmark points to.

76 GNU Emacs Manual

11 Controlling the Display

Since only part of a large buffer fits in the window, Emacs has to show only a part of it.
This chapter describes commands and variables that let you specify which part of the text
you want to see, and how the text is displayed.

11.1 Scrolling

If a window is too small to display all the text in its buffer, it displays only a portion of it.
Scrolling commands change which portion of the buffer is displayed.

Scrolling forward or up advances the portion of the buffer displayed in the window;
equivalently, it moves the buffer text upwards relative to the window. Scrolling backward or
down displays an earlier portion of the buffer, and moves the text downwards relative to the
window.

In Emacs, scrolling up or down refers to the direction that the text moves in the window,
not the direction that the window moves relative to the text. This terminology was adopted
by Emacs before the modern meaning of “scrolling up” and “scrolling down” became
widespread. Hence, the strange result that PageDown scrolls up in the Emacs sense.

The portion of a buffer displayed in a window always contains point. If you move point
past the bottom or top of the window, scrolling occurs automatically to bring it back
onscreen (see Section 11.3 [Auto Scrolling], page 78). You can also scroll explicitly with
these commands:

C-v
PageDown
next Scroll forward by nearly a full window (scroll-up-command).

M-v
PageUp
prior Scroll backward (scroll-down-command).

C-v (scroll-up-command) scrolls forward by nearly the whole window height. The effect
is to take the two lines at the bottom of the window and put them at the top, followed by
lines that were not previously visible. If point was in the text that scrolled off the top, it
ends up on the window’s new topmost line. The PageDown (or next) key is equivalent to
C-v.

M-v (scroll-down-command) scrolls backward in a similar way. The PageUp (or prior)
key is equivalent to M-v.

The number of lines of overlap left by these scroll commands is controlled by the variable
next-screen-context-lines, whose default value is 2. You can supply the commands with
a numeric prefix argument, n, to scroll by n lines; Emacs attempts to leave point unchanged,
so that the text and point move up or down together. C-v with a negative argument is like
M-v and vice versa.

By default, these commands signal an error (by beeping or flashing the screen) if no more
scrolling is possible, because the window has reached the beginning or end of the buffer. If
you change the variable scroll-error-top-bottom to t, these commands move point to
the farthest possible position. If point is already there, the commands signal an error.

Chapter 11: Controlling the Display 7

Some users like scroll commands to keep point at the same screen position, so that
scrolling back to the same screen conveniently returns point to its original position. You
can enable this behavior via the variable scroll-preserve-screen-position. If the value
is t, Emacs adjusts point to keep the cursor at the same screen position whenever a scroll
command moves it off-window, rather than moving it to the topmost or bottommost line.
With any other non-nil value, Emacs adjusts point this way even if the scroll command
leaves point in the window. This variable affects all the scroll commands documented in
this section, as well as scrolling with the mouse wheel (see Section 18.1 [Mouse Commands],
page 196); in general, it affects any command that has a non-nil scroll-command property.
See Section “Property Lists” in The Emacs Lisp Reference Manual. The same property also
causes Emacs not to exit incremental search when one of these commands is invoked and
isearch-allow-scroll is non-nil (see Section 12.1.6 [Not Exiting Isearch|, page 109).

Sometimes, particularly when you hold down keys such as C-v and M-v, activating
keyboard auto-repeat, Emacs fails to keep up with the rapid rate of scrolling requested; the
display doesn’t update and Emacs can become unresponsive to input for quite a long time.
You can counter this sluggishness by setting the variable fast-but-imprecise-scrolling
to a non-nil value. This instructs the scrolling commands not to fontify (see Section 11.13
[Font Lock]|, page 88) any unfontified text they scroll over, instead to assume it has the
default face. This can cause Emacs to scroll to somewhat wrong buffer positions when the
faces in use are not all the same size, even with single (i.e., without auto-repeat) scrolling
operations.

As an alternative to setting fast-but-imprecise-scrolling you might prefer to enable
jit-lock deferred fontification (see Section 11.13 [Font Lock], page 88). To do this, customize
jit-lock-defer-time to a small positive number such as 0.25, or even 0.1 if you type
quickly. This gives you less jerky scrolling when you hold down C-v, but the window
contents after any action which scrolls into a fresh portion of the buffer will be momentarily
unfontified.

Finally, a third alternative to these variables is redisplay-skip-fontification-on-
input. If this variable is non-nil, skip some fontifications if there’s input pending. This
usually does not affect the display because redisplay is completely skipped anyway if input
was pending, but it can make scrolling smoother by avoiding unnecessary fontification.

The commands M-x scroll-up and M-x scroll-down behave similarly to scroll-up-
command and scroll-down-command, except they do not obey scroll-error-top-bottom.
Prior to Emacs 24, these were the default commands for scrolling up and down. The
commands M-x scroll-up-line and M-x scroll-down-line scroll the current window by
one line at a time. If you intend to use any of these commands, you might want to give
them key bindings (see Section 33.3.6 [Init Rebinding], page 524).

11.2 Recentering

c-1 Scroll the selected window so the current line is the center-most text line; on
subsequent consecutive invocations, make the current line the top line, the
bottom line, and so on in cyclic order. Possibly redisplay the screen too
(recenter-top-bottom).

C-M-S-1 Scroll the other window; this is equivalent to C-1 acting on the other window.

78 GNU Emacs Manual

M-x recenter
Scroll the selected window so the current line is the center-most text line.
Possibly redisplay the screen too.

C-M-1 Scroll heuristically to bring wuseful information onto the screen
(reposition-window).

The C-1 (recenter-top-bottom) command recenters the selected window, scrolling it so
that the current screen line is exactly in the center of the window, or as close to the center
as possible.

Typing C-1 twice in a row (C-1 C-1) scrolls the window so that point is on the topmost
screen line. Typing a third C-1 scrolls the window so that point is on the bottom-most
screen line. Each successive C-1 cycles through these three positions.

You can change the cycling order by customizing the list variable recenter-positions.
Each list element should be the symbol top, middle, or bottom, or a number; an integer
means to move the line to the specified screen line, while a floating-point number between
0.0 and 1.0 specifies a percentage of the screen space from the top of the window. The
default, (middle top bottom), is the cycling order described above. Furthermore, if you
change the variable scroll-margin to a non-zero value n, C-1 always leaves at least n screen
lines between point and the top or bottom of the window (see Section 11.3 [Auto Scrolling],
page 78).

You can also give C-1 a prefix argument. A plain prefix argument, C-u C-1, simply
recenters the line showing point. A positive argument n moves line showing point n lines
down from the top of the window. An argument of zero moves point’s line to the top of the
window. A negative argument —n moves point’s line n lines from the bottom of the window.
When given an argument, C-1 does not clear the screen or cycle through different screen
positions.

If the variable recenter-redisplay has a non-nil value, each invocation of C-1 also
clears and redisplays the screen; the special value tty (the default) says to do this on
text-terminal frames only. Redisplaying is useful in case the screen becomes garbled for any
reason (see Section 34.2.2 [Screen Garbled], page 539).

The more primitive command M-x recenter behaves like recenter-top-bottom, but
does not cycle among screen positions.

C-M-1 (reposition-window) scrolls the current window heuristically in a way designed
to get useful information onto the screen. For example, in a Lisp file, this command tries to
get the entire current defun onto the screen if possible.

11.3 Automatic Scrolling

Emacs performs automatic scrolling when point moves out of the visible portion of the text.
Normally, automatic scrolling centers point vertically in the window, but there are several
ways to alter this behavior.

If you set scroll-conservatively to a small number n, then moving point just a little
off the screen (no more than n lines) causes Emacs to scroll just enough to bring point back
on screen; if doing so fails to make point visible, Emacs scrolls just far enough to center
point in the window. If you set scroll-conservatively to a large number (larger than
100), automatic scrolling never centers point, no matter how far point moves; Emacs always

Chapter 11: Controlling the Display 79

scrolls text just enough to bring point into view, either at the top or bottom of the window
depending on the scroll direction. By default, scroll-conservatively is 0, which means
to always center point in the window. This said, in minibuffer windows, scrolling is always
conservative by default because scroll-minibuffer-conservatively is non-nil, which
takes precedence over scroll-conservatively.

Another way to control automatic scrolling is to customize the variable scroll-step.
Its value determines the number of lines by which to automatically scroll, when point moves
off the screen. If scrolling by that number of lines fails to bring point back into view, point
is centered instead. The default value is zero, which (by default) causes point to always be
centered after scrolling.

A third way to control automatic scrolling is to customize the variables scroll-up-
aggressively and scroll-down-aggressively, which directly specify the vertical position
of point after scrolling. The value of scroll-up-aggressively should be either nil (the
default), or a floating point number f between 0 and 1. The latter means that when point
goes below the bottom window edge (i.e., scrolling forward), Emacs scrolls the window so
that point is f parts of the window height from the bottom window edge. Thus, larger
means more aggressive scrolling: more new text is brought into view. The default value,
nil, is equivalent to 0.5.

Likewise, scroll-down-aggressively is used when point goes above the top window
edge (i.e., scrolling backward). The value specifies how far point should be from the top
margin of the window after scrolling. Thus, as with scroll-up-aggressively, a larger
value is more aggressive.

Note that the variables scroll-conservatively, scroll-step, and scroll-up-
aggressively / scroll-down-aggressively control automatic scrolling in contradictory
ways. Therefore, you should pick no more than one of these methods to customize
automatic scrolling. In case you customize multiple variables, the order of priority is:
scroll-conservatively, then scroll-step, and finally scroll-up-aggressively /
scroll-down-aggressively.

The variable scroll-margin restricts how close point can come to the top or bottom of
a window (even if aggressive scrolling specifies a fraction f that is larger than the window
portion between the top and the bottom margins). Its value is a number of screen lines; if
point comes within that many lines of the top or bottom of the window, Emacs performs
automatic scrolling. By default, scroll-margin is 0. The effective margin size is limited to
a quarter of the window height by default, but this limit can be increased up to half (or
decreased down to zero) by customizing maximum-scroll-margin.

11.4 Horizontal Scrolling

Horizontal scrolling means shifting all the lines sideways within a window, so that some of the
text near the left margin is not displayed. When the text in a window is scrolled horizontally,
text lines are truncated rather than continued (see Section 11.22 [Line Truncation], page 99).
If a window shows truncated lines, Emacs performs automatic horizontal scrolling whenever
point moves off the left or right edge of the screen. By default, all the lines in the window
are scrolled horizontally together, but if you set the variable auto-hscroll-mode to the
special value of current-1line, only the line showing the cursor will be scrolled. To disable
automatic horizontal scrolling entirely, set the variable auto-hscroll-mode to nil. Note

80 GNU Emacs Manual

that when the automatic horizontal scrolling is turned off, if point moves off the edge of the
screen, the cursor disappears to indicate that. (On text terminals, the cursor is left at the
edge instead.)

The variable hscroll-margin controls how close point can get to the window’s left and
right edges before automatic scrolling occurs. It is measured in columns. For example, if the
value is 5, then moving point within 5 columns of an edge causes horizontal scrolling away
from that edge.

The variable hscroll-step determines how many columns to scroll the window when
point gets too close to the edge. Zero, the default value, means to center point horizontally
within the window. A positive integer value specifies the number of columns to scroll by. A
floating-point number (whose value should be between 0 and 1) specifies the fraction of the
window’s width to scroll by.

You can also perform explicit horizontal scrolling with the following commands:
C-x < Scroll text in current window to the left (scroll-left).
C-x > Scroll to the right (scroll-right).

C-x < (scroll-left) scrolls text in the selected window to the left by the full width of
the window, less two columns. (In other words, the text in the window moves left relative to
the window.) With a numeric argument n, it scrolls by n columns.

If the text is scrolled to the left, and point moves off the left edge of the window, the
cursor will freeze at the left edge of the window, until point moves back to the displayed
portion of the text. This is independent of the current setting of auto-hscroll-mode, which,
for text scrolled to the left, only affects the behavior at the right edge of the window.

C-x > (scroll-right) scrolls similarly to the right. The window cannot be scrolled any
farther to the right once it is displayed normally, with each line starting at the window’s left
margin; attempting to do so has no effect. This means that you don’t have to calculate the
argument precisely for C-x >; any sufficiently large argument will restore the normal display.

If you use those commands to scroll a window horizontally, that sets a lower bound
for automatic horizontal scrolling. Automatic scrolling will continue to scroll the window,
but never farther to the right than the amount you previously set by scroll-left. When
auto-hscroll-mode is set to current-1line, all the lines other than the one showing the
cursor will be scrolled by that minimal amount.

11.5 Narrowing

Narrowing means focusing in on some portion of the buffer, making the rest temporarily
inaccessible. The portion which you can still get to is called the accessible portion. Canceling
the narrowing, which makes the entire buffer once again accessible, is called widening. The
bounds of narrowing in effect in a buffer are called the buffer’s restriction.

Narrowing can make it easier to concentrate on a single subroutine or paragraph by
eliminating clutter. It can also be used to limit the range of operation of a replace command
or repeating keyboard macro.

C-xnn Narrow down to between point and mark (narrow-to-region).

C-xnw Widen to make the entire buffer accessible again (widen).

Chapter 11: Controlling the Display 81

C-xnp Narrow down to the current page (narrow-to-page).
C-xnd Narrow down to the current defun (narrow-to-defun).

When you have narrowed down to a part of the buffer, that part appears to be all there
is. You can’t see the rest, you can’t move into it (motion commands won’t go outside the
accessible part), you can’t change it in any way. However, it is not gone, and if you save
the file all the inaccessible text will be saved. The word ‘Narrow’ appears in the mode line
whenever narrowing is in effect.

The primary narrowing command is C-x n n (narrow-to-region). It sets the current
buffer’s restrictions so that the text in the current region remains accessible, but all text
before the region or after the region is inaccessible. Point and mark do not change.

Alternatively, use C-x n p (narrow-to-page) to narrow down to the current page. See
Section 22.4 [Pages], page 259, for the definition of a page. C-x n d (narrow-to-defun)
narrows down to the defun containing point (see Section 23.2 [Defuns], page 291).

The way to cancel narrowing is to widen with C-x n w (widen). This makes all text in
the buffer accessible again.

You can get information on what part of the buffer you are narrowed down to using the
C-x = command. See Section 4.9 [Position Info], page 23.

Because narrowing can easily confuse users who do not understand it, narrow-to-region
is normally a disabled command. Attempting to use this command asks for confirmation
and gives you the option of enabling it; if you enable the command, confirmation will no
longer be required for it. See Section 33.3.11 [Disabling], page 529.

11.6 View Mode

View mode is a minor mode that lets you scan a buffer by sequential screenfuls. It provides
commands for scrolling through the buffer conveniently but not for changing it. Apart from
the usual Emacs cursor motion commands, you can type SPC to scroll forward one windowful,
S-SPC or DEL to scroll backward, and s to start an incremental search.

Typing q (View-quit) disables View mode, and switches back to the buffer and position
before View mode was enabled. Typing e (View-exit) disables View mode, keeping the
current buffer and position.

M-x view-buffer prompts for an existing Emacs buffer, switches to it, and enables View
mode. M-x view-file prompts for a file and visits it with View mode enabled.

11.7 Follow Mode

Follow mode is a minor mode that makes two windows, both showing the same buffer, scroll
as a single tall virtual window. To use Follow mode, go to a frame with just one window,
split it into two side-by-side windows using C-x 3, and then type M-x follow-mode. From
then on, you can edit the buffer in either of the two windows, or scroll either one; the other
window follows it.

In Follow mode, if you move point outside the portion visible in one window and into the
portion visible in the other window, that selects the other window—again, treating the two
as if they were parts of one large window.

To turn off Follow mode, type M-x follow-mode a second time.

82 GNU Emacs Manual

11.8 Text Faces

Emacs can display text in several different styles, called faces. Each face can specify various
face attributes, such as the font, height, weight, slant, foreground and background color, and
underlining or overlining. Most major modes assign faces to the text automatically, via Font
Lock mode. See Section 11.13 [Font Lock], page 88, for more information about how these
faces are assigned.

To see what faces are currently defined, and what they look like, type M-x
list-faces-display. With a prefix argument, this prompts for a regular expression, and
displays only faces with names matching that regular expression (see Section 12.6 [Regexps],
page 114).

It’s possible for a given face to look different in different frames. For instance, some text
terminals do not support all face attributes, particularly font, height, and width, and some
support a limited range of colors. In addition, most Emacs faces are defined so that their
attributes are different on light and dark frame backgrounds, for reasons of legibility. By
default, Emacs automatically chooses which set of face attributes to display on each frame,
based on the frame’s current background color. However, you can override this by giving
the variable frame-background-mode a non-nil value. A value of dark makes Emacs treat
all frames as if they have a dark background, whereas a value of 1ight makes it treat all
frames as if they have a light background.

You can customize a face to alter its attributes, and save those customizations for future
Emacs sessions. See Section 33.1.5 [Face Customization], page 505, for details.

The default face is the default for displaying text, and all of its attributes are specified.
Its background color is also used as the frame’s background color. See Section 11.9 [Colors],
page 82.

Another special face is the cursor face. On graphical displays, the background color of
this face is used to draw the text cursor. None of the other attributes of this face have any
effect; the foreground color for text under the cursor is taken from the background color of
the underlying text. On text terminals, the appearance of the text cursor is determined by
the terminal, not by the cursor face.

You can also use X resources to specify attributes of any particular face. See Section D.1
[Resources|, page 592.

FEmacs can display variable-width fonts, but some Emacs commands, particularly in-
dentation commands, do not account for variable character display widths. Therefore, we
recommend not using variable-width fonts for most faces, particularly those assigned by
Font Lock mode.

11.9 Colors for Faces

Faces can have various foreground and background colors. When you specify a color for
a face—for instance, when customizing the face (see Section 33.1.5 [Face Customization],
page 505)—you can use either a color name or an RGB triplet.

11.9.1 Color Names

A color name is a pre-defined name, such as ‘dark orange’ or ‘medium sea green’. To view
a list of color names, type M-x list-colors-display. To control the order in which colors

Chapter 11: Controlling the Display 83

are shown, customize list-colors-sort. If you run this command on a graphical display,
it shows the full range of color names known to Emacs (these are the standard X11 color
names, defined in X’s rgb.txt file). If you run the command on a text terminal, it shows
only a small subset of colors that can be safely displayed on such terminals. However, Emacs
understands X11 color names even on text terminals; if a face is given a color specified by
an X11 color name, it is displayed using the closest-matching terminal color.

11.9.2 RGB Triplets

An RGB triplet is a string of the form ‘#RRGGBB’. Each of the primary color components is
represented by a hexadecimal number between ‘00’ (intensity 0) and ‘FF’ (the maximum
intensity). It is also possible to use one, three, or four hex digits for each component, so ‘red’
can be represented as ‘#F00’, ‘#£f£ff000000°, or ‘#ffff00000000’. The components must
have the same number of digits. For hexadecimal values A to F, either upper or lower case
are acceptable.

The M-x 1list-colors-display command also shows the equivalent RGB triplet for each
named color. For instance, ‘medium sea green’ is equivalent to ‘#3CB371’.

You can change the foreground and background colors of a face with M-x
set-face-foreground and M-x set-face-background. These commands prompt in the
minibuffer for a face name and a color, with completion, and then set that face to use the
specified color. They affect the face colors on all frames, but their effects do not persist for
future Emacs sessions, unlike using the customization buffer or X resources. You can also
use frame parameters to set foreground and background colors for a specific frame; See
Section 18.11 [Frame Parameters|, page 207.

11.10 Standard Faces

Here are the standard faces for specifying text appearance. You can apply them to specific
text when you want the effects they produce.

default This face is used for ordinary text that doesn’t specify any face. Its background
color is used as the frame’s background color.

bold This face uses a bold variant of the default font.
italic This face uses an italic variant of the default font.

bold-italic
This face uses a bold italic variant of the default font.

underline
This face underlines text.

fixed-pitch
This face forces use of a fixed-width font. It’s reasonable to customize this face
to use a different fixed-width font, if you like, but you should not make it a
variable-width font.

fixed-pitch-serif
This face is like fixed-pitch, except the font has serifs and looks more like
traditional typewriting.

84 GNU Emacs Manual

variable-pitch
This face forces use of a variable-width (i.e., proportional) font. The font size
picked for this face matches the font picked for the default (usually fixed-width)
font.

variable-pitch-text
This is like the variable-pitch face (from which it inherits), but is slightly
larger. A proportional font of the same height as a monospace font usually
appears visually smaller, and can therefore be harder to read. When display-
ing longer texts, this face can be a good choice over the (slightly smaller)
variable-pitch face.

shadow This face is used for making the text less noticeable than the surrounding
ordinary text. Usually this can be achieved by using shades of gray in contrast
with either black or white default foreground color.

Here’s an incomplete list of faces used to highlight parts of the text temporarily for
specific purposes. (Many other modes define their own faces for this purpose.)

highlight
This face is used for text highlighting in various contexts, such as when the
mouse cursor is moved over a hyperlink.

isearch This face is used to highlight the current Isearch match (see Section 12.1
[Incremental Search|, page 104).

query-replace
This face is used to highlight the current Query Replace match (see Section 12.10
[Replace], page 121).

lazy-highlight
This face is used to highlight lazy matches for Isearch and Query Replace
(matches other than the current one).

region This face is used for displaying an active region (see Chapter 8 [Mark], page 51).
When Emacs is built with GTK+ support, its colors are taken from the current
GTK+ theme.

secondary-selection
This face is used for displaying a secondary X selection (see Section 9.3.3
[Secondary Selection], page 66).

trailing-whitespace
The face for highlighting excess spaces and tabs at the end of a line when
show-trailing-whitespace is non-nil (see Section 11.17 [Useless Whitespace],
page 94).

escape-glyph
The face for displaying control characters and escape sequences (see Section 11.20
[Text Display], page 97).

homoglyph
The face for displaying lookalike characters, i.e., characters that look like but are
not the characters being represented (see Section 11.20 [Text Display], page 97).

Chapter 11: Controlling the Display 85

nobreak-space
The face for displaying no-break space characters (see Section 11.20 [Text
Display], page 97).

nobreak-hyphen
The face for displaying no-break hyphen characters (see Section 11.20 [Text
Display], page 97).

The following faces control the appearance of parts of the Emacs frame:

mode-line
This is the base face used for the mode lines, as well as header lines and for menu
bars when toolkit menus are not used. By default, it’s drawn with shadows for
a raised effect on graphical displays, and drawn as the inverse of the default
face on text terminals.

The mode-line-active and mode-line-inactive faces (which are the ones
used on the mode lines) inherit from this face.

mode-line-active
Like mode-1line, but used for the mode line of the currently selected window.
This face inherits from mode-1line, so changes in that face affect mode lines in
all windows.

mode-line-inactive
Like mode-1ine, but used for mode lines of the windows other than the selected
one (if mode-line-in-non-selected-windows is non-nil). This face inherits
from mode-1ine, so changes in that face affect mode lines in all windows.

mode-line-highlight
Like highlight, but used for mouse-sensitive portions of text on mode lines.
Such portions of text typically pop up tooltips (see Section 18.19 [Tooltips],
page 215) when the mouse pointer hovers above them.

mode-line-buffer-id
This face is used for buffer identification parts in the mode line.

header-line
Similar to mode-1line for a window’s header line, which appears at the top of
a window just as the mode line appears at the bottom. Most windows do not
have a header line—only some special modes, such Info mode, create one.

header-line-highlight
Similar to highlight and mode-line-highlight, but used for mouse-sensitive
portions of text on header lines. This is a separate face because the header-1line
face might be customized in a way that does not interact well with highlight.

tab-line Similar to mode-line for a window’s tab line, which appears at the top of a
window with tabs representing window buffers. See Section 17.8 [Tab Line],
page 194.

vertical-border
This face is used for the vertical divider between windows on text terminals.

86 GNU Emacs Manual

minibuffer-prompt
This face is used for the prompt strings displayed in the minibuffer. By de-
fault, Emacs automatically adds this face to the value of minibuffer-prompt-
properties, which is a list of text properties (see Section “Text Properties”
in the Emacs Lisp Reference Manual) used to display the prompt text. (This
variable takes effect when you enter the minibuffer.)

fringe The face for the fringes to the left and right of windows on graphic displays.
(The fringes are the narrow portions of the Emacs frame between the text area
and the window’s right and left borders.) See Section 11.15 [Fringes|, page 92.

cursor The :background attribute of this face specifies the color of the text cursor.
See Section 11.21 [Cursor Display], page 98.

tooltip This face is used for tooltip text. By default, if Emacs is built with GTK+ support,
tooltips are drawn via GTK+ and this face has no effect. See Section 18.19
[Tooltips], page 215.

mouse This face determines the color of the mouse pointer.

The following faces likewise control the appearance of parts of the Emacs frame, but only
on text terminals, or when Emacs is built on X with no toolkit support. (For all other cases,
the appearance of the respective frame elements is determined by system-wide settings.)

scroll-bar
This face determines the visual appearance of the scroll bar. See Section 18.12
[Scroll Bars], page 208.

tool-bar This face determines the color of tool bar icons. See Section 18.16 [Tool Bars],

page 211.

tab-bar This face determines the color of tab bar icons. See Section 18.17 [Tab Bars],
page 211.

menu This face determines the colors and font of Emacs’s menus. See Section 18.15

[Menu Bars], page 211.

tty-menu-enabled-face
This face is used to display enabled menu items on text-mode terminals.

tty-menu-disabled-face
This face is used to display disabled menu items on text-mode terminals.

tty-menu-selected-face
This face is used to display on text-mode terminals the menu item that would
be selected if you click a mouse or press RET.

11.11 Icons

Emacs sometimes displays clickable buttons (or other informative icons), and you can
customize how these look on display.

The main customization point here is the icon-preference user option. By using this,
you can tell Emacs your overall preferences for icons. This is a list of icon types, and the
first icon type that’s supported will be used. The supported types are:

image Use an image for the icon.

Chapter 11: Controlling the Display 87

emoji Use a colorful emoji for the icon.
symbol Use a monochrome symbol for the icon.
text Use a simple text for the icon.

In addition, each individual icon can be customized with M-x customize-icon, and
themes can further alter the looks of the icons.

To get a quick description of an icon, use the M-x describe-icon command.

11.12 Text Scale

To increase the font size of the default face in the current buffer, type C-x C-+ or C-x C-=.
To decrease it, type C-x C--. To restore the default (global) font size, type C-x C-0. These
keys are all bound to the same command, text-scale-adjust, which looks at the last key
typed to determine which action to take and adjusts the font size accordingly by changing
the height of the default face.

Most faces don’t have an explicit setting of the :height attribute, and thus inherit the
height from the default face. Those faces are also scaled by the above commands.

Faces other than default that have an explicit setting of the :height attribute are not
affected by these font size changes. The header-1line face is an exception: it will be scaled
even if it has an explicit setting of the :height attribute.

Similarly, scrolling the mouse wheel with the Ctrl modifier pressed, when the mouse
pointer is above buffer text, will increase or decrease the font size of the affected faces,
depending on the direction of the scrolling.

The final key of these commands may be repeated without the leading C-x and without the
modifiers. For instance, C-x C-= C-= C-= and C-x C-= = = increase the face height by three
steps. Each step scales the text height by a factor of 1.2; to change this factor, customize
the variable text-scale-mode-step. A numeric argument of 0 to the text-scale-adjust
command restores the default height, the same as typing C-x C-0.

Similarly, to change the sizes of the fonts globally, type C-x C-M-+, C-x C-M-=, C-x
C-M-- or C-x C-M-0, or scroll the mouse wheel with both the Ctrl and Meta modifiers
pressed. To enable frame resizing when the font size is changed globally, customize the vari-
able global-text-scale-adjust-resizes-frames (see Section 33.1 [Easy Customization],
page 501).

The commands text-scale-increase and text-scale-decrease increase or decrease
the size of the font in the current buffer, just like C-x C-+ and C-x C-- respectively. You
may find it convenient to bind to these commands, rather than text-scale-adjust.

The command text-scale-set scales the size of the font in the current buffer to an
absolute level specified by its prefix argument.

The above commands automatically enable the minor mode text-scale-mode if the
current font scaling is other than 1, and disable it otherwise.

The command text-scale-pinch increases or decreases the text scale based on the
distance between fingers on a touchpad when a pinch gesture is performed by placing two
fingers on a touchpad and moving them towards or apart from each other. This is only
available on some systems with supported hardware.

88 GNU Emacs Manual

The command mouse-wheel-text-scale also changes the text scale. Normally, it is run
when you press Ctrl while moving the mouse wheel. The text scale is increased when the
wheel is moved downwards, and it is decreased when the wheel is moved upwards.

11.13 Font Lock mode

Font Lock mode is a minor mode, always local to a particular buffer, which assigns faces to
(or fontifies) the text in the buffer. Each buffer’s major mode tells Font Lock mode which
text to fontify; for instance, programming language modes fontify syntactically relevant
constructs like comments, strings, and function names.

Font Lock mode is enabled by default in major modes that support it. To toggle it in
the current buffer, type M-x font-lock-mode. A positive numeric argument unconditionally
enables Font Lock mode, and a negative or zero argument disables it.

Type M-x global-font-lock-mode to toggle Font Lock mode in all buffers. To impose
this setting for future Emacs sessions, customize the variable global-font-lock-mode (see
Section 33.1 [Easy Customization], page 501), or add the following line to your init file:

(global-font-lock-mode 0)

If you have disabled Global Font Lock mode, you can still enable Font Lock for specific
major modes by adding the function font-lock-mode to the mode hooks (see Section 33.2.2
[Hooks|, page 511). For example, to enable Font Lock mode for editing C files, you can do
this:

(add-hook 'c-mode-hook 'font-lock-mode)

Font Lock mode uses several specifically named faces to do its job, including font-lock-
string-face, font-lock-comment-face, and others. The easiest way to find them all is to
use M-x customize-group RET font-lock-faces RET. You can then use that customization
buffer to customize the appearance of these faces. See Section 33.1.5 [Face Customization],
page 505.

Fontifying very large buffers can take a long time. To avoid large delays when a file is
visited, Emacs initially fontifies only the visible portion of a buffer. As you scroll through
the buffer, each portion that becomes visible is fontified as soon as it is displayed; this
type of Font Lock is called Just-In-Time (or JIT) Lock. You can control how JIT Lock
behaves, including telling it to perform fontification while idle, by customizing variables in
the customization group ‘jit-lock’. See Section 33.1.6 [Specific Customization|, page 506.

The information that major modes use for determining which parts of buffer text to
fontify and what faces to use can be based on several different ways of analyzing the text:

e Search for keywords and other textual patterns based on regular expressions (see
Section 12.5 [Regular Expression Search], page 113).

e Find syntactically distinct parts of text based on built-in syntax tables (see Section
“Syntax Tables” in The Emacs Lisp Reference Manual).

e Use syntax tree produced by a full-blown parser, via a special-purpose library, such
as the tree-sitter library (see Section “Parsing Program Source” in The Emacs Lisp
Reference Manual), or an external program.

Chapter 11: Controlling the Display 89

11.13.1 Traditional Font Lock

“Traditional” methods of providing font-lock information are based on regular-expression
search and on syntactic analysis using syntax tables built into Emacs. This subsection
describes the use and customization of font-lock for major modes which use these traditional
methods.

You can control the amount of fontification applied by Font Lock mode by customizing
the variable font-lock-maximum-decoration, for major modes that support this feature.
The value of this variable should be a number (with 1 representing a minimal amount of
fontification; some modes support levels as high as 3); or t, meaning “as high as possible” (the
default). To be effective for a given file buffer, the customization of font-lock-maximum-
decoration should be done before the file is visited; if you already have the file visited in
a buffer when you customize this variable, kill the buffer and visit the file again after the
customization.

You can also specify different numbers for particular major modes; for example, to use
level 1 for C/C++ modes, and the default level otherwise, use the value

'"((c-mode . 1) (c++-mode . 1)))

Comment and string fontification (or “syntactic” fontification) relies on analysis of the
syntactic structure of the buffer text. For the sake of speed, some modes, including Lisp
mode, rely on a special convention: an open-parenthesis or open-brace in the leftmost
column always defines the beginning of a defun, and is thus always outside any string or
comment. Therefore, you should avoid placing an open-parenthesis or open-brace in the
leftmost column, if it is inside a string or comment. See Section 23.2.1 [Left Margin Paren],
page 291, for details.

Font Lock highlighting patterns already exist for most modes, but you may want to
fontify additional patterns. You can use the function font-lock-add-keywords, to add
your own highlighting patterns for a particular mode. For example, to highlight ‘FIXME:’
words in C comments, use this:

(add-hook 'c-mode-hook
(lambda ()
(font-lock-add-keywords nil
"CON\N\\(FIXME\\) : " 1
font-lock-warning-face t)))))

To remove keywords from the font-lock highlighting patterns, use the function font-lock-
remove-keywords. See Section “Search-based Fontification” in The Emacs Lisp Reference
Manual. Alternatively, you can selectively disable highlighting due to some keywords by
customizing the font-lock-ignore option, see Section “Customizing Keywords” in The
Emacs Lisp Reference Manual.

11.13.2 Parser-based Font Lock

If your Emacs was built with the tree-sitter library, it can use the results of parsing the
buffer text by that library for the purposes of fontification. This is usually faster and more
accurate than the “traditional” methods described in the previous subsection, since the
tree-sitter library provides full-blown parsers for programming languages and other kinds
of formatted text which it supports. Major modes which utilize the tree-sitter library are

90 GNU Emacs Manual

named foo-ts-mode, with the ‘~ts-’ part indicating the use of the library. This subsection
documents the Font Lock support based on the tree-sitter library.

You can control the amount of fontification applied by Font Lock mode of major modes
based on tree-sitter by customizing the variable treesit-font-lock-level. Its value is a
number between 1 and 4:

Level 1 This level usually fontifies only comments and function names in function
definitions.

Level 2 This level adds fontification of keywords, strings, and data types.
Level 3 This is the default level; it adds fontification of assignments, numbers, etc.

Level 4 This level adds everything else that can be fontified: operators, delimiters,
brackets, other punctuation, function names in function calls, property look ups,
variables, etc.

What exactly constitutes each of the syntactical categories mentioned above depends on
the major mode and the parser grammar used by tree-sitter for the major-mode’s language.
However, in general the categories follow the conventions of the programming language
or the file format supported by the major mode. The buffer-local value of the variable
treesit-font-lock-feature-1list holds the fontification features supported by a tree-sitter
based major mode, where each sub-list shows the features provided by the corresponding
fontification level.

Once you change the value of treesit-font-lock-level via M-x customize-variable
(see Section 33.1.6 [Specific Customization], page 506), it takes effect immediately in all the
existing buffers and for files you visit in the future in the same session.

11.14 Interactive Highlighting

Highlight Changes mode is a minor mode that highlights the parts of the buffer that were
changed most recently, by giving that text a different face. To enable or disable Highlight
Changes mode, use M-x highlight-changes-mode.

Hi Lock mode is a minor mode that highlights text that matches regular expressions you
specify. For example, you can use it to highlight all the references to a certain variable in
a program source file, highlight certain parts in a voluminous output of some program, or
highlight certain names in an article. To enable or disable Hi Lock mode, use the command
M-x hi-lock-mode. To enable Hi Lock mode for all buffers, use M-x global-hi-lock-mode
or place (global-hi-lock-mode 1) in your .emacs file.

Hi Lock mode works like Font Lock mode (see Section 11.13 [Font Lock], page 88), except
that you specify explicitly the regular expressions to highlight. You can control them with
the following commands. (The key bindings below that begin with C-x w are deprecated in
favor of the global M-s h bindings, and will be removed in some future Emacs version.)

M-s h r regexp RET face RET

C-x w h regexp RET face RET
Highlight text that matches regexp using face face (highlight-regexp). The
highlighting will remain as long as the buffer is loaded. For example, to highlight
all occurrences of the word “whim” using the default face (a yellow background),
type M-s h r whim RET RET. Any face can be used for highlighting, Hi Lock

Chapter 11: Controlling the Display 91

provides several of its own and these are pre-loaded into a list of default values.
While being prompted for a face use M-n and M-p to cycle through them. A prefix
numeric argument limits the highlighting to the corresponding subexpression.

Setting the option hi-lock-auto-select-face to a non-nil value causes this
command (and other Hi Lock commands that read faces) to automatically
choose the next face from the default list without prompting.

You can use this command multiple times, specifying various regular expressions
to highlight in different ways.

M-s h u regexp RET
C-x w r regexp RET

Unhighlight regexp (unhighlight-regexp). If you invoke this from the menu,
you select the expression to unhighlight from a list. If you invoke this from the
keyboard, you use the minibuffer. It will show the most recently added regular
expression; use M-n to show the next older expression and M-p to select the next
newer expression. (You can also type the expression by hand, with completion.)
When the expression you want to unhighlight appears in the minibuffer, press
RET to exit the minibuffer and unhighlight it.

M-s h 1 regexp RET face RET
C-x w 1 regexp RET face RET

Highlight entire lines containing a match for regexp, using face face
(highlight-lines-matching-regexp).

M-s h p phrase RET face RET
C-x w p phrase RET face RET

M-sh .
Cxw.

M-shw
C-xwhb

M-sh f
Cxwi

Highlight matches of phrase, using face face (highlight-phrase). phrase can
be any regexp, but spaces will be replaced by matches to whitespace and initial
lower-case letters will become case insensitive.

Highlight the symbol found near point, using the next available face
(highlight-symbol-at-point).

Insert all the current highlighting regexp/face pairs into the buffer at point,
with comment delimiters to prevent them from changing your program. (This
key binding runs the hi-lock-write-interactive-patterns command.)

These patterns are extracted from the comments, if appropriate, if you invoke
M-x hi-lock-find-patterns, or if you visit the file while Hi Lock mode is
enabled (since that runs hi-lock-find-patterns).

Extract regexp/face pairs from comments in the current buffer (hi-lock-find-
patterns). Thus, you can enter patterns interactively with highlight-regexp,
store them into the file with hi-lock-write-interactive-patterns, edit them
(perhaps including different faces for different parenthesized parts of the match),
and finally use this command (hi-lock-find-patterns) to have Hi Lock high-
light the edited patterns.

92 GNU Emacs Manual

The variable hi-lock-file-patterns-policy controls whether Hi Lock mode
should automatically extract and highlight patterns found in a file when it
is visited. Its value can be nil (never highlight), ask (query the user), or a
function. If it is a function, hi-lock-find-patterns calls it with the patterns
as argument; if the function returns non-nil, the patterns are used. The default
is ask. Note that patterns are always highlighted if you call hi-lock-find-
patterns directly, regardless of the value of this variable.

Also, hi-lock-find-patterns does nothing if the current major mode’s symbol
is a member of the list hi-lock-exclude-modes.

11.15 Window Fringes

On graphical displays, each Emacs window normally has narrow fringes on the left and
right edges. The fringes are used to display symbols that provide information about the
text in the window. You can type M-x fringe-mode to toggle display of the fringes or to
modify their width. This command affects fringes in all frames; to modify fringes on the
selected frame only, use M-x set-fringe-style. You can make your changes to the fringes
permanent by customizing the variable fringe-mode.

The most common use of the fringes is to indicate a continuation line (see Section 4.8
[Continuation Lines|, page 22). When one line of text is split into multiple screen lines, the
left fringe shows a curving arrow for each screen line except the first, indicating that this is
not the real beginning. The right fringe shows a curving arrow for each screen line except
the last, indicating that this is not the real end. If the line’s direction is right-to-left (see
Section 19.20 [Bidirectional Editing], page 240), the meanings of the curving arrows in the
fringes are swapped.

The fringes indicate line truncation (see Section 11.22 [Line Truncation], page 99) with
short horizontal arrows meaning there’s more text on this line which is scrolled horizontally
out of view. Clicking the mouse on one of the arrows scrolls the display horizontally in the
direction of the arrow.

The fringes can also indicate other things, such as buffer boundaries (see Section 11.16
[Displaying Boundaries|, page 93), unused lines near the end of the window (see [indicate-
empty-lines|, page 94), and where a program you are debugging is executing (see Section 24.6
[Debuggers], page 320).

The fringe is also used for drawing the cursor, if the current line is exactly as wide
as the window and point is at the end of the line. To disable this, change the variable
overflow-newline-into-fringe to nil; this causes Emacs to continue or truncate lines
that are exactly as wide as the window.

If you customize fringe-mode to remove the fringes on one or both sides of the window
display, the features that display on the fringe are not available. Indicators of line continuation
and truncation are an exception: when fringes are not available, Emacs uses the leftmost
and rightmost character cells to indicate continuation and truncation with special ASCII
characters, see Section 4.8 [Continuation Lines|, page 22, and Section 11.22 [Line Truncation],
page 99. This reduces the width available for displaying text on each line, because the
character cells used for truncation and continuation indicators are reserved for that purpose.
Since buffer text can include bidirectional text, and thus both left-to-right and right-to-left
paragraphs (see Section 19.20 [Bidirectional Editing], page 240), removing only one of the

Chapter 11: Controlling the Display 93

fringes still reserves two character cells, one on each side of the window, for truncation
and continuation indicators, because these indicators are displayed on opposite sides of the
window in right-to-left paragraphs.

11.16 Displaying Boundaries

Emacs can display an indication of the fill-column position (see Section 22.6.2 [Fill
Commands|, page 262). The fill-column indicator is a useful functionality especially in
prog-mode and its descendants (see Section 20.1 [Major Modes], page 243) to indicate the
position of a specific column that has some special meaning for formatting the source code
of a program. This assumes the buffer uses a fixed-pitch font, where all the characters (with
the possible exception of double-width characters) have the same width on display. If the
buffer uses variable-pitch fonts, the fill-column indicators on different lines might appear
unaligned.

To activate the fill-column indication display, use the minor modes display-fill-
column-indicator-mode and global-display-fill-column-indicator-mode, which en-
able the indicator locally or globally, respectively.

Alternatively, you can set the two buffer-local variables display-fill-column-
indicator and display-fill-column-indicator-character to activate the indicator
and control the character used for the indication. Note that both variables must be non-nil
for the indication to be displayed. (Turning on the minor mode sets both these variables.)

There are 2 buffer local variables and a face to customize this mode:

display-fill-column-indicator-column
Specifies the column number where the indicator should be set. It can take
positive numerical values for the column, or the special value t, which means
that the value of the variable fill-column will be used.

Any other value disables the indicator. The default value is t.

display-fill-column-indicator-character

Specifies the character used for the indicator. This character can be any valid
character including Unicode ones if the font supports them. The value nil
disables the indicator. When the mode is enabled through the functions
display-fill-column-indicator-mode or global-display-fill-column-
indicator-mode, they will use the character specified by this variable, if it is
non-nil; otherwise Emacs will use the character U+2502 BOX DRAWINGS LIGHT
VERTICAL, falling back to ‘|’ if U+2502 cannot be displayed.

fill-column-indicator
Specifies the face used to display the indicator. It inherits its default values
from the face shadow, but without background color. To change the indicator
color, you need only set the foreground color of this face.

On graphical displays, Emacs can indicate the buffer boundaries in the fringes. If you
enable this feature, the first line and the last line are marked with angle images in the fringes.
This can be combined with up and down arrow images which say whether it is possible to
scroll the window.

94 GNU Emacs Manual

The buffer-local variable indicate-buffer-boundaries controls how the buffer bound-
aries and window scrolling is indicated in the fringes. If the value is left or right, both
angle and arrow bitmaps are displayed in the left or right fringe, respectively.

If value is an alist (see Section “Association Lists” in the Emacs Lisp Reference Manual),
each element (indicator . position) specifies the position of one of the indicators. The
indicator must be one of top, bottom, up, down, or t which specifies the default position
for the indicators not present in the alist. The position is one of left, right, or nil which
specifies not to show this indicator.

For example, ((top . left) (t . right)) places the top angle bitmap in left fringe, the
bottom angle bitmap in right fringe, and both arrow bitmaps in right fringe. To show just
the angle bitmaps in the left fringe, but no arrow bitmaps, use ((top . left) (bottom .
left)).

11.17 Useless Whitespace

It is easy to leave unnecessary spaces at the end of a line, or empty lines at the end of
a buffer, without realizing it. In most cases, this trailing whitespace has no effect, but
sometimes it can be a nuisance.

You can make trailing whitespace at the end of a line visible by setting the buffer-local
variable show-trailing-whitespace to t. Then Emacs displays trailing whitespace, using
the face trailing-whitespace.

This feature does not apply when point is at the end of the line containing the whitespace.
Strictly speaking, that is trailing whitespace nonetheless, but displaying it specially in that
case looks ugly while you are typing in new text. In this special case, the location of point
is enough to show you that the spaces are present.

Type M-x delete-trailing-whitespace to delete all trailing whitespace. This command
deletes all extra spaces at the end of each line in the buffer, and all empty lines at the end
of the buffer; to ignore the latter, change the variable delete-trailing-lines to nil. If
the region is active, the command instead deletes extra spaces at the end of each line in the
region.

On graphical displays, Emacs can indicate unused lines at the end of the window with
a small image in the left fringe (see Section 11.15 [Fringes], page 92). The image appears
for screen lines that do not correspond to any buffer text, so blank lines at the end of
the buffer stand out because they lack this image. To enable this feature, set the buffer-
local variable indicate-empty-lines to a non-nil value. You can enable or disable this
feature for all new buffers by setting the default value of this variable, e.g., (setq-default
indicate-empty-lines t).

Whitespace mode is a buffer-local minor mode that lets you visualize many kinds of
whitespace in the buffer, by either drawing the whitespace characters with a special face
or displaying them as special glyphs. To toggle this mode, type M-x whitespace-mode.
The kinds of whitespace visualized are determined by the list variable whitespace-style.
Individual elements in that list can be toggled on or off in the current buffer by typing
M-x whitespace-toggle-options. Here is a partial list of possible elements (see the
variable’s documentation for the full list):

Chapter 11: Controlling the Display 95

face Enable all visualizations which use special faces. This element has a special
meaning: if it is absent from the list, none of the other visualizations take effect
except space-mark, tab-mark, and newline-mark.

trailing Highlight trailing whitespace.

tabs Highlight tab characters.
spaces Highlight space and non-breaking space characters.
lines Highlight lines longer than 80 columns. To change the column limit, customize

the variable whitespace-line-column.
newline Highlight newlines.

missing-newline-at-eof
Highlight the final character if the buffer doesn’t end with a newline character.

empty Highlight empty lines at the beginning and/or end of the buffer.

big-indent
Highlight too-deep indentation. By default any sequence of at least 4 consecutive
tab characters or 32 consecutive space characters is highlighted. To change that,
customize the regular expression whitespace-big-indent-regexp.

space-mark
Draw space and non-breaking characters with a special glyph.

tab-mark Draw tab characters with a special glyph.

newline-mark
Draw newline characters with a special glyph.

Global Whitespace mode is a global minor mode that lets you visualize whitespace in all
buffers. To toggle individual features, use M-x global-whitespace-toggle-options.

11.18 Selective Display

Emacs has the ability to hide lines indented more than a given number of columns. You can
use this to get an overview of a part of a program.

To hide lines in the current buffer, type C-x $ (set-selective-display) with a numeric
argument n. Then lines with at least n columns of indentation disappear from the screen.
The only indication of their presence is that three dots (‘...’) appear at the end of each
visible line that is followed by one or more hidden ones.

The commands C-n and C-p move across the hidden lines as if they were not there.
The hidden lines are still present in the buffer, and most editing commands see them
as usual, so you may find point in the middle of the hidden text. When this happens, the
cursor appears at the end of the previous line, after the three dots. If point is at the end of
the visible line, before the newline that ends it, the cursor appears before the three dots.
To make all lines visible again, type C-x $ with no argument.

If you set the variable selective-display-ellipses to nil, the three dots do not
appear at the end of a line that precedes hidden lines. Then there is no visible indication of
the hidden lines. This variable becomes local automatically when set.

96 GNU Emacs Manual

See also Section 22.9 [Outline Mode], page 267, for another way to hide part of the text
in a buffer.

11.19 Optional Mode Line Features

The buffer percentage pos indicates the percentage of the buffer above the top of the window.
You can additionally display the size of the buffer by typing M-x size-indication-mode to
turn on Size Indication mode. The size will be displayed immediately following the buffer
percentage like this:

pos of size

Here size is the human readable representation of the number of characters in the buffer,
which means that ‘k’ for 1073, ‘M’ for 1076, ‘G’ for 1079, etc., are used to abbreviate.

The current line number of point appears in the mode line when Line Number mode is
enabled. Use the command M-x line-number-mode to turn this mode on and off; normally
it is on. The line number appears after the buffer percentage pos, with the letter ‘L’ to
indicate what it is.

Similarly, you can display the current column number by turning on Column Number
mode with M-x column-number-mode. The column number is indicated by the letter ‘C’.
However, when both of these modes are enabled, the line and column numbers are displayed
in parentheses, the line number first, rather than with ‘L’ and ‘C’. For example: ‘(561,2)".
See Section 20.2 [Minor Modes], page 244, for more information about minor modes and
about how to use these commands.

In Column Number mode, the displayed column number counts from zero starting at the
left margin of the window. If you would prefer for the displayed column number to count
from one, you may set column-number-indicator-zero-based to nil.

If you have narrowed the buffer (see Section 11.5 [Narrowing], page 80), the displayed
line number is relative to the accessible portion of the buffer. Thus, it isn’t suitable as an
argument to goto-line. (The command what-1line shows the line number relative to the
whole file.) You can use goto-line-relative command to move point to the line relative
to the accessible portion of the narrowed buffer.

If the buffer is very large (larger than the value of 1ine-number-display-1limit), Emacs
won’t compute the line number, because that would be too slow; therefore, the line number
won’t appear on the mode-line. To remove this limit, set 1ine-number-display-limit to
nil.

Line-number computation can also be slow if the lines in the buffer are too long. For this
reason, Emacs doesn’t display line numbers if the average width, in characters, of lines near
point is larger than the value of 1ine-number-display-limit-width. The default value is
200 characters.

Emacs can optionally display the time and system load in all mode lines. To enable
this feature, type M-x display-time or customize the option display-time-mode. The
information added to the mode line looks like this:

hh:mmPM 1.11
Here hh and mm are the hour and minute, followed always by ‘AM” or ‘PM’. LII is the average

number, collected for the last few minutes, of processes in the whole system that were either
running or ready to run (i.e., were waiting for an available processor). (Some fields may

Chapter 11: Controlling the Display 97

be missing if your operating system cannot support them.) If you prefer time display in
24-hour format, set the variable display-time-24hr-format to t.

The word ‘Mail’ appears after the load level if there is mail for you that you have
not read yet. On graphical displays, you can use an icon instead of ‘Mail’ by customiz-
ing display-time-use-mail-icon; this may save some space on the mode line. You
can customize display-time-mail-face to make the mail indicator prominent. Use
display-time-mail-file to specify the mail file to check, or set display-time-mail-
directory to specify the directory to check for incoming mail (any nonempty regular file in
the directory is considered to be newly arrived mail).

When running Emacs on a laptop computer, you can display the battery charge on
the mode-line, by using the command display-battery-mode or customizing the variable
display-battery-mode. The variable battery-mode-line-format determines the way the
battery charge is displayed; the exact mode-line message depends on the operating system,
and it usually shows the current battery charge as a percentage of the total charge. The
functions in battery-update-functions are run after updating the mode line, and can be
used to trigger actions based on the battery status.

On graphical displays, the mode line is drawn as a 3D box. If you don’t like this effect,
you can disable it by customizing the mode-1line face and setting its box attribute to nil.
See Section 33.1.5 [Face Customization|, page 505.

By default, the mode line of nonselected windows is displayed in a different face, called
mode-line-inactive. Only the selected window is displayed in the mode-1line face. This
helps show which window is selected. When the minibuffer is selected, since it has no mode
line, the window from which you activated the minibuffer has its mode line displayed using
mode-line; as a result, ordinary entry to the minibuffer does not change any mode lines.

You can disable use of mode-line-inactive by setting variable mode-line-in-non-
selected-windows to nil; then all mode lines are displayed in the mode-1line face.

You can customize the mode line display for each of the end-of-line formats by setting
each of the variables eol-mnemonic-unix, eol-mnemonic-dos, eol-mnemonic-mac, and
eol-mnemonic-undecided to the strings you prefer.

11.20 How Text Is Displayed

Most characters are printing characters: when they appear in a buffer, they are displayed
literally on the screen. Printing characters include ASCII numbers, letters, and punctuation
characters, as well as many non-ASCII characters.

The ASCII character set contains non-printing control characters. Two of these are
displayed specially: the newline character (Unicode code point U+000A) is displayed by
starting a new line, while the tab character (U+0009) is displayed as a space that extends
to the next tab stop column (normally every 8 columns). The number of spaces per tab is
controlled by the buffer-local variable tab-width, which must have an integer value between
1 and 1000, inclusive. Note that the way the tab character in the buffer is displayed has
nothing to do with the definition of TAB as a command.

Other ASCII control characters, whose codes are below U+0020 (octal 40, decimal 32),
are displayed as a caret (‘~’) followed by the non-control version of the character, with the
escape-glyph face. For instance, the ‘control-A’ character, U+0001, is displayed as ‘"A’.

98 GNU Emacs Manual

The raw bytes with codes U+0080 (octal 200) through U+009F (octal 237) are displayed
as octal escape sequences, with the escape-glyph face. For instance, character code U+0098
(octal 230) is displayed as ‘\230’. If you change the buffer-local variable ctl-arrow to nil,
the ASCII control characters are also displayed as octal escape sequences instead of caret
escape sequences. (You can also request that raw bytes be shown in hex, see Section 11.24
[Display Custom], page 101.)

Some non-ASCII characters have the same appearance as an ASCII space or hyphen
(minus) character. Such characters can cause problems if they are entered into a buffer
without your realization, e.g., by yanking; for instance, source code compilers typically do not
treat non-ASCII spaces as whitespace characters. To deal with this problem, Emacs displays
such characters specially: it displays U+00AO NO-BREAK SPACE and other characters from the
Unicode horizontal space class with the nobreak-space face, and it displays U+00AD SOFT
HYPHEN, U+2010 HYPHEN, and U+2011 NON-BREAKING HYPHEN with the nobreak-hyphen
face. To disable this, change the variable nobreak-char-display to nil. If you give this
variable a non-nil and non-t value, Emacs instead displays such characters as a highlighted
backslash followed by a space or hyphen.

You can customize the way any particular character code is displayed by means of a
display table. See Section “Display Tables” in The Emacs Lisp Reference Manual.

On graphical displays, some characters may have no glyphs in any of the fonts available
to Emacs. These glyphless characters are normally displayed as boxes containing the
hexadecimal character code. Similarly, on text terminals, characters that cannot be displayed
using the terminal encoding (see Section 19.13 [Terminal Coding], page 233) are normally
displayed as question signs. You can control the display method by customizing the variable
glyphless-char-display-control. You can also customize the glyphless-char face to
make these characters more prominent on display. See Section “Glyphless Character Display”
in The Emacs Lisp Reference Manual, for details.

The glyphless-display-mode minor mode can be used to toggle the display of glyphless
characters in the current buffer. The glyphless characters will be displayed as boxes with
acronyms of their names inside.

Emacs tries to determine if the curved quotes ¢ and ’ can be displayed on the current

display. By default, if this seems to be so, then Emacs will translate the ASCII quotes
(7 and ‘'’), when they appear in messages and help texts, to these curved quotes. You can
influence or inhibit this translation by customizing the user option text-quoting-style
(see Section “Keys in Documentation” in The Emacs Lisp Reference Manual).

If the curved quotes ¢, ?, ¢, and >’ are known to look just like ASCII characters, they are

shown with the homoglyph face. Curved quotes that are known not to be displayable are

[A)

shown as their ASCII approximations ‘*’, '’, and ‘"’ with the homoglyph face.

11.21 Displaying the Cursor

On a text terminal, the cursor’s appearance is controlled by the terminal, largely out of the
control of Emacs. Some terminals offer two different cursors: a visible static cursor, and a
very visible blinking cursor. By default, Emacs uses the very visible cursor, and switches
to it when you start or resume Emacs. If the variable visible-cursor is nil when Emacs
starts or resumes, it uses the normal cursor.

Chapter 11: Controlling the Display 99

On a graphical display, many more properties of the text cursor can be altered. To
customize its color, change the :background attribute of the face named cursor (see
Section 33.1.5 [Face Customization], page 505). (The other attributes of this face have no
effect; the text shown under the cursor is drawn using the frame’s background color.) To
change its shape, customize the buffer-local variable cursor-type; possible values are box
(the default), (box . size) (box cursor becoming a hollow box under masked images larger
than size pixels in either dimension), hollow (a hollow box), bar (a vertical bar), (bar .
n) (a vertical bar n pixels wide), hbar (a horizontal bar), (hbar . n) (a horizontal bar n
pixels tall), or nil (no cursor at all).

By default, the cursor stops blinking after 10 blinks, if Emacs does not get any input
during that time; any input event restarts the count. You can customize the variable
blink-cursor-blinks to control that: its value says how many times to blink without input
before stopping. Setting that variable to a zero or negative value will make the cursor blink
forever. To disable cursor blinking altogether, change the variable blink-cursor-mode to
nil (see Section 33.1 [Easy Customization], page 501), or add the line

(blink-cursor-mode 0)

to your init file. Alternatively, you can change how the cursor looks when it blinks off by
customizing the list variable blink-cursor-alist. Each element in the list should have the
form (on-type . off-type); this means that if the cursor is displayed as on-type when it
blinks on (where on-type is one of the cursor types described above), then it is displayed as
off-type when it blinks off.

Some characters, such as tab characters, are extra wide. When the cursor is positioned
over such a character, it is normally drawn with the default character width. You can make
the cursor stretch to cover wide characters, by changing the variable x-stretch-cursor to
a non-nil value.

The cursor normally appears in non-selected windows as a non-blinking hollow box.
(For a bar cursor, it instead appears as a thinner bar.) To turn off cursors in non-selected
windows, change the variable cursor-in-non-selected-windows to nil.

To make the cursor even more visible, you can use HL Line mode, a minor mode that
highlights the line containing point. Use M-x hl-line-mode to enable or disable it in the
current buffer. M-x global-hl-line-mode enables or disables the same mode globally.

11.22 Line Truncation

As an alternative to continuation (see Section 4.8 [Continuation Lines|, page 22), Emacs can
display long lines by truncation. This means that all the characters that do not fit in the
width of the screen or window do not appear at all. On graphical displays, a small straight
arrow in the fringe indicates truncation at either end of the line. On text terminals, this is
indicated with ‘$’ signs in the rightmost and/or leftmost columns.

Horizontal scrolling automatically causes line truncation (see Section 11.4 [Horizontal
Scrolling], page 79). You can explicitly enable line truncation for a particular buffer with the
command C-x x t (toggle-truncate-lines). This works by locally changing the variable
truncate-lines. If that variable is non-nil, long lines are truncated; if it is nil, they
are continued onto multiple screen lines. Setting the variable truncate-lines in any way
makes it local to the current buffer; until that time, the default value, which is normally
nil, is in effect.

100 GNU Emacs Manual

Since line truncation and word wrap (described in the next section) are contradictory,
toggle-truncate-lines disables word wrap when it turns on line truncation.

If a split window becomes too narrow, Emacs may automatically enable line truncation.
See Section 17.2 [Split Window]|, page 187, for the variable truncate-partial-width-
windows which controls this.

11.23 Visual Line Mode

Another alternative to ordinary line continuation (see Section 4.8 [Continuation Lines],
page 22) is to use word wrap. Here, each long logical line is divided into two or more screen
lines, or “visual lines”, like in ordinary line continuation. However, Emacs attempts to
wrap the line at word boundaries near the right window edge. (If the line’s direction is
right-to-left, it is wrapped at the left window edge instead.) This makes the text easier to
read, as wrapping does not occur in the middle of words.

Word wrap is enabled by Visual Line mode, an optional minor mode. To turn on Visual
Line mode in the current buffer, type M-x visual-line-mode; repeating this command turns
it off. You can also turn on Visual Line mode using the menu bar: in the Options menu,
select the ‘Line Wrapping in this Buffer’ submenu, followed by the ‘Word Wrap (Visual
Line mode)’ menu item. While Visual Line mode is enabled, the mode line shows the string
wrap’ in the mode display. The command M-x global-visual-line-mode toggles Visual
Line mode in all buffers.

3

Since word wrap and line truncation (described in the previous section) are contradictory,
turning on visual-line-mode disables line truncation.

In Visual Line mode, some editing commands work on screen lines instead of logical
lines: C-a (beginning-of-visual-line) moves to the beginning of the screen line, C-e
(end-of-visual-line) moves to the end of the screen line, and C-k (kill-visual-line)
kills text to the end of the screen line.

To move by logical lines, use the commands M-x next-logical-line and M-x
previous-logical-line. These move point to the next logical line and the previous
logical line respectively, regardless of whether Visual Line mode is enabled. If you use
these commands frequently, it may be convenient to assign key bindings to them. See
Section 33.3.6 [Init Rebinding], page 524.

By default, word-wrapped lines do not display fringe indicators. Visual Line mode is
often used to edit files that contain many long logical lines, so having a fringe indicator for
each wrapped line would be visually distracting. You can change this by customizing the
variable visual-line-fringe-indicators.

By default, Emacs only breaks lines after whitespace characters like SPC and TAB, but does
not break after whitespace characters like EN QUAD. Emacs provides a minor mode called
word-wrap-whitespace-mode that switches on word wrapping in the current mode, and
sets up which characters to wrap lines on based on the word-wrap-whitespace-characters
user option. There’s also a globalized version of that mode called global-word-wrap-
whitespace-mode.

Only breaking after whitespace character produces incorrect results when CJK and
Latin text are mixed together (because CJK characters don’t use whitespace to separate
words). You can customize the option word-wrap-by-category to allow Emacs to break

Chapter 11: Controlling the Display 101

lines after any character with ‘|’ category (see Section “Categories” in the Emacs Lisp
Reference Manual), which provides better support for CJK characters. Also, if this variable
is set using Customize, Emacs automatically loads kinsoku.el. When kinsoku.el is
loaded, Emacs respects kinsoku rules when breaking lines. That means characters with the
‘>’ category don’t appear at the beginning of a line (e.g., U+FFOC FULLWIDTH COMMA),
and characters with the ‘<’ category don’t appear at the end of a line (e.g., U+300A LEFT
DOUBLE ANGLE BRACKET). You can view the category set of a character using the commands
char-category-set and category-set-mnemonics, or by typing C-u C-x = with point on
the character and looking at the “category” section in the report. You can add categories to
a character using the command modify-category-entry.

11.24 Customization of Display

This section describes variables that control miscellaneous aspects of the appearance of the
Emacs screen. Beginning users can skip it.

If you want to have Emacs display line numbers for every line in the buffer, customize the
buffer-local variable display-line-numbers; it is nil by default. This variable can have
several different values to support various modes of line-number display:

t Display (an absolute) line number before each non-continuation screen line that
displays buffer text. If the line is a continuation line, or if the entire screen line
displays a display or an overlay string, that line will not be numbered.

relative Display relative line numbers before non-continuation lines which show buffer
text. The line numbers are relative to the line showing point, so the numbers
grow both up and down as lines become farther from the current line.

visual This value causes Emacs to count lines visually: only lines actually shown on
the display will be counted (disregarding any lines in invisible parts of text), and
lines which wrap to consume more than one screen line will be numbered that
many times. The displayed numbers are relative, as with relative value above.
This is handy in modes that fold text, such as Outline mode (see Section 22.9
[Outline Mode], page 267), and when you need to move by exact number of
screen lines.

anything else
Any other non-nil value is treated as t.

The command M-x display-line-numbers-mode provides a convenient way to turn
on display of line numbers. This mode has a globalized variant, global-display-line-
numbers-mode. The user option display-line-numbers-type controls which sub-mode of
line-number display, described above, these modes will activate.

Note that line numbers are not displayed in the minibuffer and in the tooltips, even if you
turn on display-line-numbers-mode globally.

When Emacs displays relative line numbers, you can control the number displayed
before the current line, the line showing point. By default, Emacs displays the absolute
number of the current line there, even though all the other line numbers are relative. If
you customize the variable display-line-numbers-current-absolute to a nil value, the
number displayed for the current line will be zero. This is handy if you don’t care about the
number of the current line, and want to leave more horizontal space for text in large buffers.

102 GNU Emacs Manual

In a narrowed buffer (see Section 11.5 [Narrowing], page 80) lines are normally num-
bered starting at the beginning of the narrowing. However, if you customize the variable
display-line-numbers-widen to a non-nil value, line numbers will disregard any narrow-
ing and will start at the first character of the buffer.

If the value of display-line-numbers-offset is non-zero, it is added to each absolute
line number, and lines are counted from the beginning of the buffer, as if display-line-
numbers-widen were non-nil. It has no effect when set to zero, or when line numbers are
not absolute.

In selective display mode (see Section 11.18 [Selective Display|, page 95), and other
modes that hide many lines from display (such as Outline and Org modes), you may
wish to customize the variables display-line-numbers-width-start and display-line-
numbers-grow-only, or set display-line-numbers-width to a large enough value, to avoid
occasional miscalculations of space reserved for the line numbers.

The line numbers are displayed in a special face 1ine-number. The current line num-
ber is displayed in a different face, line-number-current-line, so you can make the
current line’s number have a distinct appearance, which will help locating the line show-
ing point. Additional faces line-number-major-tick and line-number-minor-tick can
be used to highlight the line numbers of lines which are a multiple of certain numbers.
Customize display-line-numbers-major-tick and display-line-numbers-minor-tick
respectively to set those numbers.

If the variable visible-bell is non-nil, Emacs attempts to make the whole screen blink
when it would normally make an audible bell sound. This variable has no effect if your
terminal does not have a way to make the screen blink.

The variable echo-keystrokes controls the echoing of multi-character keys; its value is
the number of seconds of pause required to cause echoing to start, or zero, meaning don’t
echo at all. The value takes effect when there is something to echo. See Section 1.2 [Echo
Areal, page 7.

On graphical displays, Emacs displays the mouse pointer as an hourglass if Emacs is
busy. To disable this feature, set the variable display-hourglass to nil. The variable
hourglass-delay determines the number of seconds of busy time before the hourglass is
shown; the default is 1.

If the mouse pointer lies inside an Emacs frame, Emacs makes it invisible each time you
type a character to insert text, to prevent it from obscuring the text. (To be precise, the
hiding occurs when you type a self-inserting character. See Section 4.1 [Inserting Text],
page 16.) Moving the mouse pointer makes it visible again. To disable this feature, set the
variable make-pointer-invisible to nil.

On graphical displays, the variable underline-minimum-offset determines the minimum
distance between the baseline and underline, in pixels, for underlined text. By default,
the value is 1; increasing it may improve the legibility of underlined text for certain fonts.
(However, Emacs will never draw the underline below the current line area.) The variable
x-underline-at-descent-line determines how to draw underlined text. The default is
nil, which means to draw it at the baseline level of the font; if you change it to t, Emacs
draws the underline at the same height as the font’s descent line. (If non-default line spacing
was specified for the underlined text, see Section “Line Height” in The Emacs Lisp Reference
Manual, Emacs draws the underline below the additional spacing.)

Chapter 11: Controlling the Display 103

The variable overline-margin specifies the vertical position of an overline above the
text, including the height of the overline itself, in pixels; the default is 2.

On some text terminals, bold face and inverse video together result in text that is hard
to read. Call the function tty-suppress-bold-inverse-default-colors with a non-nil
argument to suppress the effect of bold-face in this case.

Raw bytes are displayed in octal format by default, for example a byte with a decimal
value of 128 is displayed as \200. To change display to the hexadecimal format of \x80, set
the variable display-raw-bytes-as-hex to t. Care may be needed when interpreting a raw
byte when copying text from a terminal containing an Emacs session, or when a terminal’s
escape-glyph face looks like the default face. For example, by default Emacs displays the
four characters ‘\’; ‘2, ‘0’, ‘0’ with the same characters it displays a byte with decimal value
128. The problem can be worse with hex displays, where the raw byte 128 followed by the
character ‘7’ is displayed as \x807, which Emacs Lisp reads as the single character U+0807
SAMARITAN LETTER IT; this confusion does not occur with the corresponding octal
display \2007 because octal escapes contain at most three digits.

104 GNU Emacs Manual

12 Searching and Replacement

Like other editors, Emacs has commands to search for occurrences of a string. Emacs also
has commands to replace occurrences of a string with a different string. There are also
commands that do the same thing, but search for patterns instead of fixed strings.

You can also search multiple files under the control of xref (see Section 25.4.1.3 [Identifier
Search], page 365) or through the Dired A command (see Section 27.7 [Operating on Files],
page 391), or ask the grep program to do it (see Section 24.4 [Grep Searching], page 318).

12.1 Incremental Search

The principal search command in Emacs is incremental: it begins searching as soon as you
type the first character of the search string. As you type in the search string, Emacs shows
you where the string (as you have typed it so far) would be found. When you have typed
enough characters to identify the place you want, you can stop. Depending on what you
plan to do next, you may or may not need to terminate the search explicitly with RET.

C-s Incremental search forward (isearch-forward).
C-r Incremental search backward (isearch-backward).

You can also invoke incremental search from the menu bar’s ‘Edit->Search’ menu.

12.1.1 Basics of Incremental Search
C-s Begin incremental search (isearch-forward).
C-r Begin reverse incremental search (isearch-backward).

C-s (isearch-forward) starts a forward incremental search. It reads characters from
the keyboard, and moves point just past the end of the next occurrence of those characters
in the buffer.

For instance, if you type C-s and then F, that puts the cursor after the first ‘F’ that
occurs in the buffer after the starting point. If you then type 0, the cursor moves to just
after the first ‘F0’; the ‘F’ in that ‘FO’ might not be the first ‘F’ previously found. After
another 0, the cursor moves to just after the first ‘F0O0’.

At each step, Emacs highlights the current match—the buffer text that matches the
search string—using the isearch face (see Section 11.8 [Faces|, page 82). See Section 12.12
[Search Customizations|, page 128, for various options that customize this highlighting. The
current search string is also displayed in the echo area.

If you make a mistake typing the search string, type DEL (isearch-delete-char). Each
DEL cancels the last input item entered during the search. Emacs records a new input item
whenever you type a command that changes the search string, the position of point, the
success or failure of the search, the direction of the search, the position of the other end of
the current search result, or the “wrappedness” of the search. See Section 12.1.4 [Error in
Isearch], page 107, for more about dealing with unsuccessful search.

When you are satisfied with the place you have reached, type RET (isearch-exit). This
stops searching, leaving the cursor where the search brought it. Also, any command not
specially meaningful in searches stops the searching and is then executed. Thus, typing

Chapter 12: Searching and Replacement 105

C-a exits the search and then moves to the beginning of the line; typing one of the arrow
keys exits the search and performs the respective movement command; etc. RET is necessary
only if the next command you want to type is a printing character, DEL, RET, or another
character that is special within searches (C-q, C-w, C-r, C-s, C-y, M-y, M-r, M-c, M-e, and
some others described below). You can fine-tune the commands that exit the search; see
Section 12.1.6 [Not Exiting Isearch], page 109.

As a special exception, entering RET when the search string is empty launches nonincre-
mental search (see Section 12.2 [Nonincremental Search|, page 111). (This can be customized;
see Section 12.12 [Search Customizations|, page 128.)

To abandon the search and return to the place where you started, type ESC ESC ESC
(isearch-cancel) or C-g C-g (isearch-abort).

When you exit the incremental search, it adds the original value of point to the mark ring,
without activating the mark; you can thus use C-u C-SPC or C-x C-x to return to where you
were before beginning the search. See Section 8.4 [Mark Ring], page 55. (Emacs only does
this if the mark was not already active; if the mark was active when you started the search,
both C-u C-SPC and C-x C-x will go to the mark.)

To search backwards, use C-r (isearch-backward) instead of C-s to start the search. A
backward search finds matches that end before the starting point, just as a forward search
finds matches that begin after it.

12.1.2 Repeating Incremental Search

Suppose you search forward for ‘FO0’ and find a match, but not the one you expected to
find: the ‘FOO’ you were aiming for occurs later in the buffer. In this event, type another
C-s (isearch-repeat-forward) to move to the next occurrence of the search string, or C-r
(isearch-repeat-backward) to move to the previous occurrence. You can repeat these
commands any number of times. Alternatively, you can supply a numeric prefix argument
of n to C-s and C-r to find the nth next or previous occurrence. If you overshoot, you can
cancel some C-s commands with DEL. Similarly, each C-r (isearch-repeat-backward) in
a backward incremental search repeats the backward search.

If you pause for a little while during incremental search, Emacs highlights all the other
possible matches for the search string that are present on the screen. This helps you
anticipate where you can get to by typing C-s or C-r to repeat the search. The other
matches are highlighted differently from the current match, using the customizable face
lazy-highlight (see Section 11.8 [Faces|, page 82). If you don’t like this feature, you can
disable it by setting isearch-lazy-highlight to nil. For other customizations related to
highlighting matches, see Section 12.12 [Search Customizations], page 128.

After exiting a search, you can search for the same string again by typing just C-s C-s.
The first C-s is the key that invokes incremental search, and the second C-s means to search
again for the last search string. Similarly, C-r C-r searches backward for the last search
string. In determining the last search string, it doesn’t matter whether that string was
searched for with C-s or C-r.

If you are searching forward but you realize you were looking for something before the
starting point, type C-r to switch to a backward search, leaving the search string unchanged.
Similarly, C-s in a backward search switches to a forward search.

106 GNU Emacs Manual

When you change the direction of a search, the first command you type will, by default,
remain on the same match, and the cursor will move to the other end of the match. To move
to another match immediately, customize the variable isearch-repeat-on-direction-
change to t.

If a search is failing and you ask to repeat it by typing another C-s, it starts again from
the beginning of the buffer. Repeating a failing reverse search with C-r starts again from the
end. This is called wrapping around, and ‘Wrapped’ appears in the search prompt once this
has happened. If you keep on going past the original starting point of the search, it changes
to ‘Overwrapped’, which means that you are revisiting matches that you have already seen.

You can control what happens when there are no more matches by customizing the
isearch-wrap-pause user option. If it is t (the default), signal an error. (Repeating the
search will wrap around.) If no, issue a ding and wrap immediately after reaching the last
match. If no-ding, wrap immediately, but don’t ding. With the values no and no-ding
the search will try to wrap around also on typing a character. Finally, if nil, never wrap,
but just stop at the last match.

To reuse earlier search strings, use the search ring. The commands M-p (isearch-ring-
retreat) and M-n (isearch-ring-advance) move through the ring to pick a search string
to reuse. These commands leave the selected search ring element in the minibuffer, where
you can edit it. Type C-s/C-r or RET to accept the string and start searching for it. The
number of most recently used search strings saved in the search ring is specified by the
variable search-ring-max, 16 by default.

To edit the current search string in the minibuffer without replacing it with items from
the search ring, type M-e (isearch-edit-string) or click mouse-1 in the minibuffer. Type
RET, C-s or C-r to finish editing the string and search for it. Type C-f or RIGHT to add
to the search string characters following point from the buffer from which you started the
search.

12.1.3 Isearch Yanking

In many cases, you will want to use text at or near point as your search string. The
commands described in this subsection let you do that conveniently.

C-w (isearch-yank-word-or-char) appends the next character or word at point to the
search string. This is an easy way to search for another occurrence of the text at point.
(The decision of whether to copy a character or a word is heuristic.) With a prefix numeric
argument of n, append the next n characters or words.

C-M-w (isearch-yank-symbol-or-char) appends the next character or symbol at point
to the search string. This is an easy way to search for another occurrence of the symbol at
point. (The decision of whether to copy a character or a symbol is heuristic.) With a prefix
numeric argument of n, append the next n characters or symbols.

M-s C-e (isearch-yank-1line) appends the rest of the current line to the search string.
If point is already at the end of a line, it appends the next line. With a prefix argument n,
it appends the next n lines.

Similarly, C-M-z (isearch-yank-until-char) appends to the search string everything
from point until the next occurrence of a specified character (not including that character).
This is especially useful for keyboard macros, for example in programming languages or
markup languages in which that character marks a token boundary. With a prefix numeric

Chapter 12: Searching and Replacement 107

argument of n, the command appends everything from point to the nth occurrence of the
specified character.

Within incremental search, C-y (isearch-yank-kill) appends the current kill to the
search string. M-y (isearch-yank-pop), if called after C-y during incremental search,
replaces that appended text with an earlier kill, similar to the usual M-y (yank-pop) command.
Clicking mouse-2 in the echo area appends the current X selection (see Section 9.3.2 [Primary
Selection], page 65) to the search string (isearch-yank-x-selection).

C-M-d (isearch-del-char) deletes the last character from the search string, and C-M-y
(isearch-yank-char) appends the character after point to the search string. An alternative
method to add the character after point is to enter the minibuffer with M-e (see Section 12.1.2
[Repeat Isearch|, page 105) and type C-f or RIGHT at the end of the search string in the
minibuffer. Each C-f or RIGHT you type adds another character following point to the search
string.

Normally, when the search is case-insensitive, text yanked into the search string is
converted to lower case, so that the search remains case-insensitive (see Section 12.9 [Lax
Search], page 119). However, if the value of the variable search-upper-case (see Section 12.9
[Lax Search], page 119) is other than not-yanks, that disables this down-casing.

To begin a new incremental search with the text near point yanked into the initial search
string, type M-s M-. that runs the command isearch-forward-thing-at-point. If the
region was active, then it yanks the text from the region into the search string. Otherwise,
it tries to yank a URL, a symbol or an expression found near point. What to yank is defined
by the user option isearch-forward-thing-at-point.

12.1.4 Errors in Incremental Search

If your string is not found at all, the echo area says ‘Failing I-Search’, and the cursor
moves past the place where Emacs found as much of your string as it could. Thus, if you
search for ‘FOO0T’, and there is no ‘FOOT’, you might see the cursor after the ‘FO0’ in ‘FOOL’.
In the echo area, the part of the search string that failed to match is highlighted using the
face isearch-fail.

At this point, there are several things you can do. If your string was mistyped, use DEL
to cancel a previous input item (see Section 12.1.1 [Basic Isearch|, page 104), C-M-d to erase
one character at a time, or M-e to edit it. If you like the place you have found, you can
type RET to remain there. Or you can type C-g, which removes from the search string the
characters that could not be found (the ‘T’ in ‘FO0T’), leaving those that were found (the
‘FO0’ in ‘FOOT’). A second C-g at that point cancels the search entirely, returning point to
where it was when the search started.

The quit command, C-g, does special things during searches; just what it does depends on
the status of the search. If the search has found what you specified and is waiting for input,
C-g cancels the entire search, moving the cursor back to where you started the search. If C-g
is typed when there are characters in the search string that have not been found—because
Emacs is still searching for them, or because it has failed to find them—then the search
string characters which have not been found are discarded from the search string. With
them gone, the search is now successful and waiting for more input, so a second C-g will
cancel the entire search.

108 GNU Emacs Manual

12.1.5 Special Input for Incremental Search

In addition to characters described in the previous subsections, some of the other characters
you type during incremental search have special effects. They are described here.

To toggle lax space matching (see Section 12.9 [Lax Search], page 119), type M-s SPC.

To toggle case sensitivity of the search, type M-c or M-s c. See Section 12.9 [Lax Search],
page 119. If the search string includes upper-case letters, the search is case-sensitive by
default.

To toggle whether or not the search will consider similar and equivalent characters as a
match, type M-s '. See Section 12.9 [Lax Search], page 119. If the search string includes
accented characters, that disables character folding during that search.

To toggle whether or not the search will find text made invisible by overlays, type M-s
i (isearch-toggle-invisible). See [Outline Search|, page 270. To make all incremental
searches find matches inside invisible text, whether due to text properties or overlay properties,
customize search-invisible to the value t.

To toggle between non-regexp and regexp incremental search, type M-r or M-sr
(isearch-toggle-regexp). See Section 12.5 [Regexp Search], page 113.

To toggle symbol mode, type M-s _. See Section 12.4 [Symbol Search|, page 112.
To search for a newline character, type C-j as part of the search string.

To search for non-ASCII characters, use one of the following methods during incremental
search:

e Type C-q (isearch-quote-char), followed by a non-graphic character or a sequence
of octal digits. This adds a character to the search string, similar to inserting into
a buffer using C-q (see Section 4.1 [Inserting Text], page 16). For example, C-q C-s
during incremental search adds the ‘control-S’ character to the search string.

e Use an input method (see Section 19.3 [Input Methods], page 222). If an input method is
enabled in the current buffer when you start the search, the same method will be active in
the minibuffer when you type the search string. While typing the search string, you can
toggle the input method with C-\ (isearch-toggle-input-method). You can also turn
on a non-default input method with C-~ (isearch-toggle-specified-input-method),
which prompts for the name of the input method. When an input method is active
during incremental search, the search prompt includes the input method mnemonic,
like this:

I-search [im]:
where im is the mnemonic of the active input method. Any input method you enable
during incremental search remains enabled in the current buffer afterwards. Finally,
you can temporarily enable a transient input method (see [transient input method],
page 225) with C-x \ (isearch-transient-input-method) to insert a single character
to the search string using an input method, and automatically disable the input method
afterwards.

e Type C-x 8 RET (isearch-char-by-name), followed by a Unicode name or code-point
in hex. This adds the specified character into the search string, similar to the usual
insert-char command (see Section 4.1 [Inserting Text|, page 16).

You can also include Emoji sequences in the search string. Type C-x 8 e RET
(isearch-emoji-by-name), followed by the Unicode name of an Emoji (for example,

Chapter 12: Searching and Replacement 109

smiling face or heart with arrow). This adds the specified Emoji to the search string.
If you don’t know the name of the Emoji you want to search for, you can use C-x 8
el (emoji-list) and C-x 8 e d (emoji-describe) (see Section 19.3 [Input Methods],
page 222).

Typing M-s o in incremental search invokes isearch-occur, which runs occur with the
current search string. See Section 12.11 [Other Repeating Search|, page 126.

Typing M-% (isearch-query-replace) in incremental search invokes query-replace
or query-replace-regexp (depending on search mode) with the current search string
used as the string to replace. A negative prefix argument means to replace backward.
See Section 12.10.4 [Query Replace], page 124. Typing C-M-% (isearch-query-replace-
regexp) invokes query-replace-regexp with the current search string used as the regexp
to replace.

Typing M-TAB in incremental search invokes isearch-complete, which attempts to
complete the search string using the search ring (the previous search strings you used) as a
list of completion alternatives. See Section 5.4 [Completion], page 30. In many operating
systems, the M-TAB key sequence is captured by the window manager; you then need to
rebind isearch-complete to another key sequence if you want to use it (see Section 33.3.5
[Rebinding], page 522).

You can exit the search while leaving the matches highlighted by typing M-s h r
(isearch-highlight-regexp). This runs highlight-regexp (see Section 11.14 [Highlight
Interactively], page 90), passing it the regexp derived from the search string and prompting
you for the face to use for highlighting. To highlight whole lines containing matches (rather
than just the matches), type M-s h 1 (isearch-highlight-lines-matching-regexp). In
either case, to remove the highlighting, type M-s h u (unhighlight-regexp).

When incremental search is active, you can type C-h C-h (isearch-help-map) to access
interactive help options, including a list of special key bindings. These key bindings are part
of the keymap isearch-mode-map (see Section 33.3.1 [Keymaps], page 520).

When incremental search is active, typing M-s M-> will go to the last occurrence of the
search string, and M-s M-< will go to the first occurrence. With a prefix numeric argument
of n, these commands will go to the nth occurrence of the search string counting from the
beginning or end of the buffer, respectively.

12.1.6 Not Exiting Incremental Search

This subsection describes how to control whether typing a command not specifically mean-
ingful in searches exits the search before executing the command. It also describes three
categories of commands which you can type without exiting the current incremental search,
even though they are not themselves part of incremental search.

Normally, typing a command that is not bound by the incremental search exits the search
before executing the command. Thus, the command operates on the buffer from which you
invoked the search. However, if you customize the variable search-exit-option to append,
the characters which you type that are not interpreted by the incremental search are simply
appended to the search string. This is so you could include in the search string control
characters, such as C-a, that would normally exit the search and invoke the command bound
to them on the buffer.

110 GNU Emacs Manual

Prefix Arguments
In incremental search, when you type a command that specifies a prefix argument
(see Section 4.10 [Arguments|, page 24), by default it will apply either to the
next action in the search or to the command that exits the search. In other
words, entering a prefix argument will not by itself terminate the search.

In previous versions of Emacs, entering a prefix argument always terminated the
search. You can revert to this behavior by setting the variable isearch-allow-
prefix to nil.

When isearch-allow-scroll is non-nil (see below), prefix arguments always
have the default behavior described above, i.e., they don’t terminate the search,
even if isearch-allow-prefix is nil.

Scrolling Commands
Normally, scrolling commands exit incremental search. But if you change the
variable isearch-allow-scroll to a non-nil value, that enables the use of
the scroll-bar, as well as keyboard scrolling commands like C-v, M-v, and C-1
(see Section 11.1 [Scrolling], page 76), which have a non-nil scroll-command
property, without exiting the search. This applies only to calling these commands
via their bound key sequences—typing M-x will still exit the search. You can give
prefix arguments to these commands in the usual way. This feature normally
won’t let you scroll the current match out of visibility; but if you customize
isearch-allow-scroll to the special value unlimited, that restriction is lifted.

The isearch-allow-scroll feature also affects some other commands, such
as C-x 2 (split-window-below) and C-x ~ (enlarge-window), which don’t
exactly scroll but do affect where the text appears on the screen. In fact, it
affects any command that has a non-nil isearch-scroll property. So you can
control which commands are affected by changing these properties.

For example, to make C-h 1 usable within an incremental search in all future
Emacs sessions, use C-h ¢ to find what command it runs (see Section 7.1 [Key
Help], page 44), which is view-lossage. Then you can put the following line in
your init file (see Section 33.4 [Init File], page 529):

(put 'view-lossage 'isearch-scroll t)

This feature can be applied to any command that doesn’t permanently change
point, the buffer contents, the match data, the current buffer, or the selected
window and frame. The command must not itself attempt an incremental search.
This feature is disabled if isearch-allow-scroll is nil (which it is by default).

Likewise, if you change the variable isearch-allow-motion to a non-nil value,
this enables the use of the keyboard motion commands M-<, M-> C-v and M-v,
to move respectively to the first occurrence of the current search string in the
buffer, the last one, the first one after the current window, and the last one
before the current window. The search direction does not change when these
motion commands are used, unless you change the variable isearch-motion-
changes-direction to a non-nil value, in which case the search direction is
forward after M-< and C-v, and backward after M-> and M-v.

Chapter 12: Searching and Replacement 111

Motion Commands
When isearch-yank-on-move is customized to shift, you can extend the search
string by holding down the shift key while typing cursor motion commands. It
will yank text that ends at the new position after moving point in the current
buffer.

When isearch-yank-on-move is t, you can extend the search string without
using the shift key for cursor motion commands, but it applies only for certain
motion command that have the isearch-move property on their symbols.

12.1.7 Searching the Minibuffer

If you start an incremental search while the minibuffer is active, Emacs searches the contents
of the minibuffer. Unlike searching an ordinary buffer, the search string is not shown in the
echo area, because that is used to display the minibuffer.

If an incremental search fails in the minibuffer, it tries searching the minibuffer history.
See Section 5.5 [Minibuffer History], page 35. You can visualize the minibuffer and its
history as a series of pages, with the earliest history element on the first page and the current
minibuffer on the last page. A forward search, C-s, searches forward to later pages; a reverse
search, C-r, searches backwards to earlier pages. Like in ordinary buffer search, a failing
search can wrap around, going from the last page to the first page or vice versa.

When the current match is on a history element, that history element is pulled into the
minibuffer. If you exit the incremental search normally (e.g., by typing RET), it remains
in the minibuffer afterwards. Canceling the search, with C-g, restores the contents of the
minibuffer when you began the search.

12.2 Nonincremental Search

Emacs also has conventional nonincremental search commands, which require you to type
the entire search string before searching begins.

C-s RET string RET
Search for string.

C-r RET string RET
Search backward for string.

To start a nonincremental search, first type C-s RET. This enters the minibuffer to read
the search string; terminate the string with RET, and then the search takes place. If the
string is not found, the search command signals an error.

When you type C-s RET, the C-s invokes incremental search as usual. That command
is specially programmed to invoke the command for nonincremental search, if the string
you specify is empty. (Such an empty argument would otherwise be useless.) C-r RET does
likewise, invoking the nonincremental backward-searching command.

Nonincremental search can also be invoked from the menu bar’s ‘Edit->Search’ menu.

You can also use two simpler commands, M-x search-forward and M-x
search-backward. These commands look for the literal strings you specify, and don’t
support any of the lax-search features (see Section 12.9 [Lax Search|, page 119) except case
folding.

112 GNU Emacs Manual

12.3 Word Search

A word search finds a sequence of words without regard to the type of punctuation between
them. For instance, if you enter a search string that consists of two words separated by a
single space, the search matches any sequence of those two words separated by one or more
spaces, newlines, or other punctuation characters. This is particularly useful for searching
text documents, because you don’t have to worry whether the words you are looking for
are separated by newlines or spaces. Note that major modes for programming languages or
other specialized modes can modify the definition of a word to suit their syntactic needs.

M-s w If incremental search is active, toggle word search mode (isearch-toggle-word);
otherwise, begin an incremental forward word search (isearch-forward-word).

M-s w RET words RET
Search for words, using a forward nonincremental word search.

M-s w C-r RET words RET
Search backward for words, using a nonincremental word search.

M-s M-w Search the Web for the text in region.

To begin a forward incremental word search, type M-s w. If incremental search is not al-
ready active, this runs the command isearch-forward-word. If incremental search is already
active (whether a forward or backward search), M-s w runs the command isearch-toggle-
word, which switches to a word search while keeping the direction of the search and the
current search string unchanged. You can toggle word search back off by typing M-s w again.

To begin a nonincremental word search, type M-s w RET for a forward search, or M-s
w C-r RET for a backward search. These run the commands word-search-forward and
word-search-backward respectively.

Incremental and nonincremental word searches differ slightly in the way they find a
match. In a nonincremental word search, each word in the search string must exactly match
a whole word. In an incremental word search, the matching is more lax: while you are
typing the search string, its first and last words need not match whole words. This is so
that the matching can proceed incrementally as you type. This additional laxity does not
apply to the lazy highlight (see Section 12.1 [Incremental Search], page 104), which always
matches whole words. While you are typing the search string, ‘Pending’ appears in the
search prompt until you use a search repeating key like C-s.

The word search commands don’t perform character folding, and toggling lax whitespace
matching (see Section 12.9 [Lax Search], page 119) has no effect on them.

To search the Web for the text in region, type M-s M-w. This command performs an
Internet search for the words in region using the search engine whose URL is specified by the
variable eww-search-prefix (see Section “Basics” in The Emacs Web Wowser Manual). If
the region is not active, or doesn’t contain any words, this command prompts the user for a
URL or keywords to search.

12.4 Symbol Search

A symbol search is much like an ordinary search, except that the boundaries of the search
must match the boundaries of a symbol. The meaning of symbol in this context depends
on the major mode, and usually refers to a source code token, such as a Lisp symbol in

Chapter 12: Searching and Replacement 113

Emacs Lisp mode. For instance, if you perform an incremental symbol search for the Lisp
symbol forward-word, it would not match isearch-forward-word. This feature is thus
mainly useful for searching source code.

M-s _ If incremental search is active, toggle symbol search mode (isearch-toggle-
symbol); otherwise, begin an incremental forward symbol search
(isearch-forward-symbol).

M-s . Start a symbol incremental search forward with the symbol found near point
added to the search string initially.

M-s _ RET symbol RET
Search forward for symbol, nonincrementally.

M-s _ C-r RET symbol RET
Search backward for symbol, nonincrementally.

To begin a forward incremental symbol search, type M-s _ (or M-s . if the symbol to
search is near point). If incremental search is not already active, M-s _ runs the command
isearch-forward-symbol and M-s . runs the command isearch-forward-symbol-at-
point. With a numeric prefix argument of n, M-s . will search for the nthe next occurrence
of the symbol at point; negative values of n search backwards. If incremental search is
already active, M-s _ switches to a symbol search, preserving the direction of the search
and the current search string; you can disable symbol search by typing M-s _ again. In
incremental symbol search, while you are typing the search string, only the beginning of the
search string is required to match the beginning of a symbol, and ‘Pending’ appears in the
search prompt until you use a search repeating key like C-s.

To begin a nonincremental symbol search, type M-s _ RET for a forward search, or M-s _
C-r RET or a backward search. In nonincremental symbol searches, the beginning and end
of the search string are required to match the beginning and end of a symbol, respectively.

The symbol search commands don’t perform character folding, and toggling lax whitespace
matching (see Section 12.9 [Lax Search], page 119) has no effect on them.

12.5 Regular Expression Search

A regular expression (or regexp for short) is a pattern that denotes a class of alternative
strings to match. Emacs provides both incremental and nonincremental ways to search for a
match for a regexp. The syntax of regular expressions is explained in the next section.

C-M-s Begin incremental regexp search (isearch-forward-regexp).
C-M-r Begin reverse incremental regexp search (isearch-backward-regexp).

Incremental search for a regexp is done by typing C-M-s (isearch-forward-regexp),
by invoking C-s with a prefix argument (whose value does not matter), or by typing M-r
within a forward incremental search. This command reads a search string incrementally just
like C-s, but it treats the search string as a regexp rather than looking for an exact match
against the text in the buffer. Each time you add text to the search string, you make the
regexp longer, and the new regexp is searched for. To search backward for a regexp, use
C-M-r (isearch-backward-regexp), C-r with a prefix argument, or M-r within a backward
incremental search.

114 GNU Emacs Manual

All of the special key sequences in an ordinary incremental search (see Section 12.1.5
[Special Isearch], page 108) do similar things in an incremental regexp search. For instance,
typing C-s immediately after starting the search retrieves the last incremental search
regexp used and searches forward for it. Incremental regexp and non-regexp searches have
independent defaults. They also have separate search rings, which you can access with M-p
and M-n. The maximum number of search regexps saved in the search ring is determined by
the value of regexp-search-ring-max, 16 by default.

Unlike ordinary incremental search, incremental regexp search does not use lax space
matching by default. To toggle this feature use M-s SPC (isearch-toggle-lax-whitespace).
Then any SPC typed in incremental regexp search will match any sequence of one or more
whitespace characters. The variable search-whitespace-regexp specifies the regexp for
the lax space matching. See Section 12.1.5 [Special Isearch], page 108.

Also unlike ordinary incremental search, incremental regexp search cannot use character
folding (see Section 12.9 [Lax Search], page 119). (If you toggle character folding during
incremental regexp search with M-s ', the search becomes a non-regexp search and the
search pattern you typed is interpreted as a literal string.)

In some cases, adding characters to the regexp in an incremental regexp search can make
the cursor move back and start again. For example, if you have searched for ‘foo’ and you
add ‘\|bar’, the cursor backs up in case the first ‘bar’ precedes the first ‘foo’. (The prompt
will change to say “Pending” to notify the user that this recalculation has happened.) See
Section 12.6 [Regexps], page 114.

Forward and backward regexp search are not symmetrical, because regexp matching in
Emacs always operates forward, starting with the beginning of the regexp. Thus, forward
regexp search scans forward, trying a forward match at each possible starting position.
Backward regexp search scans backward, trying a forward match at each possible starting
position. These search methods are not mirror images.

Nonincremental search for a regexp is done with the commands re-search-forward
and re-search-backward. You can invoke these with M-x, or by way of incremental regexp
search with C-M-s RET and C-M-r RET. When you invoke these commands with M-x, they
search for the exact regexp you specify, and thus don’t support any lax-search features (see
Section 12.9 [Lax Search|, page 119) except case folding.

If you use the incremental regexp search commands with a prefix argument, they perform
ordinary string search, like isearch-forward and isearch-backward. See Section 12.1
[Incremental Search], page 104.

12.6 Syntax of Regular Expressions

This section (and this manual in general) describes regular expression features that users
typically use. See Section “Regular Expressions” in The Emacs Lisp Reference Manual, for
additional features used mainly in Lisp programs.

Regular expressions have a syntax in which a few characters are special constructs and
the rest are ordinary. An ordinary character matches that same character and nothing else.
The special characters are ‘$~.x+7[\’. The character ‘]’ is special if it ends a character
alternative (see below). The character ‘-’ is special inside a character alternative. Any other
character appearing in a regular expression is ordinary, unless a ‘\’ precedes it. (When you

Chapter 12: Searching and Replacement 115

use regular expressions in a Lisp program, each ‘\’ must be doubled, see the example near
the end of this section.)

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘£’ and no other string. (It does not match the string
‘ff’.) Likewise, ‘0’ is a regular expression that matches only ‘o’. (When case distinctions are
being ignored, these regexps also match ‘F’ and ‘0’, but we consider this a generalization of
“the same string”, rather than an exception.)

Any two regular expressions a and b can be concatenated. The result is a regular
expression which matches a string if a matches some amount of the beginning of that
string and b matches the rest of the string. As a trivial example, concatenating the regular
expressions ‘f’ and ‘o’ gives the regular expression ‘fo’, which matches only the string ‘fo’.
To do something less trivial, you need to use one of the special characters. Here is a list of
them.

. (Period) is a special character that matches any single character except a newline. For
example, the regular expressions ‘a.b’ matches any three-character string that
begins with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a postfix operator that means to match the
preceding regular expression repetitively any number of times, as many times as
possible. Thus, ‘o*’ matches any number of ‘o’s, including no ‘o’s.

‘*x” always applies to the smallest possible preceding expression. Thus, ‘fox’ has
a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so on.

The matcher processes a ‘*’ construct by matching, immediately, as many
repetitions as can be found. Then it continues with the rest of the pattern. If
that fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to
match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left
to match, so this try fails. The next alternative is for ‘a*’ to match only two
‘a’s. With this choice, the rest of the regexp matches successfully.

+ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression at least once. Thus, ‘ca+r’ matches the strings ‘car’ and ‘caaaar
but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

i

? is a postfix operator, similar to ‘*’ except that it can match the preceding
expression either once or not at all. Thus, ‘ca?r’ matches ‘car’ or ‘cr’, and
nothing else.

7, +7, 77 are non-greedy variants of the operators above. The normal operators ‘’, ‘+’,
‘?” match as much as they can, as long as the overall regexp can still match.
With a following ‘?’, they will match as little as possible.
Thus, both ‘ab*’ and ‘ab*?’ can match the string ‘a’ and the string ‘abbbb’; but
if you try to match them both against the text ‘abbb’, ‘ab*’ will match it all
(the longest valid match), while ‘ab*?’ will match just ‘a’ (the shortest valid
match).
Non-greedy operators match the shortest possible string starting at a given
starting point; in a forward search, though, the earliest possible starting point

116

...

GNU Emacs Manual

for match is always the one chosen. Thus, if you search for ‘a.*?$’ against the
text ‘abbab’ followed by a newline, it matches the whole string. Since it can
match starting at the first ‘a’, it does.

is a set of alternative characters, or a character set, beginning with ‘[’ and
terminated by ‘]’.

In the simplest case, the characters between the two brackets are what this set
can match. Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches
any string composed of just ‘a’s and ‘d’s (including the empty string). It follows

that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

cdr’,

You can also include character ranges in a character set, by writing the starting
and ending characters with a ‘-’ between them. Thus, ‘[a-z]’ matches any lower-
case ASCII letter. Ranges may be intermixed freely with individual characters,
as in ‘[a-z$%.]’, which matches any lower-case ASCII letter or ‘$’, ‘%’ or period.
As another example, ‘[a-wi]’ matches all lower-case Greek letters.

You can also include certain special character classes in a character set. A ‘[:’
and balancing ‘:]’ enclose a character class inside a set of alternative characters.
For instance, ‘[[:alnum:]]’ matches any letter or digit. See Section “Char
Classes” in The Emacs Lisp Reference Manual, for a list of character classes.

To include a ‘]’ in a character set, you must make it the first character. For
example, ‘[Jal’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ as the last character
of the set, tho you can also put it first or after a range. Thus, ‘[1-]1’ matches
both ‘]’ and ‘-’

To include ‘~” in a set, put it anywhere but at the beginning of the set. (At the
beginning, it complements the set—see below.)

When you use a range in case-insensitive search, you should write both ends of
the range in upper case, or both in lower case, or both should be non-letters.
The behavior of a mixed-case range such as ‘A-z’ is somewhat ill-defined, and it
may change in future Emacs versions.

‘[*7 begins a complemented character set, which matches any character except
the ones specified. Thus, ‘["a-z0-9A-Z]’ matches all characters except ASCII
letters and digits.

‘=7 is not special in a character set unless it is the first character. The character
following the ‘~’ is treated as if it were first (in other words, ‘=’ and ‘]’ are not

special there).

A complemented character set can match a newline, unless newline is mentioned
as one of the characters not to match. This is in contrast to the handling of
regexps in programs such as grep.

is a special character that matches the empty string, but only at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
‘“foo’ matches a ‘foo’ that occurs at the beginning of a line.

For historical compatibility reasons, ‘*’ can be used with this meaning only at
the beginning of the regular expression, or after ‘\ (" or ‘\|’.

is similar to ‘~’ but matches only at the end of a line. Thus, ‘x+$” matches a
string of one ‘x’ or more at the end of a line.

Chapter 12: Searching and Replacement 117

For historical compatibility reasons, ‘¢’ can be used with this meaning only at
the end of the regular expression, or before ‘\)’ or ‘\|’.

\ has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.

See the following section for the special constructs that begin with ‘\’.

Note: for historical compatibility, special characters are treated as ordinary ones if they
are in contexts where their special meanings make no sense. For example, ‘*foo’ treats ‘*’ as
ordinary since there is no preceding expression on which the ‘*’ can act. It is poor practice
to depend on this behavior; it is better to quote the special character anyway, regardless of
where it appears.

As a ‘\’ is not special inside a set of alternative characters, it can never remove the
special meaning of ‘=’, *~” or ‘]°. You should not quote these characters when they have no
special meaning. This would not clarify anything, since backslashes can legitimately precede
these characters where they have special meaning, as in ‘["\]’ (" ["\\]" for Lisp string
syntax), which matches any single character except a backslash.

12.7 Backslash in Regular Expressions

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: two-character sequences starting with ‘\’ that have special
meanings. The second character in the sequence is always an ordinary character when used
on its own. Here is a table of ‘\’ constructs.

\ specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches some text if either a matches it or b matches
it. It works by trying to match a, and if that fails, by trying to match b.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|” applies to the largest possible surrounding expressions. Only a surrounding
‘N(C ... \)’ grouping can limit the grouping power of ‘\|’.

Full backtracking capability exists to handle multiple uses of ‘\|’.

\(... \) isa grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations. Thus,
‘\(foo\ Ibar\)x’ matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix operators ‘*’, ‘+” and ‘?’
to operate on. Thus, ‘ba\(na\)*" matches ‘bananana’, etc., with any (zero
or more) number of ‘na’ strings.

3. To record a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that is assigned as a second meaning to the same
‘N(C ... \)’ construct. In practice there is usually no conflict between the two
meanings; when there is a conflict, you can use a shy group, described below.

118

\d

\{m\}

\{m,n\}

\B
\<

GNU Emacs Manual

\)

specifies a shy group that does not record the matched substring; you can’t
refer back to it with ‘\d’ (see below). This is useful in mechanically combining
regular expressions, so that you can add groups for syntactic purposes without
interfering with the numbering of the groups that are meant to be referred to.

matches the same text that matched the dth occurrence of a ‘\(... \)’ con-
struct. This is called a back reference.

After the end of a ‘\(... \)’ construct, the matcher remembers the beginning
and end of the text matched by that construct. Then, later on in the regular
expression, you can use ‘\’ followed by the digit d to mean “match the same
text matched the dth ‘\(... \)’ construct”.

The strings matching the first nine ‘\(... \)’ constructs appearing in a reg-
ular expression are assigned numbers 1 through 9 in the order that the open-
parentheses appear in the regular expression. So you can use ‘\1’ through ‘\9’
to refer to the text matched by the corresponding ‘\(... \)’ constructs.

For example, ‘\ (. *\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\ (. *\)’ matches the first half, which may be anything,
but the ‘\1’ that follows must match the same exact text.

If a particular ‘\(... \)’ construct matches more than once (which can easily
happen if it is followed by ‘*’), only the last match is recorded.

is a postfix operator specifying m repetitions—that is, the preceding regular
expression must match exactly m times in a row. For example, ‘x\{4\}” matches
the string ‘xxxx’ and nothing else.

is a postfix operator specifying between m and n repetitions—that is, the
preceding regular expression must match at least m times, but no more than n
times. If n is omitted, then there is no upper limit, but the preceding regular
expression must match at least m times.

‘\{0,1\} is equivalent to ‘7’.

‘\{0,\} is equivalent to ‘*’.

‘\{1,\}’ is equivalent to ‘+’.

matches the empty string, but only at the beginning of the string or buffer (or
its accessible portion) being matched against.

matches the empty string, but only at the end of the string or buffer (or its
accessible portion) being matched against.

matches the empty string, but only at point.

matches the empty string, but only at the beginning or end of a word. Thus,
“\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

‘\b’ matches at the beginning or end of the buffer regardless of what text appears
next to it.

matches the empty string, but not at the beginning or end of a word.

matches the empty string, but only at the beginning of a word. ‘\<’ matches at
the beginning of the buffer only if a word-constituent character follows.

Chapter 12: Searching and Replacement 119

\> matches the empty string, but only at the end of a word. ‘\>’ matches at the
end of the buffer only if the contents end with a word-constituent character.

\w matches any word-constituent character. The syntax table determines which
characters these are. See Section “Syntax Tables” in The Emacs Lisp Reference
Manual.

\W matches any character that is not a word-constituent.

_< matches the empty string, but only at the beginning of a symbol. A symbol is a
sequence of one or more symbol-constituent characters. A symbol-constituent
character is a character whose syntax is either ‘w’ or ‘_’. ‘_<’ matches at the
beginning of the buffer only if a symbol-constituent character follows. As with
words, the syntax table determines which characters are symbol-constituent.

> matches the empty string, but only at the end of a symbol. ‘>" matches at the
end of the buffer only if the contents end with a symbol-constituent character.

\sc matches any character whose syntax is c¢. Here c is a character that designates a
particular syntax class: thus, ‘w’ for word constituent, ‘=’ or ¢ ’ for whitespace, .’
for ordinary punctuation, etc. See Section “Syntax Class Table” in The Emacs
Lisp Reference Manual.

)

\Sc matches any character whose syntax is not c.

\cc matches any character that belongs to the category c. For example, ‘\cc’ matches
Chinese characters, ‘\cg’ matches Greek characters, etc. For the description of
the known categories, type M-x describe-categories RET.

\Cc matches any character that does not belong to category c.

The constructs that pertain to words and syntax are controlled by the setting of the
syntax table. See Section “Syntax Tables” in The Emacs Lisp Reference Manual.

12.8 Regular Expression Example

Here is an example of a regexp—similar to the regexp that Emacs uses, by default, to recognize
the end of a sentence, not including the following space (i.e., the variable sentence-end-
base):

.2 0N)] *

This contains two parts in succession: a character set matching period, ‘?’, or ‘!’, and a
character set matching close-brackets, quotes, or parentheses, repeated zero or more times.

)

12.9 Lax Matching During Searching

Normally, you’d want search commands to disregard certain minor differences between the
search string you type and the text being searched. For example, sequences of whitespace
characters of different length are usually perceived as equivalent; letter-case differences
usually don’t matter; etc. This is known as character equivalence.

This section describes the Emacs lax search features, and how to tailor them to your
needs.

120 GNU Emacs Manual

By default, search commands perform lax space matching: each space, or sequence
of spaces, matches any sequence of one or more whitespace characters in the text. More
precisely, Emacs matches each sequence of space characters in the search string to a regular
expression specified by the user option search-whitespace-regexp. The default value
of this option considers any sequence of spaces and tab characters as whitespace. Hence,
‘foo bar’ matches ‘foo bar’, ‘foo bar’, ‘foo bar’, and so on (but not ‘foobar’). If you
want to make spaces match sequences of newlines as well as spaces and tabs, customize the
option to make its value be the regular expression ‘[\t\nl+". (The default behavior of the
incremental regexp search is different; see Section 12.5 [Regexp Search], page 113.)

If you want whitespace characters to match exactly, you can turn lax space matching
off by typing M-s SPC (isearch-toggle-lax-whitespace) within an incremental search.
Another M-s SPC turns lax space matching back on. To disable lax whitespace matching
for all searches, change search-whitespace-regexp to nil; then each space in the search
string matches exactly one space.

Searches in Emacs by default ignore the case of the text they are searching through, if
you specify the search string in lower case. Thus, if you specify searching for ‘foo’, then
‘Foo’ and ‘£00’ also match. Regexps, and in particular character sets, behave likewise: ‘[ab]’
matches ‘a’ or ‘A’ or ‘b’ or ‘B’. This feature is known as case folding, and it is supported in
both incremental and non-incremental search modes.

An upper-case letter anywhere in the search string makes the search case-sensitive. Thus,
searching for ‘Foo’ does not find ‘foo’ or ‘FO0’. This applies to regular expression search as
well as to literal string search. The effect ceases if you delete the upper-case letter from the
search string. The variable search-upper-case controls this: if it is non-nil, an upper-case
character in the search string makes the search case-sensitive; setting it to nil disables this
effect of upper-case characters. The default value of this variable is not-yanks, which makes
search case-sensitive if there are upper-case letters in the search string, and also causes text
yanked into the search string (see Section 12.1.3 [Isearch Yank], page 106) to be down-cased,
so that such searches are case-insensitive by default.

If you set the variable case-fold-search to nil, then all letters must match exactly,
including case. This is a per-buffer variable; altering the variable normally affects only the
current buffer, unless you change its default value. See Section 33.2.3 [Locals|, page 513. This
variable applies to nonincremental searches also, including those performed by the replace
commands (see Section 12.10 [Replace], page 121) and the minibuffer history matching
commands (see Section 5.5 [Minibuffer History], page 35).

Typing M-c or M-s ¢ (isearch-toggle-case-fold) within an incremental search toggles
the case sensitivity of that search. The effect does not extend beyond the current incremental
search, but it does override the effect of adding or removing an upper-case letter in the
current search.

Several related variables control case-sensitivity of searching and matching for specific
commands or activities. For instance, tags-case-fold-search controls case sensitivity for
find-tag. To find these variables, do M-x apropos-variable RET case-fold-search RET.

Case folding disregards case distinctions among characters, making upper-case characters
match lower-case variants, and vice versa. A generalization of case folding is character
folding, which disregards wider classes of distinctions among similar characters. For instance,
under character folding the letter a matches all of its accented cousins like & and &, i.e.,

Chapter 12: Searching and Replacement 121

the match disregards the diacritics that distinguish these variants. In addition, a matches
other characters that resemble it, or have it as part of their graphical representation, such
as U+00AA FEMININE ORDINAL INDICATOR and U+24D0 CIRCLED LATIN SMALL LETTER A
(which looks like a small a inside a circle). Similarly, the ASCII double-quote character "
matches all the other variants of double quotes defined by the Unicode standard. Finally,
character folding can make a sequence of one or more characters match another sequence of
a different length: for example, the sequence of two characters £f matches U+FB00 LATIN
SMALL LIGATURE FF and the sequence (a) matches U+249C PARENTHESIZED LATIN SMALL
LETTER A. Character sequences that are not identical, but match under character folding
are known as equivalent character sequences.

Generally, search commands in Emacs do not by default perform character folding in
order to match equivalent character sequences. You can enable this behavior by customizing
the variable search-default-mode to char-fold-to-regexp. See Section 12.12 [Search
Customizations|, page 128. Within an incremental search, typing M-s ' (isearch-toggle-
char-fold) toggles character folding, but only for that search. (Replace commands have a
different default, controlled by a separate option; see Section 12.10.3 [Replacement and Lax
Matches|, page 123.)

By default, typing an explicit variant of a character, such as &, as part of the search string
doesn’t match its base character, such as a. But if you customize the variable char-fold-
symmetric to t, then search commands treat equivalent characters the same and use of
any of a set of equivalent characters in a search string finds any of them in the text being
searched, so typing an accented character & matches the letter a as well as all the other
variants like &.

You can add new foldings using the customizable variable char-fold-include, or re-
move the existing ones using the customizable variable char-fold-exclude. You can also
customize char-fold-override to t to disable all the character equivalences except those
you add yourself using char-fold-include.

12.10 Replacement Commands

Emacs provides several commands for performing search-and-replace operations. In addition
to the simple M-x replace-string command, there is M- (query-replace), which presents
each occurrence of the search pattern and asks you whether to replace it.

The replace commands normally operate on the text from point to the end of the buffer.
When the region is active, they operate on it instead (see Chapter 8 [Mark], page 51).
The basic replace commands replace one search string (or regexp) with one replacement
string. It is possible to perform several replacements in parallel, using the command
expand-region-abbrevs (see Section 26.3 [Expanding Abbrevs], page 378).

12.10.1 Unconditional Replacement

M-x replace-string RET string RET newstring RET
Replace every occurrence of string with newstring.

To replace every instance of ‘foo’ after point with ‘bar’, use the command M-x
replace-string with the two arguments ‘foo’ and ‘bar’. Replacement happens only in the
text after point, so if you want to cover the whole buffer you must go to the beginning first.

122 GNU Emacs Manual

All occurrences up to the end of the buffer are replaced; to limit replacement to part of the
buffer, activate the region around that part. When the region is active, replacement is
limited to the region (see Chapter 8 [Mark], page 51).

When replace-string exits, it leaves point at the last occurrence replaced. It adds
the prior position of point (where the replace-string command was issued) to the mark
ring, without activating the mark; use C-u C-SPC to move back there. See Section 8.4 [Mark
Ring], page 55.

A prefix argument restricts replacement to matches that are surrounded by word bound-
aries.

See Section 12.10.3 [Replacement and Lax Matches|, page 123, for details about case-
sensitivity and character folding in replace commands.

12.10.2 Regexp Replacement

The M-x replace-string command replaces exact matches for a single string. The similar
command M-x replace-regexp replaces any match for a specified regular expression pattern
(see Section 12.6 [Regexps|, page 114).

M-x replace-regexp RET regexp RET newstring RET
Replace every match for regexp with newstring.

In replace-regexp, the newstring need not be constant: it can refer to all or part of
what is matched by the regexp. ‘\&’ in newstring stands for the entire match being replaced.
‘\d’ in newstring, where d is a digit starting from 1, stands for whatever matched the dth
parenthesized grouping in regexp. (This is called a “back reference”.) ‘\#’ refers to the
count of replacements already made in this command, as a decimal number. In the first
replacement, ‘\#’ stands for ‘0’; in the second, for ‘1’; and so on. For example,

M-x replace-regexp RET clad]l+r RET \&-safe RET
replaces (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’ with ‘cddr-safe’.
M-x replace-regexp RET \(c[ad]+r\)-safe RET \1 RET

performs the inverse transformation. To include a ‘\’ in the text to replace with, you must
enter ‘\\'.

If you want to enter part of the replacement string by hand each time, use ‘\?’ in the
replacement string. Each replacement will ask you to edit the replacement string in the
minibuffer, putting point where the ‘\?’ was.

The remainder of this subsection is intended for specialized tasks and requires knowledge
of Lisp. Most readers can skip it.

You can use Lisp expressions to calculate parts of the replacement string. To do this,
write ‘\,’ followed by the expression in the replacement string. Each replacement calculates
the value of the expression and converts it to text without quoting (if it’s a string, this
means using the string’s contents), and uses it in the replacement string in place of the
expression itself. If the expression is a symbol, one space in the replacement string after the
symbol name goes with the symbol name, so the value replaces them both.

Inside such an expression, you can use some special sequences. ‘\& and ‘\d’ refer here,
as usual, to the entire match as a string, and to a submatch as a string. d may be multiple
digits, and the value of ‘\d’ is nil if the d’th parenthesized grouping did not match. You

Chapter 12: Searching and Replacement 123

can also use ‘\#& and ‘\#d’ to refer to those matches as numbers (this is valid when the
match or submatch has the form of a numeral). ‘\#’ here too stands for the number of
already-completed replacements.

For example, we can exchange ‘x’ and ‘y’ this way:

M-x replace-regexp RET \(x\)\|y RET
\,(lf \1 nyu "X") RET

For computing replacement strings for ‘\,’, the format function is often useful (see
Section “Formatting Strings” in The Emacs Lisp Reference Manual). For example, to add
consecutively numbered strings like ‘ABC00042’ to columns 73 to 80 (unless they are already
occupied), you can use

M-x replace-regexp RET ~.\{0,72\}$ RET
\, (format "%-72sABCJ05d" \& \#) RET

12.10.3 Replace Commands and Lax Matches

This subsection describes the behavior of replace commands with respect to lax matches (see
Section 12.9 [Lax Search], page 119) and how to customize it. In general, replace commands
mostly default to stricter matching than their search counterparts.

Unlike incremental search, the replacement commands do not use lax space matching
(see Section 12.9 [Lax Search], page 119) by default. To enable lax space matching for
replacement, change the variable replace-lax-whitespace to non-nil. (This only affects
how Emacs finds the text to replace, not the replacement text.)

A companion variable replace-regexp-lax-whitespace controls whether
query-replace-regexp uses lax whitespace matching when searching for patterns.

If the first argument of a replace command is all lower case, the command ignores case
while searching for occurrences to replace—provided case-fold-search is non-nil and
search-upper-case is also non-nil. If search-upper-case (see Section 12.9 [Lax Search],
page 119) is nil, whether searching ignores case is determined by case-fold-search alone,
regardless of letter-case of the command’s first argument. If case-fold-search is set to
nil, case is always significant in all searches.

In addition, when the second argument of a replace command is all or partly lower case,
replacement commands try to preserve the case pattern of each occurrence. Thus, the
command

M-x replace-string RET foo RET bar RET

replaces a lower case ‘foo’ with a lower case ‘bar’, an all-caps ‘FO0’ with ‘BAR’, and a
capitalized ‘Foo’ with ‘Bar’. (These three alternatives—lower case, all caps, and capitalized,
are the only ones that replace-string can distinguish.) Note that Emacs decides whether
to up-case or capitalize the replacement text by analyzing each word in the text being
replaced, and will preserve the letter-case of the replaced text only if all of its words use the
same letter-case. Thus, the command

M-x replace-string RET foo bar RET baz quux RET

replaces ‘Foo Bar’ with ‘Baz Quux’ because both words in ‘Foo Bar’ are capitalized. By
contrast, the same command replaces ‘Foo bar’ with ‘baz quux’, i.e. it leaves the letter-
case of the replacement text unchanged, since the two words in ‘Foo bar’ use different
capitalization. What exactly is considered a “word” depends on the syntax tables that are

124 GNU Emacs Manual

in effect in the current buffer (see Section “Syntax Tables” in The Emacs Lisp Reference
Manual); thus, ‘Foo_Bar’ is two words in Text mode, but could be a single word in some
major mode that supports a programming language.

If upper-case letters are used in the replacement string, they remain upper case every
time that text is inserted. If upper-case letters are used in the first argument, the second
argument is always substituted exactly as given, with no case conversion. Likewise, if
either case-replace or case-fold-search is set to nil, replacement is done without case
conversion.

The replacement commands by default do not use character folding (see Section 12.9
[Lax Search], page 119) when looking for the text to replace. To enable character folding for
matching in query-replace and replace-string, set the variable replace-char-fold to
a non-nil value. (This setting does not affect the replacement text, only how Emacs finds
the text to replace. It also doesn’t affect replace-regexp.)

12.10.4 Query Replace

M-% string RET newstring RET
Replace some occurrences of string with newstring.

C-M-% regexp RET newstring RET
Replace some matches for regexp with newstring.

If you want to change only some of the occurrences of ‘foo’ to ‘bar’, not all of them,
use M-% (query-replace). This command finds occurrences of ‘foo’ one by one, displays
each occurrence and asks you whether to replace it. Aside from querying, query-replace
works just like replace-string (see Section 12.10.1 [Unconditional Replace], page 121). In
particular, it preserves case provided that case-replace is non-nil, as it normally is (see
Section 12.10.3 [Replacement and Lax Matches|, page 123). A numeric argument means to
consider only occurrences that are bounded by word-delimiter characters. A negative prefix
argument replaces backward.

C-M-7% performs regexp search and replace (query-replace-regexp). It works like
replace-regexp except that it queries like query-replace.

You can reuse earlier replacements with these commands. When query-replace or
query-replace-regexp prompts for the search string, use M-p and M-n to show previous
replacements in the form ‘from -> to’, where from is the search pattern, to is its replacement,
and the separator between them is determined by the value of the variable query-replace-
from-to-separator. Type RET to select the desired replacement. If the value of this variable
is nil, replacements are not added to the command history, and cannot be reused.

These commands highlight the current match using the face query-replace. You can dis-
able this highlight by setting the variable query-replace-highlight to nil. They highlight
other matches using lazy-highlight just like incremental search (see Section 12.1 [Incre-
mental Search], page 104); this can be disabled by setting query-replace-lazy-highlight
to nil. By default, query-replace-regexp will show the substituted replacement string for
the current match in the minibuffer. If you want to keep special sequences ‘\&’ and ‘\n’ unex-
panded, customize query-replace-show-replacement variable. Like search-highlight-
submatches highlights subexpressions in incremental search (see Section 12.12 [Search
Customizations|, page 128), the variable query-replace-highlight-submatches defines
whether to highlight subexpressions in the regexp replacement commands.

Chapter 12:

Searching and Replacement 125

The variable query-replace-skip-read-only, if set non-nil, will cause replacement
commands to ignore matches in read-only text. The default is not to ignore them.

The characters you can type when you are shown a match for the string or regexp are:

SPC
y

DEL
Delete
BACKSPACE
n

, (Comma)

RET

q

. (Period)
!

to replace the occurrence with newstring.

to skip to the next occurrence without replacing this one.

to replace this occurrence and display the result. You are then asked for another
input character to say what to do next. Since the replacement has already
been made, DEL and SPC are equivalent in this situation; both move to the next
occurrence.

You can type C-r at this point (see below) to alter the replaced text. You
can also undo the replacement with the undo command (e.g., type C-x u; see
Section 13.1 [Undo], page 131); this exits the query-replace, so if you want to
do further replacement you must use C-x ESC ESC RET to restart (see Section 5.6
[Repetition|, page 37).

to exit without doing any more replacements.
to replace this occurrence and then exit without searching for more occurrences.
to replace all remaining occurrences without asking again.

to go back to the position of the previous occurrence (or what used to be an
occurrence), in case you changed it by mistake or want to reexamine it.

to undo the last replacement and go back to where that replacement was made.

to undo all the replacements and go back to where the first replacement was
made.

to enter a recursive editing level, in case the occurrence needs to be edited
rather than just replaced with newstring. When you are done, exit the recursive
editing level with C-M-c to proceed to the next occurrence. See Section 31.11
[Recursive Edit], page 486.

to delete the occurrence, and then enter a recursive editing level as in C-r.
Use the recursive edit to insert text to replace the deleted occurrence of string.
When done, exit the recursive editing level with C-M-c to proceed to the next
occurrence.

to edit the replacement string in the minibuffer. When you exit the minibuffer by
typing RET, the minibuffer contents replace the current occurrence of the pattern.
They also become the new replacement string for any further occurrences.

is like e, but the next replacement will be done with exact case. l.e., if you
have a query-replace from ‘foo’ to ‘bar’, a text like ‘Foo’ will be normally

126 GNU Emacs Manual

be replaced with ‘Bar’. Use this command to do the current replacement with
exact case.

Cc-1 to redisplay the screen. Then you must type another character to specify what
to do with this occurrence.

Y (Upper-case)
to replace all remaining occurrences in all remaining buffers in multi-buffer
replacements (like the Dired Q command that performs query replace on selected
files). It answers this question and all subsequent questions in the series with
“yes”, without further user interaction.

N (Upper-case)
to skip to the next buffer in multi-buffer replacements without replacing remain-
ing occurrences in the current buffer. It answers this question “no”, gives up
on the questions for the current buffer, and continues to the next buffer in the

sequence.
C-h

?

F1 to display a message summarizing these options. Then you must type another

character to specify what to do with this occurrence.

Aside from this, any other character exits the query-replace, and is then reread as part
of a key sequence. Thus, if you type C-k, it exits the query-replace and then kills to end
of line. In particular, C-g simply exits the query-replace.

To restart a query-replace once it is exited, use C-x ESC ESC, which repeats the
query-replace because it used the minibuffer to read its arguments. See Section 5.6
[Repetition], page 37.

The option search-invisible determines how query-replace treats invisible text. See
[Outline Search], page 270.

See Section 27.7 [Operating on Files|, page 391, for the Dired Q command which performs
query replace on selected files. See also Section 27.10 [Transforming File Names|, page 397,
for Dired commands to rename, copy, or link files by replacing regexp matches in file names.

12.11 Other Search-and-Loop Commands

Here are some other commands that find matches for regular expressions. They all ignore
case in matching, if the pattern contains no upper-case letters and case-fold-search is
non-nil. Aside from multi-occur and multi-occur-in-matching-buffers, which always
search the whole buffer, all of the commands operate on the text from point to the end of
the buffer, or on the region if it is active.

M-x multi-isearch-buffers
Prompt for one or more buffer names, ending with RET; then, begin a multi-
buffer incremental search in those buffers. (If the search fails in one buffer, the
next C-s tries searching the next specified buffer, and so forth.) With a prefix
argument, prompt for a regexp and begin a multi-buffer incremental search in
buffers matching that regexp.

Chapter 12: Searching and Replacement 127

M-x multi-isearch-buffers-regexp

This command is just like multi-isearch-buffers, except it performs an
incremental regexp search.

M-x multi-isearch-files

Prompt for one or more file names, ending with RET; then, begin a multi-file
incremental search in those files. (If the search fails in one file, the next C-s
tries searching the next specified file, and so forth.) With a prefix argument,
prompt for a regexp and begin a multi-file incremental search in files matching
that regexp.

M-x multi-isearch-files-regexp

M-x occur
M-s o

This command is just like multi-isearch-files, except it performs an incre-
mental regexp search.

In some modes that set the buffer-local variable multi-isearch-next-buffer-
function (e.g., in Change Log mode) a multi-file incremental search is activated
automatically.

Prompt for a regexp, and display a list showing each line in the buffer that
contains a match for it. If you type M-n at the prompt, you can reuse search
strings from previous incremental searches. The text that matched is highlighted
using the match face. A numeric argument n specifies that n lines of context
are to be displayed before and after each matching line.

The default number of context lines is specified by the variable
list-matching-lines—default-context-lines. When 1list-matching-
lines-jump-to-current-line is non-nil the current line is shown highlighted
with face list-matching-lines-current-line-face and the point is set at
the first match after such line.

You can also run M-s o when an incremental search is active; this uses the
current search string.

Note that matches for the regexp you type are extended to include complete
lines, and a match that starts before the previous match ends is not considered
a match.

The *0ccur* buffer uses the Occur mode as its major mode. You can use
the n and p keys to move to the next or previous match; with prefix numeric
argument, these commands move that many matches. Digit keys are bound
to digit-argument, so 5 n moves to the fifth next match (you don’t have to
type C-u). SPC and DEL scroll the *0ccur* buffer up and down. Clicking
on a match or moving point there and typing RET visits the corresponding
position in the original buffer that was searched. o and C-o display the match
in another window; C-o does not select that window. Alternatively, you can
use the M-g M-n (next-error) command to visit the occurrences one by one
(see Section 24.2 [Compilation Mode|, page 315). Finally, q quits the window
showing the *0ccur* buffer and buries the buffer.

Typing e in the *0ccur* buffer makes the buffer writable and enters the Occur
Edit mode, in which you can edit the matching lines and have those edits

128 GNU Emacs Manual

reflected in the text in the originating buffer. Type C-c C-c to leave the Occur
Edit mode and return to the Occur mode.

The command M-x list-matching-lines is a synonym for M-x occur.

M-x multi-occur
This command is just like occur, except it is able to search through multiple
buffers. It asks you to specify the buffer names one by one.

M-x multi-occur-in-matching-buffers
This command is similar to multi-occur, except the buffers to search are
specified by a regular expression that matches visited file names. With a prefix
argument, it uses the regular expression to match buffer names instead.

M-x how-many
Prompt for a regexp, and print the number of matches for it in the buffer after
point. If the region is active, this operates on the region instead.

M-x flush-lines
Prompt for a regexp, and delete each line that contains a match for it, operating
on the text after point. When the command finishes, it prints the number of
deleted matching lines.

This command deletes the current line if it contains a match starting after
point. If the region is active, it operates on the region instead; if a line partially
contained in the region contains a match entirely contained in the region, it is
deleted.

If a match is split across lines, flush-lines deletes all those lines. It deletes
the lines before starting to look for the next match; hence, it ignores a match
starting on the same line at which another match ended.

M-x keep-lines
Prompt for a regexp, and delete each line that does not contain a match for it,
operating on the text after point. If point is not at the beginning of a line, this
command always keeps the current line. If the region is active, the command
operates on the region instead; it never deletes lines that are only partially
contained in the region (a newline that ends a line counts as part of that line).

If a match is split across lines, this command keeps all those lines.

M-x kill-matching-lines
Like f1lush-1lines, but also add the matching lines to the kill ring. The command
adds the matching lines to the kill ring as a single string, including the newlines
that separated the lines.

M-x copy-matching-lines
Like kill-matching-lines, but the matching lines are not removed from the
buffer.

12.12 Tailoring Search to Your Needs

This section describes miscellaneous search-related customizations not described elsewhere.

The default search mode for the incremental search is specified by the variable
search-default-mode. It can be nil, t, or a function. If it is nil, the default mode is to do

Chapter 12: Searching and Replacement 129

literal searches without character folding, but with case folding and lax-whitespace matches
as determined by case-fold-search and search-whitespace-regexp, respectively (see
Section 12.9 [Lax Search], page 119). If the value is t, incremental search defaults to
regexp searches. The default value specifies a function that only performs case folding and
lax-whitespace matching.

The current match of an on-going incremental search is highlighted using the isearch
face. This highlighting can be disabled by setting the variable search-highlight to nil.

When searching for regular expressions (with C-M-s, for instance), subexpressions re-
ceive special highlighting depending on the search-highlight-submatches variable. If
this variable’s value is nil, no special highlighting is done, but if the value is non-nil,
text that matches ‘\(... \)’ constructs (a.k.a. “subexpressions”) in the regular expression
will be highlighted with distinct faces. By default, two distinct faces are defined, named
isearch-group-1 and isearch-group-2. With these two faces, odd-numbered subexpres-
sions will be highlighted using the isearch-group-1 face and even-numbered subexpres-
sions will be highlighted using the isearch-group-2 face. For instance, when searching
for ‘foo-\([0-9]1+\)\([a-z]+\)’, the part matched by ‘[0-9]+’ will be highlighted with
the isearch-group-1 face, and the part matched by ‘[a-z]+’ will be highlighted using
isearch-group-2. If you define additional faces using the same numbering scheme, i.e.
isearch-group-3, isearch-group-4, ..., then the face isearch-group-M will be used to
highlight the M’th, N+Mth, 2N+M'th, ... subexpressions, where N is the total number of
faces of the form isearch-group-M.

The other matches for the search string that are visible on display are highlighted using
the lazy-highlight face. Setting the variable isearch-lazy-highlight to nil disables
this highlighting. Here are some other variables that customize the lazy highlighting:

lazy-highlight-initial-delay
Time in seconds to wait before highlighting visible matches. Applies only if the
search string is less than lazy-highlight-no-delay-length characters long.

lazy-highlight-no-delay-length
For search strings at least as long as the value of this variable, lazy highlighting
of matches starts immediately.

lazy-highlight-interval
Time in seconds between highlighting successive matches.

lazy-highlight-max-at-a-time
The maximum number of matches to highlight before checking for input. A
large number can take some time to highlight, so if you want to continue
searching and type C-s or C-r during that time, Emacs will not respond until it
finishes highlighting all those matches. Thus, smaller values make Emacs more
responsive.

isearch-lazy-count
Show the current match number and the total number of matches in the search
prompt.

130 GNU Emacs Manual

lazy-count-prefix-format

lazy-count-suffix-format
These two variables determine the format of showing the current and the total
number of matches for isearch-lazy-count.

Normally, entering RET within incremental search when the search string is empty launches
a nonincremental search. (Actually, it lets you edit the search string, and the next RET does
the search.) However, if you customize the variable search-nonincremental-instead to
nil, typing RET will always exit the incremental search, even if the search string is empty.

By default, incremental search and query-replace commands match invisible text, but
hide any such matches as soon as the current match moves off the invisible text. If you
customize the variable isearch-hide-immediately to nil, any invisible text where matches
were found stays on display until the search or the replace command exits.

Searching incrementally on slow terminals, such as displays connected to remote machines
over slow connection, could be annoying due to the need to redraw large portions of the
display as the search proceeds. Emacs provides a special display mode for slow terminals,
whereby search pops up a separate small window and displays the text surrounding the
match in that window. Small windows display faster, so the annoying effect of slow speed
is alleviated. The variable search-slow-speed determines the baud rate threshold below
which Emacs will use this display mode. The variable search-slow-window-1lines controls
the number of lines in the window Emacs pops up for displaying the search results; the default
is 1 line. Normally, this window will pop up at the bottom of the window that displays the
buffer where you start searching, but if the value of search-slow-window-lines is negative,
that means to put the window at the top and give it the number of lines that is the absolute
value of search-slow-window-lines.

131

13 Commands for Fixing Typos

In this chapter we describe commands that are useful when you catch a mistake while editing.
The most fundamental of these commands is the undo command C-/ (also bound to C-x
u and C-_). This undoes a single command, or a part of a command (as in the case of
query-replace), or several consecutive character insertions. Consecutive repetitions of C-/
undo earlier and earlier changes, back to the limit of the undo information available.

Aside from the commands described here, you can erase text using deletion commands
such as DEL (delete-backward-char). These were described earlier in this manual. See
Section 4.3 [Erasing], page 20.

13.1 Undo

The undo command reverses recent changes in the buffer’s text. Each buffer records
changes individually, and the undo command always applies to the current buffer. You
can undo all the changes in a buffer for as far back as the buffer’s records go. Usually,
each editing command makes a separate entry in the undo records, but some commands
such as query-replace divide their changes into multiple entries for flexibility in undoing.
Consecutive character insertion commands are usually grouped together into a single undo
record, to make undoing less tedious.

c-/
C-xu
C- Undo one entry in the current buffer’s undo records (undo).

To begin to undo, type C-/ (or its aliases, C-_ or C-x u)'. This undoes the most recent
change in the buffer, and moves point back to where it was before that change. Consecutive
repetitions of C-/ (or its aliases) undo earlier and earlier changes in the current buffer. If all
the recorded changes have already been undone, the undo command signals an error.

Any command other than an undo command breaks the sequence of undo commands.
Starting from that moment, the entire sequence of undo commands that you have just
performed are themselves placed into the undo record. Therefore, to re-apply changes
you have undone, type C-f or any other command that harmlessly breaks the sequence of
undoing; then type C-/ one or more times to undo some of the undo commands.

Alternatively, if you want to resume undoing, without redoing previous undo commands,
use M-x undo-only. This is like undo, but will not redo changes you have just undone. To
complement it, M-x undo-redo will undo previous undo commands (and will not record
itself as an undoable command).

If you notice that a buffer has been modified accidentally, the easiest way to recover is to
type C-/ repeatedly until the stars disappear from the front of the mode line (see Section 1.3
[Mode Line], page 8). Whenever an undo command makes the stars disappear from the
mode line, it means that the buffer contents are the same as they were when the file was
last read in or saved. If you do not remember whether you changed the buffer deliberately,
type C-/ once. When you see the last change you made undone, you will see whether it was

1 Aside from C-/, the undo command is also bound to C-x u because that is more straightforward for
beginners to remember: ‘u’ stands for “undo”. It is also bound to C-_ because typing C-/ on some text
terminals actually enters C-_.

132 GNU Emacs Manual

an intentional change. If it was an accident, leave it undone. If it was deliberate, redo the
change as described above.

Alternatively, you can discard all the changes since the buffer was last visited or saved
with M-x revert-buffer (see Section 15.4 [Reverting], page 158).

When there is an active region, any use of undo performs selective undo: it undoes the
most recent change within the region, instead of the entire buffer. However, when Transient
Mark mode is off (see Section 8.7 [Disabled Transient Mark], page 56), C-/ always operates
on the entire buffer, ignoring the region. In this case, you can perform selective undo by
supplying a prefix argument to the undo command: C-u C-/. To undo further changes in
the same region, repeat the undo command (no prefix argument is needed).

Some specialized buffers do not make undo records. Buffers whose names start with
spaces never do; these buffers are used internally by Emacs to hold text that users don’t
normally look at or edit.

When the undo information for a buffer becomes too large, Emacs discards the old-
est records from time to time (during garbage collection). You can specify how much
undo information to keep by setting the variables undo-1limit, undo-strong-limit, and
undo-outer-1limit. Their values are expressed in bytes.

The variable undo-1imit sets a soft limit: Emacs keeps undo data for enough commands
to reach this size, and perhaps exceed it, but does not keep data for any earlier commands
beyond that. Its default value is 160000. The variable undo-strong-limit sets a stricter
limit: any previous command (though not the most recent one) that pushes the size past
this amount is forgotten. The default value of undo-strong-limit is 240000.

Regardless of the values of those variables, the most recent change is never discarded
unless it gets bigger than undo-outer-1limit (normally 24,000,000). At that point, Emacs
discards the undo data and warns you about it. This is the only situation in which you cannot
undo the last command. If this happens, you can increase the value of undo-outer-limit
to make it even less likely to happen in the future. But if you didn’t expect the command
to create such large undo data, then it is probably a bug and you should report it. See
Section 34.3 [Reporting Bugs], page 543.

13.2 Transposing Text

C-t Transpose two characters (transpose-chars).
M-t Transpose two words (transpose-words).
C-M-t Transpose two balanced expressions (transpose-sexps).

C-x C-t Transpose two lines (transpose-lines).

M-x transpose-sentences
Transpose two sentences (transpose-sentences).

M-x transpose-paragraphs
Transpose two paragraphs (transpose-paragraphs).

M-x transpose-regions
Transpose two regions.

Chapter 13: Commands for Fixing Typos 133

The common error of transposing two characters can be fixed, when they are adjacent,
with the C-t command (transpose-chars). Normally, C-t transposes the two characters
on either side of point. When given at the end of a line, rather than transposing the last
character of the line with the newline, which would be useless, C-t transposes the last two
characters on the line. So, if you catch your transposition error right away, you can fix it
with just a C-t. If you don’t catch it so fast, you must move the cursor back between the
two transposed characters before you type C-t. If you transposed a space with the last
character of the word before it, the word motion commands (M-f, M-b, etc.) are a good way
of getting there. Otherwise, a reverse search (C-r) is often the best way. See Chapter 12
[Search], page 104.

M-t transposes the word before point with the word after point (transpose-words). It
moves point forward over a word, dragging the word preceding or containing point forward as
well. The punctuation characters between the words do not move. For example, ‘FO0, BAR’
transposes into ‘BAR, FOO’ rather than ‘BAR FOO,’. When point is at the end of the line, it
will transpose the word before point with the first word on the next line.

C-M-t (transpose-sexps) is a similar command for transposing two expressions (see
Section 23.4.1 [Expressions|, page 297), and C-x C-t (transpose-lines) exchanges lines.
M-x transpose-sentences and M-x transpose-paragraphs transpose sentences and para-
graphs, respectively. These commands work like M-t except as regards the units of text they
transpose.

A numeric argument to a transpose command serves as a repeat count: it tells the
transpose command to move the character (or word or expression or line) before or containing
point across several other characters (or words or expressions or lines). For example,
C-u 3 C-t moves the character before point forward across three other characters. It would
change ‘f*xoobar’ into ‘oobfxar’. This is equivalent to repeating C-t three times. C-u - 4
M-t moves the word before point backward across four words. C-u - C-M-t would cancel
the effect of plain C-M-t.

A numeric argument of zero is assigned a special meaning (because otherwise a command
with a repeat count of zero would do nothing): to transpose the character (or word or
expression or line) ending after point with the one ending after the mark.

M-x transpose-regions transposes the text between point and mark with the text
between the last two marks pushed to the mark ring (see Section 8.1 [Setting Mark], page 51).
With a numeric prefix argument, it transposes the text between point and mark with the
text between two successive marks that many entries back in the mark ring. This command
is best used for transposing multiple characters (or words or sentences or paragraphs) in one
go.

13.3 Case Conversion

M-- M-1 Convert last word to lower case. Note Meta-- is Meta-minus.
M-- M-u Convert last word to all upper case.
M-- M-c Convert last word to lower case with capital initial.

A very common error is to type words in the wrong case. Because of this, the word
case-conversion commands M-1, M-u, and M-c have a special feature when used with a
negative argument: they do not move the cursor. As soon as you see you have mistyped

134 GNU Emacs Manual

the last word, you can simply case-convert it and go on typing. See Section 22.7 [Case],
page 265.

13.4 Checking and Correcting Spelling

This section describes the commands to check the spelling of a single word or of a portion of
a buffer. These commands only work if a spelling checker program, one of Hunspell, Aspell,
Ispell or Enchant, is installed. These programs are not part of Emacs, but one of them is
usually installed on GNU/Linux and other free operating systems.

If you have only one of the spelling checker programs installed, Emacs will find it
when you invoke for the first time one of the commands described here. If you have more
than one of them installed, you can control which one is used by customizing the variable
ispell-program-name.

M-$ Check and correct spelling of the word at point (ispell-word). If the region is
active, do it for all words in the region instead.

C-u M-$ If a previous spelling operation was interrupted, continue that operation
(ispell-continue).

M-x ispell
Check and correct spelling of all words in the buffer. If the region is active, do
it for all words in the region instead.

M-x ispell-buffer
Check and correct spelling in the buffer.
M-x ispell-region
Check and correct spelling in the region.
M-x ispell-message
Check and correct spelling in a draft mail message, excluding cited material.
M-x ispell-comments—and-strings
Check and correct spelling of comments and strings in the buffer or region.
M-x ispell-comment-or-string-at-point
Check the comment or string at point.
M-x ispell-change-dictionary RET dict RET
Restart the spell-checker process, using dict as the dictionary.
M-x ispell-kill-ispell
Kill the spell-checker subprocess.
M-TAB
ESC TAB
C-M-i Complete the word before point based on the spelling dictionary
(ispell-complete-word).
M-x flyspell-mode
Enable Flyspell mode, which highlights all misspelled words.
M-x flyspell-prog-mode
Enable Flyspell mode for comments and strings only.

Chapter 13: Commands for Fixing Typos 135

To check the spelling of the word around or before point, and optionally correct it as
well, type M-$ (ispell-word). If a region is active, M-$ checks the spelling of all words
within the region. See Chapter 8 [Mark|, page 51. (When Transient Mark mode is off,
M-$ always acts on the word around or before point, ignoring the region; see Section 8.7
[Disabled Transient Mark], page 56.) When invoked with a prefix argument, C-u M-$, this
calls ispell-continue, which continues the spelling operation, if any, which was interrupted
with X or C-g.

Similarly, the command M-x ispell performs spell-checking in the region if one
is active, or in the entire buffer otherwise. = The commands M-x ispell-buffer
and M-x ispell-region explicitly perform spell-checking on the entire buffer or
the region respectively. To check spelling in an email message you are writing, use
M-x ispell-message; that command checks the whole buffer, except for material that
is indented or appears to be cited from other messages. See Chapter 29 [Sending Mail],
page 424. When dealing with source code, you can use M-x ispell-comments-and-strings
or M-x ispell-comment-or-string-at-point to check only comments or string literals.

When one of these commands encounters what appears to be an incorrect word, it asks
you what to do. It usually displays a list of numbered near-misses—words that are close
to the incorrect word. Then you must type a single-character response. Here are the valid
responses:

digit Replace the word, just this time, with one of the displayed near-misses. Each
near-miss is listed with a digit; type that digit to select it.

SPC Skip this word—continue to consider it incorrect, but don’t change it here.

r new RET Replace the word, just this time, with new. (The replacement string will be
rescanned for more spelling errors.)

R new RET Replace the word with new, and do a query-replace so you can replace it
elsewhere in the buffer if you wish. (The replacements will be rescanned for
more spelling errors.)

a Accept the incorrect word—treat it as correct, but only in this editing session.

A Accept the incorrect word—treat it as correct, but only in this editing session
and for this buffer.

i Insert this word in your private dictionary file so that it will be considered
correct from now on, even in future sessions.

m Like i, but you can also specify dictionary completion information.
u Insert the lower-case version of this word in your private dictionary file.
1 word RET

Look in the dictionary for words that match word. These words become the
new list of near-misses; you can select one of them as the replacement by typing
a digit. You can use ‘*’ in word as a wildcard.

C-g
X Interrupt the interactive spell-checking, leaving point at the word that was being
checked. You can restart checking again afterward with C-u M-$.

136 GNU Emacs Manual

X Quit interactive spell-checking and move point back to where it was when you
started spell-checking.

q Quit interactive spell-checking and kill the spell-checker subprocess.

C-r Enter recursive-edit (see Section 31.11 [Recursive Edit], page 486). When you
exit recursive-edit with C-M-c, the interactive spell-checking will resume. This
allows you to consult the buffer text without interrupting the spell-checking.
Do not modify the buffer in the recursive editing, and especially don’t modify
the misspelled word, as the edits will be undone when you exit recursive-edit.
If you need to edit the misspelled word, use r or R instead, or use X, edit the
buffer, then resume with C-u M-$.

C-z Suspend Emacs or iconify the selected frame.
? Show the list of options.

In Text mode and related modes, M-TAB (ispell-complete-word) performs in-buffer
completion based on spelling correction. Insert the beginning of a word, and then type
M-TAB; this shows a list of completions. (If your window manager intercepts M-TAB, type
ESC TAB or C-M-i.) Each completion is listed with a digit or character; type that digit or
character to choose it.

Once started, the spell-checker subprocess continues to run, waiting for something to
do, so that subsequent spell-checking commands complete more quickly. If you want to get
rid of the process, use M-x ispell-kill-ispell. This is not usually necessary, since the
process uses no processor time except when you do spelling correction.

Spell-checkers look up spelling in two dictionaries: the standard dictionary and your
personal dictionary. The standard dictionary is specified by the variable ispell-local-
dictionary or, if that isnil, by the variable ispell-dictionary. If both are nil, the spell-
ing program’s default dictionary is used. The command M-x ispell-change-dictionary
sets the standard dictionary for the buffer and then restarts the subprocess, so that it will
use a different standard dictionary. Your personal dictionary is specified by the variable
ispell-personal-dictionary. If that is nil, the spelling program looks for a personal
dictionary in a default location, which is specific to each spell-checker.

A separate dictionary is used for word completion. The variable ispell-complete-
word-dict specifies the file name of this dictionary. The completion dictionary must be
different because it cannot use the information about roots and affixes of the words, which
spell-checking uses to detect variations of words. For some languages, there is a spell-checking
dictionary but no word completion dictionary.

Flyspell mode is a minor mode that performs automatic spell-checking of the text you
type as you type it. When it finds a word that it does not recognize, it highlights that word.
Type M-x flyspell-mode to toggle Flyspell mode in the current buffer. To enable Flyspell
mode in all text mode buffers, add flyspell-mode to text-mode-hook. See Section 33.2.2
[Hooks], page 511. Note that, as Flyspell mode needs to check each word across which you
move, it will slow down cursor motion and scrolling commands. It also doesn’t automatically
check the text you didn’t type or move across; use flyspell-region or flyspell-buffer
for that.

When Flyspell mode highlights a word as misspelled, you can click on it with mouse-2
(flyspell-correct-word) to display a menu of possible corrections and actions. If you want

Chapter 13: Commands for Fixing Typos 137

this menu on mouse-3 instead, enable context-menu-mode. In addition, C-. or ESC TAB
(flyspell-auto-correct-word) will propose various successive corrections for the word at
point, and C-c $ (flyspell-correct-word-before-point) will pop up a menu of possible
corrections. Of course, you can always correct the misspelled word by editing it manually in
any way you like.

Flyspell Prog mode works just like ordinary Flyspell mode, except that it only checks
words in comments and string constants. This feature is useful for editing programs. Type
M-x flyspell-prog-mode to enable or disable this mode in the current buffer. To enable
this mode in all programming mode buffers, add flyspell-prog-mode to prog-mode-hook
(see Section 33.2.2 [Hooks|, page 511).

138 GNU Emacs Manual

14 Keyboard Macros

In this chapter we describe how to record a sequence of editing commands so you can repeat
it conveniently later.

A keyboard macro is a command defined by an Emacs user to stand for another sequence
of keys. For example, if you discover that you are about to type C-n M-d C-d forty times, you
can speed your work by defining a keyboard macro to do C-n M-d C-d, and then executing
it 39 more times.

You define a keyboard macro by executing and recording the commands which are its
definition. Put differently, as you define a keyboard macro, the definition is being executed
for the first time. This way, you can see the effects of your commands, so that you don’t
have to figure them out in your head. When you close the definition, the keyboard macro is
defined and also has been, in effect, executed once. You can then do the whole thing over
again by invoking the macro.

Keyboard macros differ from ordinary Emacs commands in that they are written in the
Emacs command language rather than in Lisp. This makes it easier for the novice to write
them, and makes them more convenient as temporary hacks. However, the Emacs command
language is not powerful enough as a programming language to be useful for writing anything
intelligent or general. For such things, Lisp must be used.

14.1 Basic Use

F3 Start defining a keyboard macro (kmacro-start-macro-or-insert-counter).

F4 If a keyboard macro is being defined, end the definition; otherwise, execute the
most recent keyboard macro (kmacro-end-or-call-macro).

C-uF3 Re-execute last keyboard macro, then append keys to its definition.

C-u C-u F3
Append keys to the last keyboard macro without re-executing it.

C-x C-kr Run the last keyboard macro on each line that begins in the region
(apply-macro-to-region-lines).

C-x (Start defining a keyboard macro (old style) (kmacro-start-macro); with a
prefix argument, append keys to the last macro.

C-x) End a macro definition (old style) (kmacro-end-macro); prefix argument serves
as the repeat count for executing the macro.

C-x e Execute the most recently defined keyboard macro (kmacro-end-and-call-
macro); prefix argument serves as repeat count.

To start defining a keyboard macro, type F3. From then on, your keys continue to be
executed, but also become part of the definition of the macro. ‘Def’ appears in the mode
line to remind you of what is going on. When you are finished, type F4 (kmacro-end-or-
call-macro) to terminate the definition. For example,

F3 M-f foo F4

defines a macro to move forward a word and then insert ‘foo’. Note that F3 and F4 do not
become part of the macro.

Chapter 14: Keyboard Macros 139

After defining the macro, you can call it with F4. For the above example, this has the
same effect as typing M-f foo again. (Note the two roles of the F4 command: it ends the
macro if you are in the process of defining one, or calls the last macro otherwise.) You can
also supply F4 with a numeric prefix argument ‘n’, which means to invoke the macro ‘n
times. An argument of zero repeats the macro indefinitely, until it gets an error or you type
C-g (or, on MS-DOS, C-Break).

)

The above example demonstrates a handy trick that you can employ with keyboard
macros: if you wish to repeat an operation at regularly spaced places in the text, include a
motion command as part of the macro. In this case, repeating the macro inserts the string
‘foo’ after each successive word.

After terminating the definition of a keyboard macro, you can append more keystrokes
to its definition by typing C-u F3. This is equivalent to plain F3 followed by retyping the
whole definition so far. As a consequence, it re-executes the macro as previously defined. If
you change the variable kmacro-execute-before-append to nil, the existing macro will
not be re-executed before appending to it (the default is t). You can also add to the end of
the definition of the last keyboard macro without re-executing it by typing C-u C-u F3.

When a command reads an argument with the minibuffer, your minibuffer input becomes
part of the macro along with the command. So when you replay the macro, the command
gets the same argument as when you entered the macro. For example,

F3 C-a C-k C-x b foo RET C-y C-x b RET F4

defines a macro that kills the current line, yanks it into the buffer ‘foo’, then returns to the
original buffer.

Most keyboard commands work as usual in a keyboard macro definition, with some
exceptions. Typing C-g (keyboard-quit) quits the keyboard macro definition. Typing
C-M-c (exit-recursive-edit) can be unreliable: it works as you’d expect if exiting a
recursive edit that started within the macro, but if it exits a recursive edit that started
before you invoked the keyboard macro, it also necessarily exits the keyboard macro too.
Mouse events are also unreliable, even though you can use them in a keyboard macro: when
the macro replays the mouse event, it uses the original mouse position of that event, the
position that the mouse had while you were defining the macro. The effect of this may be
hard to predict.

The command C-x C-k r (apply-macro-to-region-lines) repeats the last defined
keyboard macro on each line that begins in the region. It does this line by line, by moving
point to the beginning of the line and then executing the macro.

In addition to the F3 and F4 commands described above, Emacs also supports an older
set of key bindings for defining and executing keyboard macros. To begin a macro definition,
type C-x ((kmacro-start-macro); as with F3, a prefix argument appends this definition to
the last keyboard macro. To end a macro definition, type C-x) (kmacro-end-macro). To
execute the most recent macro, type C-x e (kmacro-end-and-call-macro). If you enter C-x
e while defining a macro, the macro is terminated and executed immediately. Immediately
after typing C-x e, you can type e repeatedly to immediately repeat the macro one or more
times. You can also give C-x e a repeat argument, just like F4 (when it is used to execute a
macro).

140 GNU Emacs Manual

C-x) can be given a repeat count as an argument. This means to repeat the macro right
after defining it. The macro definition itself counts as the first repetition, since it is executed
as you define it, so C-u 4 C-x) executes the macro immediately 3 additional times.

While executing a long-running keyboard macro, it can sometimes be useful to trigger a
redisplay (to show how far we’ve gotten). The C-x C-k d command can be used for this. As
a not very useful example, C-x (M-f C-x C-k d C-x) will create a macro that will redisplay
once per iteration when saying C-u 42 C-x e.

14.2 The Keyboard Macro Ring

All defined keyboard macros are recorded in the keyboard macro ring. There is only one
keyboard macro ring, shared by all buffers.

C-x C-k C-k
Execute the keyboard macro at the head of the ring (kmacro-end-or-call-
macro-repeat).

C-x C-k C-n
Rotate the keyboard macro ring to the next macro (defined earlier)
(kmacro-cycle-ring-next).

C-x C-k C-p
Rotate the keyboard macro ring to the previous macro (defined later)
(kmacro-cycle-ring-previous).

All commands which operate on the keyboard macro ring use the same C-x C-k prefix.
Most of these commands can be executed and repeated immediately after each other without
repeating the C-x C-k prefix. For example,

C-x C-k C-p C-p C-k C-k C-k C-n C-n C-k C-p C-k C-d
will rotate the keyboard macro ring to the second-previous macro, execute the resulting

head macro three times, rotate back to the original head macro, execute that once, rotate to
the previous macro, execute that, and finally delete it from the macro ring.

The command C-x C-k C-k (kmacro-end-or-call-macro-repeat) executes the key-
board macro at the head of the macro ring. You can repeat the macro immediately by
typing another C-k, or you can rotate the macro ring immediately by typing C-n or C-p.

When a keyboard macro is being defined, C-x C-k C-k behaves like F4 except that,
immediately afterward, you can use most key bindings of this section without the C-x C-k
prefix. For instance, another C-k will re-execute the macro.

The commands C-xC-k C-n (kmacro-cycle-ring-next) and C-x C-k C-p
(kmacro-cycle-ring-previous) rotate the macro ring, bringing the next or previous
keyboard macro to the head of the macro ring. The definition of the new head macro is
displayed in the echo area. You can continue to rotate the macro ring immediately by
repeating just C-n and C-p until the desired macro is at the head of the ring. To execute
the new macro ring head immediately, just type C-k.

Note that Emacs treats the head of the macro ring as the last defined keyboard macro.
For instance, F4 will execute that macro, and C-x C-k n will give it a name.

The maximum number of macros stored in the keyboard macro ring is determined by
the customizable variable kmacro-ring-max.

Chapter 14: Keyboard Macros 141

14.3 The Keyboard Macro Counter

Each keyboard macro has an associated counter, which is initialized to 0 when you start
defining the macro. This current counter allows you to insert a number into the buffer
that depends on the number of times the macro has been called. The counter is normally
incremented each time its value is inserted into the buffer.

In addition to the current counter, keyboard macros also maintain the previous counter,
which records the value the current counter had last time it was incremented or set. Note
that incrementing the current counter by zero, e.g., with C-u 0 C-x C-k C-1i, also records
the value of the current counter as the previous counter value.

F3 In a keyboard macro definition, insert the keyboard macro counter value in the
buffer (kmacro-start-macro-or-insert-counter).
C-x C-k C-1
Insert the keyboard macro counter value in the buffer (kmacro-insert-
counter).
C-x C-k C-c
Set the keyboard macro counter (kmacro-set-counter).
C-x C-k C-a
Add the prefix arg to the keyboard macro counter (kmacro-add-counter).
C-x C-k C-£
Specify the format for inserting the keyboard macro counter (kmacro-set-
format).

When you are defining a keyboard macro, the command F3 (kmacro-start-macro-or-
insert-counter) inserts the current value of the keyboard macro’s counter into the buffer,
and increments the counter by 1. (If you are not defining a macro, F3 begins a macro
definition instead. See Section 14.1 [Basic Keyboard Macro|, page 138.) You can use a
numeric prefix argument to specify a different increment. If you just specify a C-u prefix,
that inserts the previous counter value, and doesn’t change the current value.

As an example, let us show how the keyboard macro counter can be used to build a
numbered list. Consider the following key sequence:

F3 C-a F3 . SPC F4

As part of this keyboard macro definition, the string ‘0. ’ was inserted into the beginning
of the current line. If you now move somewhere else in the buffer and type F4 to invoke
the macro, the string ‘1. ’ is inserted at the beginning of that line. Subsequent invocations
insert ‘2. 7, ‘3. 7, and so forth.

The command C-x C-k C-i (kmacro-insert-counter) does the same thing as F3, but it
can be used outside a keyboard macro definition. When no keyboard macro is being defined
or executed, it inserts and increments the counter of the macro at the head of the keyboard
macro ring.

The command C-x C-k C-c (kmacro-set-counter) sets the current macro counter to
the value of the numeric argument. If you use it inside the macro, it operates on each
repetition of the macro. If you specify just C-u as the prefix, while executing the macro,
that resets the counter to the value it had at the beginning of the current repetition of the
macro (undoing any increments so far in this repetition).

142 GNU Emacs Manual

The command C-x C-k C-a (kmacro-add-counter) adds the prefix argument to the
current macro counter. With just C-u as argument, it resets the counter to the last value
inserted by any keyboard macro. (Normally, when you use this, the last insertion will be in
the same macro and it will be the same counter.)

The command C-x C-k C-f (kmacro-set-format) prompts for the format to use when
inserting the macro counter. The default format is ‘%d’, which means to insert the number
in decimal without any padding. You can exit with empty minibuffer to reset the format to
this default. You can specify any format string that the format function accepts and that
makes sense with a single integer extra argument (see Section “Formatting Strings” in The
Emacs Lisp Reference Manual). Do not put the format string inside double quotes when
you insert it in the minibuffer.

If you use this command while no keyboard macro is being defined or executed, the new
format affects all subsequent macro definitions. Existing macros continue to use the format
in effect when they were defined. If you set the format while defining a keyboard macro, this
affects the macro being defined from that point on, but it does not affect subsequent macros.
Execution of the macro will, at each step, use the format in effect at that step during its
definition. Changes to the macro format during execution of a macro, like the corresponding
changes during its definition, have no effect on subsequent macros.

The format set by C-x C-k C-f does not affect insertion of numbers stored in registers.

If you use a register as a counter, incrementing it on each repetition of the macro, that
accomplishes the same thing as a keyboard macro counter. See Section 10.5 [Number
Registers], page 73. For most purposes, it is simpler to use a keyboard macro counter.

14.4 Executing Macros with Variations

In a keyboard macro, you can create an effect similar to that of query-replace, in that the
macro asks you each time around whether to make a change.

C-xq When this point is reached during macro execution, ask for confirmation
(kbd-macro-query).

While defining the macro, type C-x q at the point where you want the query to occur.
During macro definition, the C-x q does nothing, but when you run the macro later, C-x q
asks you interactively whether to continue.

The valid responses when C-x q asks are:
SPC (or y) Continue executing the keyboard macro.

DEL (or n) Skip the remainder of this repetition of the macro, and start right away with
the next repetition.

RET (or q) Skip the remainder of this repetition and cancel further repetitions.

C-r Enter a recursive editing level, in which you can perform editing which is not
part of the macro. When you exit the recursive edit using C-M-c, you are asked
again how to continue with the keyboard macro. If you type a SPC at this time,
the rest of the macro definition is executed. It is up to you to leave point and
the text in a state such that the rest of the macro will do what you want.

Chapter 14: Keyboard Macros 143

C-u C-x g, which is C-x q with a prefix argument, performs a completely different function.
It enters a recursive edit reading input from the keyboard, both when you type it during
the definition of the macro, and when it is executed from the macro. During definition, the
editing you do inside the recursive edit does not become part of the macro. During macro
execution, the recursive edit gives you a chance to do some particularized editing on each
repetition. See Section 31.11 [Recursive Edit], page 486.

14.5 Naming and Saving Keyboard Macros

C-x C-kn Give a command name (for the duration of the Emacs session) to the most
recently defined keyboard macro (kmacro-name-last-macro).

C-x C-k b Bind the most recently defined keyboard macro to a key sequence (for the
duration of the session) (kmacro-bind-to-key).

M-x insert-kbd-macro
Insert in the buffer a keyboard macro’s definition, as Lisp code.

If you wish to save a keyboard macro for later use, you can give it a name using C-x
C-k n (kmacro-name-last-macro). This reads a name as an argument using the minibuffer
and defines that name to execute the last keyboard macro, in its current form. (If you
later add to the definition of this macro, that does not alter the name’s definition as a
macro.) The macro name is a Lisp symbol, and defining it in this way makes it a valid
command name for calling with M-x or for binding a key to with keymap-global-set (see
Section 33.3.1 [Keymaps|, page 520). If you specify a name that has a prior definition other
than a keyboard macro, an error message is shown and nothing is changed.

You can also bind the last keyboard macro (in its current form) to a key, using C-x C-k
b (kmacro-bind-to-key) followed by the key sequence you want to bind. You can bind to
any key sequence in the global keymap, but since most key sequences already have other
bindings, you should select the key sequence carefully. If you try to bind to a key sequence
with an existing binding (in any keymap), this command asks you for confirmation before
replacing the existing binding.

To avoid problems caused by overriding existing bindings, the key sequences C-x C-k 0
through C-x C-k 9 and C-x C-k A through C-x C-k Z are reserved for your own keyboard
macro bindings. In fact, to bind to one of these key sequences, you only need to type the
digit or letter rather than the whole key sequences. For example,

C-x C-k b 4
will bind the last keyboard macro to the key sequence C-x C-k 4.

Once a macro has a command name, you can save its definition in a file. Then it can be
used in another editing session. First, visit the file you want to save the definition in. Then
use this command:

M-x insert-kbd-macro RET macroname RET

This inserts some Lisp code that, when executed later, will define the same macro with the
same definition it has now. (You don’t need to understand Lisp code to do this, because
insert-kbd-macro writes the Lisp code for you.) Then save the file. You can load the file
later with load-file (see Section 24.8 [Lisp Libraries|, page 331). If the file you save in is

144 GNU Emacs Manual

your init file ~/.emacs (see Section 33.4 [Init File], page 529) then the macro will be defined
each time you run Emacs.

If you give insert-kbd-macro a prefix argument, it makes additional Lisp code to record
the keys (if any) that you have bound to macroname, so that the macro will be reassigned
the same keys when you load the file.

14.6 Editing a Keyboard Macro

C-x C-k C-e
Edit the last defined keyboard macro (kmacro-edit-macro).

C-x C-k e name RET
Edit a previously defined keyboard macro name (edit-kbd-macro).

C-x C-k 1 Edit the last 300 keystrokes as a keyboard macro (kmacro-edit-lossage).

You can edit the last keyboard macro by typing C-x C-k C-e or C-x C-k RET
(kmacro-edit-macro). This formats the macro definition in a buffer and enters a
specialized major mode for editing it. Type C-h m once in that buffer to display details of
how to edit the macro. When you are finished editing, type C-c C-c.

You can edit a named keyboard macro or a macro bound to a key by typing C-x C-k e
(edit-kbd-macro). Follow that with the keyboard input that you would use to invoke the
macro—C-x e or M-x name or some other key sequence.

You can edit the last 300 keystrokes as a macro by typing C-x C-k 1 (kmacro-edit-
lossage).

14.7 Stepwise Editing a Keyboard Macro

You can interactively replay and edit the last keyboard macro, one command at a time, by
typing C-x C-k SPC (kmacro-step-edit-macro). Unless you quit the macro using q or C-g,
the edited macro replaces the last macro on the macro ring.

This macro editing feature shows the last macro in the minibuffer together with the first
(or next) command to be executed, and prompts you for an action. You can enter ? to get a
summary of your options. These actions are available:

e SPC and y execute the current command, and advance to the next command in the
keyboard macro.

e n, d, and DEL skip and delete the current command.

e f skips the current command in this execution of the keyboard macro, but doesn’t
delete it from the macro.

e TAB executes the current command, as well as all similar commands immediately
following the current command; for example, TAB may be used to insert a sequence of
characters (corresponding to a sequence of self-insert-command commands).

e c continues execution (without further editing) until the end of the keyboard macro. If
execution terminates normally, the edited macro replaces the original keyboard macro.

e C-k skips and deletes the rest of the keyboard macro, terminates step-editing, and
replaces the original keyboard macro with the edited macro.

Chapter 14: Keyboard Macros 145

e g and C-g cancels the step-editing of the keyboard macro; discarding any changes made
to the keyboard macro.

e i key... C-j reads and executes a series of key sequences (not including the final C-j),
and inserts them before the current command in the keyboard macro, without advancing
over the current command.

e I key... reads one key sequence, executes it, and inserts it before the current command
in the keyboard macro, without advancing over the current command.

e r key... C-j reads and executes a series of key sequences (not including the final C-j),
and replaces the current command in the keyboard macro with them, advancing over
the inserted key sequences.

e R key... reads one key sequence, executes it, and replaces the current command in the
keyboard macro with that key sequence, advancing over the inserted key sequence.

e a key... C-j executes the current command, then reads and executes a series of key
sequences (not including the final C-j), and inserts them after the current command in
the keyboard macro; it then advances over the current command and the inserted key
sequences.

e A key... C-j executes the rest of the commands in the keyboard macro, then reads
and executes a series of key sequences (not including the final C-j), and appends them
at the end of the keyboard macro; it then terminates the step-editing and replaces the
original keyboard macro with the edited macro.

146 GNU Emacs Manual

15 File Handling

The operating system stores data permanently in named files, so most of the text you edit
with Emacs comes from a file and is ultimately stored in a file.

To edit a file, you must tell Emacs to read the file and prepare a buffer containing a copy
of the file’s text. This is called visiting the file. Editing commands apply directly to text
in the buffer; that is, to the copy inside Emacs. Your changes appear in the file itself only
when you save the buffer back into the file.

In addition to visiting and saving files, Emacs can delete, copy, rename, and append to
files, keep multiple versions of them, and operate on file directories.

15.1 File Names

Many Emacs commands that operate on a file require you to specify the file name, using the
minibuffer (see Section 5.2 [Minibuffer File], page 27).

While in the minibuffer, you can use the usual completion and history commands
(see Chapter 5 [Minibuffer|, page 27). Note that file name completion ignores file names
whose extensions appear in the variable completion-ignored-extensions (see Section 5.4.5
[Completion Options]|, page 34). Note also that most commands use permissive completion
with confirmation for reading file names: you are allowed to submit a nonexistent file name,
but if you type RET immediately after completing up to a nonexistent file name, Emacs prints
‘[Confirm]’ and you must type a second RET to confirm. See Section 5.4.3 [Completion
Exit], page 32, for details.

Minibuffer history commands offer some special features for reading file names, see
Section 5.5 [Minibuffer History|, page 35.

Each buffer has a default directory, stored in the buffer-local variable default-directory.
Whenever Emacs reads a file name using the minibuffer, it usually inserts the default directory
into the minibuffer as the initial contents. You can inhibit this insertion by changing the
variable insert-default-directory to nil (see Section 5.2 [Minibuffer File], page 27).
Regardless, Emacs always assumes that any relative file name is relative to the default
directory, e.g., entering a file name without a directory specifies a file in the default directory.

When you visit a file, Emacs sets default-directory in the visiting buffer to the
directory of its file. When you create a new buffer that is not visiting a file, via a command
like C-x b, its default directory is usually copied from the buffer that was current at the
time (see Section 16.1 [Select Buffer|, page 177). You can use the command M-x pwd to see
the value of default-directory in the current buffer. The command M-x cd prompts for
a directory’s name, and sets the buffer’s default-directory to that directory (doing this
does not change the buffer’s file name, if any).

As an example, when you visit the file /u/rms/gnu/gnu. tasks, the default directory is set
to /u/rms/gnu/. If you invoke a command that reads a file name, entering just ‘foo’ in the
minibuffer, with a directory omitted, specifies the file /u/rms/gnu/foo; entering ‘. ./.login
specifies /u/rms/.login; and entering ‘new/foo’ specifies /u/rms/gnu/new/foo.

)

When typing a file name into the minibuffer, you can make use of a couple of shortcuts:
a double slash ignores everything before the second slash in the pair, and ‘~/’ is your home
directory. See Section 5.2 [Minibuffer File], page 27.

Chapter 15: File Handling 147

The character ‘$’ is used to substitute an environment variable into a file name. The
name of the environment variable consists of all the alphanumeric characters after the ‘$’;
alternatively, it can be enclosed in braces after the ‘$’. For example, if you have used the
shell command export FOO=rms/hacks to set up an environment variable named F00, then
both /u/$F00/test.c and /u/${F00}/test.c are abbreviations for /u/rms/hacks/test.c.
If the environment variable is not defined, no substitution occurs, so that the character ‘§’
stands for itself. Note that environment variables set outside Emacs affect Emacs only if
they are applied before Emacs is started.

To access a file with ‘$’ in its name, if the ‘$’ causes expansion, type ‘$$’. This pair
is converted to a single ‘$’ at the same time that variable substitution is performed for a
single ‘¢’. Alternatively, quote the whole file name with ‘/:’ (see Section 15.16 [Quoted File
Names], page 171). File names which begin with a literal ‘=’ should also be quoted with ¢/:".

You can include non-ASCII characters in file names. See Section 19.11 [File Name Coding],
page 232.

15.2 Visiting Files

C-x C-f Visit a file (find-file).

C-x C-r Visit a file for viewing, without allowing changes to it (find-file-read-only).
C-x C-v Visit a different file instead of the one visited last (find-alternate-file).

C-x4f Visit a file, in another window (find-file-other-window). Don’t alter what
is displayed in the selected window.

C-x5f Visit a file, in a new frame (find-file-other-frame). Don’t alter what is
displayed in the selected frame.

M-x find-file-literally
Visit a file with no conversion of the contents.

Visiting a file means reading its contents into an Emacs buffer so you can edit them.
Emacs makes a new buffer for each file that you visit.

To visit a file, type C-x C-f (find-file) and use the minibuffer to enter the name of
the desired file. While in the minibuffer, you can abort the command by typing C-g. See
Section 15.1 [File Names]|, page 146, for details about entering file names into minibuffers.

If the specified file exists but the system does not allow you to read it, an error message
is displayed in the echo area (on GNU and Unix systems you might be able to visit such a
file using the ‘su’ or ‘sudo’ methods; see Section 15.15 [Remote Files|, page 170). Otherwise,
you can tell that C-x C-f has completed successfully by the appearance of new text on the
screen, and by the buffer name shown in the mode line (see Section 1.3 [Mode Line], page 8).
Emacs normally constructs the buffer name from the file name, omitting the directory name.
For example, a file named /usr/rms/emacs.tex is visited in a buffer named ‘emacs.tex’.
If there is already a buffer with that name, Emacs constructs a unique name; the normal
method is to add a suffix based on the directory name (e.g., ‘<rms>’, ‘<tmp>’, and so on),
but you can select other methods. See Section 16.7.1 [Uniquify], page 184.

To create a new file, just visit it using the same command, C-x C-f. Emacs displays
‘(New file)’ in the echo area, but in other respects behaves as if you had visited an existing
empty file.

148 GNU Emacs Manual

After visiting a file, the changes you make with editing commands are made in the Emacs
buffer. They do not take effect in the visited file, until you save the buffer (see Section 15.3
[Saving], page 150). If a buffer contains changes that have not been saved, we say the buffer
is modified. This implies that some changes will be lost if the buffer is not saved. The mode
line displays two stars near the left margin to indicate that the buffer is modified.

If you visit a file that is already in Emacs, C-x C-f switches to the existing buffer instead
of making another copy. Before doing so, it checks whether the file has changed since you
last visited or saved it. If the file has changed, Emacs offers to reread it.

If you try to visit a file larger than large-file-warning-threshold (the default is
10000000, which is about 10 megabytes), Emacs asks you for confirmation first. You can
answer y to proceed with visiting the file or 1 to visit the file literally (see below). Visiting
large files literally speeds up navigation and editing of such files, because various potentially-
expensive features are turned off. Note, however, that Emacs cannot visit files that are
larger than the maximum Emacs buffer size, which is limited by the amount of memory
Emacs can allocate and by the integers that Emacs can represent (see Chapter 16 [Buffers],
page 177). If you try, Emacs displays an error message saying that the maximum buffer size
has been exceeded.

If you try to visit a file whose major mode (see Section 20.1 [Major Modes], page 243)
uses the tree-sitter parsing library, Emacs will display a warning if the file’s size in bytes is
larger than the value of the variable treesit-max-buffer-size. The default value is 40
megabytes for 64-bit Emacs and 15 megabytes for 32-bit Emacs. This avoids the danger of
having Emacs run out of memory by preventing the activation of major modes based on
tree-sitter in such large buffers, because a typical tree-sitter parser needs about 10 times as
much memory as the text it parses.

If the file name you specify contains shell-style wildcard characters, Emacs visits all the files
that match it. (On case-insensitive filesystems, Emacs matches the wildcards disregarding the
letter case.) Wildcards include ‘?’, ‘*’, and ‘[...] sequences. To enter the wild card ‘?’ in a
file name in the minibuffer, you need to type C-q 7. See Section 15.16 [Quoted File Names],
page 171, for information on how to visit a file whose name actually contains wildcard
characters. You can disable the wildcard feature by customizing find-file-wildcards.

If you’re asking to visit a file that’s already visited in a buffer, but the file has changed
externally, Emacs normally asks you whether you want to re-read the file from disk. But if
you set query-about-changed-file to nil, Emacs won’t query you, but will instead just
display the buffer’s contents before the changes, and show an echo-area message telling you
how to revert the buffer from the file.

If you visit the wrong file unintentionally by typing its name incorrectly, type C-x C-v
(find-alternate-file) to visit the file you really wanted. C-x C-v is similar to C-x C-f,
but it kills the current buffer (after first offering to save it if it is modified). When C-x C-v
reads the file name to visit, it inserts the entire default file name in the buffer, with point
just after the directory part; this is convenient if you made a slight error in typing the name.

If you visit a file that is actually a directory, Emacs invokes Dired, the Emacs directory
browser. See Chapter 27 [Dired], page 384. You can disable this behavior by setting the
variable find-file-run-dired to nil; in that case, it is an error to try to visit a directory.

Chapter 15: File Handling 149

Files which are actually collections of other files, or file archives, are visited in special
modes which invoke a Dired-like environment to allow operations on archive members. See
Section 15.14 [File Archives], page 169, for more about these features.

If you visit a file that the operating system won’t let you modify, or that is marked
read-only, Emacs makes the buffer read-only too, so that you won’t go ahead and make
changes that you’ll have trouble saving afterward. You can make the buffer writable with
C-x C-q (read-only-mode). See Section 16.3 [Misc Buffer], page 179.

If you want to visit a file as read-only in order to protect yourself from entering changes
accidentally, visit it with the command C-x C-r (find-file-read-only) instead of C-x
C-f£.

C-x 4 £ (find-file-other-window) is like C-x C-f except that the buffer containing
the specified file is selected in another window. The window that was selected before C-x
4 f continues to show the same buffer it was already showing. If this command is used
when only one window is being displayed, that window is split in two, with one window
showing the same buffer as before, and the other one showing the newly requested file. See
Chapter 17 [Windows|, page 187.

C-x 5 f (find-file-other-frame) is similar, but opens a new frame, or selects any
existing frame showing the specified file. See Chapter 18 [Frames|, page 196.

On graphical displays, there are two additional methods for visiting files. Firstly, when
Emacs is built with a suitable GUI toolkit, commands invoked with the mouse (by clicking on
the menu bar or tool bar) use the toolkit’s standard file selection dialog instead of prompting
for the file name in the minibuffer. On GNU/Linux and Unix platforms, Emacs does this
when built with GTK+, LessTif, and Motif toolkits; on MS-Windows and Mac, the GUI
version does that by default. For information on how to customize this, see Section 18.18
[Dialog Boxes|, page 214.

Secondly, Emacs supports drag and drop: dropping a file into an ordinary Emacs window
visits the file using that window. As an exception, dropping a file into a window displaying a
Dired buffer moves or copies the file into the displayed directory. For details, see Section 18.14
[Drag and Drop], page 210, and Section 27.19 [Misc Dired Features], page 403.

On text-mode terminals and on graphical displays when Emacs was built without a GUI
toolkit, you can visit files via the menu-bar ‘File’ menu, which has the ‘Visit New File’
and the ‘Open File’ items.

Each time you visit a file, Emacs automatically scans its contents to detect what character
encoding and end-of-line convention it uses, and converts these to Emacs’s internal encoding
and end-of-line convention within the buffer. When you save the buffer, Emacs performs
the inverse conversion, writing the file to disk with its original encoding and end-of-line
convention. See Section 19.5 [Coding Systems], page 225.

If you wish to edit a file as a sequence of ASCII characters with no special encoding or
conversion, use the M-x find-file-literally command. This visits a file, like C-x C-£,
but does not do format conversion (see Section “Format Conversion” in the Emacs Lisp
Reference Manual), character code conversion (see Section 19.5 [Coding Systems|, page 225),
or automatic uncompression (see Section 15.13 [Compressed Files|, page 169), and does
not add a final newline because of require-final-newline (see Section 15.3.3 [Customize
Save], page 155). If you have already visited the same file in the usual (non-literal) manner,
this command asks you whether to visit it literally instead.

150 GNU Emacs Manual

Files are sometimes (loosely) tied to other files, and you could call these files sibling
files. For instance, when editing C files, if you have a file called ‘"foo.c"’, you often
also have a file called ‘"foo.h"’, and that could be its sibling file. Or you may have
different versions of a file, for instance ‘"src/emacs/emacs-27/lisp/allout.el"’ and
‘"src/emacs/emacs-28/1lisp/allout.el"’ might be considered siblings. Emacs provides
the find-sibling-file command to jump between sibling files, but it’s impossible to guess
at which files a user might want to be considered siblings, so Emacs lets you configure this
freely by altering the find-sibling-rules user option. This is a list of match/expansion
elements.

For instance, to do the ‘".c"’ to ‘".h"’ mapping, you could say:
(setq find-sibling-rules
CCONNCET/ZTHNOANN AN "\\1.h")))

(ff-find-related-file offers similar functionality especially geared towards C files, see
Section 23.12.4 [Other C Commands], page 312.)

Or, if you want to consider all files under ‘"src/emacs/DIR/file-name"’ to be siblings

of other dirs, you could say:
(setq find-sibling-rules
"(("src/emacs/["/1+/\\C.x\\)\\'" "src/emacs/.*/\\1")))

As you can see, this is a list of (MATCH EXPANSION...) elements. The match is a
regular expression that matches the visited file name, and each expansion may refer to match
groups by using ‘\\1’ and so on. The resulting expansion string is then applied to the file
system to see if any files match this expansion (interpreted as a regexp).

Two special hook variables allow extensions to modify the operation of visiting files.
Visiting a file that does not exist runs the functions in find-file-not-found-functions;
this variable holds a list of functions, which are called one by one (with no arguments) until
one of them returns non-nil. This is not a normal hook, and the name ends in ‘~functions’
rather than ‘~hook’ to indicate that fact.

Successful visiting of any file, whether existing or not, calls the functions in find-file-
hook, with no arguments. This variable is a normal hook. In the case of a nonexistent file,
the find-file-not-found-functions are run first. See Section 33.2.2 [Hooks|, page 511.

There are several ways to specify automatically the major mode for editing the file (see
Section 20.3 [Choosing Modes], page 246), and to specify local variables defined for that file
(see Section 33.2.4 [File Variables], page 514).

15.3 Saving Files

Saving a buffer in Emacs means writing its contents back into the file that was visited in
the buffer.

15.3.1 Commands for Saving Files
These are the commands that relate to saving and writing files.
C-x C-s Save the current buffer to its file (save-buffer).

C-x s Save any or all buffers to their files (save-some-buffers).

Chapter 15: File Handling 151

M-~ Forget that the current buffer has been changed (not-modified). With prefix
argument (C-u), mark the current buffer as changed.

C-x C-w Save the current buffer with a specified file name (write-file).

M-x set-visited-file—name
Change the file name under which the current buffer will be saved.

M-x rename-visited-file
The same as M-x set-visited-file-name, but also rename the file the buffer
is visiting (if any).

When you wish to save the file and make your changes permanent, type C-x C-s
(save-buffer). After saving is finished, C-x C-s displays a message like this:

Wrote /u/rms/gnu/gnu.tasks

If the current buffer is not modified (no changes have been made in it since the buffer was
created or last saved), saving is not really done, because it would have no effect. Instead,
C-x C-s displays a message like this in the echo area:

(No changes need to be saved)

With a prefix argument, C-u C-x C-s, Emacs also marks the buffer to be backed up when
the next save is done. See Section 15.3.2 [Backup], page 152.

The command C-x s (save-some-buffers) offers to save any or all modified buffers. It
asks you what to do with each buffer. The possible responses are analogous to those of
query-replace:

y

SPC Save this buffer and ask about the rest of the buffers.

n

DEL Don’t save this buffer, but ask about the rest of the buffers.

! Save this buffer and all the rest with no more questions.

q

RET Terminate save-some-buffers without any more saving.
Save this buffer, then exit save-some-buffers without even asking about other
buffers.

C-r View the buffer that you are currently being asked about. When you exit View
mode, you get back to save-some-buffers, which asks the question again.

C-f Exit save-some-buffers and visit the buffer that you are currently being asked
about.

d Diff the buffer against its corresponding file, so you can see what changes

you would be saving. This calls the command diff-buffer-with-file (see
Section 15.9 [Comparing Files], page 164).

C-h Display a help message about these options.

152 GNU Emacs Manual

You can customize the value of save-some-buffers-default-predicate to control which
buffers Emacs will ask about.

C-x C-c, the key sequence to exit Emacs, invokes save-some-buffers and therefore asks
the same questions.

If you have changed a buffer but do not wish to save the changes, you should take some
action to prevent it. Otherwise, each time you use C-x s or C-x C-c, you are liable to save
this buffer by mistake. One thing you can do is type M-~ (not-modified), which clears out
the indication that the buffer is modified. If you do this, none of the save commands will
believe that the buffer needs to be saved. (‘*’ is often used as a mathematical symbol for
“not”; thus M-~ is “not”, metafied.) Alternatively, you can cancel all the changes made since
the file was visited or saved, by reading the text from the file again. This is called reverting.
See Section 15.4 [Reverting], page 158. (You could also undo all the changes by repeating
the undo command C-x u until you have undone all the changes; but reverting is easier.)

M-x set-visited-file-name alters the name of the file that the current buffer is visiting.
It reads the new file name using the minibuffer. Then it marks the buffer as visiting that
file name, and changes the buffer name correspondingly. set-visited-file-name does not
save the buffer in the newly visited file; it just alters the records inside Emacs in case you
do save later. It also marks the buffer as modified so that C-x C-s in that buffer will save.

If you wish to mark the buffer as visiting a different file and save it right away, use
C-x C-w (write-file). This is equivalent to set-visited-file-name followed by C-x C-s,
except that C-x C-w asks for confirmation if the file exists. C-x C-s used on a buffer that is
not visiting a file has the same effect as C-x C-w; that is, it reads a file name, marks the
buffer as visiting that file, and saves it there. The default file name in a buffer that is not
visiting a file is made by combining the buffer name with the buffer’s default directory (see
Section 15.1 [File Names], page 146).

If the new file name implies a major mode, then C-x C-w switches to that major mode,
in most cases. The command set-visited-file-name also does this. See Section 20.3
[Choosing Modes], page 246.

If you wish to save the current buffer to a different file without visiting that file, use
mark-whole-buffer (C-x h), then M-x write-region (see Section 15.12 [Misc File Ops],
page 168).

If Emacs is about to save a file and sees that the date of the latest version on disk does not
match what Emacs last read or wrote, Emacs notifies you of this fact, because it probably
indicates a problem caused by simultaneous editing and requires your immediate attention.
See Section 15.3.4 [Simultaneous Editing], page 156.

15.3.2 Backup Files

On most operating systems, rewriting a file automatically destroys all record of what the
file used to contain. Thus, saving a file from Emacs throws away the old contents of the
file—or it would, except that Emacs carefully copies the old contents to another file, called
the backup file, before actually saving.

Emacs makes a backup for a file only the first time the file is saved from a buffer. No
matter how many times you subsequently save the file, its backup remains unchanged.
However, if you kill the buffer and then visit the file again, a new backup file will be made.

Chapter 15: File Handling 153

For most files, the variable make-backup-files determines whether to make backup files.
On most operating systems, its default value is t, so that Emacs does write backup files.

For files managed by a version control system (see Section 25.1 [Version Control], page 337),
the variable vc-make-backup-files determines whether to make backup files. By default it
is nil, since backup files are redundant when you store all the previous versions in a version
control system. See Section “General VC Options” in Specialized Emacs Features.

At your option, Emacs can keep either a single backup for each file, or make a series
of numbered backup files for each file that you edit. See Section 15.3.2.1 [Backup Names],
page 153.

The default value of the backup-enable-predicate variable prevents backup files being
written for files in the directories used for temporary files, specified by temporary-file-
directory or small-temporary-file-directory.

You can explicitly tell Emacs to make another backup file from a buffer, even though
that buffer has been saved before. If you save the buffer with C-u C-x C-s, the version thus
saved will be made into a backup file if you save the buffer again. C-u C-u C-x C-s saves
the buffer, but first makes the previous file contents into a new backup file. C-u C-u C-u
C-x C-s does both things: it makes a backup from the previous contents, and arranges to
make another from the newly saved contents if you save again.

You can customize the variable backup-directory-alist to specify that files matching
certain patterns should be backed up in specific directories. A typical use is to add an
element ("." . dir) to make all backups in the directory with absolute name dir. Emacs
modifies the backup file names to avoid clashes between files with the same names originating
in different directories. Alternatively, adding, ("." . ".”") would make backups in the
invisible subdirectory .~ of the original file’s directory. Emacs creates the directory, if
necessary, to make the backup.

15.3.2.1 Single or Numbered Backups

When Emacs makes a backup file, its name is normally constructed by appending ‘=’ to the
file name being edited; thus, the backup file for eval.c would be eval.c”.

If access control stops Emacs from writing backup files under the usual names, it writes
the backup file as ~/.emacs.d/%backup’%~. Only one such file can exist, so only the most
recently made such backup is available.

Emacs can also make numbered backup files. Numbered backup file names contain
*.7’, the number, and another ‘~’ after the original file name. Thus, the backup files of
eval.c would be called eval.c.”17, eval.c.”2", and so on, all the way through names
like eval.c.”259~ and beyond.

The variable version-control determines whether to make single backup files or multiple
numbered backup files. Its possible values are:

nil Make numbered backups for files that have numbered backups already. Otherwise,
make single backups. This is the default.

t Make numbered backups.

never Never make numbered backups; always make single backups.

154 GNU Emacs Manual

The usual way to set this variable is globally, through your init file or the customization
buffer. However, you can set version-control locally in an individual buffer to control the
making of backups for that buffer’s file (see Section 33.2.3 [Locals], page 513). Some modes,
such as Rmail mode, set this variable. You can also have Emacs set version-control
locally whenever you visit a given file (see Section 33.2.4 [File Variables|, page 514).

If you set the environment variable VERSION_CONTROL, to tell various GNU utilities what
to do with backup files, Emacs also obeys the environment variable by setting the Lisp
variable version-control accordingly at startup. If the environment variable’s value is ‘t’
or ‘numbered’, then version-control becomes t; if the value is ‘nil’ or ‘existing’, then
version-control becomes nil; if it is ‘never’ or ‘simple’; then version-control becomes
never.

If you set the variable make-backup-file-name-function to a suitable Lisp function,
you can override the usual way Emacs constructs backup file names.

15.3.2.2 Automatic Deletion of Backups

To prevent excessive consumption of disk space, Emacs can delete numbered backup versions
automatically. Generally Emacs keeps the first few backups and the latest few backups,
deleting any in between. This happens every time a new backup is made.

The two variables kept-old-versions and kept-new-versions control this deletion.
Their values are, respectively, the number of oldest (lowest-numbered) backups to keep
and the number of newest (highest-numbered) ones to keep, each time a new backup is
made. The backups in the middle (excluding those oldest and newest) are the excess middle
versions—those backups are deleted. These variables’ values are used when it is time to
delete excess versions, just after a new backup version is made; the newly made backup is
included in the count in kept-new-versions. By default, both variables are 2.

If delete-old-versions is t, Emacs deletes the excess backup files silently. If it is nil,
the default, Emacs asks you whether it should delete the excess backup versions. If it has
any other value, then Emacs never automatically deletes backups.

Dired’s . (Period) command can also be used to delete old versions. See Section 27.4
[Flagging Many Files], page 387.

15.3.2.3 Copying vs. Renaming

Backup files can be made by copying the old file or by renaming it. This makes a difference
when the old file has multiple names (hard links). If the old file is renamed into the backup
file, then the alternate names become names for the backup file. If the old file is copied
instead, then the alternate names remain names for the file that you are editing, and the
contents accessed by those names will be the new contents.

The method of making a backup file may also affect the file’s owner and group. If copying
is used, these do not change. If renaming is used, you become the file’s owner, and the file’s
group becomes the default (different operating systems have different defaults for the group).

The choice of renaming or copying is made as follows:
e If the variable backup-by-copying is non-nil (the default is nil), use copying.

e Otherwise, if the variable backup-by-copying-when-linked is non-nil (the default is
nil), and the file has multiple names, use copying.

Chapter 15: File Handling 155

e Otherwise, if the variable backup-by-copying-when-mismatch is non-nil (the default
is t), and renaming would change the file’s owner or group, use copying.

If you change backup-by-copying-when-mismatch to nil, Emacs checks the numeric
user-id of the file’s owner and the numeric group-id of the file’s group. If either is
no greater than backup-by-copying-when-privileged-mismatch, then it behaves as
though backup-by-copying-when-mismatch is non-nil anyway.

e Otherwise, renaming is the default choice.

When a file is managed with a version control system (see Section 25.1 [Version Control],
page 337), Emacs does not normally make backups in the usual way for that file. But
committing (a.k.a. checking in, see Section 25.1.1.3 [VCS Concepts], page 339) new versions
of files is similar in some ways to making backups. One unfortunate similarity is that these
operations typically break hard links, disconnecting the file name you visited from any
alternate names for the same file. This has nothing to do with Emacs—the version control
system does it.

15.3.3 Customizing Saving of Files

If the value of the variable require-final-newline is t, saving or writing a file silently
puts a newline at the end if there isn’t already one there. If the value is visit, Emacs adds
a newline at the end of any file that doesn’t have one, just after it visits the file. (This marks
the buffer as modified, and you can undo it.) If the value is visit-save, Emacs adds such
newlines both on visiting and on saving. If the value is nil, Emacs leaves the end of the file
unchanged; any other non-nil value means Emacs asks you whether to add a newline. The
default is nil.

Some major modes are designed for specific kinds of files that are always supposed to
end in newlines. Such major modes set the variable require-final-newline to the value
of mode-require-final-newline, which defaults to t. By setting the latter variable, you
can control how these modes handle final newlines.

If this option is non-nil and you're visiting a file via a symbolic link, Emacs will break
the symbolic link upon saving the buffer, and will write the buffer to a file with the same
name as the symbolic link, if the value of file-precious-flag is non-nil (see Section
“Saving Buffers” in The Emacs Lisp Reference Manual). If you want Emacs to save the buffer
to the file the symbolic link points to (thereby preserving the link) in these cases, customize
the variable file-preserve-symlinks-on-save to t.

Normally, when a program writes a file, the operating system briefly caches the file’s data
in main memory before committing the data to disk. This can greatly improve performance;
for example, when running on laptops, it can avoid a disk spin-up each time a file is written.
However, it risks data loss if the operating system crashes before committing the cache to
disk.

To lessen this risk, Emacs can invoke the fsync system call after saving a file. Using
fsync does not eliminate the risk of data loss, partly because many systems do not implement
fsync properly, and partly because Emacs’s file-saving procedure typically relies also on
directory updates that might not survive a crash even if fsync works properly.

The write-region-inhibit-fsync variable controls whether Emacs invokes fsync after
saving a file. The variable’s default value is nil when Emacs is interactive, and t when
Emacs runs in batch mode (see Section C.2 [Initial Options|, page 577).

156 GNU Emacs Manual

Emacs never uses fsync when writing auto-save files, as these files might lose data
anyway.

15.3.4 Protection against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make changes, and
then both save them. If nobody is informed that this is happening, whichever user saves
first would later find that their changes were lost.

On some systems, Emacs notices immediately when the second user starts to change the
file, and issues an immediate warning. On all systems, Emacs checks when you save the file,
and warns if you are about to overwrite another user’s changes. You can prevent loss of the
other user’s work by taking the proper corrective action instead of saving the file.

When you make the first modification in an Emacs buffer that is visiting a file, Emacs
records that the file is locked by you. (It does this by creating a specially-named symbolic
link! with special contents in the same directory. See Section “File Locks” in elisp, for
more details.) Emacs removes the lock when you save the changes. The idea is that the file
is locked whenever an Emacs buffer visiting it has unsaved changes.

You can prevent the creation of lock files by setting the variable create-lockfiles to
nil. Caution: by doing so you will lose the benefits that this feature provides. You can also
control where lock files are written by using the lock-file-name-transforms variable.

If you begin to modify the buffer while the visited file is locked by someone else, this
constitutes a collision. When Emacs detects a collision, it asks you what to do, by calling
the Lisp function ask-user-about-lock. You can redefine this function for the sake of
customization. The standard definition of this function asks you a question and accepts
three possible answers:

s Steal the lock. Whoever was already changing the file loses the lock, and you
gain the lock.

Proceed. Go ahead and edit the file despite its being locked by someone else.

q Quit. This causes an error (file-locked), and the buffer contents remain
unchanged—the modification you were trying to make does not actually take
place.

If Emacs or the operating system crashes, this may leave behind lock files which are stale,
so you may occasionally get warnings about spurious collisions. When you determine that
the collision is spurious, just use p to tell Emacs to go ahead anyway.

Note that locking works on the basis of a file name; if a file has multiple names, Emacs
does not prevent two users from editing it simultaneously under different names.

A lock file cannot be written in some circumstances, e.g., if Emacs lacks the system
permissions or cannot create lock files for some other reason. In these cases, Emacs can
still detect the collision when you try to save a file, by checking the file’s last-modification
date. If the file has changed since the last time Emacs visited or saved it, that implies that
changes have been made in some other way, and will be lost if Emacs proceeds with saving.
Emacs then displays a warning message and asks for confirmation before saving; answer yes
to save, and no or C-g cancel the save.

Lot your file system does not support symbolic links, a regular file is used.

Chapter 15: File Handling 157

If you are notified that simultaneous editing has already taken place, one way to com-
pare the buffer to its file is the M-x diff-buffer-with-file command. See Section 15.9
[Comparing Files|, page 164.

You can prevent the creation of remote lock files by setting the variable remote-file-
name-inhibit-locks to t.

The minor mode lock-file-mode, called interactively, toggles the local value of
create-lockfiles in the current buffer.

15.3.5 Shadowing Files

You can arrange to keep identical shadow copies of certain files in more than one place—
possibly on different machines. To do this, first you must set up a shadow file group, which
is a set of identically-named files shared between a list of sites. The file group is permanent
and applies to further Emacs sessions as well as the current one. Once the group is set up,
every time you exit Emacs, it will copy the file you edited to the other files in its group. You
can also do the copying without exiting Emacs, by typing M-x shadow-copy-files.

A shadow cluster is a group of hosts that share directories, so that copying to or from
one of them is sufficient to update the file on all of them. Each shadow cluster has a name,
and specifies the network address of a primary host (the one we copy files to), and a regular
expression that matches the host names of all the other hosts in the cluster. You can define
a shadow cluster with M-x shadow-define-cluster.

M-x shadow-initialize
Set up file shadowing.

M-x shadow-define-literal-group
Declare a single file to be shared between sites.

M-x shadow-define-regexp-group
Make all files that match each of a group of files be shared between hosts.

M-x shadow-define-cluster RET name RET
Define a shadow file cluster name.

M-x shadow-copy-files
Copy all pending shadow files.

M-x shadow—-cancel
Cancel the instruction to shadow some files.

To set up a shadow file group, use M-x shadow-define-literal-group or
M-x shadow-define-regexp-group. See their documentation strings for further
information.

Before copying a file to its shadows, Emacs asks for confirmation. You can answer “no”
to bypass copying of this file, this time. If you want to cancel the shadowing permanently
for a certain file, use M-x shadow-cancel to eliminate or change the shadow file group.

File Shadowing is not available on MS Windows.

158 GNU Emacs Manual

15.3.6 Updating Time Stamps Automatically

You can arrange to put a time stamp in a file, so that it is updated automatically each time
you edit and save the file. The time stamp must be in the first eight lines of the file, and
you should insert it like this:

Time-stamp: <>
or like this:
Time-stamp: " "

Then add the function time-stamp to the hook before-save-hook (see Section 33.2.2
[Hooks], page 511). When you save the file, this function then automatically updates the
time stamp with the current date and time. You can also use the command M-x time-stamp
to update the time stamp manually. By default the time stamp is formatted according to
your locale setting (see Section C.4 [Environment|, page 580) and time zone (see Section
“Time of Day” in The Emacs Lisp Reference Manual). For customizations, see the Custom
group time-stamp.

15.4 Reverting a Buffer

If you have made extensive changes to a file-visiting buffer and then change your mind, you
can revert the changes and go back to the saved version of the file. To do this, type C-x x g.
Since reverting unintentionally could lose a lot of work, Emacs asks for confirmation first if
the buffer is modified.

The revert-buffer command tries to position point in such a way that, if the file was
edited only slightly, you will be at approximately the same part of the text as before. But if
you have made major changes, point may end up in a totally different location.

Reverting marks the buffer as not modified. However, it adds the reverted changes as a
single modification to the buffer’s undo history (see Section 13.1 [Undo|, page 131). Thus,
after reverting, you can type C-/ or its aliases to bring the reverted changes back, if you
happen to change your mind.

To revert a buffer more conservatively, you can use the command revert-buffer-with-
fine-grain. This command acts like revert-buffer, but it tries to be as non-destructive
as possible, making an effort to preserve all markers, properties and overlays in the buffer.
Since reverting this way can be very slow when you have made a large number of changes,
you can modify the variable revert-buffer-with-fine-grain-max-seconds to specify a
maximum amount of seconds that replacing the buffer contents this way should take. Note
that it is not ensured that the whole execution of revert-buffer-with-fine-grain won’t
take longer than this.

Some kinds of buffers that are not associated with files, such as Dired buffers, can also be
reverted. For them, reverting means recalculating their contents. Buffers created explicitly
with C-x b cannot be reverted; revert-buffer reports an error if you try.

When you edit a file that changes automatically and frequently—for example, a log of
output from a process that continues to run—it may be useful for Emacs to revert the file
without querying you. To request this behavior, set the variable revert-without-query
to a list of regular expressions. When a file name matches one of these regular expressions,
find-file and revert-buffer will revert it automatically if it has changed—provided the

Chapter 15: File Handling 159

buffer itself is not modified. (If you have edited the text, it would be wrong to discard your
changes.)

The C-x x g keystroke is bound to the revert-buffer-quick command. This is like
the revert-buffer command, but prompts less. Unlike revert-buffer, it will not prompt
if the current buffer visits a file, and the buffer is not modified. It also respects the
revert-buffer-quick-short-answers user option. If this option is non-nil, use a shorter
y/n query instead of a longer yes/no query.

You can also tell Emacs to revert buffers automatically when their visited files change on
disk; see Section 15.5 [Auto Revert|, page 159.

15.5 Auto Revert: Keeping buffers automatically up-to-date

A buffer can get out of sync with respect to its visited file on disk if that file is changed
by another program. To keep it up to date, you can enable Auto Revert mode by typing
M-x auto-revert-mode. This automatically reverts the buffer when its visited file changes
on disk. To do the same for all file buffers, type M-x global-auto-revert-mode to enable
Global Auto Revert mode.

Auto Revert will not revert a buffer if it has unsaved changes, or if its file on disk is
deleted or renamed.

One use of Auto Revert mode is to “tail” a file such as a system log, so that changes
made to that file by other programs are continuously displayed. To do this, just move the
point to the end of the buffer, and it will stay there as the file contents change. However, if
you are sure that the file will only change by growing at the end, use Auto Revert Tail mode
instead (auto-revert-tail-mode). It is more efficient for this. Auto Revert Tail mode also
works for remote files.

When a buffer is auto-reverted, a message is generated. This can be suppressed by setting
auto-revert-verbose to nil.

The Auto Revert modes do not check or revert remote files, because that is usually too
slow. This behavior can be changed by setting the variable auto-revert-remote-files to
non-nil.

By default, Auto Revert mode works using file notifications, whereby changes in the
filesystem are reported to Emacs by the OS. You can disable use of file notifications by
customizing the variable auto-revert-use-notify to a nil value, then Emacs will check
for file changes by polling every five seconds. You can change the polling interval through
the variable auto-revert-interval.

Not all systems support file notifications; where they are not supported, auto-revert-
use-notify will be nil by default.

By default, Auto Revert mode will poll files for changes periodically even when file
notifications are used. Polling is unnecessary in many cases, and turning it off may save
power by relying on notifications only. To do so, set the variable auto-revert-avoid-
polling to non-nil. However, notification is ineffective on certain file systems; mainly
network file system on Unix-like machines, where files can be altered from other machines.
For such file systems, polling may be necessary. To force polling when auto-revert-avoid-
polling is non-nil, set auto-revert-notify-exclude-dir-regexp to match files that
should be excluded from using notification.

160 GNU Emacs Manual

In Dired buffers (see Chapter 27 [Dired], page 384), Auto Revert mode refreshes the
buffer when a file is created or deleted in the buffer’s directory.

See Section 25.1.8 [VC Undo], page 350, for commands to revert to earlier versions of
files under version control. See Section 25.1.2 [VC Mode Line], page 341, for Auto Revert
peculiarities when visiting files under version control.

15.6 Auto-Saving: Protection Against Disasters

From time to time, Emacs automatically saves each visited file in a separate file, without
altering the file you actually use. This is called auto-saving. It prevents you from losing
more than a limited amount of work if the system crashes.

When Emacs determines that it is time for auto-saving, it considers each buffer, and
each is auto-saved if auto-saving is enabled for it and it has been changed since the last time
it was auto-saved. When the auto-save-no-message variable is set to nil (the default),
the message ‘Auto-saving. ..’ is displayed in the echo area during auto-saving, if any files
are actually auto-saved; to disable these messages, customize the variable to a non-nil
value. Errors occurring during auto-saving are caught so that they do not interfere with the
execution of commands you have been typing.

15.6.1 Auto-Save Files

Auto-saving does not normally save in the files that you visited, because it can be very
undesirable to save a change that you did not want to make permanent. Instead, auto-saving
is done in a different file called the auto-save file, and the visited file is changed only when
you request saving explicitly (such as with C-x C-s).

Normally, the auto-save file name is made by appending ‘#’ to the front and rear of the
visited file name. Thus, a buffer visiting file foo.c is auto-saved in a file #foo.c#. Most
buffers that are not visiting files are auto-saved only if you request it explicitly; when they
are auto-saved, the auto-save file name is made by appending ‘#’ to the front and rear of
buffer name, then adding digits and letters at the end for uniqueness. For example, the
mail buffer in which you compose messages to be sent might be auto-saved in a file
named #*mail*#704juu. Auto-save file names are made this way unless you reprogram
parts of Emacs to do something different (the functions make-auto-save-file-name and
auto-save-file-name-p). The file name to be used for auto-saving in a buffer is calculated
when auto-saving is turned on in that buffer.

The variable auto-save-file-name-transforms allows a degree of control over the
auto-save file name. It lets you specify a series of regular expressions and replacements to
transform the auto save file name. The default value puts the auto-save files for remote files
(see Section 15.15 [Remote Files], page 170) into the temporary file directory on the local
machine.

When you delete a substantial part of the text in a large buffer, auto save turns off
temporarily in that buffer. This is because if you deleted the text unintentionally, you might
find the auto-save file more useful if it contains the deleted text. To reenable auto-saving
after this happens, save the buffer with C-x C-s, or use C-u 1 M-x auto-save-mode.

If you want auto-saving to be done in the visited file rather than in a separate auto-save
file, enable the global minor mode auto-save-visited-mode. In this mode, auto-saving
is identical to explicit saving. Note that this mode is orthogonal to the auto-save mode

Chapter 15: File Handling 161

described above; you can enable both at the same time. However, if auto-save mode is
active in some buffer and the obsolete auto-save-visited-file-name variable is set to a
non-nil value, that buffer won’t be affected by auto-save-visited-mode.

You can use the variable auto-save-visited-interval to customize the interval
between auto-save operations in auto-save-visited-mode; by default it’s five seconds.
auto-save-interval and auto-save-timeout have no effect on auto-save-visited-mode.
See Section 15.6.2 [Auto Save Control], page 161, for details on these variables.

A buffer’s auto-save file is deleted when you save the buffer in its visited file. (You can
inhibit this by setting the variable delete-auto-save-files to nil.) Changing the visited
file name with C-x C-w or set-visited-file-name renames any auto-save file to go with
the new visited name.

Killing a buffer, by default, doesn’t remove the buffer’s auto-save file. If kill-buffer-
delete-auto-save-files is non-nil, killing a buffer that has an auto-save file will make
Emacs prompt the user for whether the auto-save file should be deleted. (This is inhibited if
delete-auto-save-files is nil.)

15.6.2 Controlling Auto-Saving

Each time you visit a file, auto-saving is turned on for that file’s buffer if the variable
auto-save-default is non-nil (but not in batch mode; see Section C.2 [Initial Options],
page 577). The default for this variable is t, so auto-saving is the usual practice for file-
visiting buffers. To toggle auto-saving in the current buffer, type M-x auto-save-mode. Auto
Save mode acts as a buffer-local minor mode (see Section 20.2 [Minor Modes|, page 244).

Emacs auto-saves periodically based on how many characters you have typed since the
last auto-save. The variable auto-save-interval specifies how many characters there are
between auto-saves. By default, it is 300. Emacs doesn’t accept values that are too small:
if you customize auto-save-interval to a value less than 20, Emacs will behave as if the
value is 20.

Auto-saving also takes place when you stop typing for a while. By default, it does this
after 30 seconds of idleness (at this time, Emacs may also perform garbage collection; see
Section “Garbage Collection” in The Emacs Lisp Reference Manual). To change this interval,
customize the variable auto-save-timeout. The actual time period is longer if the current
buffer is long; this is a heuristic which aims to keep out of your way when you are editing
long buffers, in which auto-save takes an appreciable amount of time. Auto-saving during
idle periods accomplishes two things: first, it makes sure all your work is saved if you go
away from the terminal for a while; second, it may avoid some auto-saving while you are
actually typing.

When auto-save-visited-mode is enabled, Emacs will auto-save file-visiting buffers
after five seconds of idle time. You can customize the variable auto-save-visited-interval
to change the idle time interval.

Emacs also does auto-saving whenever it gets a fatal error. This includes killing the
Emacs job with a shell command such as ‘kill %emacs’, or disconnecting a phone line or
network connection.

You can perform an auto-save explicitly with the command M-x do-auto-save.

162 GNU Emacs Manual

15.6.3 Recovering Data from Auto-Saves

You can use the contents of an auto-save file to recover from a loss of data with the command
M-x recover-file RET file RET. This visits file and then (after your confirmation) restores
the contents from its auto-save file #file#. You can then save with C-x C-s to put the
recovered text into file itself. For example, to recover file foo.c from its auto-save file
#foo.c#, do:

M-x recover-file RET foo.c RET
yes RET
C-x C-s
Before asking for confirmation, M-x recover-file displays a directory listing describing
the specified file and the auto-save file, so you can compare their sizes and dates. If the
auto-save file is older, M-x recover-file does not offer to read it.

If Emacs or the computer crashes, you can recover all the files you were editing from
their auto save files with the command M-x recover-session. This first shows you a list of
recorded interrupted sessions. Move point to the one you choose, and type C-c C-c.

Then recover-session asks about each of the files that were being edited during that
session, asking whether to recover that file. If you answer y, it calls recover-file, which
works in its normal fashion. It shows the dates of the original file and its auto-save file, and
asks once again whether to recover that file.

When recover-session is done, the files you've chosen to recover are present in Emacs
buffers. You should then save them. Only this—saving them—updates the files themselves.

Emacs records information about interrupted sessions in files named .saves-pid-
hostname™ in the directory ~/.emacs.d/auto-save-1list/. This directory is determined
by the variable auto-save-list-file-prefix. If you set auto-save-list-file-prefix
to nil, sessions are not recorded for recovery.

15.7 File Name Aliases

Symbolic links and hard links both make it possible for several file names to refer to the
same file. Hard links are alternate names that refer directly to the file; all the names are
equally valid, and no one of them is preferred. By contrast, a symbolic link is a kind of
defined alias: when foo is a symbolic link to bar, you can use either name to refer to the
file, but bar is the real name, while foo is just an alias. More complex cases occur when
symbolic links point to directories.

Normally, if you visit a file which Emacs is already visiting under a different name, Emacs
displays a message in the echo area and uses the existing buffer visiting that file. This
can happen on systems that support hard or symbolic links, or if you use a long file name
on a system that truncates long file names, or on a case-insensitive file system. You can
suppress the message by setting the variable find-file-suppress-same-file-warnings
to a non-nil value. You can disable this feature entirely by setting the variable find-file-
existing-other-name to nil: then if you visit the same file under two different names, you
get a separate buffer for each file name.

If the variable find-file-visit-truename is non-nil, then the file name recorded for a
buffer is the file’s truename (made by replacing all symbolic links with their target names),

Chapter 15: File Handling 163

rather than the name you specify. Setting find-file-visit-truename also implies the
effect of find-file-existing-other-name.

Sometimes, a directory is ordinarily accessed through a symbolic link, and you may want
Emacs to preferentially show its linked name. To do this, customize directory-abbrev-
alist. Each element in this list should have the form (from . to), which means to replace
from with to whenever from appears in a directory name. The from string is a regular
expression (see Section 12.6 [Regexps|, page 114). It is matched against directory names
anchored at the first character, and should start with ‘*’ (to support directory names with
embedded newlines, which would defeat ‘*”). The to string should be an ordinary absolute
directory name pointing to the same directory. Do not use ‘~’ to stand for a home directory
in the to string; Emacs performs these substitutions separately. Here’s an example, from a
system on which /home/fsf is normally accessed through a symbolic link named /fsf:

(("\\" /home/fsf" . "/fsf"))

15.8 File Directories

The file system groups files into directories. A directory listing is a list of all the files
in a directory. Emacs provides commands to create and delete directories, and to make
directory listings in brief format (file names only) and verbose format (sizes, dates, and
other attributes included). Emacs also includes a directory browser feature called Dired,
which you can invoke with C-x d; see Chapter 27 [Dired], page 384.

C-x C-d dir-or-pattern RET
Display a brief directory listing (1list-directory).

C-u C-x C-d dir-or-pattern RET
Display a verbose directory listing.

M-x make-directory RET dirname RET
Create a new directory named dirname.

M-x delete-directory RET dirname RET
Delete the directory named dirname. If it isn’t empty, you will be asked whether
you want to delete it recursively.

The command to display a directory listing is C-x C-d (list-directory). It reads using
the minibuffer a file name which is either a directory to be listed or a wildcard-containing
pattern for the files to be listed. For example,

C-x C-d /u2/emacs/etc RET

lists all the files in directory /u2/emacs/etc. Here is an example of specifying a file name
pattern:

C-x C-d /u2/emacs/src/*.c RET

Normally, C-x C-d displays a brief directory listing containing just file names. A numeric
argument (regardless of value) tells it to make a verbose listing including sizes, dates, and
owners (like ‘1s -17).

The text of a directory listing is mostly obtained by running 1s in an inferior process. Two
Emacs variables control the switches passed to 1s: list-directory-brief-switches is a

164 GNU Emacs Manual

string giving the switches to use in brief listings ("-CF" by default), and list-directory-
verbose-switches is a string giving the switches to use in a verbose listing ("-1" by
default).

In verbose directory listings, Emacs adds information about the amount of free space on
the disk that contains the directory.

The command M-x delete-directory prompts for a directory’s name using the minibuf-
fer, and deletes the directory if it is empty. If the directory is not empty, you will be asked
whether you want to delete it recursively. On systems that have a “Trash” (or “Recycle
Bin”) feature, you can make this command move the specified directory to the Trash instead
of deleting it outright, by changing the variable delete-by-moving-to-trash to t. See
Section 15.12 [Misc File Ops|, page 168, for more information about using the Trash.

15.9 Comparing Files

The command M-x diff prompts for two file names, using the minibuffer, and displays
the differences between the two files in a buffer named *diff*. This works by running
the diff program, using options taken from the variable diff-switches. The value of
diff-switches should be a string; the default is "-u" to specify a unified context diff.
See Section “Diff” in Comparing and Merging Files, for more information about the diff
program.

The output of the diff command is shown using a major mode called Diff mode. See
Section 15.10 [Diff Mode], page 165.

A (much more sophisticated) alternative is M-x ediff (see Section “Edift” in The Ediff
Manual).

The command M-x diff-backup compares a specified file with its most recent backup.
If you specify the name of a backup file, diff-backup compares it with the source file that
it is a backup of. In all other respects, this behaves like M-x diff.

The command M-x diff-buffer-with-file compares a specified buffer with its corre-
sponding file. This shows you what changes you would make to the file if you save the
buffer.

The command M-x diff-buffers compares the contents of two specified buffers.

The command M-x compare-windows compares the text in the current window with that
in the window that was the selected window before you selected the current one. (For more
information about windows in Emacs, see Chapter 17 [Windows|, page 187.) Comparison
starts at point in each window, after pushing each initial point value on the mark ring (see
Section 8.4 [Mark Ring], page 55) in its respective buffer. Then it moves point forward in
each window, one character at a time, until it reaches characters that don’t match. Then
the command exits.

If point in the two windows is followed by non-matching text when the command starts,
M-x compare-windows tries heuristically to advance up to matching text in the two windows,
and then exits. So if you use M-x compare-windows repeatedly (see Section 4.11 [Repeating],
page 25), each time it either skips one matching range or finds the start of another.

With a numeric argument, compare-windows ignores changes in whitespace. If the
variable compare-ignore-case is non-nil, the comparison ignores differences in case as
well. If the variable compare-ignore-whitespace is non-nil, compare-windows by default

Chapter 15: File Handling 165

ignores changes in whitespace, but a prefix argument turns that off for that single invocation
of the command.

You can use M-x smerge-mode to turn on Smerge mode, a minor mode for editing output
from the diff3 program. This is typically the result of a failed merge from a version control
system update outside VC, due to conflicting changes to a file. Smerge mode provides
commands to resolve conflicts by selecting specific changes.

See Section “Emerge” in Specialized Emacs Features, for the Emerge facility, which
provides a powerful interface for merging files.

15.10 Diff Mode

Diff mode is a major mode used for the output of M-x diff and other similar commands.
This kind of output is called a patch, because it can be passed to the patch command
to automatically apply the specified changes. To select Diff mode manually, type M-x
diff-mode.

The changes specified in a patch are grouped into hunks, which are contiguous chunks of
text that contain one or more changed lines. Hunks usually also include unchanged lines to
provide context for the changes. Each hunk is preceded by a hunk header, which specifies
the old and new line numbers where the hunk’s changes occur. Diff mode highlights each
hunk header, to distinguish it from the actual contents of the hunk.

The first hunk in a patch is preceded by a file header, which shows the names of the new
and the old versions of the file, and their time stamps. If a patch shows changes for more
than one file, each file has such a header before the first hunk of that file’s changes.

You can edit a Diff mode buffer like any other buffer. (If it is read-only, you need to
make it writable first; see Section 16.3 [Misc Buffer|, page 179.) Whenever you edit a hunk,
Diff mode attempts to automatically correct the line numbers in the hunk headers, to ensure
that the patch remains correct, and could still be applied by patch. To disable automatic
line number correction, change the variable diff-update-on-the-fly to nil.

Diff mode arranges for hunks to be treated as compiler error messages by M-g M-n
and other commands that handle error messages (see Section 24.2 [Compilation Mode],
page 315). Thus, you can use the compilation-mode commands to visit the corresponding
source locations.

In addition, Diff mode provides the following commands to navigate, manipulate and
apply parts of patches:

M-n Move to the next hunk-start (diff-hunk-next). With prefix argument n, move
forward to the nth next hunk.

By default, Diff mode refines hunks as Emacs displays them, highlighting their
changes with better granularity. Alternatively, if you set diff-refine to the
symbol navigation, Diff mode only refines the hunk you move to with this
command or with diff-hunk-prev.

M-p Move to the previous hunk-start (diff-hunk-prev). With prefix argument n,
move back to the nth previous hunk. Like M-n, this command refines the hunk
you move to if you set diff-refine to the symbol navigation.

M-} Move to the next file-start, in a multi-file patch (diff-file-next). With prefix
argument n, move forward to the start of the nth next file.

166

M-{

M-k
M-K
C-c C-a

C-c C-b

C-c C-c

C-c C-e

C-c C-n

C-c C-r

C-c C-s

C-c C-d

GNU Emacs Manual

Move to the previous file-start, in a multi-file patch (diff-file-prev). With
prefix argument n, move back to the start of the nth previous file.

Kill the hunk at point (diff-hunk-kill).
In a multi-file patch, kill the current file part. (diff-file-kill).

Apply this hunk to its target file (diff-apply-hunk). With a prefix argument
of C-u, revert this hunk, i.e. apply the reverse of the hunk, which changes the
“new” version into the “old” version. If diff-jump-to-old-file is non-nil,
apply the hunk to the “old” version of the file instead.

Highlight the changes of the hunk at point with a finer granularity
(diff-refine-hunk). This allows you to see exactly which parts of each
changed line were actually changed.

By default, Diff mode refines hunks as Emacs displays them, so you may find
this command useful if you customize diff-refine to a non-default value.

Go to the source file and line corresponding to this hunk (diff-goto-source).
By default, this jumps to the “new” version of the file, the one shown first on
the file header. With a prefix argument, jump to the “old” version instead. If
diff-jump-to-old-file is non-nil, this command by default jumps to the
“old” file, and the meaning of the prefix argument is reversed. If the prefix
argument is a number greater than 8 (e.g., if you type C-u C-u C-c C-c), then
this command also sets diff-jump-to-old-file for the next invocation. If the
source file is under version control (see Section 25.1 [Version Control], page 337),
this jumps to the work file by default. With a prefix argument, jump to the
“old” revision of the file (see Section 25.1.6 [Old Revisions|, page 346), when
point is on the old line, or otherwise jump to the “new” revision.

Start an Ediff session with the patch (diff-ediff-patch). See Section “Ediff”
in The Ediff Manual.

Restrict the view to the current hunk (diff-restrict-view). See Section 11.5
[Narrowing|, page 80. With a prefix argument, restrict the view to the current
file of a multiple-file patch. To widen again, use C-x n w (widen).

Reverse the direction of comparison for the entire buffer (diff-reverse-
direction). With a prefix argument, reverse the direction only inside the
current region (see Chapter 8 [Mark], page 51). Reversing the direction means
changing the hunks and the file-start headers to produce a patch that would
change the “new” version into the “old” one.

Split the hunk at point (diff-split-hunk) into two separate hunks. This inserts
a hunk header and modifies the header of the current hunk. This command is
useful for manually editing patches, and only works with the unified diff format
produced by the -u or ——unified options to the diff program. If you need to
split a hunk in the context diff format produced by the —c or ——context options
to diff, first convert the buffer to the unified diff format with C-c C-u.

Convert the entire buffer to the context diff format (diff-unified->context).
With a prefix argument, convert only the hunks within the region.

Chapter 15: File Handling 167

C-c C-u Convert the entire buffer to unified diff format (diff-context->unified). With
a prefix argument, convert unified format to context format. When the mark is
active, convert only the hunks within the region.

C-c C-1 Re-generate the current hunk (diff-refresh-hunk).

C-c C-w Re-generate the current hunk, disregarding changes in whitespace
(diff-ignore-whitespace-hunk).

C-x4A Generate a ChangeLog entry, like C-x 4 a does (see Section 25.3 [Change Log],
page 360), for each one of the hunks (diff-add-change-log-entries-other-
window). This creates a skeleton of the log of changes that you can later fill
with the actual descriptions of the changes. C-x 4 a itself in Diff mode operates
on behalf of the current hunk’s file, but gets the function name from the patch
itself. This is useful for making log entries for functions that are deleted by the
patch.

Patches sometimes include trailing whitespace on modified lines, as an unintentional and
undesired change. There are two ways to deal with this problem. Firstly, if you enable
Whitespace mode in a Diff buffer (see Section 11.17 [Useless Whitespace], page 94), it
automatically highlights trailing whitespace in modified lines. Secondly, you can use the
command M-x diff-delete-trailing-whitespace, which searches for trailing whitespace
in the lines modified by the patch, and removes that whitespace in both the patch and the
patched source file(s). This command does not save the modifications that it makes, so you
can decide whether to save the changes (the list of modified files is displayed in the echo
area). With a prefix argument, it tries to modify the original (“old”) source files rather than
the patched (“new”) source files.

If diff-font-lock-syntax is non-nil, fragments of source in hunks are highlighted
according to the appropriate major mode.

15.11 Copying, Naming and Renaming Files

Emacs has several commands for copying, naming, and renaming files. All of them read two
file names, old (or target) and new, using the minibuffer, and then copy or adjust a file’s
name accordingly; they do not accept wildcard file names.

In all these commands, if the argument new is just a directory name (see Section
“Directory Names” in the Emacs Lisp Reference Manual), the real new name is in that
directory, with the same non-directory component as old. For example, the command
M-x rename-file RET ~/foo RET /tmp/ RET renames ~/foo to /tmp/foo. On GNU and
other POSIX-like systems, directory names end in ‘/’.

All these commands ask for confirmation when the new file name already exists.

M-x copy-file copies the contents of the file old to the file new.

M-x copy-directory copies directories, similar to the cp -r shell command. If new is
a directory name, it creates a copy of the old directory and puts it in new. Otherwise it
copies all the contents of old into a new directory named new. If copy-directory-create-
symlink is non-nil and old is a symbolic link, this command will copy the symbolic link. If
nil, this command will follow the link and copy the contents instead. (This is the default.)

M-x rename-file renames file old as new. If the file name new already exists, you must
confirm with yes or renaming is not done; this is because renaming causes the old meaning

168 GNU Emacs Manual

of the name new to be lost. If old and new are on different file systems, the file old is copied
and deleted.

M-x add-name-to-file adds an additional name to an existing file without removing
the old name. The new name is created as a hard link to the existing file. The new name
must belong on the same file system that the file is on. On MS-Windows, this command
works only if the file resides in an NTFS file system. On MS-DOS, and some remote system
types, it works by copying the file.

M-x make-symbolic-1link creates a symbolic link named new, which points at target.
The effect is that future attempts to open file new will refer to whatever file is named target
at the time the opening is done, or will get an error if the name target is nonexistent at that
time. This command does not expand the argument target, so that it allows you to specify
a relative name as the target of the link. However, this command does expand leading ‘~’ in
target so that you can easily specify home directories, and strips leading ‘/:’ so that you
can specify relative names beginning with literal ‘> or ‘/:’. See Section 15.16 [Quoted File
Names], page 171. On MS-Windows, this command works only on MS Windows Vista and
later. When new is remote, it works depending on the system type.

15.12 Miscellaneous File Operations

Emacs has commands for performing many other operations on files. All operate on one file;
they do not accept wildcard file names.

M-x delete-file prompts for a file and deletes it. If you are deleting many files in one
directory, it may be more convenient to use Dired rather than delete-file. See Section 27.3
[Dired Deletion], page 386.

M-x move-file-to-trash moves a file into the system Trash (or Recycle Bin). This
is a facility available on most operating systems; files that are moved into the Trash
can be brought back later if you change your mind. (The way to restore trashed files is
system-dependent.)

By default, Emacs deletion commands do not use the Trash. To use the Trash (when
it is available) for common deletion commands, change the variable delete-by-moving-
to-trash to t. This affects the commands M-x delete-file and M-x delete-directory
(see Section 15.8 [Directories|, page 163), as well as the deletion commands in Dired (see
Section 27.3 [Dired Deletion], page 386). Supplying a prefix argument to M-x delete-file
or M-x delete-directory makes them delete outright, instead of using the Trash, regardless
of delete-by-moving-to-trash.

If you have delete-by-moving-to-trash set, and you want to delete files manually in
Emacs from the Trash directory, using commands like D (dired-do-delete) doesn’t work
well in the Trash directory (it’ll just give the file a new name, but won’t delete anything).
If you want to be able to do this, you should create a .dir-locals.el file containing
something like the following in the Trash directory:

((dired-mode . ((delete-by-moving-to-trash . nil))))

Note, however, if you use the system “empty trash” command, it’s liable to also delete
this .dir-locals.el file, so this should only be done if you delete files from the Trash
directory manually.

M-x insert-file (also C-x i) inserts a copy of the contents of the specified file into the
current buffer at point, leaving point unchanged before the contents. The position after the

Chapter 15: File Handling 169

inserted contents is added to the mark ring, without activating the mark (see Section 8.4
[Mark Ring], page 55).

M-x insert-file-literally is like M-x insert-file, except the file is inserted literally:
it is treated as a sequence of ASCII characters with no special encoding or conversion, similar
to the M-x find-file-literally command (see Section 15.2 [Visiting], page 147).

M-x write-region is the inverse of M-x insert-file; it copies the contents of the region
into the specified file. M-x append-to-file adds the text of the region to the end of the
specified file. See Section 9.4 [Accumulating Text|, page 66. The variable write-region-
inhibit-fsync applies to these commands, as well as saving files; see Section 15.3.3
[Customize Save|, page 155.

M-x set-file-modes reads a file name followed by a file mode, and applies that file mode
to the specified file. File modes, also called file permissions, determine whether a file can be
read, written to, or executed, and by whom. This command reads file modes using the same
symbolic or octal format accepted by the chmod command; for instance, ‘u+x’ means to add
execution permission for the user who owns the file. It has no effect on operating systems
that do not support file modes. chmod is a convenience alias for this function.

15.13 Accessing Compressed Files

Emacs automatically uncompresses compressed files when you visit them, and automatically
recompresses them if you alter them and save them. Emacs recognizes compressed files by
their file names. File names ending in ‘. gz’ indicate a file compressed with gzip. Other
endings indicate other compression programs.

Automatic uncompression and compression apply to all the operations in which Emacs
uses the contents of a file. This includes visiting it, saving it, inserting its contents into a
buffer, loading it, and byte compiling it.

To disable this feature, type the command M-x auto-compression-mode. You can disable
it permanently by customizing the variable auto-compression-mode.

15.14 File Archives

A file whose name ends in ‘.tar’ is normally an archive made by the tar program. Emacs
views these files in a special mode called Tar mode which provides a Dired-like list of the
contents (see Chapter 27 [Dired|, page 384). You can move around through the list just as
you would in Dired, and visit the subfiles contained in the archive. However, not all Dired
commands are available in Tar mode.

If Auto Compression mode is enabled (see Section 15.13 [Compressed Files], page 169),
then Tar mode is used also for compressed archives—files with extensions ‘.tgz’, .tar.Z
and .tar.gz.

The keys e, £ and RET all extract a component file into its own buffer. You can edit
it there, and if you save the buffer, the edited version will replace the version in the Tar
buffer. Clicking with the mouse on the file name in the Tar buffer does likewise. v extracts
a file into a buffer in View mode (see Section 11.6 [View Mode], page 81). o extracts the
file and displays it in another window, so you could edit the file and operate on the archive
simultaneously.

170 GNU Emacs Manual

The I key adds a new (regular) file to the archive. The file is initially empty, but can
readily be edited using the commands above. The command inserts the new file before the
current one, so that using it on the topmost line of the Tar buffer makes the new file the
first one in the archive, and using it at the end of the buffer makes it the last one.

d marks a file for deletion when you later use x, and u unmarks a file, as in Dired. C
copies a file from the archive to disk and R renames a file within the archive. g reverts the
buffer from the archive on disk. The keys M, G, and 0 change the file’s permission bits, group,
and owner, respectively.

Saving the Tar buffer writes a new version of the archive to disk with the changes you
made to the components.

You don’t need the tar program to use Tar mode—Emacs reads the archives directly.
However, accessing compressed archives requires the appropriate uncompression program.

A separate but similar Archive mode is used for arc, jar, 1zh, zip, rar, 7z, and zoo
archives, as well as exe files that are self-extracting executables.

The key bindings of Archive mode are similar to those in Tar mode, with the addition
of the m key which marks a file for subsequent operations, and M-DEL which unmarks all
the marked files. Also, the a key toggles the display of detailed file information, for those
archive types where it won’t fit in a single line. Operations such as renaming a subfile, or
changing its mode or owner, are supported only for some of the archive formats.

Unlike Tar mode, Archive mode runs the archiving programs to unpack and repack
archives. However, you don’t need these programs to look at the archive table of contents,
only to extract or manipulate the subfiles in the archive. Details of the program names and
their options can be set in the ‘Archive’ Customize group (see Section 33.1.1 [Customization
Groups], page 501).

15.15 Remote Files

You can refer to files on other machines using a special file name syntax:

/method:host:filename
/method: user@host:filename
/method: user@host#port: filename

To carry out this request, Emacs uses a remote-login program such as ssh. You must always
specify in the file name which method to use—for example, /ssh:user@host: filename uses
ssh. When you specify the pseudo method ‘-’ in the file name, Emacs chooses the method
as follows:

1. If the host name starts with ‘ftp.’ (with dot), Emacs uses FTP.
2. If the user name is ‘ftp’ or ‘anonymous’, Emacs uses FTP.
3. If the variable tramp-default-method is set to ‘ftp’, Emacs uses FTP.
4. If ssh-agent is running, Emacs uses scp.
5. Otherwise, Emacs uses ssh.
You can entirely turn off the remote file name feature by setting the variable tramp-mode to

nil. You can turn off the feature in individual cases by quoting the file name with ‘/:’ (see
Section 15.16 [Quoted File Names], page 171).

Chapter 15: File Handling 171

Remote file access through FTP is handled by the Ange-FTP package, which is docu-
mented in the following. Remote file access through the other methods is handled by the
Tramp package, which has its own manual. See The Tramp Manual.

When the Ange-FTP package is used, Emacs logs in through FTP using the name user,
if that is specified in the remote file name. If user is unspecified, Emacs logs in using your
user name on the local system; but if you set the variable ange-ftp-default-user to a
string, that string is used instead. When logging in, Emacs may also ask for a password.

For performance reasons, Emacs does not make backup files for files accessed via FTP by
default. To make it do so, change the variable ange-ftp-make-backup-files to a non-nil
value.

By default, auto-save files for remote files are made in the temporary file directory on
the local machine, as specified by the variable auto-save-file-name-transforms. See
Section 15.6.1 [Auto Save Files|, page 160.

To visit files accessible by anonymous FTP, you use special user names ‘anonymous’

or ‘ftp’. Passwords for these user names are handled specially. The variable ange-ftp-
generate-anonymous-password controls what happens: if the value of this variable is a
string, then that string is used as the password; if non-nil (the default), then the value of
user-mail-address is used; if nil, then Emacs prompts you for a password as usual (see
Section 5.7 [Passwords|, page 38).

Sometimes you may be unable to access files on a remote machine because a firewall in
between blocks the connection for security reasons. If you can log in on a gateway machine
from which the target files are accessible, and whose FTP server supports gatewaying
features, you can still use remote file names; all you have to do is specify the name of
the gateway machine by setting the variable ange-ftp-gateway-host, and set ange-ftp-
smart-gateway to t. Otherwise you may be able to make remote file names work, but the
procedure is complex. You can read the instructions by typing M-x finder-commentary
RET ange-ftp RET.

15.16 Quoted File Names

You can quote an absolute file name to prevent special characters and syntax in it from
having their special effects. The way to do this is to add ‘/:’ at the beginning.

For example, you can quote a local file name which appears remote, to prevent it from
being treated as a remote file name. Thus, if you have a directory named /foo: and a file
named bar in it, you can refer to that file in Emacs as ‘/:/foo:/bar’.

If you want to quote only special characters in the local part of a remote file name, you
can quote just the local part. ‘/ssh:baz:/:/foo:/bar’ refers to the file bar of directory
/foo: on the host baz.

‘/:’ can also prevent ‘~’ from being treated as a special character for a user’s home
directory. For example, /:/tmp/~hack refers to a file whose name is “hack in directory
/tmp.

Quoting with ‘/:’ is also a way to enter in the minibuffer a file name that contains ‘$’.
In order for this to work, the ‘/:” must be at the beginning of the minibuffer contents. (You
can also double each ‘$’; see [File Names with $|, page 146.)

172 GNU Emacs Manual

You can also quote wildcard characters with ¢/:’, for visiting. For example,
/:/tmp/foo*bar visits the file /tmp/foo*bar.

Another method of getting the same result is to enter /tmp/foo[*]bar, which is a
wildcard specification that matches only /tmp/foo*bar. However, in many cases there is no
need to quote the wildcard characters because even unquoted they give the right result. For
example, if the only file name in /tmp that starts with ‘foo’ and ends with ‘bar’ is foo*bar,
then specifying /tmp/foox*bar will visit only /tmp/foo*bar.

15.17 File Name Cache

You can use the file name cache to make it easy to locate a file by name, without having to
remember exactly where it is located. When typing a file name in the minibuffer, C-TAB
(file-cache-minibuffer-complete) completes it using the file name cache. If you repeat
C-TAB, that cycles through the possible completions of what you had originally typed.
(However, note that the C-TAB character cannot be typed on most text terminals.)

The file name cache does not fill up automatically. Instead, you load file names into the
cache using these commands:

M-x file-cache-add-directory RET directory RET
Add each file name in directory to the file name cache.

M-x file-cache-add-directory-using-find RET directory RET
Add each file name in directory and all of its nested subdirectories to the file
name cache.

M-x file-cache-add-directory-using-locate RET directory RET
Add each file name in directory and all of its nested subdirectories to the file
name cache, using locate to find them all.

M-x file-cache-add-directory-list RET variable RET
Add each file name in each directory listed in variable to the file name cache.
variable should be a Lisp variable whose value is a list of directories, like
load-path.

M-x file-cache-clear-cache RET
Clear the cache; that is, remove all file names from it.

The file name cache is not persistent: it is kept and maintained only for the duration of
the Emacs session. You can view the contents of the cache with the file-cache-display
command.

15.18 Convenience Features for Finding Files

In this section, we introduce some convenient facilities for finding recently-opened files,
reading file names from a buffer.

If you enable Recentf mode, with M-x recentf-mode, Emacs maintains a list of recently
opened files. To open a file from this list, use the M-x recentf-open command. When this
mode is enabled, the ‘File’ menu will include a submenu that you can use to visit one
of these files. M-x recentf-save-list saves the current recentf-list to a file, and M-x
recentf-edit-1list edits it.

Chapter 15: File Handling 173

The M-x ffap command generalizes find-file with more powerful heuristic defaults (see
Section 31.12.5 [FFAP], page 489), often based on the text at point. Partial Completion mode
offers other features extending find-file, which can be used with ffap. See Section 5.4.5
[Completion Options|, page 34.

15.19 Viewing Image Files

Visiting image files automatically selects Image mode. In this major mode, you can type
C-c C-c (image-toggle-display) to toggle between displaying the file as an image in the
Emacs buffer, and displaying its underlying text (or raw byte) representation. Additionally
you can type C-c C-x (image-toggle-hex-display) to toggle between displaying the file
as an image in the Emacs buffer, and displaying it in hex representation. Displaying the file
as an image works only if Emacs is compiled with support for displaying such images.

If the displayed image is wider or taller than the window in which it is displayed, the usual
point motion keys (C-f, C-p, and so forth) cause different parts of the image to be displayed.
However, by default images are resized automatically to fit the window, so this is only
necessary if you customize the default behavior by using the options image-auto-resize
and image-auto-resize-on-window-resize.

To resize the image manually you can use the command image-transform-fit-to-
window bound to s w that fits the image to both the window height and width. To scale
the image to a percentage of its original size, use the command image-transform-set-
percent bound to s p. To scale the image specifying a scale factor, use the command
image-transform-set-scale bound to s s. To reset all transformations to the initial state,
use image-transform-reset-to-initial bound to s 0, or image-transform-reset-to-
original bound to s o.

You can press n (image-next-file) and p (image-previous-file) to visit the next
image file and the previous image file in the same directory, respectively. These commands
will consult the “parent” dired buffer to determine what the next/previous image file is.
These commands also work when opening a file from archive files (like zip or tar files), and
will then instead consult the archive mode buffer. If neither an archive nor a dired “parent”
buffer can be found, a dired buffer is opened.

When looking through images, it’s sometimes convenient to be able to mark the files for
later processing (for instance, if you want to select a group of images to copy somewhere
else). The m (image-mode-mark-file) command will mark the current file in any Dired
buffer(s) that display the current file’s directory. If no such buffer is open, the directory
is opened in a new buffer. To unmark files, use the u (image-mode-mark-file) command.
Finally, if you just want to copy the current buffers file name to the kill ring, you can use
the w (image-mode-copy-file-name-as-kill) command.

If the image can be animated, the command RET (image-toggle-animation) starts or
stops the animation. Animation plays once, unless the option image-animate-loop is non-
nil. With f (image-next-frame) and b (image-previous-frame) you can step through the
individual frames. Both commands accept a numeric prefix to step through several frames
at once. You can go to a specific frame with F (image-goto-frame). Frames are indexed
from 1. Typing a + (image-increase-speed) increases the speed of the animation, a -
(image-decrease-speed) decreases it, and a r (image-reverse-speed) reverses it. The
command a 0 (image-reset-speed) resets the speed to the original value.

174 GNU Emacs Manual

In addition to the above key bindings, which are specific to Image mode, images shown
in any Emacs buffer have special key bindings when point is at or inside the image:

i+ Increase the image size (image-increase-size) by 20%. Prefix numeric argu-
ment controls the increment; the value of n means to multiply the size by the
factor of 1 + n / 10, so C-u 5 i + means to increase the size by 50%.

i- Decrease the image size (image-increase-size) by 20%. Prefix numeric argu-
ment controls the decrement; the value of n means to multiply the size by the
factor of 1 - n / 10, so C-u 3 i - means to decrease the size by 30%.

ir Rotate the image by 90 degrees clockwise (image-rotate). With the prefix
argument, rotate by 90 degrees counter-clockwise instead. Note that this
command is not available for sliced images.

ih Flip the image horizontally (image-flip-horizontally). This presents the
image as if reflected in a vertical mirror. Note that this command is not available
for sliced images.

iv Flip the image vertically (image-flip-vertically). This presents the image
as if reflected in a horizontal mirror. Note that this command is not available
for sliced images.

io Save the image to a file (image-save). This command prompts you for the
name of the file to save the image.

ic Crop the image (image-crop). This command is available only if your system
has an external program installed that can be used for cropping and cutting of
images; the user option image-crop-crop-command determines what program
to use, and defaults to the ImageMagick’s convert program. The command
displays the image with a rectangular frame superimposed on it, and lets you
use the mouse to move and resize the frame. Type m to cause mouse movements
to move the frame instead of resizing it; type s to move a square frame instead.
When you are satisfied with the position and size of the cropping frame, type
RET to actually crop the part under the frame; or type q to exit without cropping.
You can then save the cropped image using i o or M-x image-save.

ix Cut a rectangle from the image (image-cut). This works the same as
image-crop (and also requires an external program, defined by the variable
image-crop-cut-command, to perform the image cut), but instead of cropping
the image, it removes the part inside the frame and fills that part with the color
specified by image-cut-color. With prefix argument, the command prompts
for the color to use.

The size and rotation commands are “repeating”, which means that you can continue
adjusting the image without using the i prefix.

If Emacs was compiled with support for the ImageMagick library, it can use ImageMagick
to render a wide variety of images. The variable imagemagick-enabled-types lists the
image types that Emacs may render using ImageMagick; each element in the list should
be an internal ImageMagick name for an image type, as a symbol or an equivalent string
(e.g., BMP for .bmp images). To enable ImageMagick for all possible image types, change
imagemagick-enabled-types to t. The variable imagemagick-types-inhibit lists the

Chapter 15: File Handling 175

image types which should never be rendered using ImageMagick, regardless of the value
of imagemagick-enabled-types (the default list includes types like C and HTML, which
ImageMagick can render as an image but Emacs should not). To disable ImageMagick
entirely, change imagemagick-types-inhibit to t.

If Emacs doesn’t have native support for the image format in question, and image-use-
external-converter is non-nil, Emacs will try to determine whether there are external
utilities that can be used to transform the image in question to PNG before displaying.
GraphicsMagick, ImageMagick and ffmpeg are currently supported for image conversions.

In addition, you may wish to add special handlers for certain image formats. These can
be added with the image-converter-add-handler function. For instance, to allow viewing
Krita files as simple images, you could say something like:

(image-converter-add-handler
llkrall
(lambda (file data-p)
(if data-p
(error "Can't decode non-files")
(call-process "unzip" nil t nil
"-qq" "-c" "-x" file "mergedimage.png"))))

The function takes two parameters, where the first is a file name suffix, and the second is
a function to do the “conversion”. This function takes two parameters, where the first is the
file name or a string with the data, and the second says whether the first parameter is data
or not, and should output an image in image-convert-to-format format in the current

buffer.

The Image-Dired package can also be used to view images as thumbnails. See Section 27.18
[Image-Dired], page 401.

15.20 Filesets

If you regularly edit a certain group of files, you can define them as a fileset. This lets you
perform certain operations, such as visiting, query-replace, and shell commands on all the
files at once. To make use of filesets, you must first add the expression (filesets-init) to
your init file (see Section 33.4 [Init File], page 529). This adds a ‘Filesets’ sub-menu to
the menu bar’s ‘File’ menu.

The simplest way to define a fileset is by adding files to it one at a time. To add a file
to fileset name, visit the file and type M-x filesets-add-buffer RET name RET. If there is
no fileset name, this creates a new one, which initially contains only the current file. The
command M-x filesets-remove-buffer removes the current file from a fileset.

You can also edit the list of filesets directly, with M-x filesets-edit (or by choosing
‘Edit Filesets’ from the ‘Filesets’ menu). The editing is performed in a Customize buffer
(see Section 33.1 [Easy Customization], page 501). Normally, a fileset is a simple list of files,
but you can also define a fileset as a regular expression matching file names. Some examples
of these more complicated filesets are shown in the Customize buffer. Remember to select
‘Save for future sessions’ if you want to use the same filesets in future Emacs sessions.

You can use the command M-x filesets-open to visit all the files in a fileset, and M-x
filesets-close to close them. Use M-x filesets—-run-cmd to run a shell command on all

176 GNU Emacs Manual

the files in a fileset. These commands are also available from the ‘Filesets’ menu, where
each existing fileset is represented by a submenu.

See Section 25.1 [Version Control], page 337, for a different concept of filesets: groups of
files bundled together for version control operations. Filesets of that type are unnamed, and
do not persist across Emacs sessions.

177

16 Using Multiple Buffers

The text you are editing in Emacs resides in an object called a buffer. Each time you visit a
file, a buffer is used to hold the file’s text. Each time you invoke Dired, a buffer is used to
hold the directory listing. If you send a message with C-x m, a buffer is used to hold the text
of the message. When you ask for a command’s documentation, that appears in a buffer
named *Help*.

Buffers exist as long as they are in use, and are deleted (“killed”) when no longer needed,
either by you (see Section 16.4 [Kill Buffer], page 180) or by Emacs (e.g., when you exit
Emacs, see Section 3.2 [Exiting], page 15).

Each buffer has a unique name, which can be of any length. When a buffer is displayed
in a window, its name is shown in the mode line (see Section 1.3 [Mode Line], page 8). The
distinction between upper and lower case matters in buffer names. Most buffers are made
by visiting files, and their names are derived from the files’ names; however, you can also
create an empty buffer with any name you want. A newly started Emacs has several buffers,
including one named *scratch#*, which can be used for evaluating Lisp expressions and is
not associated with any file (see Section 24.10 [Lisp Interaction], page 335).

At any time, one and only one buffer is selected; we call it the current buffer. We
sometimes say that a command operates on “the buffer”; this really means that it operates
on the current buffer. When there is only one Emacs window, the buffer displayed in that
window is current. When there are multiple windows, the buffer displayed in the selected
window is current. See Chapter 17 [Windows|, page 187.

A buffer’s contents consist of a series of characters, each of which optionally carries a set
of text properties (see Section 19.1 [International Chars|, page 218) that can specify more
information about that character.

Aside from its textual contents, each buffer records several pieces of information, such
as what file it is visiting (if any), whether it is modified, and what major mode and minor
modes are in effect (see Chapter 20 [Modes], page 243). These are stored in buffer-local
variables—variables that can have a different value in each buffer. See Section 33.2.3 [Locals],
page 513.

A buffer’s size cannot be larger than some maximum, which is defined by the largest buffer
position representable by Emacs integers. This is because Emacs tracks buffer positions
using that data type. For typical 64-bit machines, this maximum buffer size is 26! — 2 bytes,
or about 2 EiB. For typical 32-bit machines, the maximum is usually 22 — 2 bytes, or about
512 MiB. Buffer sizes are also limited by the amount of memory in the system.

16.1 Creating and Selecting Buffers

C-x b buffer RET
Select or create a buffer named buffer (switch-to-buffer).

C-x 4 b buffer RET
Similar, but select buffer in another window (switch-to-buffer-other-
window).

C-x 5 b buffer RET
Similar, but select buffer in a separate frame (switch-to-buffer-other-
frame).

178 GNU Emacs Manual

C-x LEFT Select the previous buffer in the buffer list (previous-buffer).
C-x RIGHT Select the next buffer in the buffer list (next-buffer).

C-u M-g M-g
C-uM-g g Read a number n and move to line n in the most recently selected buffer other
than the current buffer, in another window.

The C-x b (switch-to-buffer) command reads a buffer name using the minibuffer.
Then it makes that buffer current, and displays it in the currently-selected window. An
empty input specifies the buffer that was current most recently among those not now
displayed in any window.

While entering the buffer name, you can use the usual completion and history commands
(see Chapter 5 [Minibuffer], page 27). Note that C-x b, and related commands, use permissive
completion with confirmation for minibuffer completion: if you type RET when the minibuffer
text names a nonexistent buffer, Emacs prints ‘[Confirm]’ and you must type a second RET
to submit that buffer name. See Section 5.4.3 [Completion Exit], page 32, for details. For
other completion options and features, see Section 5.4.5 [Completion Options|, page 34.

If you specify a buffer that does not exist, C-x b creates a new, empty buffer that is not
visiting any file, and selects it for editing. The default value of the variable major-mode
determines the new buffer’s major mode; the default value is Fundamental mode. See
Section 20.1 [Major Modes|, page 243. One reason to create a new buffer is to use it for
making temporary notes. If you try to save it, Emacs asks for the file name to use, and the
buffer’s major mode is re-established taking that file name into account (see Section 20.3
[Choosing Modes], page 246).

For conveniently switching between a few buffers, use the commands C-x LEFT and C-x
RIGHT. C-x LEFT (previous-buffer) selects the previous buffer (following the order of
most recent selection in the current frame), while C-x RIGHT (next-buffer) moves through
buffers in the reverse direction. Both commands support a numeric prefix argument that
serves as a repeat count.

To select a buffer in a window other than the current one (see Chapter 17 [Windows],
page 187), type C-x 4 b (switch-to-buffer-other-window). This prompts for a buffer
name using the minibuffer, displays that buffer in another window, and selects that window.

Similarly, C-x 5 b (switch-to-buffer-other-frame) prompts for a buffer name, dis-
plays that buffer in another frame (see Chapter 18 [Frames], page 196), and selects that
frame. If the buffer is already being shown in a window on another frame, Emacs selects
that window and frame instead of creating a new frame.

See Section 17.6 [Displaying Buffers], page 191, for how the C-x 4 b and C-x 5 b commands
get the window and/or frame to display in.

In addition, C-x C-f, and any other command for visiting a file, can also be used to
switch to an existing file-visiting buffer. See Section 15.2 [Visiting], page 147.

C-u M-g M-g, that is goto-line with a plain prefix argument, reads a number n using
the minibuffer, selects the most recently selected buffer other than the current buffer in
another window, and then moves point to the beginning of line number n in that buffer.
This is mainly useful in a buffer that refers to line numbers in another buffer: if point is
on or just after a number, goto-line uses that number as the default for n. Note that
prefix arguments other than just C-u behave differently. C-u 4 M-g M-g goes to line 4 in the

Chapter 16: Using Multiple Buffers 179

current buffer, without reading a number from the minibuffer. (Remember that M-g M-g
without prefix argument reads a number n and then moves to line number n in the current
buffer. See Section 4.2 [Moving Point|, page 17.)

Emacs uses buffer names that start with a space for internal purposes. It treats these
buffers specially in minor ways—for example, by default they do not record undo information.
It is best to avoid using such buffer names yourself.

16.2 Listing Existing Buffers

C-x C-b List the existing buffers (1ist-buffers).

To display a list of existing buffers, type C-x C-b. This pops up a buffer menu in a
buffer named *Buffer List*. Each line in the list shows one buffer’s name, size, major
mode and visited file. The buffers are listed in the order that they were current; the buffers
that were current most recently come first. This section describes how the list of buffers is
displayed and how to interpret the various indications in the list; see Section 16.5 [Several
Buffers], page 181, for description of the special mode in the *Buffer List* buffer and the
commands available there.

.7 in the first field of a line indicates that the buffer is current. ‘%’ indicates a read-only
buffer. ‘*’ indicates that the buffer is modified. If several buffers are modified, it may be
time to save some with C-x s (see Section 15.3.1 [Save Commands], page 150). Here is an
example of a buffer list:

CRM Buffer Size Mode File
. * .emacs 3294 Emacs-Lisp ~/.emacs
% *Helpx 101 Help
search.c 86055 C ~/cvs/emacs/src/search.c
% src 20959 Dired by name ~/cvs/emacs/src/
* *kmailx 42 Mail
% HELLO 1607 Fundamental ~/cvs/emacs/etc/HELLO
% NEWS 481184 QOutline “/cvs/emacs/etc/NEWS
scratchx 191 Lisp Interaction
* xMessagesx* 15564 Messages

The buffer *Help* was made by a help request (see Chapter 7 [Help], page 41); it is not
visiting any file. The buffer src was made by Dired on the directory ~/cvs/emacs/src/.
You can list only buffers that are visiting files by giving the command a prefix argument, as
in C-u C-x C-b.

list-buffers omits buffers whose names begin with a space, unless they visit files: such
buffers are used internally by Emacs.

16.3 Miscellaneous Buffer Operations

C-x C—q Toggle read-only status of buffer (read-only-mode).

C-x x r RET buffer RET
Change the name of the current buffer.

C-xxu Rename the current buffer by adding ‘<number>’ to the end.

M-x view-buffer RET buffer RET
Scroll through buffer buffer. See Section 11.6 [View Mode], page 81.

180 GNU Emacs Manual

A buffer can be read-only, which means that commands to insert or delete its text are
not allowed. (However, other commands, like C-x RET £, can still mark it as modified, see
Section 19.9 [Text Coding], page 230). The mode line indicates read-only buffers with ‘%%’ or
‘%*’ near the left margin. See Section 1.3 [Mode Line|, page 8. Read-only buffers are usually
made by subsystems such as Dired and Rmail that have special commands to operate on
the text. Visiting a file whose access control says you cannot write it also makes the buffer
read-only.

The command C-x C-q (read-only-mode) makes a read-only buffer writable, and makes
a writable buffer read-only. This works by setting the variable buffer-read-only, which
has a local value in each buffer and makes the buffer read-only if its value is non-nil. If you
change the option view-read-only to a non-nil value, making the buffer read-only with
C-x C-q also enables View mode in the buffer (see Section 11.6 [View Mode], page 81).

C-x x r (rename-buffer changes the name of the current buffer. You specify the new
name as a minibuffer argument; there is no default. If you specify a name that is in use for
some other buffer, an error happens and no renaming is done.

C-x x u (rename-uniquely) renames the current buffer to a similar name with a numeric
suffix added to make it both different and unique. This command does not need an argument.
It is useful for creating multiple shell buffers: if you rename the *shell* buffer, then do M-x
shell again, it makes a new shell buffer named *shell*; meanwhile, the old shell buffer
continues to exist under its new name. This method is also good for mail buffers, compilation
buffers, and most Emacs features that create special buffers with particular names. (With
some of these features, such as M-x compile, M-x grep, you need to switch to some other
buffer before using the command again, otherwise it will reuse the current buffer despite the
name change.)

The commands M-x append-to-buffer and C-x x i (insert-buffer) can also be used
to copy text from one buffer to another. See Section 9.4 [Accumulating Text], page 66.

16.4 Killing Buffers

If you continue an Emacs session for a while, you may accumulate a large number of buffers.
You may then find it convenient to kill the buffers you no longer need. (Some other editors
call this operation close, and talk about “closing the buffer” or “closing the file” visited in
the buffer.) On most operating systems, killing a buffer releases the memory Emacs used for
the buffer back to the operating system so that other programs can use it. Here are some
commands for killing buffers:

C-x k buffer RET
Kill buffer buffer (kill-buffer).

M-x kill-some-buffers
Offer to kill each buffer, one by one.

M-x kill-matching-buffers
Offer to kill all buffers matching a regular expression.

C-x k (kill-buffer) kills one buffer, whose name you specify in the minibuffer. The
default, used if you type just RET in the minibuffer, is to kill the current buffer. If you
kill the current buffer, another buffer becomes current: one that was current in the recent

Chapter 16: Using Multiple Buffers 181

past but is not displayed in any window now. If you ask to kill a file-visiting buffer that is
modified, then you must confirm with yes before the buffer is killed.

The command M-x kill-some-buffers asks about each buffer, one by one. An answer
of yes means to kill the buffer, just like kill-buffer. This command ignores buffers whose
names begin with a space, which are used internally by Emacs.

The command M-x kill-matching-buffers prompts for a regular expression and kills
all buffers whose names match that expression. See Section 12.6 [Regexps|, page 114. Like
kill-some-buffers, it asks for confirmation before each kill. This command normally
ignores buffers whose names begin with a space, which are used internally by Emacs. To kill
internal buffers as well, call kill-matching-buffers with a prefix argument.

The Buffer Menu feature is also convenient for killing various buffers. See Section 16.5
[Several Buffers], page 181.

If you want to do something special every time a buffer is killed, you can add hook
functions to the hook kill-buffer-hook (see Section 33.2.2 [Hooks], page 511).

If you run one Emacs session for a period of days, as many people do, it can fill up
with buffers that you used several days ago. The command M-x clean-buffer-list is a
convenient way to purge them; it kills all the unmodified buffers that you have not used for
a long time. An ordinary buffer is killed if it has not been displayed for three days; however,
you can specify certain buffers that should never be killed automatically, and others that
should be killed if they have been unused for a mere hour. These defaults, and other aspects
of this command’s behavior, can be controlled by customizing several options described in
the doc string of clean-buffer-list.

You can also have this buffer purging done for you, once a day, by enabling Midnight mode.
Midnight mode operates each day at midnight; at that time, it runs clean-buffer-1list, or
whichever functions you have placed in the normal hook midnight-hook (see Section 33.2.2
[Hooks], page 511). To enable Midnight mode, use the Customization buffer to set the
variable midnight-mode to t. See Section 33.1 [Easy Customization], page 501.

16.5 Operating on Several Buffers

M-x buffer-menu
Begin editing a buffer listing all Emacs buffers.

M-x buffer-menu-other-window
Similar, but do it in another window.

The Buffer Menu opened by C-x C-b (see Section 16.2 [List Buffers|, page 179) does not
merely list buffers. It also allows you to perform various operations on buffers, through an
interface similar to Dired (see Chapter 27 [Dired], page 384). You can save buffers, kill them
(here called deleting them, for consistency with Dired), or display them.

To use the Buffer Menu, type C-x C-b and switch to the window displaying the *Buffer
List* buffer. You can also type M-x buffer-menu to open the Buffer Menu in the selected
window. Alternatively, the command M-x buffer-menu-other-window opens the Buffer
Menu in another window, and selects that window.

The Buffer Menu is a read-only buffer, and can be changed only through the special
commands described in this section. The usual cursor motion commands can be used in this
buffer. The following commands apply to the buffer described on the current line:

182

C-d

DEL

M-DEL

U

GNU Emacs Manual

Flag the buffer for deletion (killing), then move point to the next line
(Buffer-menu-delete). The deletion flag is indicated by the character ‘D’ on
the line, before the buffer name. The deletion occurs only when you type the x
command (see below).

Like d, but move point up instead of down (Buffer-menu-delete-backwards).

Flag the buffer for saving (Buffer-menu-save). The save flag is indicated by
the character ‘S’ on the line, before the buffer name. The saving occurs only
when you type x. You may request both saving and deletion for the same buffer.

Perform all flagged deletions and saves (Buffer-menu-execute).

Remove all flags from the current line, and move down (Buffer-menu-unmark).
With a prefix argument, moves up after removing the flags.

Move to the previous line and remove all flags on that line (Buffer-menu-
backup-unmark).

Remove a particular flag from all lines (Buffer-menu-unmark-all-buffers).
This asks for a single character, and unmarks buffers marked with that character;
typing RET removes all marks.

Remove all flags from all the lines (Buffer-menu-unmark-all).

The commands for removing flags, d and C-d, accept a numeric argument as a repeat count.

The following commands operate immediately on the buffer listed on the current line.
They also accept a numeric argument as a repeat count.

h

Mark the buffer as unmodified (Buffer-menu-not-modified). See
Section 15.3.1 [Save Commands], page 150.

Toggle the buffer’s read-only status (Buffer-menu-toggle-read-only). See
Section 16.3 [Misc Buffer], page 179.

Visit the buffer as a tags table (Buffer-menu-visit-tags-table). See
Section 25.4.3 [Select Tags Table|, page 373.

The following commands are used to select another buffer or buffers:

RET

Quit the Buffer Menu (quit-window). The most recent formerly visible buffer
is displayed in its place.

Select this line’s buffer, replacing the *Buffer List* buffer in its window
(Buffer-menu-this-window).

Select this line’s buffer in another window, as if by C-x 4 b, leaving *Buffer
List* visible (Buffer-menu-other-window).

Display this line’s buffer in another window, without selecting it (Buffer-menu-
switch-other-window).

Select this line’s buffer in a full-frame window (Buffer-menu-1-window).

Set up two windows on the current frame, with this line’s buffer selected in
one, and a previously current buffer (aside from *Buffer List*) in the other
(Buffer-menu-2-window).

Chapter 16: Using Multiple Buffers 183

b Bury this line’s buffer (Buffer-menu-bury) (i.e., move it to the end of the buffer
list).
m Mark this line’s buffer to be displayed in another window if you exit with the v

command (Buffer-menu-mark). The display flag is indicated by the character
‘>’ at the beginning of the line. (A single buffer may not have both deletion and
display flags.)

v Select this line’s buffer, and also display in other windows any buffers flagged
with the m command (Buffer-menu-select). If you have not flagged any buffers,
this command is equivalent to 1.

The following commands affect the entire buffer list:

S Sort the Buffer Menu entries according to their values in the column at
point. With a numeric prefix argument n, sort according to the n-th column
(tabulated-list-sort).

} Widen the current column width by n (the prefix numeric argument) characters.
{ Narrow the current column width by n (the prefix numeric argument) characters.
T Delete, or reinsert, lines for non-file buffers (Buffer-menu-toggle-files-only).

This command toggles the inclusion of such buffers in the buffer list.

Normally, the buffer *Buffer List* is not updated automatically when buffers are
created and Kkilled; its contents are just text. If you have created, deleted or renamed buffers,
the way to update *Buffer List* to show what you have done is to type g (revert-buffer).
You can make this happen regularly every auto-revert-interval seconds if you enable
Auto Revert mode in this buffer, as long as it is not marked modified. Global Auto Revert
mode applies to the *Buffer List* buffer only if global-auto-revert-non-file-buffers
is non-nil.

16.6 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer of the
indirect buffer. In some ways it is a buffer analogue of a symbolic link between files.

M-x make-indirect-buffer RET base-buffer RET indirect—-name RET
Create an indirect buffer named indirect-name with base buffer base-buffer.

M-x clone-indirect-buffer RET
Create an indirect buffer that is a twin copy of the current buffer.

C-x4c Create an indirect buffer that is a twin copy of the current buffer, and select it
in another window (clone-indirect-buffer-other-window).

The text of the indirect buffer is always identical to the text of its base buffer; changes
made by editing either one are visible immediately in the other. “Text” here includes both
the characters and their text properties. But in all other respects, the indirect buffer and
its base buffer are completely separate. They can have different names, different values of
point, different narrowing, different markers, different overlays, different major modes, and
different local variables.

184 GNU Emacs Manual

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the indirect
buffer, that actually works by saving the base buffer. Killing the base buffer effectively kills
the indirect buffer, but killing an indirect buffer has no effect on its base buffer.

One way to use indirect buffers is to display multiple views of an outline. See Section 22.9.5
[Outline Views|, page 270.

A quick and handy way to make an indirect buffer is with the command C-x 4 c
(clone-indirect-buffer-other-window). It creates and selects an indirect buffer whose
base buffer is the current buffer. With a numeric argument, it prompts for the name of the
indirect buffer; otherwise it uses the name of the current buffer, with a ‘<n>’ suffix added.

The more general way to make an indirect buffer is with the command M-x
make-indirect-buffer. It creates an indirect buffer named indirect-name from a buffer
base-buffer, prompting for both using the minibuffer.

The functions that create indirect buffers run the hook clone-indirect-buffer-hook
after creating the indirect buffer. When this hook runs, the newly created indirect buffer is
the current buffer.

Note: When a modification is made to the text of a buffer, the modification hooks are
run only in the base buffer, because most of the functions on those hooks are not prepared
to work correctly in indirect buffers. So if you need a modification hook function in an
indirect buffer, you need to manually add that function to the hook in the base buffer and
then make the function operate in the desired indirect buffer.

16.7 Convenience Features and Customization of Buffer
Handling

This section describes several modes and features that make it more convenient to switch
between buffers.

16.7.1 Making Buffer Names Unique

When several buffers visit identically-named files, Emacs must give the buffers distinct names.
The default method adds a suffix based on the names of the directories that contain the
files. For example, if you visit files /foo/bar/mumble/name and /baz/quux/mumble/name at
the same time, their buffers will be named ‘name<bar/mumble>’ and ‘name<quux/mumble>’,
respectively. Emacs adds as many directory parts as are needed to make a unique name.

You can choose from several different styles for constructing unique buffer names, by
customizing the option uniquify-buffer-name-style.

The forward naming method includes part of the file’s directory name at the beginning
of the buffer name; using this method, buffers visiting the files /u/rms/tmp/Makefile
and /usr/projects/zaphod/Makefile would be named ‘tmp/Makefile’ and
‘zaphod/Makefile’.

In contrast, the post-forward naming method would call the buffers ‘Makefile|tmp’
and ‘Makefile|zaphod’. The default method post-forward-angle-brackets is
like post-forward, except that it encloses the unique path in angle brackets. The
reverse naming method would call them ‘Makefile\tmp’ and ‘Makefile\zaphod’.
The nontrivial difference between post-forward and reverse occurs when just one
directory name is not enough to distinguish two files; then reverse puts the directory

Chapter 16: Using Multiple Buffers 185

names in reverse order, so that /top/middle/file becomes ‘file\middle\top’, while
post-forward puts them in forward order after the file name, as in ‘file|top/middle’. If
uniquify-buffer-name-style is set to nil, the buffer names simply get ‘<2>’, ‘<3>’, etc.
appended.

The value of uniquify-buffer-name-style can be set to a customized function with
two arguments base and extra-strings where base is a string and extra-strings is a list of
strings. For example the current implementation for post-forward-angle-brackets could

be:

(defun my-post-forward-angle-brackets (base extra-string)
(concat base \"<\" (mapconcat #'identity extra-string \"/\") \">\"))

Which rule to follow for putting the directory names in the buffer name is not very
important if you are going to look at the buffer names before you type one. But as an
experienced user, if you know the rule, you won’t have to look. And then you may find that
one rule or another is easier for you to remember and apply quickly.

16.7.2 Fast minibuffer selection

Icomplete global minor mode provides a convenient way to quickly select an element among
the possible completions in a minibuffer. When enabled, typing in the minibuffer continuously
displays a list of possible completions that match the string you have typed.

At any time, you can type C-j to select the first completion in the list. So the way to
select a particular completion is to make it the first in the list. There are two ways to do
this. You can type more of the completion name and thus narrow down the list, excluding
unwanted completions above the desired one. Alternatively, you can use C-. and C-, to
rotate the list until the desired buffer is first.

M-TAB will select the first completion in the list, like C-j but without exiting the minibuffer,
so you can edit it further. This is typically used when entering a file name, where M-TAB
can be used a few times to descend in the hierarchy of directories.

To enable Icomplete mode, type M-x icomplete-mode, or customize the variable
icomplete-mode to t (see Section 33.1 [Easy Customization], page 501).

An alternative to Icomplete mode is Fido mode. This is very similar to Icomplete mode,
but retains some functionality from a popular extension called Ido mode (in fact the name
is derived from “Fake Ido”). Among other things, in Fido mode, C-s and C-r are also used
to rotate the completions list, C-k can be used to delete files and kill buffers in-list. Another
noteworthy aspect is that flex is used as the default completion style (see Section 5.4.4
[Completion Styles], page 33). To change this, add the following to your initialization file
(see Section 33.4 [Init File], page 529):

(defun my-icomplete-styles ()
(setq-local completion-styles '(initials flex)))
(add-hook 'icomplete-minibuffer-setup-hook 'my-icomplete-styles)
To enable Fido mode, type M-x fido-mode, or customize the variable fido-mode to t
(see Section 33.1 [Easy Customization], page 501).

Icomplete mode and Fido mode display the possible completions on the same line as the
prompt by default. To display the completion candidates verti