
Comparing and Merging Files
for Diffutils 3.12 and patch 2.5.4

12 January 2025

David MacKenzie, Paul Eggert, and Richard Stallman

This manual is for GNU Diffutils (version 3.12, 12 January 2025), and documents the GNU
diff, diff3, sdiff, and cmp commands for showing the differences between files and the
GNU patch command for using their output to update files.
Copyright c© 1992–1994, 1998, 2001–2002, 2004, 2006, 2009–2025 Free Software Foundation,
Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

i

Short Contents

Overview . 1
1 What Comparison Means . 3
2 diff Output Formats . 9
3 Incomplete Lines . 27
4 Comparing Directories . 29
5 Making diff Output Prettier . 31
6 diff Performance Tradeoffs . 33
7 Comparing Three Files . 35
8 Merging From a Common Ancestor . 39
9 Interactive Merging with sdiff . 43
10 Merging with patch . 45
11 Tips for Making and Using Patches . 55
12 Invoking cmp . 57
13 Invoking diff . 61
14 Invoking diff3 . 67
15 Invoking patch . 69
16 Invoking sdiff . 73
17 Standards conformance . 77
18 Future Projects . 79
A Copying This Manual . 83
B Translations of This Manual . 91
C Index . 93

iii

Table of Contents

Overview . 1

1 What Comparison Means . 3
1.1 Hunks . 3
1.2 Suppressing Differences in Blank and Tab Spacing 4
1.3 Suppressing Differences Whose Lines Are All Blank 4
1.4 Suppressing Differences Whose Lines All Match a Regular

Expression . 5
1.5 Suppressing Case Differences . 5
1.6 Summarizing Which Files Differ . 5
1.7 Binary Files and Forcing Text Comparisons . 6
1.8 Comparing Files While They Are Changing . 7

2 diff Output Formats . 9
2.1 Two Sample Input Files . 9
2.2 Showing Differences in Their Context . 9

2.2.1 Context Format . 10
2.2.1.1 An Example of Context Format . 10
2.2.1.2 An Example of Context Format with Less Context 11
2.2.1.3 Detailed Description of Context Format 11

2.2.2 Unified Format . 12
2.2.2.1 An Example of Unified Format . 12
2.2.2.2 Detailed Description of Unified Format 13

2.2.3 Showing Which Sections Differences Are in 13
2.2.3.1 Showing Lines That Match Regular Expressions 13
2.2.3.2 Showing C Function Headings . 14

2.2.4 Showing Alternate File Names . 14
2.3 Showing Differences Side by Side . 15

2.3.1 Controlling Side by Side Format . 15
2.3.2 An Example of Side by Side Format . 15

2.4 Showing Differences Without Context . 16
2.4.1 An Example of Normal Format . 16
2.4.2 Detailed Description of Normal Format . 16

2.5 Making Edit Scripts . 17
2.5.1 ed Scripts . 17

2.5.1.1 Example ed Script . 17
2.5.1.2 Detailed Description of ed Format . 18

2.5.2 Forward ed Scripts . 18
2.5.3 RCS Scripts . 19

2.6 Merging Files with If-then-else . 19
2.6.1 Line Group Formats . 20
2.6.2 Line Formats . 22

iv

2.6.3 An Example of If-then-else Format . 23
2.6.4 Detailed Description of If-then-else Format 24

3 Incomplete Lines . 27

4 Comparing Directories . 29

5 Making diff Output Prettier 31
5.1 Preserving Tab Stop Alignment . 31
5.2 Omitting trailing blanks . 31
5.3 Paginating diff Output . 32

6 diff Performance Tradeoffs . 33

7 Comparing Three Files . 35
7.1 A Third Sample Input File . 35
7.2 An Example of diff3 Normal Format . 35
7.3 Detailed Description of diff3 Normal Format 36
7.4 diff3 Hunks . 36

8 Merging From a Common Ancestor 39
8.1 Selecting Which Changes to Incorporate . 39
8.2 Marking Conflicts . 40
8.3 Generating the Merged Output Directly . 41
8.4 How diff3 Merges Incomplete Lines . 42
8.5 Saving the Changed File . 42

9 Interactive Merging with sdiff 43
9.1 Specifying diff Options to sdiff . 43
9.2 Merge Commands . 43

10 Merging with patch . 45
10.1 Selecting the patch Input Format . 45
10.2 Revision Control . 45
10.3 Applying Imperfect Patches . 46

10.3.1 Applying Patches with Changed White Space 46
10.3.2 Applying Reversed Patches . 46
10.3.3 Helping patch Find Inexact Matches . 47
10.3.4 Predicting what patch will do . 48

10.4 Creating and Removing Files . 48
10.5 Updating Timestamps on Patched Files . 48
10.6 Multiple Patches in a File . 49
10.7 Applying Patches in Other Directories . 49

v

10.8 Backup Files . 50
10.9 Backup File Names . 50
10.10 Reject File Names . 51
10.11 Messages and Questions from patch . 51

10.11.1 Controlling the Verbosity of patch . 52
10.11.2 Inhibiting Keyboard Input . 52
10.11.3 patch Quoting Style . 52

10.12 patch and the POSIX Standard . 53
10.13 GNU patch and Traditional patch . 53

11 Tips for Making and Using Patches 55
11.1 Tips for Patch Producers . 55
11.2 Tips for Patch Consumers . 55
11.3 Avoiding Common Mistakes . 55
11.4 Generating Smaller Patches . 56

12 Invoking cmp . 57
12.1 Options to cmp . 57

13 Invoking diff . 61
13.1 Options to diff . 61

14 Invoking diff3 . 67
14.1 Options to diff3 . 67

15 Invoking patch . 69
15.1 Options to patch . 69

16 Invoking sdiff . 73
16.1 Options to sdiff . 73

17 Standards conformance . 77

18 Future Projects . 79
18.1 Suggested Projects for Improving GNU diff and patch 79

18.1.1 Handling Multi-byte and Varying-Width Characters 79
18.1.2 Handling Changes to the Directory Structure 79
18.1.3 Files that are Neither Directories Nor Regular Files 79
18.1.4 File Names that Contain Unusual Characters 80
18.1.5 Outputting Diffs in Timestamp Order . 80
18.1.6 Ignoring Certain Changes . 80
18.1.7 Improving Performance . 80

18.2 Reporting Bugs . 80

vi

Appendix A Copying This Manual 83

Appendix B Translations of This Manual 91

Appendix C Index . 93

1

Overview

Computer users often find occasion to ask how two files differ. Perhaps one file is a newer
version of the other file. Or maybe the two files started out as identical copies but were
changed by different people.

You can use the diff command to show differences between two files, or each corre-
sponding file in two directories. diff outputs differences between files line by line in any of
several formats, selectable by command line options. This set of differences is often called
a diff or patch. For files that are identical, diff normally produces no output; for binary
(non-text) files, diff normally reports only that they are different.

You can use the cmp command to show the byte and line numbers where two files differ.
cmp can also show all the bytes that differ between the two files, side by side. A way to
compare two files character by character is the Emacs command M-x compare-windows.
See Section “Other Window” in The GNU Emacs Manual, for more information on that
command.

You can use the diff3 command to show differences among three files. When two people
have made independent changes to a common original, diff3 can report the differences
between the original and the two changed versions, and can produce a merged file that
contains both persons’ changes together with warnings about conflicts.

You can use the sdiff command to merge two files interactively.
You can use the set of differences produced by diff to distribute updates to text files

(such as program source code) to other people. This method is especially useful when the
differences are small compared to the complete files. Given diff output, you can use the
patch program to update, or patch, a copy of the file. If you think of diff as subtracting
one file from another to produce their difference, you can think of patch as adding the
difference to one file to reproduce the other.

This manual first concentrates on making diffs, and later shows how to use diffs to update
files.

GNU diff was written by Paul Eggert, Mike Haertel, David Hayes, Richard Stallman,
and Len Tower. Wayne Davison designed and implemented the unified output format.
The basic algorithm is described by Eugene W. Myers in “An O(ND) Difference Algorithm
and its Variations”, Algorithmica Vol. 1, 1986, pp. 251–266, http://dx.doi.org/10.1007/
BF01840446; and in “A File Comparison Program”, Webb Miller and Eugene W. Myers,
Software—Practice and Experience Vol. 15, 1985, pp. 1025–1040, http://dx.doi.org/
10.1002/spe.4380151102. The algorithm was independently discovered as described by
Esko Ukkonen in “Algorithms for Approximate String Matching”, Information and Control
Vol. 64, 1985, pp. 100–118, http://dx.doi.org/10.1016/S0019-9958(85)80046-2. Un-
less the --minimal option is used, diff uses a heuristic by Paul Eggert that limits the cost
to O(N1.5logN) at the price of producing suboptimal output for large inputs with many
differences. Related algorithms are surveyed by Alfred V. Aho in section 6.3 of “Algorithms
for Finding Patterns in Strings”, Handbook of Theoretical Computer Science (Jan Van
Leeuwen, ed.), Vol. A, Algorithms and Complexity, Elsevier/MIT Press, 1990, pp. 255–300.

GNU diff3 was written by Randy Smith. GNU sdiff was written by Thomas Lord.
GNU cmp was written by Torbjörn Granlund and David MacKenzie.

http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1002/spe.4380151102
http://dx.doi.org/10.1002/spe.4380151102
http://dx.doi.org/10.1016/S0019-9958(85)80046-2

2 Comparing and Merging Files

GNU patch was written mainly by Larry Wall and Paul Eggert; several GNU enhance-
ments were contributed by Wayne Davison and David MacKenzie. Parts of this manual are
adapted from a manual page written by Larry Wall, with his permission.

3

1 What Comparison Means

There are several ways to think about the differences between two files. One way to think
of the differences is as a series of lines that were deleted from, inserted in, or changed in one
file to produce the other file. diff compares two files line by line, finds groups of lines that
differ, and reports each group of differing lines. It can report the differing lines in several
formats, which have different purposes.

GNU diff can show whether files are different without detailing the differences. It also
provides ways to suppress certain kinds of differences that are not important to you. Most
commonly, such differences are changes in the amount of white space between words or
lines. diff also provides ways to suppress differences in alphabetic case or in lines that
match a regular expression that you provide. These options can accumulate; for example,
you can ignore changes in both white space and alphabetic case.

Another way to think of the differences between two files is as a sequence of pairs of
bytes that can be either identical or different. cmp reports the differences between two files
byte by byte, instead of line by line. As a result, it is often more useful than diff for
comparing binary files. For text files, cmp is useful mainly when you want to know only
whether two files are identical, or whether one file is a prefix of the other.

To illustrate the effect that considering changes byte by byte can have compared with
considering them line by line, think of what happens if a single newline character is added
to the beginning of a file. If that file is then compared with an otherwise identical file that
lacks the newline at the beginning, diff will report that a blank line has been added to the
file, while cmp will report that almost every byte of the two files differs.

diff3 normally compares three input files line by line, finds groups of lines that differ,
and reports each group of differing lines. Its output is designed to make it easy to inspect
two different sets of changes to the same file.

These commands compare input files without necessarily reading them. For example, if
diff is asked simply to report whether two files differ, and it discovers that the files have
different sizes, it need not read them to do its job.

1.1 Hunks
When comparing two files, diff finds sequences of lines common to both files, interspersed
with groups of differing lines called hunks. Comparing two identical files yields one sequence
of common lines and no hunks, because no lines differ. Comparing two entirely different files
yields no common lines and one large hunk that contains all lines of both files. In general,
there are many ways to match up lines between two given files. diff tries to minimize the
total hunk size by finding large sequences of common lines interspersed with small hunks of
differing lines.

For example, suppose the file F contains the three lines ‘a’, ‘b’, ‘c’, and the file G contains
the same three lines in reverse order ‘c’, ‘b’, ‘a’. If diff finds the line ‘c’ as common, then
the command ‘diff F G’ produces this output:

1,2d0
< a
< b

4 Comparing and Merging Files

3a2,3
> b
> a

But if diff notices the common line ‘b’ instead, it produces this output:
1c1
< a

> c
3c3
< c

> a

It is also possible to find ‘a’ as the common line. diff does not always find an optimal
matching between the files; it takes shortcuts to run faster. But its output is usually close
to the shortest possible. You can adjust this tradeoff with the --minimal (-d) option (see
Chapter 6 [diff Performance], page 33).

1.2 Suppressing Differences in Blank and Tab Spacing
The --ignore-tab-expansion (-E) option ignores the distinction between tabs and spaces
on input. A tab is considered to be equivalent to the number of spaces to the next tab stop
(see Section 5.1 [Tabs], page 31).

The --ignore-trailing-space (-Z) option ignores white space at line end.
The --ignore-space-change (-b) option is stronger than -E and -Z combined. It

ignores white space at line end, and considers all other sequences of one or more white space
characters within a line to be equivalent. With this option, diff considers the following
two lines to be equivalent, where ‘$’ denotes the line end:

Here lyeth muche rychnesse in lytell space. -- John Heywood$
Here lyeth muche rychnesse in lytell space. -- John Heywood $

The --ignore-all-space (-w) option is stronger still. It ignores differences even if
one line has white space where the other line has none. White space characters include
tab, vertical tab, form feed, carriage return, and space; some locales may define additional
characters to be white space. With this option, diff considers the following two lines to
be equivalent, where ‘$’ denotes the line end and ‘^M’ denotes a carriage return:

Here lyeth muche rychnesse in lytell space.-- John Heywood$
He relyeth much erychnes seinly tells pace. --John Heywood ^M$

For many other programs newline is also a white space character, but diff is a line-
oriented program and a newline character always ends a line. Hence the -w or --ignore-
all-space option does not ignore newline-related changes; it ignores only other white space
changes.

1.3 Suppressing Differences Whose Lines Are All Blank
The --ignore-blank-lines (-B) option ignores changes that consist entirely of blank lines.
With this option, for example, a file containing

1. A point is that which has no part.

Chapter 1: What Comparison Means 5

2. A line is breadthless length.
-- Euclid, The Elements, I

is considered identical to a file containing
1. A point is that which has no part.
2. A line is breadthless length.

-- Euclid, The Elements, I
Normally this option affects only lines that are completely empty, but if you also specify

an option that ignores trailing spaces, lines are also affected if they look empty but contain
white space. In other words, -B is equivalent to ‘-I '^$'’ by default, but it is equivalent to
-I '^[[:space:]]*$' if -b, -w or -Z is also specified.

1.4 Suppressing Differences Whose Lines All Match a
Regular Expression

To ignore insertions and deletions of lines that match a grep-style regular expression, use
the --ignore-matching-lines=regexp (-I regexp) option. You should escape regular
expressions that contain shell metacharacters to prevent the shell from expanding them.
For example, ‘diff -I '^[[:digit:]]'’ ignores all changes to lines beginning with a digit.

However, -I only ignores the insertion or deletion of lines that contain the regular
expression if every changed line in the hunk—every insertion and every deletion—matches
the regular expression. In other words, for each nonignorable change, diff prints the
complete set of changes in its vicinity, including the ignorable ones.

You can specify more than one regular expression for lines to ignore by using more than
one -I option. diff tries to match each line against each regular expression.

1.5 Suppressing Case Differences
GNU diff can treat capital letters as equivalent to their small counterparts, so that, for
example, it considers ‘Funky Stuff’, ‘funky STUFF’, and ‘fUNKy stuFf’ to all be the same.
To request this, use the -i or --ignore-case option.

When ignoring case diff downcases each character before comparing it. For example,
‘diff -i’ downcases Greek capital “∆” to small “δ” before comparison. Although this
works for many cases, it may have problems in some. For example:

• The German word “Straße” is not treated like “STRASSE” as many Germans might
expect, because the two words downcase to “straße” and “strasse” respectively.

• The Greek name “Kως” is not treated like “KΩΣ” even though they both end in sigma,
because the latter’s trailing “Σ” (U+03A3 GREEK CAPITAL LETTER SIGMA)
downcases to “σ” (U+03C3 GREEK SMALL LETTER SIGMA) instead of to “ς”
(U+03C2 GREEK SMALL LETTER FINAL SIGMA).

1.6 Summarizing Which Files Differ
When you only want to find out whether files are different, and you don’t care what the
differences are, you can use the summary output format. In this format, instead of showing

6 Comparing and Merging Files

the differences between the files, diff simply reports whether files differ. The --brief (-q)
option selects this output format.

This format is especially useful when comparing the contents of two directories. It is
also much faster than doing the normal line by line comparisons, because diff can stop
analyzing the files as soon as it knows that there are any differences.

You can also get a brief indication of whether two files differ by using cmp. For files that
are identical, cmp produces no output. When the files differ, by default, cmp outputs the
byte and line number where the first difference occurs, or reports that one file is a prefix of
the other. You can use the -s, --quiet, or --silent option to suppress that information,
so that cmp produces no output and reports whether the files differ using only its exit status
(see Chapter 12 [Invoking cmp], page 57).

Unlike diff, cmp cannot compare directories; it can only compare two files.

1.7 Binary Files and Forcing Text Comparisons
If diff thinks that either of the two files it is comparing is binary (a non-text file), it
normally treats that pair of files much as if the summary output format had been selected
(see Section 1.6 [Brief], page 5), and reports only that the binary files are different. This is
because line by line comparisons are usually not meaningful for binary files. This does not
count as trouble, even though the resulting output does not capture all the differences.

diff determines whether a file is text or binary by checking the first few bytes in the
file; the exact number of bytes is system dependent, but it is typically several thousand. If
every byte in that part of the file is non-null, diff considers the file to be text; otherwise
it considers the file to be binary.

Sometimes you might want to force diff to consider files to be text. For example, you
might be comparing text files that contain null characters; diff would erroneously decide
that those are non-text files. Or you might be comparing documents that are in a format
used by a word processing system that uses null characters to indicate special formatting.
You can force diff to consider all files to be text files, and compare them line by line,
by using the --text (-a) option. If the files you compare using this option do not in
fact contain text, they will probably contain few newline characters, and the diff output
will consist of hunks showing differences between long lines of whatever characters the files
contain.

You can also force diff to report only whether files differ (but not how). Use the
--brief (-q) option for this.

In operating systems that distinguish between text and binary files, diff normally reads
and writes all data as text. Use the --binary option to force diff to read and write
binary data instead. This option has no effect on a POSIX-compliant system like GNU or
traditional Unix. However, many personal computer operating systems represent the end of
a line with a carriage return followed by a newline. On such systems, diff normally ignores
these carriage returns on input and generates them at the end of each output line, but
with the --binary option diff treats each carriage return as just another input character,
and does not generate a carriage return at the end of each output line. This can be useful
when dealing with non-text files that are meant to be interchanged with POSIX-compliant
systems.

Chapter 1: What Comparison Means 7

The --strip-trailing-cr causes diff to treat input lines that end in carriage return
followed by newline as if they end in plain newline. This can be useful when comparing text
that is imperfectly imported from many personal computer operating systems. This option
affects how lines are read, which in turn affects how they are compared and output.

If you want to compare two files byte by byte, you can use the cmp program with the
--verbose (-l) option to show the values of each differing byte in the two files. With GNU
cmp, you can also use the -b or --print-bytes option to show the ASCII representation
of those bytes. See Chapter 12 [Invoking cmp], page 57, for more information.

If diff3 thinks that any of the files it is comparing is binary (a non-text file), it normally
reports an error, because such comparisons are usually not useful. diff3 uses the same test
as diff to decide whether a file is binary. As with diff, if the input files contain a few
non-text bytes but otherwise are like text files, you can force diff3 to consider all files to
be text files and compare them line by line by using the -a or --text option.

1.8 Comparing Files While They Are Changing
Commands like diff read files and directories by using a series of system calls, as operating
systems typically do not give a program a way to snapshot all its input before processing
it. If input files change while being read, diff and related commands can generate output
that does not correspond to any state of the input file system.

For example, if some other process truncates a file to zero size when diff has read just
half the file, diff will use the half that it read as its input data. As another example, if
a recursive diff determines that a file is a directory, and then some other process replaces
the directory with a regular file, and then diff attempts to descend into the directory, diff
will issue a diagnostic and fail.

In these situations the output of diff and related programs should be interpreted with
some care.

9

2 diff Output Formats

diff has several mutually exclusive options for output format. The following sections
describe each format, illustrating how diff reports the differences between two sample
input files.

2.1 Two Sample Input Files
Here are two sample files that we will use in numerous examples to illustrate the output of
diff and how various options can change it.

This is the file lao:
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their outcome.
The two are the same,
But after they are produced,

they have different names.

This is the file tzu:
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their outcome.

The two are the same,
But after they are produced,

they have different names.
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

In this example, the first hunk contains just the first two lines of lao, the second hunk
contains the fourth line of lao opposing the second and third lines of tzu, and the last hunk
contains just the last three lines of tzu.

2.2 Showing Differences in Their Context
Usually, when you are looking at the differences between files, you will also want to see
the parts of the files near the lines that differ, to help you understand exactly what has
changed. These nearby parts of the files are called the context.

10 Comparing and Merging Files

GNU diff provides two output formats that show context around the differing lines:
context format and unified format. It can optionally show in which function or section of
the file the differing lines are found.

If you are distributing new versions of files to other people in the form of diff output,
you should use one of the output formats that show context so that they can apply the diffs
even if they have made small changes of their own to the files. patch can apply the diffs
in this case by searching in the files for the lines of context around the differing lines; if
those lines are actually a few lines away from where the diff says they are, patch can adjust
the line numbers accordingly and still apply the diff correctly. See Section 10.3 [Imperfect],
page 46, for more information on using patch to apply imperfect diffs.

2.2.1 Context Format
The context output format shows several lines of context around the lines that differ. It is
the standard format for distributing updates to source code.

To select this output format, use the --context[=lines] (-C lines) or -c option. The
argument lines that some of these options take is the number of lines of context to show. If
you do not specify lines, it defaults to three. For proper operation, patch typically needs
at least two lines of context.

2.2.1.1 An Example of Context Format
Here is the output of ‘diff -c lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for the
complete contents of the two files). Notice that up to three lines that are not different are
shown around each line that is different; they are the context lines. Also notice that the
first two hunks have run together, because their contents overlap.

*** lao 2002-02-21 23:30:39.942229878 -0800
--- tzu 2002-02-21 23:30:50.442260588 -0800

*** 1,7 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;
! The Named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
--- 1,6 ----

The Nameless is the origin of Heaven and Earth;
! The named is the mother of all things.
!

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,

*** 9,11 ****
--- 8,13 ----

The two are the same,

Chapter 2: diff Output Formats 11

But after they are produced,
they have different names.

+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

2.2.1.2 An Example of Context Format with Less Context
Here is the output of ‘diff -C 1 lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for
the complete contents of the two files). Notice that at most one context line is reported
here.

*** lao 2002-02-21 23:30:39.942229878 -0800
--- tzu 2002-02-21 23:30:50.442260588 -0800

*** 1,5 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;
! The Named is the mother of all things.

Therefore let there always be non-being,
--- 1,4 ----

The Nameless is the origin of Heaven and Earth;
! The named is the mother of all things.
!

Therefore let there always be non-being,

*** 11 ****
--- 10,13 ----

they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

2.2.1.3 Detailed Description of Context Format
The context output format starts with a two-line header, which looks like this:

*** from-file from-file-modification-time
--- to-file to-file-modification time

The timestamp normally looks like ‘2002-02-21 23:30:39.942229878 -0800’ to indicate
the date, time with fractional seconds, and time zone in Internet RFC 2822 format (ftp://
ftp.isi.edu/in-notes/rfc2822.txt). (The fractional seconds are omitted on hosts that
do not support fractional timestamps.) However, a traditional timestamp like ‘Thu Feb 21
23:30:39 2002’ is used if the LC_TIME locale category is either ‘C’ or ‘POSIX’.

You can change the header’s content with the --label=label option; see Section 2.2.4
[Alternate Names], page 14.

Next come one or more hunks of differences; each hunk shows one area where the files
differ. Context format hunks look like this:

ftp://ftp.isi.edu/in-notes/rfc2822.txt
ftp://ftp.isi.edu/in-notes/rfc2822.txt

12 Comparing and Merging Files

*** from-file-line-numbers ****
from-file-line
from-file-line...

--- to-file-line-numbers ----
to-file-line
to-file-line...

If a hunk contains two or more lines, its line numbers look like ‘start,end’. Otherwise
only its end line number appears. An empty hunk is considered to end at the line that
precedes the hunk.

The lines of context around the lines that differ start with two space characters. The
lines that differ between the two files start with one of the following indicator characters,
followed by a space character:

‘!’ A line that is part of a group of one or more lines that changed between the
two files. There is a corresponding group of lines marked with ‘!’ in the part
of this hunk for the other file.

‘+’ An “inserted” line in the second file that corresponds to nothing in the first file.

‘-’ A “deleted” line in the first file that corresponds to nothing in the second file.

If all of the changes in a hunk are insertions, the lines of from-file are omitted. If all of
the changes are deletions, the lines of to-file are omitted.

2.2.2 Unified Format
The unified output format is a variation on the context format that is more compact because
it omits redundant context lines. To select this output format, use the --unified[=lines]
(-U lines), or -u option. The argument lines is the number of lines of context to show.
When it is not given, it defaults to three.

In the early 1990s, only GNU diff could produce this format and only GNU patch
could automatically apply diffs in this format. For proper operation, patch typically needs
at least three lines of context.

2.2.2.1 An Example of Unified Format
Here is the output of the command ‘diff -u lao tzu’ (see Section 2.1 [Sample diff Input],
page 9, for the complete contents of the two files):

--- lao 2002-02-21 23:30:39.942229878 -0800
+++ tzu 2002-02-21 23:30:50.442260588 -0800
@@ -1,7 +1,6 @@
-The Way that can be told of is not the eternal Way;
-The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;

-The Named is the mother of all things.
+The named is the mother of all things.
+
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

Chapter 2: diff Output Formats 13

@@ -9,3 +8,6 @@
The two are the same,
But after they are produced,

they have different names.
+They both may be called deep and profound.
+Deeper and more profound,
+The door of all subtleties!

2.2.2.2 Detailed Description of Unified Format
The unified output format starts with a two-line header, which looks like this:

--- from-file from-file-modification-time
+++ to-file to-file-modification-time

The timestamp looks like ‘2002-02-21 23:30:39.942229878 -0800’ to indicate the date,
time with fractional seconds, and time zone. The fractional seconds are omitted on hosts
that do not support fractional timestamps.

You can change the header’s content with the --label=label option. See Section 2.2.4
[Alternate Names], page 14.

Next come one or more hunks of differences; each hunk shows one area where the files
differ. Unified format hunks look like this:

@@ from-file-line-numbers to-file-line-numbers @@
line-from-either-file
line-from-either-file...

If a hunk contains just one line, only its start line number appears. Otherwise its line
numbers look like ‘start,count’. An empty hunk is considered to start at the line that
follows the hunk.

If a hunk and its context contain two or more lines, its line numbers look like
‘start,count’. Otherwise only its end line number appears. An empty hunk is considered
to end at the line that precedes the hunk.

The lines common to both files begin with a space character. The lines that actually
differ between the two files have one of the following indicator characters in the left print
column:

‘+’ A line was added here to the first file.

‘-’ A line was removed here from the first file.

2.2.3 Showing Which Sections Differences Are in
Sometimes you might want to know which part of the files each change falls in. If the files
are source code, this could mean which function was changed. If the files are documents, it
could mean which chapter or appendix was changed. GNU diff can show this by displaying
the nearest section heading line that precedes the differing lines. Which lines are “section
headings” is determined by a regular expression.

2.2.3.1 Showing Lines That Match Regular Expressions
To show in which sections differences occur for files that are not source code for C or similar
languages, use the --show-function-line=regexp (-F regexp) option. diff considers

14 Comparing and Merging Files

lines that match the grep-style regular expression regexp to be the beginning of a section
of the file. Here are suggested regular expressions for some common languages:

‘^[[:alpha:]$_]’
C, C++, Prolog

‘^(’ Lisp

‘^@node’ Texinfo

This option does not automatically select an output format; in order to use it, you must
select the context format (see Section 2.2.1 [Context Format], page 10) or unified format
(see Section 2.2.2 [Unified Format], page 12). In other output formats it has no effect.

The --show-function-line (-F) option finds the nearest unchanged line that precedes
each hunk of differences and matches the given regular expression. Then it adds that line
to the end of the line of asterisks in the context format, or to the ‘@@’ line in unified format.
If no matching line exists, this option leaves the output for that hunk unchanged. If that
line is more than 40 characters long, it outputs only the first 40 characters. You can specify
more than one regular expression for such lines; diff tries to match each line against each
regular expression, starting with the last one given. This means that you can use -p and
-F together, if you wish.

2.2.3.2 Showing C Function Headings
To show in which functions differences occur for C and similar languages, you can use the
--show-c-function (-p) option. This option automatically defaults to the context output
format (see Section 2.2.1 [Context Format], page 10), with the default number of lines of
context. You can override that number with -C lines elsewhere in the command line. You
can override both the format and the number with -U lines elsewhere in the command
line.

The --show-c-function (-p) option is equivalent to -F '^[[:alpha:]$_]' if the uni-
fied format is specified, otherwise -c -F '^[[:alpha:]$_]' (see Section 2.2.3.1 [Specified
Headings], page 13). GNU diff provides this option for the sake of convenience.

2.2.4 Showing Alternate File Names
If you are comparing two files that have meaningless or uninformative names, you might
want diff to show alternate names in the header of the context and unified output formats.
To do this, use the --label=label option. The first time you give this option, its argument
replaces the name and date of the first file in the header; the second time, its argument
replaces the name and date of the second file. If you give this option more than twice, diff
reports an error. The --label option does not affect the file names in the pr header when
the -l or --paginate option is used (see Section 5.3 [Pagination], page 32).

Here are the first two lines of the output from ‘diff -C 2 --label=original
--label=modified lao tzu’:

*** original
--- modified

Chapter 2: diff Output Formats 15

2.3 Showing Differences Side by Side
diff can produce a side by side difference listing of two files. The files are listed in two
columns with a gutter between them. The gutter contains one of the following markers:
white space

The corresponding lines are in common. That is, either the lines are identical, or
the difference is ignored because of one of the --ignore options (see Section 1.2
[White Space], page 4).

‘|’ The corresponding lines differ, and they are either both complete or both in-
complete.

‘<’ The files differ and only the first file contains the line.
‘>’ The files differ and only the second file contains the line.
‘(’ Only the first file contains the line, but the difference is ignored.
‘)’ Only the second file contains the line, but the difference is ignored.
‘\’ The corresponding lines differ, and only the first line is incomplete.
‘/’ The corresponding lines differ, and only the second line is incomplete.

Normally, an output line is incomplete if and only if the lines that it contains are incom-
plete. See Chapter 3 [Incomplete Lines], page 27. However, when an output line represents
two differing lines, one might be incomplete while the other is not. In this case, the output
line is complete, but its the gutter is marked ‘\’ if the first line is incomplete, ‘/’ if the
second line is.

Side by side format is sometimes easiest to read, but it has limitations. It generates
much wider output than usual, and truncates lines that are too long to fit. Also, it relies
on lining up output more heavily than usual, so its output looks particularly bad if you use
varying width fonts, nonstandard tab stops, or nonprinting characters.

You can use the sdiff command to interactively merge side by side differences. See
Chapter 9 [Interactive Merging], page 43, for more information on merging files.

2.3.1 Controlling Side by Side Format
The --side-by-side (-y) option selects side by side format. Because side by side output
lines contain two input lines, the output is wider than usual: normally 130 print columns,
which can fit onto a traditional printer line. You can set the width of the output with the
--width=columns (-W columns) option. The output is split into two halves of equal width,
separated by a small gutter to mark differences; the right half is aligned to a tab stop so
that tabs line up. Input lines that are too long to fit in half of an output line are truncated
for output.

The --left-column option prints only the left column of two common lines. The
--suppress-common-lines option suppresses common lines entirely.

2.3.2 An Example of Side by Side Format
Here is the output of the command ‘diff -y -W 72 lao tzu’ (see Section 2.1 [Sample diff
Input], page 9, for the complete contents of the two files).

The Way that can be told of is n <

16 Comparing and Merging Files

The name that can be named is no <
The Nameless is the origin of He The Nameless is the origin of He
The Named is the mother of all t | The named is the mother of all t

>
Therefore let there always be no Therefore let there always be no

so we may see their subtlety, so we may see their subtlety,
And let there always be being, And let there always be being,

so we may see their outcome. so we may see their outcome.
The two are the same, The two are the same,
But after they are produced, But after they are produced,

they have different names. they have different names.
> They both may be called deep and
> Deeper and more profound,
> The door of all subtleties!

2.4 Showing Differences Without Context
The “normal” diff output format shows each hunk of differences without any surrounding
context. Sometimes such output is the clearest way to see how lines have changed, without
the clutter of nearby unchanged lines (although you can get similar results with the context
or unified formats by using 0 lines of context). However, this format is no longer widely used
for sending out patches; for that purpose, the context format (see Section 2.2.1 [Context
Format], page 10) and the unified format (see Section 2.2.2 [Unified Format], page 12) are
superior. Normal format is the default for compatibility with older versions of diff and
the POSIX standard. Use the --normal option to select this output format explicitly.

2.4.1 An Example of Normal Format
Here is the output of the command ‘diff lao tzu’ (see Section 2.1 [Sample diff Input],
page 9, for the complete contents of the two files). Notice that it shows only the lines that
are different between the two files.

1,2d0
< The Way that can be told of is not the eternal Way;
< The name that can be named is not the eternal name.
4c2,3
< The Named is the mother of all things.

> The named is the mother of all things.
>
11a11,13
> They both may be called deep and profound.
> Deeper and more profound,
> The door of all subtleties!

2.4.2 Detailed Description of Normal Format
The normal output format consists of one or more hunks of differences; each hunk shows
one area where the files differ. Normal format hunks look like this:

change-command

Chapter 2: diff Output Formats 17

< from-file-line
< from-file-line...

> to-file-line
> to-file-line...

There are three types of change commands. Each consists of a line number or comma-
separated range of lines in the first file, a single character indicating the kind of change
to make, and a line number or comma-separated range of lines in the second file. All line
numbers are the original line numbers in each file. The types of change commands are:

‘lar’ Add the lines in range r of the second file after line l of the first file. For
example, ‘8a12,15’ means append lines 12–15 of file 2 after line 8 of file 1; or,
if changing file 2 into file 1, delete lines 12–15 of file 2.

‘fct’ Replace the lines in range f of the first file with lines in range t of the second
file. This is like a combined add and delete, but more compact. For example,
‘5,7c8,10’ means change lines 5–7 of file 1 to read as lines 8–10 of file 2; or, if
changing file 2 into file 1, change lines 8–10 of file 2 to read as lines 5–7 of file
1.

‘rdl’ Delete the lines in range r from the first file; line l is where they would have
appeared in the second file had they not been deleted. For example, ‘5,7d3’
means delete lines 5–7 of file 1; or, if changing file 2 into file 1, append lines 5–7
of file 1 after line 3 of file 2.

2.5 Making Edit Scripts
Several output modes produce command scripts for editing from-file to produce to-file.

2.5.1 ed Scripts
diff can produce commands that direct the ed text editor to change the first file into the
second file. Long ago, this was the only output mode that was suitable for editing one file
into another automatically; today, with patch, it is almost obsolete. Use the --ed (-e)
option to select this output format.

Like the normal format (see Section 2.4 [Normal], page 16), this output format does not
show any context; unlike the normal format, it does not include the information necessary
to apply the diff in reverse (to produce the first file if all you have is the second file and the
diff).

If the file d contains the output of ‘diff -e old new’, then the command ‘(cat d && echo
w) | ed - old’ edits old to make it a copy of new. More generally, if d1, d2, . . . , dN con-
tain the outputs of ‘diff -e old new1’, ‘diff -e new1 new2’, . . . , ‘diff -e newN-1 newN’,
respectively, then the command ‘(cat d1 d2 ... dN && echo w) | ed - old’ edits old to
make it a copy of newN.

2.5.1.1 Example ed Script
Here is the output of ‘diff -e lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for the
complete contents of the two files):

11a

18 Comparing and Merging Files

They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
.
4c
The named is the mother of all things.

.
1,2d

2.5.1.2 Detailed Description of ed Format
The ed output format consists of one or more hunks of differences. The changes closest to
the ends of the files come first so that commands that change the number of lines do not
affect how ed interprets line numbers in succeeding commands. ed format hunks look like
this:

change-command
to-file-line
to-file-line...
.

Because ed uses a single period on a line to indicate the end of input, GNU diff protects
lines of changes that contain a single period on a line by writing two periods instead, then
writing a subsequent ed command to change the two periods into one. The ed format
cannot represent an incomplete line, so if the second file ends in a changed incomplete line,
diff reports an error and then pretends that a newline was appended.

There are three types of change commands. Each consists of a line number or comma-
separated range of lines in the first file and a single character indicating the kind of change
to make. All line numbers are the original line numbers in the file. The types of change
commands are:
‘la’ Add text from the second file after line l in the first file. For example, ‘8a’

means to add the following lines after line 8 of file 1.
‘rc’ Replace the lines in range r in the first file with the following lines. Like

a combined add and delete, but more compact. For example, ‘5,7c’ means
change lines 5–7 of file 1 to read as the text file 2.

‘rd’ Delete the lines in range r from the first file. For example, ‘5,7d’ means delete
lines 5–7 of file 1.

2.5.2 Forward ed Scripts
diff can produce output that is like an ed script, but with hunks in forward (front to back)
order. The format of the commands is also changed slightly: command characters precede
the lines they modify, spaces separate line numbers in ranges, and no attempt is made to
disambiguate hunk lines consisting of a single period. Like ed format, forward ed format
cannot represent incomplete lines.

Forward ed format is not very useful, because neither ed nor patch can apply diffs in
this format. It exists mainly for compatibility with older versions of diff. Use the -f or
--forward-ed option to select it.

Chapter 2: diff Output Formats 19

2.5.3 RCS Scripts
The RCS output format is designed specifically for use by the Revision Control System,
which is a set of free programs used for organizing different versions and systems of files.
Use the --rcs (-n) option to select this output format. It is like the forward ed format (see
Section 2.5.2 [Forward ed], page 18), but it can represent arbitrary changes to the contents
of a file because it avoids the forward ed format’s problems with lines consisting of a single
period and with incomplete lines. Instead of ending text sections with a line consisting of
a single period, each command specifies the number of lines it affects; a combination of the
‘a’ and ‘d’ commands are used instead of ‘c’. Also, if the second file ends in a changed
incomplete line, then the output also ends in an incomplete line.

Here is the output of ‘diff -n lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for
the complete contents of the two files):

d1 2
d4 1
a4 2
The named is the mother of all things.

a11 3
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

2.6 Merging Files with If-then-else
You can use diff to merge two files of C source code. The output of diff in this format
contains all the lines of both files. Lines common to both files are output just once; the
differing parts are separated by the C preprocessor directives #ifdef name or #ifndef name,
#else, and #endif. When compiling the output, you select which version to use by either
defining or leaving undefined the macro name.

To merge two files, use diff with the -D name or --ifdef=name option. The argument
name is the C preprocessor identifier to use in the #ifdef and #ifndef directives.

For example, if you change an instance of wait (&s) to waitpid (-1, &s, 0) and then
merge the old and new files with the --ifdef=HAVE_WAITPID option, then the affected part
of your code might look like this:

do {
#ifndef HAVE_WAITPID

if ((w = wait (&s)) < 0 && errno != EINTR)
#else /* HAVE_WAITPID */

if ((w = waitpid (-1, &s, 0)) < 0 && errno != EINTR)
#endif /* HAVE_WAITPID */

return w;
} while (w != child);

You can specify formats for languages other than C by using line group formats and line
formats, as described in the next sections.

20 Comparing and Merging Files

2.6.1 Line Group Formats
Line group formats let you specify formats suitable for many applications that allow if-then-
else input, including programming languages and text formatting languages. A line group
format specifies the output format for a contiguous group of similar lines.

For example, the following command compares the TeX files old and new, and outputs
a merged file in which old regions are surrounded by ‘\begin{em}’-‘\end{em}’ lines, and
new regions are surrounded by ‘\begin{bf}’-‘\end{bf}’ lines.

diff \
--old-group-format='\begin{em}

%<\end{em}
' \

--new-group-format='\begin{bf}
%>\end{bf}
' \

old new

The following command is equivalent to the above example, but it is a little more verbose,
because it spells out the default line group formats.

diff \
--old-group-format='\begin{em}

%<\end{em}
' \

--new-group-format='\begin{bf}
%>\end{bf}
' \

--unchanged-group-format='%=' \
--changed-group-format='\begin{em}

%<\end{em}
\begin{bf}
%>\end{bf}
' \

old new

Here is a more advanced example, which outputs a diff listing with headers containing
line numbers in a “plain English” style.

diff \
--unchanged-group-format='' \
--old-group-format='-------- %dn line%(n=1?:s) deleted at %df:

%<' \
--new-group-format='-------- %dN line%(N=1?:s) added after %de:

%>' \
--changed-group-format='-------- %dn line%(n=1?:s) changed at %df:

%<-------- to:
%>' \

old new

Chapter 2: diff Output Formats 21

To specify a line group format, use diff with one of the options listed below. You can
specify up to four line group formats, one for each kind of line group. You should quote
format, because it typically contains shell metacharacters.

--old-group-format=format
These line groups are hunks containing only lines from the first file. The default
old group format is the same as the changed group format if it is specified;
otherwise it is a format that outputs the line group as-is.

--new-group-format=format
These line groups are hunks containing only lines from the second file. The
default new group format is same as the changed group format if it is specified;
otherwise it is a format that outputs the line group as-is.

--changed-group-format=format
These line groups are hunks containing lines from both files. The default
changed group format is the concatenation of the old and new group formats.

--unchanged-group-format=format
These line groups contain lines common to both files. The default unchanged
group format is a format that outputs the line group as-is.

In a line group format, ordinary characters represent themselves; conversion specifica-
tions start with ‘%’ and have one of the following forms.

‘%<’ stands for the lines from the first file, including the trailing newline. Each line
is formatted according to the old line format (see Section 2.6.2 [Line Formats],
page 22).

‘%>’ stands for the lines from the second file, including the trailing newline. Each
line is formatted according to the new line format.

‘%=’ stands for the lines common to both files, including the trailing newline. Each
line is formatted according to the unchanged line format.

‘%%’ stands for ‘%’.

‘%c'C'’ where C is a single character, stands for C. C may not be a backslash or an
apostrophe. For example, ‘%c':'’ stands for a colon, even inside the then-part
of an if-then-else format, which a colon would normally terminate.

‘%c'\O'’ where O is a string of 1, 2, or 3 octal digits, stands for the character with octal
code O. For example, ‘%c'\0'’ stands for a null character.

‘Fn’ where F is a printf conversion specification and n is one of the following letters,
stands for n’s value formatted with F.

‘e’ The line number of the line just before the group in the old file.

‘f’ The line number of the first line in the group in the old file; equals
e + 1.

‘l’ The line number of the last line in the group in the old file.

‘m’ The line number of the line just after the group in the old file;
equals l + 1.

22 Comparing and Merging Files

‘n’ The number of lines in the group in the old file; equals l - f + 1.

‘E, F, L, M, N’
Likewise, for lines in the new file.

The printf conversion specification can be ‘%d’, ‘%o’, ‘%x’, or ‘%X’, specifying
decimal, octal, lower case hexadecimal, or upper case hexadecimal output re-
spectively. After the ‘%’ the following options can appear in sequence: a series
of zero or more flags; an integer specifying the minimum field width; and a pe-
riod followed by an optional integer specifying the minimum number of digits.
The flags are ‘-’ for left-justification, ‘'’ for separating the digit into groups
as specified by the LC_NUMERIC locale category, and ‘0’ for padding with zeros
instead of spaces. For example, ‘%5dN’ prints the number of new lines in the
group in a field of width 5 characters, using the printf format "%5d".

‘(A=B?T:E)’
If A equals B then T else E. A and B are each either a decimal constant or
a single letter interpreted as above. This format spec is equivalent to T if A’s
value equals B’s; otherwise it is equivalent to E.
For example, ‘%(N=0?no:%dN) line%(N=1?:s)’ is equivalent to ‘no lines’ if N
(the number of lines in the group in the new file) is 0, to ‘1 line’ if N is 1, and
to ‘%dN lines’ otherwise.

2.6.2 Line Formats
Line formats control how each line taken from an input file is output as part of a line group
in if-then-else format.

For example, the following command outputs text with a one-character change indicator
to the left of the text. The first character of output is ‘-’ for deleted lines, ‘|’ for added lines,
and a space for unchanged lines. The formats contain newline characters where newlines
are desired on output.

diff \
--old-line-format='-%l

' \
--new-line-format='|%l

' \
--unchanged-line-format=' %l

' \
old new

To specify a line format, use one of the following options. You should quote format,
since it often contains shell metacharacters.

--old-line-format=format
formats lines just from the first file.

--new-line-format=format
formats lines just from the second file.

--unchanged-line-format=format
formats lines common to both files.

Chapter 2: diff Output Formats 23

--line-format=format
formats all lines; in effect, it sets all three above options simultaneously.

In a line format, ordinary characters represent themselves; conversion specifications start
with ‘%’ and have one of the following forms.
‘%l’ stands for the contents of the line, not counting its trailing newline (if any).

This format ignores whether the line is incomplete; See Chapter 3 [Incomplete
Lines], page 27.

‘%L’ stands for the contents of the line, including its trailing newline (if any). If a
line is incomplete, this format preserves its incompleteness.

‘%%’ stands for ‘%’.
‘%c'C'’ where C is a single character, stands for C. C may not be a backslash or an

apostrophe. For example, ‘%c':'’ stands for a colon.
‘%c'\O'’ where O is a string of 1, 2, or 3 octal digits, stands for the character with octal

code O. For example, ‘%c'\0'’ stands for a null character.
‘Fn’ where F is a printf conversion specification, stands for the line number for-

matted with F. For example, ‘%.5dn’ prints the line number using the printf
format "%.5d". See Section 2.6.1 [Line Group Formats], page 20, for more
about printf conversion specifications.

The default line format is ‘%l’ followed by a newline character.
If the input contains tab characters and it is important that they line up on output, you

should ensure that ‘%l’ or ‘%L’ in a line format is just after a tab stop (e.g. by preceding
‘%l’ or ‘%L’ with a tab character), or you should use the -t or --expand-tabs option.

Taken together, the line and line group formats let you specify many different formats.
For example, the following command uses a format similar to normal diff format. You can
tailor this command to get fine control over diff output.

diff \
--old-line-format='< %l

' \
--new-line-format='> %l

' \
--old-group-format='%df%(f=l?:,%dl)d%dE

%<' \
--new-group-format='%dea%dF%(F=L?:,%dL)

%>' \
--changed-group-format='%df%(f=l?:,%dl)c%dF%(F=L?:,%dL)

%<---
%>' \

--unchanged-group-format='' \
old new

2.6.3 An Example of If-then-else Format
Here is the output of ‘diff -DTWO lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for
the complete contents of the two files):

24 Comparing and Merging Files

#ifndef TWO
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
#endif /* ! TWO */
The Nameless is the origin of Heaven and Earth;
#ifndef TWO
The Named is the mother of all things.
#else /* TWO */
The named is the mother of all things.

#endif /* TWO */
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their outcome.
The two are the same,
But after they are produced,

they have different names.
#ifdef TWO
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
#endif /* TWO */

2.6.4 Detailed Description of If-then-else Format
For lines common to both files, diff uses the unchanged line group format. For each hunk
of differences in the merged output format, if the hunk contains only lines from the first
file, diff uses the old line group format; if the hunk contains only lines from the second
file, diff uses the new group format; otherwise, diff uses the changed group format.

The old, new, and unchanged line formats specify the output format of lines from the
first file, lines from the second file, and lines common to both files, respectively.

The option --ifdef=name is equivalent to the following sequence of options using shell
syntax:

--old-group-format='#ifndef name
%<#endif /* ! name */
' \
--new-group-format='#ifdef name
%>#endif /* name */
' \
--unchanged-group-format='%=' \
--changed-group-format='#ifndef name
%<#else /* name */
%>#endif /* name */
'

You should carefully check the diff output for proper nesting. For example, when using
the -D name or --ifdef=name option, you should check that if the differing lines contain

Chapter 2: diff Output Formats 25

any of the C preprocessor directives ‘#ifdef’, ‘#ifndef’, ‘#else’, ‘#elif’, or ‘#endif’, they
are nested properly and match. If they don’t, you must make corrections manually. It is
a good idea to carefully check the resulting code anyway to make sure that it really does
what you want it to; depending on how the input files were produced, the output might
contain duplicate or otherwise incorrect code.

The patch -D name option behaves like the diff -D name option, except it operates on
a file and a diff to produce a merged file. See Section 15.1 [patch Options], page 69.

27

3 Incomplete Lines
When an input file ends in a non-newline character, its last line is called an incomplete line
because its last character is not a newline. All other lines are called full lines and end in a
newline character. Incomplete lines do not match full lines unless differences in white space
are ignored (see Section 1.2 [White Space], page 4).

An incomplete line is normally distinguished on output from a full line by a following line
that starts with ‘\’. However, the RCS format (see Section 2.5.3 [RCS], page 19) outputs
the incomplete line as-is, without any trailing newline or following line. The side by side
format normally represents incomplete lines as-is, but in some cases uses a ‘\’ or ‘/’ gutter
marker. See Section 2.3 [Side by Side], page 15. The if-then-else line format preserves a
line’s incompleteness with ‘%L’, and discards the newline with ‘%l’. See Section 2.6.2 [Line
Formats], page 22. Finally, with the ed and forward ed output formats (see Chapter 2
[Output Formats], page 9) diff cannot represent an incomplete line, so it pretends there
was a newline and reports an error.

For example, suppose F and G are one-character files that contain just ‘f’ and ‘g’, re-
spectively. Then ‘diff F G’ outputs

1c1
< f
\ No newline at end of file

> g
\ No newline at end of file

(The exact message may differ in non-English locales.) ‘diff -n F G’ outputs the following
without a trailing newline:

d1 1
a1 1
g

‘diff -e F G’ reports two errors and outputs the following:
1c
g
.

29

4 Comparing Directories
You can use diff to compare some or all of the files in two directory trees. When both
file name arguments to diff are directories, it compares each file that is contained in both
directories, examining file names in alphabetical order as specified by the LC_COLLATE locale
category. Normally diff is silent about pairs of files that contain no differences, but if you
use the --report-identical-files (-s) option, it reports pairs of identical files. Normally
diff reports subdirectories common to both directories without comparing subdirectories’
files, but if you use the -r or --recursive option, it compares every corresponding pair of
files in the directory trees, as many levels deep as they go.

If only one file exists, diff normally does not show its contents; it merely reports that
one file exists but the other does not. You can make diff act as though the missing file is
empty, so that it outputs the entire contents of the file that actually exists. (It is output
as either an insertion or a deletion, depending on whether the missing file is in the first
or the second position.) To do this, use the --new-file (-N) option. This option affects
command-line arguments as well as files found via directory traversal; for example, ‘diff
-N a b’ treats a as empty if a does not exist but b does.

If the older directory contains large files that are not in the newer directory, you can
make the patch smaller by using the --unidirectional-new-file option instead of -N.
This option is like -N except that it inserts the contents only of files that appear in the
second directory but not the first (that is, files that were added). At the top of the patch,
write instructions for the user applying the patch to remove the files that were deleted
before applying the patch. See Chapter 11 [Making Patches], page 55, for more discussion
of making patches for distribution.

To ignore some files while comparing directories, use the --exclude=pattern (-x
pattern) option. This option ignores any files or subdirectories whose base names match
the shell pattern pattern. Unlike in the shell, a period at the start of the base of a file
name matches a wildcard at the start of a pattern. You should enclose pattern in quotes
so that the shell does not expand it. For example, the option -x '*.[ao]' ignores any file
whose name ends with ‘.a’ or ‘.o’.

This option accumulates if you specify it more than once. For example, using the options
-x 'RCS' -x '*,v' ignores any file or subdirectory whose base name is ‘RCS’ or ends with
‘,v’.

If you need to give this option many times, you can instead put the patterns in a file,
one pattern per line, and use the --exclude-from=file (-X file) option. Trailing white
space and empty lines are ignored in the pattern file.

If you have been comparing two directories and stopped partway through, later you might
want to continue where you left off. You can do this by using the --starting-file=file
(-S file) option. This compares only the file file and all alphabetically later files in the
topmost directory level.

If two directories differ only in that file names are lower case in one directory and upper
case in the upper, diff normally reports many differences because it compares file names
in a case sensitive way. With the --ignore-file-name-case option, diff ignores case
differences in file names, so that for example the contents of the file Tao in one directory are
compared to the contents of the file TAO in the other. The --no-ignore-file-name-case

30 Comparing and Merging Files

option cancels the effect of the --ignore-file-name-case option, reverting to the default
behavior.

If an --exclude=pattern (-x pattern) option, or an --exclude-from=file (-X file)
option, is specified while the --ignore-file-name-case option is in effect, case is ignored
when excluding file names matching the specified patterns.

To tell diff not to follow a symbolic link, use the --no-dereference option.

31

5 Making diff Output Prettier
diff provides several ways to adjust the appearance of its output. These adjustments can
be applied to any output format.

5.1 Preserving Tab Stop Alignment
The tab character moves the cursor to the next tab stop. Tab stops are normally every 8
display columns; this can be altered by the --tabsize=columns option.

The lines of text in some of the diff output formats are preceded by one or two characters
that indicate whether the text is inserted, deleted, or changed. The addition of those
characters can cause tabs to move to the next tab stop, throwing off the alignment of
columns in the line. GNU diff provides two ways to make tab-aligned columns line up
correctly.

The first way is to have diff convert all tabs into the correct number of spaces before
outputting them; select this method with the --expand-tabs (-t) option. To use this form
of output with patch, you must give patch the -l or --ignore-white-space option (see
Section 10.3.1 [Changed White Space], page 46, for more information).

The other method for making tabs line up correctly is to add a tab character instead
of a space after the indicator character at the beginning of the line. This ensures that all
following tab characters are in the same position relative to tab stops that they were in the
original files, so that the output is aligned correctly. Its disadvantage is that it can make
long lines too long to fit on one line of the screen or the paper. It also does not work with
the unified output format, which does not have a space character after the change type
indicator character. Select this method with the -T or --initial-tab option.

GNU diff currently assumes that the output device respects tab stops, displays each
character with column width as given by the operating system, and displays each encoding
error byte in a single column. Unfortunately these assumptions are often incorrect for
encoding errors and non-ASCII characters, so complex input data may not line up properly
on output, and analysis based on the --ignore-tab-expansion (-E) option may differ from
the display device’s behavior.

5.2 Omitting trailing blanks
When outputting lines in normal or context format, or outputting an unchanged line in
unified format, diff normally outputs a blank just before each line. If the line is empty, the
output of diff therefore contains trailing blanks even though the input does not contain
them. For example, when outputting an unchanged empty line in context format, diff
normally outputs a line with two leading spaces.

Some text editors and email agents routinely delete trailing blanks, so it can be a problem
to deal with diff output files that contain them. You can avoid this problem with the
--suppress-blank-empty option. It causes diff to omit trailing blanks at the end of
output lines in normal, context, and unified format, unless the trailing blanks were already
present in the input. This changes the output format slightly, so that output lines are
guaranteed to never end in a blank unless an input line ends in a blank. This format is less
likely to be munged by text editors or by transmission via email. It is accepted by GNU
patch as well.

32 Comparing and Merging Files

5.3 Paginating diff Output
It can be convenient to have long output page-numbered and time-stamped. The
--paginate (-l) option does this by sending the diff output through the pr program.
Here is what the page header might look like for ‘diff -lc lao tzu’:

2002-02-22 14:20 diff -lc lao tzu Page 1

33

6 diff Performance Tradeoffs
GNU diff runs quite efficiently; however, in some circumstances you can cause it to run
faster or produce a more compact set of changes.

One way to improve diff performance is to use hard or symbolic links to files instead
of copies. This improves performance because diff normally does not need to read two
hard or symbolic links to the same file, since their contents must be identical. For example,
suppose you copy a large directory hierarchy, make a few changes to the copy, and then
often use ‘diff -r’ to compare the original to the copy. If the original files are read-only,
you can greatly improve performance by creating the copy using hard or symbolic links
(e.g., with GNU ‘cp -lR’ or ‘cp -sR’). Before editing a file in the copy for the first time,
you should break the link and replace it with a regular copy.

You can also affect the performance of GNU diff by giving it options that change the
way it compares files. Performance has more than one dimension. These options improve
one aspect of performance at the cost of another, or they improve performance in some
cases while hurting it in others.

The way that GNU diff determines which lines have changed always comes up with
a near-minimal set of differences. Usually it is good enough for practical purposes. If the
diff output is large, you might want diff to use a modified algorithm that sometimes
produces a smaller set of differences. The --minimal (-d) option does this; however, it can
also cause diff to run more slowly than usual, so it is not the default behavior.

When the files you are comparing are large and have small groups of changes scattered
throughout them, you can use the --speed-large-files option to make a different modi-
fication to the algorithm that diff uses. If the input files have a constant small density of
changes, this option speeds up the comparisons without changing the output. If not, diff
might produce a larger set of differences; however, the output will still be correct.

Normally diff discards the prefix and suffix that is common to both files before it
attempts to find a minimal set of differences. This makes diff run faster, but occasionally
it may produce non-minimal output. The --horizon-lines=lines option prevents diff
from discarding the last lines lines of the prefix and the first lines lines of the suffix. This
gives diff further opportunities to find a minimal output.

Suppose a run of changed lines includes a sequence of lines at one end and there is an
identical sequence of lines just outside the other end. The diff command is free to choose
which identical sequence is included in the hunk. In this case, diff normally shifts the
hunk’s boundaries when this merges adjacent hunks, or shifts a hunk’s lines towards the
end of the file. Merging hunks can make the output look nicer in some cases.

35

7 Comparing Three Files
Use the program diff3 to compare three files and show any differences among them. (diff3
can also merge files; see Chapter 8 [diff3 Merging], page 39).

The “normal” diff3 output format shows each hunk of differences without surrounding
context. Hunks are labeled depending on whether they are two-way or three-way, and lines
are annotated by their location in the input files.

See Chapter 14 [Invoking diff3], page 67, for more information on how to run diff3.

7.1 A Third Sample Input File
Here is a third sample file that will be used in examples to illustrate the output of diff3
and how various options can change it. The first two files are the same that we used for
diff (see Section 2.1 [Sample diff Input], page 9). This is the third sample file, called tao:

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their result.

The two are the same,
But after they are produced,

they have different names.

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

7.2 An Example of diff3 Normal Format
Here is the output of the command ‘diff3 lao tzu tao’ (see Section 7.1 [Sample diff3
Input], page 35, for the complete contents of the files). Notice that it shows only the lines
that are different among the three files.

====2
1:1,2c
3:1,2c

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.

2:0a
====1
1:4c

The Named is the mother of all things.
2:2,3c
3:4,5c

The named is the mother of all things.

36 Comparing and Merging Files

====3
1:8c
2:7c

so we may see their outcome.
3:9c

so we may see their result.
====
1:11a
2:11,13c

They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

3:13,14c

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

7.3 Detailed Description of diff3 Normal Format
Each hunk begins with a line marked ‘====’. Three-way hunks have plain ‘====’ lines, and
two-way hunks have ‘1’, ‘2’, or ‘3’ appended to specify which of the three input files differ
in that hunk. The hunks contain copies of two or three sets of input lines each preceded by
one or two commands identifying where the lines came from.

Normally, two spaces precede each copy of an input line to distinguish it from the
commands. But with the --initial-tab (-T) option, diff3 uses a tab instead of two
spaces; this lines up tabs correctly. See Section 5.1 [Tabs], page 31, for more information.

Commands take the following forms:
‘file:la’ This hunk appears after line l of file file, and contains no lines in that file. To

edit this file to yield the other files, one must append hunk lines taken from
the other files. For example, ‘1:11a’ means that the hunk follows line 11 in the
first file and contains no lines from that file.

‘file:rc’ This hunk contains the lines in the range r of file file. The range r is a comma-
separated pair of line numbers, or just one number if there is only one line. To
edit this file to yield the other files, one must change the specified lines to be
the lines taken from the other files. For example, ‘2:11,13c’ means that the
hunk contains lines 11 through 13 from the second file.

If the last line in a set of input lines is incomplete (see Chapter 3 [Incomplete Lines],
page 27), it is distinguished on output from a full line by a following line that starts with
‘\’.

7.4 diff3 Hunks
Groups of lines that differ in two or three of the input files are called diff3 hunks, by analogy
with diff hunks (see Section 1.1 [Hunks], page 3). If all three input files differ in a diff3
hunk, the hunk is called a three-way hunk; if just two input files differ, it is a two-way hunk.

As with diff, several solutions are possible. When comparing the files ‘A’, ‘B’, and
‘C’, diff3 normally finds diff3 hunks by merging the two-way hunks output by the two

Chapter 7: Comparing Three Files 37

commands ‘diff A B’ and ‘diff A C’. This does not necessarily minimize the size of the
output, but exceptions should be rare.

For example, suppose F contains the three lines ‘a’, ‘b’, ‘f’, G contains the lines ‘g’, ‘b’,
‘g’, and H contains the lines ‘a’, ‘b’, ‘h’. ‘diff3 F G H’ might output the following:

====2
1:1c
3:1c

a
2:1c

g
====
1:3c

f
2:3c

g
3:3c

h
because it found a two-way hunk containing ‘a’ in the first and third files and ‘g’ in the second
file, then the single line ‘b’ common to all three files, then a three-way hunk containing the
last line of each file.

39

8 Merging From a Common Ancestor
When two people have made changes to copies of the same file, diff3 can produce a merged
output that contains both sets of changes together with warnings about conflicts.

One might imagine programs with names like diff4 and diff5 to compare more than
three files simultaneously, but in practice the need rarely arises. You can use diff3 to
merge three or more sets of changes to a file by merging two change sets at a time.

diff3 can incorporate changes from two modified versions into a common preceding
version. This lets you merge the sets of changes represented by the two newer files. Specify
the common ancestor version as the second argument and the two newer versions as the
first and third arguments, like this:

diff3 mine older yours
You can remember the order of the arguments by noting that they are in alphabetical order.

You can think of this as subtracting older from yours and adding the result to mine,
or as merging into mine the changes that would turn older into yours. This merging is
well-defined as long as mine and older match in the neighborhood of each such change.
This fails to be true when all three input files differ or when only older differs; we call this
a conflict. When all three input files differ, we call the conflict an overlap.

diff3 gives you several ways to handle overlaps and conflicts. You can omit overlaps
or conflicts, or select only overlaps, or mark conflicts with special ‘<<<<<<<’ and ‘>>>>>>>’
lines.

diff3 can output the merge results as an ed script that that can be applied to the first
file to yield the merged output. However, it is usually better to have diff3 generate the
merged output directly; this bypasses some problems with ed.

8.1 Selecting Which Changes to Incorporate
You can select all unmerged changes from older to yours for merging into mine with the --ed
(-e) option. You can select only the nonoverlapping unmerged changes with --easy-only
(-3), and you can select only the overlapping changes with --overlap-only (-x).

The -e, -3 and -x options select only unmerged changes, i.e. changes where mine and
yours differ; they ignore changes from older to yours where mine and yours are identical,
because they assume that such changes have already been merged. If this assumption is not
a safe one, you can use the --show-all (-A) option (see Section 8.2 [Marking Conflicts],
page 40).

Here is the output of the command diff3 with each of these three options (see Section 7.1
[Sample diff3 Input], page 35, for the complete contents of the files). Notice that -e outputs
the union of the disjoint sets of changes output by -3 and -x.

Output of ‘diff3 -e lao tzu tao’:
11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.
8c

so we may see their result.

40 Comparing and Merging Files

.
Output of ‘diff3 -3 lao tzu tao’:

8c
so we may see their result.

.
Output of ‘diff3 -x lao tzu tao’:

11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.

8.2 Marking Conflicts
diff3 can mark conflicts in the merged output by bracketing them with special marker
lines. A conflict that comes from two files A and B is marked as follows:

<<<<<<< A
lines from A
=======
lines from B
>>>>>>> B

A conflict that comes from three files A, B and C is marked as follows:
<<<<<<< A
lines from A
||||||| B
lines from B
=======
lines from C
>>>>>>> C

The --show-all (-A) option acts like the -e option, except that it brackets conflicts,
and it outputs all changes from older to yours, not just the unmerged changes. Thus, given
the sample input files (see Section 7.1 [Sample diff3 Input], page 35), ‘diff3 -A lao tzu
tao’ puts brackets around the conflict where only tzu differs:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao

And it outputs the three-way conflict as follows:
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

Chapter 8: Merging From a Common Ancestor 41

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

The --show-overlap (-E) option outputs less information than the --show-all (-A)
option, because it outputs only unmerged changes, and it never outputs the contents of the
second file. Thus the -E option acts like the -e option, except that it brackets the first and
third files from three-way overlapping changes. Similarly, -X acts like -x, except it brackets
all its (necessarily overlapping) changes. For example, for the three-way overlapping change
above, the -E and -X options output the following:

<<<<<<< lao
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

If you are comparing files that have meaningless or uninformative names, you can use the
--label=label option to show alternate names in the ‘<<<<<<<’, ‘|||||||’ and ‘>>>>>>>’
brackets. This option can be given up to three times, once for each input file. Thus ‘diff3
-A --label X --label Y --label Z A B C’ acts like ‘diff3 -A A B C’, except that the out-
put looks like it came from files named ‘X’, ‘Y’ and ‘Z’ rather than from files named ‘A’, ‘B’
and ‘C’.

8.3 Generating the Merged Output Directly
With the --merge (-m) option, diff3 outputs the merged file directly. This is more efficient
than using ed to generate it, and works even with non-text files that ed would reject. If
you specify -m without an ed script option, -A is assumed.

For example, the command ‘diff3 -m lao tzu tao’ (see Section 7.1 [Sample diff3 Input],
page 35, for a copy of the input files) would output the following:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their result.
The two are the same,
But after they are produced,

they have different names.
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

42 Comparing and Merging Files

=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

8.4 How diff3 Merges Incomplete Lines
With -m, incomplete lines (see Chapter 3 [Incomplete Lines], page 27) are simply copied
to the output as they are found; if the merged output ends in an conflict and one of the
input files ends in an incomplete line, succeeding ‘|||||||’, ‘=======’ or ‘>>>>>>>’ brackets
appear somewhere other than the start of a line because they are appended to the incomplete
line.

Without -m, if an ed script option is specified and an incomplete line is found, diff3
generates a warning and acts as if a newline had been present.

8.5 Saving the Changed File
Traditional Unix diff3 generates an ed script without the trailing ‘w’ and ‘q’ commands that
save the changes. System V diff3 generates these extra commands. GNU diff3 normally
behaves like traditional Unix diff3, but with the -i option it behaves like System V diff3
and appends the ‘w’ and ‘q’ commands.

The -i option requires one of the ed script options -AeExX3, and is incompatible with
the merged output option -m.

43

9 Interactive Merging with sdiff

With sdiff, you can merge two files interactively based on a side-by-side -y format com-
parison (see Section 2.3 [Side by Side], page 15). Use --output=file (-o file) to specify
where to put the merged text. See Chapter 16 [Invoking sdiff], page 73, for more details on
the options to sdiff.

Another way to merge files interactively is to use the Emacs Lisp package emerge. See
Section “Emerge” in The GNU Emacs Manual, for more information.

9.1 Specifying diff Options to sdiff
The following sdiff options have the same meaning as for diff. See Section 13.1 [diff
Options], page 61, for the use of these options.

-a -b -d -i -t -v
-B -E -I regexp -Z

--expand-tabs
--ignore-blank-lines --ignore-case
--ignore-matching-lines=regexp --ignore-space-change
--ignore-tab-expansion --ignore-trailing-space
--left-column --minimal --speed-large-files
--strip-trailing-cr --suppress-common-lines
--tabsize=columns --text --version --width=columns

For historical reasons, sdiff has alternate names for some options. The -l option is
equivalent to the --left-column option, and similarly -s is equivalent to --suppress-
common-lines. The meaning of the sdiff -w and -W options is interchanged from that of
diff: with sdiff, -w columns is equivalent to --width=columns, and -W is equivalent to
--ignore-all-space. sdiff without the -o option is equivalent to diff with the --side-
by-side (-y) option (see Section 2.3 [Side by Side], page 15).

9.2 Merge Commands
Groups of common lines, with a blank gutter, are copied from the first file to the output.
After each group of differing lines, sdiff prompts with ‘%’ and pauses, waiting for one of
the following commands. Follow each command with RET.

‘e’ Discard both versions. Invoke a text editor on an empty temporary file, then
copy the resulting file to the output.

‘eb’ Concatenate the two versions, edit the result in a temporary file, then copy the
edited result to the output.

‘ed’ Like ‘eb’, except precede each version with a header that shows what file and
lines the version came from.

‘el’
‘e1’ Edit a copy of the left version, then copy the result to the output.

‘er’
‘e2’ Edit a copy of the right version, then copy the result to the output.

44 Comparing and Merging Files

‘l’
‘1’ Copy the left version to the output.

‘q’ Quit.

‘r’
‘2’ Copy the right version to the output.

‘s’ Silently copy common lines.

‘v’ Verbosely copy common lines. This is the default.

The text editor invoked is specified by the EDITOR environment variable if it is set. The
default is system-dependent.

45

10 Merging with patch

patch takes comparison output produced by diff and applies the differences to a copy
of the original file, producing a patched version. With patch, you can distribute just the
changes to a set of files instead of distributing the entire file set; your correspondents can
apply patch to update their copy of the files with your changes. patch automatically
determines the diff format, skips any leading or trailing headers, and uses the headers to
determine which file to patch. This lets your correspondents feed a mail message containing
a difference listing directly to patch.

patch detects and warns about common problems like forward patches. It saves any
patches that it could not apply. It can also maintain a patchlevel.h file to ensure that
your correspondents apply diffs in the proper order.

patch accepts a series of diffs in its standard input, usually separated by headers that
specify which file to patch. It applies diff hunks (see Section 1.1 [Hunks], page 3) one by
one. If a hunk does not exactly match the original file, patch uses heuristics to try to patch
the file as well as it can. If no approximate match can be found, patch rejects the hunk and
skips to the next hunk. patch normally replaces each file f with its new version, putting
reject hunks (if any) into ‘f.rej’.

See Chapter 15 [Invoking patch], page 69, for detailed information on the options to
patch.

10.1 Selecting the patch Input Format
patch normally determines which diff format the patch file uses by examining its contents.
For patch files that contain particularly confusing leading text, you might need to use one
of the following options to force patch to interpret the patch file as a certain format of diff.
The output formats listed here are the only ones that patch can understand.

-c
--context

context diff.

-e
--ed ed script.

-n
--normal normal diff.

-u
--unified

unified diff.

10.2 Revision Control
If a nonexistent input file is under a revision control system supported by patch, patch
normally asks the user whether to get (or check out) the file from the revision control system.
Patch currently supports RCS, ClearCase and SCCS. Under RCS and SCCS, patch also
asks when the input file is read-only and matches the default version in the revision control
system.

46 Comparing and Merging Files

The --get=num (-g num) option affects access to files under supported revision control
systems. If num is positive, patch gets the file without asking the user; if zero, patch neither
asks the user nor gets the file; and if negative, patch asks the user before getting the file.
The default value of num is given by the value of the PATCH_GET environment variable if it
is set; if not, the default value is zero if patch is conforming to POSIX, negative otherwise.
See Section 10.12 [patch and POSIX], page 53.

The choice of revision control system is unaffected by the VERSION_CONTROL environment
variable (see Section 10.9 [Backup Names], page 50).

10.3 Applying Imperfect Patches
patch tries to skip any leading text in the patch file, apply the diff, and then skip any
trailing text. Thus you can feed a mail message directly to patch, and it should work. If
the entire diff is indented by a constant amount of white space, patch automatically ignores
the indentation. If a context diff contains trailing carriage return on each line, patch auto-
matically ignores the carriage return. If a context diff has been encapsulated by prepending
‘- ’ to lines beginning with ‘-’ as per Internet RFC 934 (ftp://ftp.isi.edu/in-notes/
rfc934.txt), patch automatically unencapsulates the input.

However, certain other types of imperfect input require user intervention or testing.

10.3.1 Applying Patches with Changed White Space
Sometimes mailers, editors, or other programs change spaces into tabs, or vice versa. If this
happens to a patch file or an input file, the files might look the same, but patch will not be
able to match them properly. If this problem occurs, use the -l or --ignore-white-space
option, which makes patch compare blank characters (i.e. spaces and tabs) loosely so that
any nonempty sequence of blanks in the patch file matches any nonempty sequence of blanks
in the input files. Non-blank characters must still match exactly. Each line of the context
must still match a line in the input file.

10.3.2 Applying Reversed Patches
Sometimes people run diff with the new file first instead of second. This creates a diff that
is “reversed”. To apply such patches, give patch the --reverse (-R) option. patch then
attempts to swap each hunk around before applying it. Rejects come out in the swapped
format.

Often patch can guess that the patch is reversed. If the first hunk of a patch fails, patch
reverses the hunk to see if it can apply it that way. If it can, patch asks you if you want
to have the -R option set; if it can’t, patch continues to apply the patch normally. This
method cannot detect a reversed patch if it is a normal diff and the first command is an
append (which should have been a delete) since appends always succeed, because a null
context matches anywhere. But most patches add or change lines rather than delete them,
so most reversed normal diffs begin with a delete, which fails, and patch notices.

If you apply a patch that you have already applied, patch thinks it is a reversed patch
and offers to un-apply the patch. This could be construed as a feature. If you did this
inadvertently and you don’t want to un-apply the patch, just answer ‘n’ to this offer and
to the subsequent “apply anyway” question—or type C-c to kill the patch process.

ftp://ftp.isi.edu/in-notes/rfc934.txt
ftp://ftp.isi.edu/in-notes/rfc934.txt

Chapter 10: Merging with patch 47

10.3.3 Helping patch Find Inexact Matches
For context diffs, and to a lesser extent normal diffs, patch can detect when the line numbers
mentioned in the patch are incorrect, and it attempts to find the correct place to apply each
hunk of the patch. As a first guess, it takes the line number mentioned in the hunk, plus or
minus any offset used in applying the previous hunk. If that is not the correct place, patch
scans both forward and backward for a set of lines matching the context given in the hunk.

First patch looks for a place where all lines of the context match. If it cannot find such
a place, and it is reading a context or unified diff, and the maximum fuzz factor is set to 1
or more, then patch makes another scan, ignoring the first and last line of context. If that
fails, and the maximum fuzz factor is set to 2 or more, it makes another scan, ignoring the
first two and last two lines of context are ignored. It continues similarly if the maximum
fuzz factor is larger.

The --fuzz=lines (-F lines) option sets the maximum fuzz factor to lines. This option
only applies to context and unified diffs; it ignores up to lines lines while looking for the
place to install a hunk. Note that a larger fuzz factor increases the odds of making a faulty
patch. The default fuzz factor is 2; there is no point to setting it to more than the number
of lines of context in the diff, ordinarily 3.

If patch cannot find a place to install a hunk of the patch, it writes the hunk out to
a reject file (see Section 10.10 [Reject Names], page 51, for information on how reject files
are named). It writes out rejected hunks in context format no matter what form the input
patch is in. If the input is a normal or ed diff, many of the contexts are simply null. The
line numbers on the hunks in the reject file may be different from those in the patch file:
they show the approximate location where patch thinks the failed hunks belong in the new
file rather than in the old one.

If the --verbose option is given, then as it completes each hunk patch tells you whether
the hunk succeeded or failed, and if it failed, on which line (in the new file) patch thinks
the hunk should go. If this is different from the line number specified in the diff, it tells
you the offset. A single large offset may indicate that patch installed a hunk in the wrong
place. patch also tells you if it used a fuzz factor to make the match, in which case you
should also be slightly suspicious.

patch cannot tell if the line numbers are off in an ed script, and can only detect wrong
line numbers in a normal diff when it finds a change or delete command. It may have the
same problem with a context diff using a fuzz factor equal to or greater than the number
of lines of context shown in the diff (typically 3). In these cases, you should probably look
at a context diff between your original and patched input files to see if the changes make
sense. Compiling without errors is a pretty good indication that the patch worked, but not
a guarantee.

A patch against an empty file applies to a nonexistent file, and vice versa. See Sec-
tion 10.4 [Creating and Removing], page 48.

patch usually produces the correct results, even when it must make many guesses.
However, the results are guaranteed only when the patch is applied to an exact copy of the
file that the patch was generated from.

48 Comparing and Merging Files

10.3.4 Predicting what patch will do
It may not be obvious in advance what patch will do with a complicated or poorly formatted
patch. If you are concerned that the input might cause patch to modify the wrong files, you
can use the --dry-run option, which causes patch to print the results of applying patches
without actually changing any files. You can then inspect the diagnostics generated by the
dry run to see whether patch will modify the files that you expect. If the patch does not do
what you want, you can modify the patch (or the other options to patch) and try another
dry run. Once you are satisfied with the proposed patch you can apply it by invoking patch
as before, but this time without the --dry-run option.

10.4 Creating and Removing Files
Sometimes when comparing two directories, a file may exist in one directory but not the
other. If you give diff the --new-file (-N) option, or if you supply an old or new file that
is named /dev/null or is empty and is dated the Epoch (1970-01-01 00:00:00 UTC), diff
outputs a patch that adds or deletes the contents of this file. When given such a patch,
patch normally creates a new file or removes the old file. However, when conforming to
POSIX (see Section 10.12 [patch and POSIX], page 53), patch does not remove the old
file, but leaves it empty. The --remove-empty-files (-E) option causes patch to remove
output files that are empty after applying a patch, even if the patch does not appear to be
one that removed the file.

If the patch appears to create a file that already exists, patch asks for confirmation
before applying the patch.

10.5 Updating Timestamps on Patched Files
When patch updates a file, it normally sets the file’s last-modified timestamp to the current
time of day. If you are using patch to track a software distribution, this can cause make to
incorrectly conclude that a patched file is out of date. For example, if syntax.c depends on
syntax.y, and patch updates syntax.c and then syntax.y, then syntax.c will normally
appear to be out of date with respect to syntax.y even though its contents are actually up
to date.

The --set-utc (-Z) option causes patch to set a patched file’s modification and access
times to the timestamps given in context diff headers. If the context diff headers do not
specify a time zone, they are assumed to use Coordinated Universal Time (UTC, often
known as GMT).

The --set-time (-T) option acts like -Z or --set-utc, except that it assumes that
the context diff headers’ timestamps use local time instead of UTC. This option is not
recommended, because patches using local time cannot easily be used by people in other
time zones, and because local timestamps are ambiguous when local clocks move backwards
during daylight-saving time adjustments. If the context diff headers specify a time zone,
this option is equivalent to --set-utc (-Z).

patch normally refrains from setting a file’s timestamps if the file’s original last-modified
timestamp does not match the time given in the diff header, of if the file’s contents do not
exactly match the patch. However, if the --force (-f) option is given, the file’s timestamps
are set regardless.

Chapter 10: Merging with patch 49

Due to the limitations of the current diff format, patch cannot update the times of files
whose contents have not changed. Also, if you set file timestamps to values other than the
current time of day, you should also remove (e.g., with ‘make clean’) all files that depend
on the patched files, so that later invocations of make do not get confused by the patched
files’ times.

10.6 Multiple Patches in a File
If the patch file contains more than one patch, and if you do not specify an input file on
the command line, patch tries to apply each patch as if they came from separate patch
files. This means that it determines the name of the file to patch for each patch, and that
it examines the leading text before each patch for file names and prerequisite revision level
(see Chapter 11 [Making Patches], page 55, for more on that topic).

patch uses the following rules to intuit a file name from the leading text before a patch.
First, patch takes an ordered list of candidate file names as follows:

• If the header is that of a context diff, patch takes the old and new file names in the
header. A name is ignored if it does not have enough slashes to satisfy the -pnum or
--strip=num option. The name /dev/null is also ignored.

• If there is an ‘Index:’ line in the leading garbage and if either the old and new names
are both absent or if patch is conforming to POSIX, patch takes the name in the
‘Index:’ line.

• For the purpose of the following rules, the candidate file names are considered to be in
the order (old, new, index), regardless of the order that they appear in the header.

Then patch selects a file name from the candidate list as follows:
• If some of the named files exist, patch selects the first name if conforming to POSIX,

and the best name otherwise.
• If patch is not ignoring RCS, ClearCase, and SCCS (see Section 10.2 [Revision Control],

page 45), and no named files exist but an RCS, ClearCase, or SCCS master is found,
patch selects the first named file with an RCS, ClearCase, or SCCS master.

• If no named files exist, no RCS, ClearCase, or SCCS master was found, some names
are given, patch is not conforming to POSIX, and the patch appears to create a file,
patch selects the best name requiring the creation of the fewest directories.

• If no file name results from the above heuristics, you are asked for the name of the file
to patch, and patch selects that name.

To determine the best of a nonempty list of file names, patch first takes all the names
with the fewest path name components; of those, it then takes all the names with the
shortest basename; of those, it then takes all the shortest names; finally, it takes the first
remaining name.

See Section 10.12 [patch and POSIX], page 53, to see whether patch is conforming to
POSIX.

10.7 Applying Patches in Other Directories
The --directory=directory (-d directory) option to patch makes directory directory
the current directory for interpreting both file names in the patch file, and file names given

50 Comparing and Merging Files

as arguments to other options (such as -B and -o). For example, while in a mail reading
program, you can patch a file in the /usr/src/emacs directory directly from a message
containing the patch like this:

| patch -d /usr/src/emacs
Sometimes the file names given in a patch contain leading directories, but you keep your

files in a directory different from the one given in the patch. In those cases, you can use
the --strip=number (-pnumber) option to set the file name strip count to number. The
strip count tells patch how many slashes, along with the directory names between them,
to strip from the front of file names. A sequence of one or more adjacent slashes is counted
as a single slash. By default, patch strips off all leading directories, leaving just the base
file names.

For example, suppose the file name in the patch file is /gnu/src/emacs/etc/NEWS. Using
-p0 gives the entire file name unmodified, -p1 gives gnu/src/emacs/etc/NEWS (no leading
slash), -p4 gives etc/NEWS, and not specifying -p at all gives NEWS.

patch looks for each file (after any slashes have been stripped) in the current directory,
or if you used the -d directory option, in that directory.

10.8 Backup Files
Normally, patch creates a backup file if the patch does not exactly match the original input
file, because in that case the original data might not be recovered if you undo the patch with
‘patch -R’ (see Section 10.3.2 [Reversed Patches], page 46). However, when conforming to
POSIX, patch does not create backup files by default. See Section 10.12 [patch and POSIX],
page 53.

The --backup (-b) option causes patch to make a backup file regardless of whether
the patch matches the original input. The --backup-if-mismatch option causes patch to
create backup files for mismatches files; this is the default when not conforming to POSIX.
The --no-backup-if-mismatch option causes patch to not create backup files, even for
mismatched patches; this is the default when conforming to POSIX.

When backing up a file that does not exist, an empty, unreadable backup file is created
as a placeholder to represent the nonexistent file.

10.9 Backup File Names
Normally, patch renames an original input file into a backup file by appending to its name
the extension ‘.orig’, or ‘~’ if using ‘.orig’ would make the backup file name too long.1 The
-z backup-suffix or --suffix=backup-suffix option causes patch to use backup-suffix
as the backup extension instead.

Alternately, you can specify the extension for backup files with the SIMPLE_BACKUP_
SUFFIX environment variable, which the options override.

patch can also create numbered backup files the way GNU Emacs does. With this
method, instead of having a single backup of each file, patch makes a new backup file name
each time it patches a file. For example, the backups of a file named sink would be called,
successively, sink.~1~, sink.~2~, sink.~3~, etc.

1 A coding error in GNU patch version 2.5.4 causes it to always use ‘~’, but this should be fixed in the
next release.

Chapter 10: Merging with patch 51

The -V backup-style or --version-control=backup-style option takes as an argu-
ment a method for creating backup file names. You can alternately control the type of
backups that patch makes with the PATCH_VERSION_CONTROL environment variable, which
the -V option overrides. If PATCH_VERSION_CONTROL is not set, the VERSION_CONTROL en-
vironment variable is used instead. Please note that these options and variables control
backup file names; they do not affect the choice of revision control system (see Section 10.2
[Revision Control], page 45).

The values of these environment variables and the argument to the -V option are like
the GNU Emacs version-control variable (see Section “Backup Names” in The GNU
Emacs Manual, for more information on backup versions in Emacs). They also recognize
synonyms that are more descriptive. The valid values are listed below; unique abbreviations
are acceptable.

t
numbered Always make numbered backups.

nil
existing Make numbered backups of files that already have them, simple backups of the

others. This is the default.

never
simple Always make simple backups.

You can also tell patch to prepend a prefix, such as a directory name, to produce backup
file names. The --prefix=prefix (-B prefix) option makes backup files by prepending
prefix to them. The --basename-prefix=prefix (-Y prefix) prepends prefix to the last
file name component of backup file names instead; for example, -Y ~ causes the backup
name for dir/file.c to be dir/~file.c. If you use either of these prefix options, the
suffix-based options are ignored.

If you specify the output file with the -o option, that file is the one that is backed up,
not the input file.

Options that affect the names of backup files do not affect whether backups are made.
For example, if you specify the --no-backup-if-mismatch option, none of the options
described in this section have any affect, because no backups are made.

10.10 Reject File Names
The names for reject files (files containing patches that patch could not find a place to
apply) are normally the name of the output file with ‘.rej’ appended (or ‘#’ if using ‘.rej’
would make the backup file name too long).

Alternatively, you can tell patch to place all of the rejected patches in a single file. The
-r reject-file or --reject-file=reject-file option uses reject-file as the reject file
name.

10.11 Messages and Questions from patch
patch can produce a variety of messages, especially if it has trouble decoding its input. In
a few situations where it’s not sure how to proceed, patch normally prompts you for more
information from the keyboard. There are options to produce more or fewer messages, to

52 Comparing and Merging Files

have it not ask for keyboard input, and to affect the way that file names are quoted in
messages.

patch exits with status 0 if all hunks are applied successfully, 1 if some hunks cannot be
applied, and 2 if there is more serious trouble. When applying a set of patches in a loop,
you should check the exit status, so you don’t apply a later patch to a partially patched
file.

10.11.1 Controlling the Verbosity of patch
You can cause patch to produce more messages by using the --verbose option. For exam-
ple, when you give this option, the message ‘Hmm...’ indicates that patch is reading text
in the patch file, attempting to determine whether there is a patch in that text, and if so,
what kind of patch it is.

You can inhibit all terminal output from patch, unless an error occurs, by using the -s,
--quiet, or --silent option.

10.11.2 Inhibiting Keyboard Input
There are two ways you can prevent patch from asking you any questions. The --force
(-f) option assumes that you know what you are doing. It causes patch to do the following:

• Skip patches that do not contain file names in their headers.
• Patch files even though they have the wrong version for the ‘Prereq:’ line in the patch;
• Assume that patches are not reversed even if they look like they are.

The --batch (-t) option is similar to -f, in that it suppresses questions, but it makes
somewhat different assumptions:

• Skip patches that do not contain file names in their headers (the same as -f).
• Skip patches for which the file has the wrong version for the ‘Prereq:’ line in the patch;
• Assume that patches are reversed if they look like they are.

10.11.3 patch Quoting Style
When patch outputs a file name in a diagnostic message, it can format the name in any of
several ways. This can be useful to output file names unambiguously, even if they contain
punctuation or special characters like newlines. The --quoting-style=word option controls
how names are output. The word should be one of the following:

‘literal’ Output names as-is.

‘shell’ Quote names for the shell if they contain shell metacharacters or would cause
ambiguous output.

‘shell-always’
Quote names for the shell, even if they would normally not require quoting.

‘c’ Quote names as for a C language string.

‘escape’ Quote as with ‘c’ except omit the surrounding double-quote characters.

You can specify the default value of the --quoting-style option with the environment
variable QUOTING_STYLE. If that environment variable is not set, the default value is ‘shell’,
but this default may change in a future version of patch.

Chapter 10: Merging with patch 53

10.12 patch and the POSIX Standard
If you specify the --posix option, or set the POSIXLY_CORRECT environment variable, patch
conforms more strictly to the POSIX standard, as follows:

• Take the first existing file from the list (old, new, index) when intuiting file names from
diff headers. See Section 10.6 [Multiple Patches], page 49.

• Do not remove files that are removed by a diff. See Section 10.4 [Creating and Remov-
ing], page 48.

• Do not ask whether to get files from RCS, ClearCase, or SCCS. See Section 10.2
[Revision Control], page 45.

• Require that all options precede the files in the command line.
• Do not backup files, even when there is a mismatch. See Section 10.8 [Backups],

page 50.

10.13 GNU patch and Traditional patch
The current version of GNU patch normally follows the POSIX standard. See Section 10.12
[patch and POSIX], page 53, for the few exceptions to this general rule.

Unfortunately, POSIX redefined the behavior of patch in several important ways. You
should be aware of the following differences if you must interoperate with traditional patch,
or with GNU patch version 2.1 and earlier.

• In traditional patch, the -p option’s operand was optional, and a bare -p was equivalent
to -p0. The -p option now requires an operand, and -p 0 is now equivalent to -p0.
For maximum compatibility, use options like -p0 and -p1.
Also, traditional patch simply counted slashes when stripping path prefixes; patch now
counts pathname components. That is, a sequence of one or more adjacent slashes now
counts as a single slash. For maximum portability, avoid sending patches containing
// in file names.

• In traditional patch, backups were enabled by default. This behavior is now enabled
with the --backup (-b) option.
Conversely, in POSIX patch, backups are never made, even when there is a mismatch.
In GNU patch, this behavior is enabled with the --no-backup-if-mismatch option,
or by conforming to POSIX.
The -b suffix option of traditional patch is equivalent to the ‘-b -z suffix’ options
of GNU patch.

• Traditional patch used a complicated (and incompletely documented) method to intuit
the name of the file to be patched from the patch header. This method did not conform
to POSIX, and had a few gotchas. Now patch uses a different, equally complicated
(but better documented) method that is optionally POSIX-conforming; we hope it
has fewer gotchas. The two methods are compatible if the file names in the context
diff header and the ‘Index:’ line are all identical after prefix-stripping. Your patch is
normally compatible if each header’s file names all contain the same number of slashes.

• When traditional patch asked the user a question, it sent the question to standard error
and looked for an answer from the first file in the following list that was a terminal:
standard error, standard output, /dev/tty, and standard input. Now patch sends

54 Comparing and Merging Files

questions to standard output and gets answers from /dev/tty. Defaults for some
answers have been changed so that patch never goes into an infinite loop when using
default answers.

• Traditional patch exited with a status value that counted the number of bad hunks,
or with status 1 if there was real trouble. Now patch exits with status 1 if some hunks
failed, or with 2 if there was real trouble.

• Limit yourself to the following options when sending instructions meant to be executed
by anyone running GNU patch, traditional patch, or a patch that conforms to POSIX.
Spaces are significant in the following list, and operands are required.

-c
-d dir
-D define
-e
-l
-n
-N
-o outfile
-pnum
-R
-r rejectfile

55

11 Tips for Making and Using Patches

Use some common sense when making and using patches. For example, when sending bug
fixes to a program’s maintainer, send several small patches, one per independent subject,
instead of one large, harder-to-digest patch that covers all the subjects.

Here are some other things you should keep in mind if you are going to distribute patches
for updating a software package.

11.1 Tips for Patch Producers
To create a patch that changes an older version of a package into a newer version, first make
a copy of the older and newer versions in adjacent subdirectories. It is common to do that
by unpacking tar archives of the two versions.

To generate the patch, use the command ‘diff -Naur old new’ where old and new iden-
tify the old and new directories. The names old and new should not contain any slashes.
The -N option lets the patch create and remove files; -a lets the patch update non-text
files; -u generates useful timestamps and enough context; and -r lets the patch update
subdirectories. Here is an example command, using Bourne shell syntax:

diff -Naur gcc-3.0.3 gcc-3.0.4

Tell your recipients how to apply the patches. This should include which working di-
rectory to use, and which patch options to use; the option ‘-p1’ is recommended. Test
your procedure by pretending to be a recipient and applying your patches to a copy of the
original files.

See Section 11.3 [Avoiding Common Mistakes], page 55, for how to avoid common mis-
takes when generating a patch.

11.2 Tips for Patch Consumers
A patch producer should tell recipients how to apply the patches, so the first rule of thumb
for a patch consumer is to follow the instructions supplied with the patch.

GNU diff can analyze files with arbitrarily long lines and files that end in incomplete
lines. However, older versions of patch cannot patch such files. If you are having trouble
applying such patches, try upgrading to a recent version of GNU patch.

11.3 Avoiding Common Mistakes
When producing a patch for multiple files, apply diff to directories whose names do not
have slashes. This reduces confusion when the patch consumer specifies the -pnumber
option, since this option can have surprising results when the old and new file names have
different numbers of slashes. For example, do not send a patch with a header that looks
like this:

diff -Naur v2.0.29/prog/README prog/README
--- v2.0.29/prog/README 2002-03-10 23:30:39.942229878 -0800
+++ prog/README 2002-03-17 20:49:32.442260588 -0800

56 Comparing and Merging Files

because the two file names have different numbers of slashes, and different versions of
patch interpret the file names differently. To avoid confusion, send output that looks like
this instead:

diff -Naur v2.0.29/prog/README v2.0.30/prog/README
--- v2.0.29/prog/README 2002-03-10 23:30:39.942229878 -0800
+++ v2.0.30/prog/README 2002-03-17 20:49:32.442260588 -0800

Make sure you have specified the file names correctly, either in a context diff header or
with an ‘Index:’ line. Take care to not send out reversed patches, since these make people
wonder whether they have already applied the patch.

Avoid sending patches that compare backup file names like README.orig or README~,
since this might confuse patch into patching a backup file instead of the real file. Instead,
send patches that compare the same base file names in different directories, e.g. old/README
and new/README.

To save people from partially applying a patch before other patches that should have
gone before it, you can make the first patch in the patch file update a file with a name like
patchlevel.h or version.c, which contains a patch level or version number. If the input
file contains the wrong version number, patch will complain immediately.

An even clearer way to prevent this problem is to put a ‘Prereq:’ line before the patch.
If the leading text in the patch file contains a line that starts with ‘Prereq:’, patch takes
the next word from that line (normally a version number) and checks whether the next
input file contains that word, preceded and followed by either white space or a newline.
If not, patch prompts you for confirmation before proceeding. This makes it difficult to
accidentally apply patches in the wrong order.

11.4 Generating Smaller Patches
The simplest way to generate a patch is to use ‘diff -Naur’ (see Section 11.1 [Tips for Patch
Producers], page 55), but you might be able to reduce the size of the patch by renaming or
removing some files before making the patch. If the older version of the package contains
any files that the newer version does not, or if any files have been renamed between the
two versions, make a list of rm and mv commands for the user to execute in the old version
directory before applying the patch. Then run those commands yourself in the scratch
directory.

If there are any files that you don’t need to include in the patch because they can easily be
rebuilt from other files (for example, TAGS and output from yacc and makeinfo), exclude
them from the patch by giving diff the -x pattern option (see Chapter 4 [Comparing
Directories], page 29). If you want your patch to modify a derived file because your recipients
lack tools to build it, make sure that the patch for the derived file follows any patches for
files that it depends on, so that the recipients’ timestamps will not confuse make.

Now you can create the patch using ‘diff -Naur’. Make sure to specify the scratch
directory first and the newer directory second.

Add to the top of the patch a note telling the user any rm and mv commands to run
before applying the patch. Then you can remove the scratch directory.

You can also shrink the patch size by using fewer lines of context, but bear in mind that
patch typically needs at least two lines for proper operation when patches do not exactly
match the input files.

57

12 Invoking cmp

The cmp command compares two files, and if they differ, tells the first byte and line number
where they differ or reports that one file is a prefix of the other. Bytes and lines are
numbered starting with 1. The arguments of cmp are as follows:

cmp options... from-file [to-file [from-skip [to-skip]]]
The file name - is always the standard input. cmp also uses the standard input if one

file name is omitted. The from-skip and to-skip operands specify how many bytes to ignore
at the start of each file; they are equivalent to the --ignore-initial=from-skip:to-skip
option.

By default, cmp outputs nothing if the two files have the same contents. If the two files
have bytes that differ, cmp reports the location of the first difference to standard output:

from-file to-file differ: char byte-number, line line-number
If one file is a prefix of the other, cmp reports the shorter file’s name to standard error,
followed by a blank and extra information about the shorter file:

cmp: EOF on shorter-file extra-info
The message formats can differ outside the POSIX locale. POSIX allows but does not

require the EOF diagnostic’s file name to be followed by a blank and additional information.
An exit status of 0 means no differences were found, 1 means some differences were

found, and 2 means trouble.

12.1 Options to cmp
Below is a summary of all of the options that GNU cmp accepts. Most options have two
equivalent names, one of which is a single letter preceded by ‘-’, and the other of which is a
long name preceded by ‘--’. Multiple single letter options (unless they take an argument)
can be combined into a single command line word: -bl is equivalent to -b -l.

-b
--print-bytes

Print the differing bytes. Display each control byte as a ‘^’ followed by an
ASCII letter, ‘@’, ‘[’, ‘\’, ‘]’, ‘^’ or ‘_’. Precede each byte with the high bit set
with ‘M-’, which stands for “meta”. A control byte is any byte with the high
bit clear that does not represent a printable ASCII character including space.

--help Output a summary of usage and then exit.

-i skip
--ignore-initial=skip

Ignore any differences in the first skip bytes of the input files. Treat files with
fewer than skip bytes as if they are empty. If skip is of the form from-skip:to-
skip, skip the first from-skip bytes of the first input file and the first to-skip
bytes of the second.

-l
--verbose

Output the (decimal) byte numbers and (octal) values of all differing bytes,
instead of the default standard output. Each output line contains a differing

58 Comparing and Merging Files

byte’s number relative to the start of the input, followed by the differing byte
values. Byte numbers start at 1. Also, output the EOF message if one file is
shorter than the other.

-n count
--bytes=count

Compare at most count input bytes.

-s
--quiet
--silent Do not print anything; only return an exit status indicating whether the files

differ.

-v
--version

Output version information and then exit.

In the above table, operands that are byte counts are normally decimal, but may be
preceded by ‘0’ for octal and ‘0x’ for hexadecimal.

A byte count can be followed by a suffix to specify a multiple of the count. A bare letter,
or one followed by ‘iB’, specifies a multiple using powers of 1024. A letter followed by ‘B’
specifies powers of 1000 instead. For example, ‘-n 1M’ and ‘-n 1MiB’ are equivalent to ‘-n
1048576’, whereas ‘-n 1MB’ is equivalent to ‘-n 1000000’.

The following suffixes are defined. Large sizes like 1Q may be rejected by your computer
due to limitations of its arithmetic.

‘kB’ kilobyte: 103 = 1000.

‘k’
‘K’
‘KiB’ kibibyte: 210 = 1024. ‘K’ is special: the SI prefix is ‘k’ and the ISO/IEC

80000-13 prefix is ‘Ki’, but tradition and POSIX use ‘k’ to mean ‘KiB’.

‘MB’ megabyte: 106 = 1, 000, 000.

‘M’
‘MiB’ mebibyte: 220 = 1, 048, 576.

‘GB’ gigabyte: 109 = 1, 000, 000, 000.

‘G’
‘GiB’ gibibyte: 230 = 1, 073, 741, 824.

‘TB’ terabyte: 1012 = 1, 000, 000, 000, 000.

‘T’
‘TiB’ tebibyte: 240 = 1, 099, 511, 627, 776.

‘PB’ petabyte: 1015 = 1, 000, 000, 000, 000, 000.

‘P’
‘PiB’ pebibyte: 250 = 1, 125, 899, 906, 842, 624.

‘EB’ exabyte: 1018 = 1, 000, 000, 000, 000, 000, 000.

Chapter 12: Invoking cmp 59

‘E’
‘EiB’ exbibyte: 260 = 1, 152, 921, 504, 606, 846, 976.

‘ZB’ zettabyte: 1021 = 1, 000, 000, 000, 000, 000, 000, 000

‘Z’
‘ZiB’ zebibyte: 270 = 1, 180, 591, 620, 717, 411, 303, 424.

‘YB’ yottabyte: 1024 = 1, 000, 000, 000, 000, 000, 000, 000, 000.

‘Y’
‘YiB’ yobibyte: 280 = 1, 208, 925, 819, 614, 629, 174, 706, 176.

‘RB’ ronnabyte: 1027 = 1, 000, 000, 000, 000, 000, 000, 000, 000, 000.

‘R’
‘RiB’ robibyte: 290 = 1, 237, 940, 039, 285, 380, 274, 899, 124, 224.

‘QB’ quettabyte: 1030 = 1, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000.

‘Q’
‘QiB’ quebibyte: 2100 = 1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 376.

61

13 Invoking diff

The format for running the diff command is:
diff options... files...

In the simplest case, two file names from-file and to-file are given, and diff compares
the contents of from-file and to-file. A file name of - stands for the standard input.

If one file is a directory and the other is not, diff compares the file in the directory
whose name is that of the non-directory. The non-directory file must not be -.

If two file names are given and both are directories, diff compares corresponding
files in both directories, in alphabetical order; this comparison is not recursive unless the
--recursive (-r) option is given. diff never compares the actual contents of a directory as
if it were a file. The file that is fully specified may not be standard input, because standard
input is nameless and the notion of “file with the same name” does not apply.

If the --from-file=file option is given, the number of file names is arbitrary, and file
is compared to each named file. Similarly, if the --to-file=file option is given, each
named file is compared to file.

diff options begin with ‘-’, so normally file names may not begin with ‘-’. However,
-- as an argument by itself treats the remaining arguments as file names even if they begin
with ‘-’.

An exit status of 0 means no differences were found, 1 means some differences were
found, and 2 means trouble.

13.1 Options to diff
Below is a summary of all of the options that GNU diff accepts. Most options have two
equivalent names, one of which is a single letter preceded by ‘-’, and the other of which is a
long name preceded by ‘--’. Multiple single letter options (unless they take an argument)
can be combined into a single command line word: -ac is equivalent to -a -c. Long named
options can be abbreviated to any unique prefix of their name. Brackets ([and]) indicate
that an option takes an optional argument.

-a
--text Treat all files as text and compare them line-by-line, even if they do not seem

to be text. See Section 1.7 [Binary], page 6.

-b
--ignore-space-change

Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

-B
--ignore-blank-lines

Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank
Lines], page 4.

--binary Read and write data in binary mode. See Section 1.7 [Binary], page 6.

-c Use the context output format, showing three lines of context. See Section 2.2.1
[Context Format], page 10.

62 Comparing and Merging Files

--color [=when]
Specify whether to use color for distinguishing different contexts, like header,
added or removed lines. when may be omitted, or one of:

• none Do not use color at all. This is the default when no –color option is
specified.

• auto Use color only if standard output is a terminal.
• always Always use color.

Specifying --color and no when is equivalent to --color=auto.

-C lines
--context[=lines]

Use the context output format, showing lines (an integer) lines of context, or
three if lines is not given. See Section 2.2.1 [Context Format], page 10. For
proper operation, patch typically needs at least two lines of context.
For compatibility diff also supports an obsolete option syntax -lines that
has effect when combined with -c, -p, or -u. New scripts should use -U lines
(-C lines) instead.

--changed-group-format=format
Use format to output a line group containing differing lines from both files in
if-then-else format. See Section 2.6.1 [Line Group Formats], page 20.

-d
--minimal

Change the algorithm perhaps find a smaller set of changes. This makes diff
slower (sometimes much slower). See Chapter 6 [diff Performance], page 33.

-D name
--ifdef=name

Make merged ‘#ifdef’ format output, conditional on the preprocessor macro
name. See Section 2.6 [If-then-else], page 19.

-e
--ed Make output that is a valid ed script. See Section 2.5.1 [ed Scripts], page 17.

-E
--ignore-tab-expansion

Ignore changes due to tab expansion. See Section 1.2 [White Space], page 4.

-f
--forward-ed

Make output that looks vaguely like an ed script but has changes in the order
they appear in the file. See Section 2.5.2 [Forward ed], page 18.

-F regexp
--show-function-line=regexp

In context and unified format, for each hunk of differences, show some of the last
preceding line that matches regexp. See Section 2.2.3.1 [Specified Headings],
page 13.

Chapter 13: Invoking diff 63

--from-file=file
Compare file to each operand; file may be a directory.

--help Output a summary of usage and then exit.
--horizon-lines=lines

Do not discard the last lines lines of the common prefix and the first lines lines
of the common suffix. See Chapter 6 [diff Performance], page 33.

-i
--ignore-case

Ignore changes in case; consider upper- and lower-case letters equivalent. See
Section 1.5 [Case Folding], page 5.

-I regexp
--ignore-matching-lines=regexp

Ignore changes that just insert or delete lines that match regexp. See Section 1.4
[Specified Lines], page 5.

--ignore-file-name-case
Ignore case when comparing file names. For example, recursive comparison of
d to e might compare the contents of d/Init and e/inIt. At the top level,
‘diff d inIt’ might compare the contents of d/Init and inIt. See Chapter 4
[Comparing Directories], page 29.

-l
--paginate

Pass the output through pr to paginate it. See Section 5.3 [Pagination], page 32.
-L label
--label=label

Use label instead of the file name in the context format (see Section 2.2.1 [Con-
text Format], page 10) and unified format (see Section 2.2.2 [Unified Format],
page 12) headers. See Section 2.5.3 [RCS], page 19.

--left-column
Print only the left column of two common lines in side by side format. See
Section 2.3.1 [Side by Side Format], page 15.

--line-format=format
Use format to output all input lines in if-then-else format. See Section 2.6.2
[Line Formats], page 22.

-n
--rcs Output RCS-format diffs; like -f except that each command specifies the num-

ber of lines affected. See Section 2.5.3 [RCS], page 19.
-N
--new-file

If one file is missing, treat it as present but empty. See Chapter 4 [Comparing
Directories], page 29.

--new-group-format=format
Use format to output a group of lines taken from just the second file in if-then-
else format. See Section 2.6.1 [Line Group Formats], page 20.

64 Comparing and Merging Files

--new-line-format=format
Use format to output a line taken from just the second file in if-then-else format.
See Section 2.6.2 [Line Formats], page 22.

--no-dereference
Act on symbolic links themselves instead of what they point to. Two symbolic
links are deemed equal only when each points to precisely the same name.

--old-group-format=format
Use format to output a group of lines taken from just the first file in if-then-else
format. See Section 2.6.1 [Line Group Formats], page 20.

--old-line-format=format
Use format to output a line taken from just the first file in if-then-else format.
See Section 2.6.2 [Line Formats], page 22.

-p
--show-c-function

Show which C function each change is in. See Section 2.2.3.2 [C Function
Headings], page 14.

--palette=palette
Specify what color palette to use when colored output is enabled. It defaults to
‘rs=0:hd=1:ad=32:de=31:ln=36’ for red deleted lines, green added lines, cyan
line numbers, bold header.
Supported capabilities are as follows.

ad=32
SGR substring for added lines. The default is green foreground.

de=31
SGR substring for deleted lines. The default is red foreground.

hd=1
SGR substring for chunk header. The default is bold foreground.

ln=36
SGR substring for line numbers. The default is cyan foreground.

-q
--brief Report only whether the files differ, not the details of the differences. See

Section 1.6 [Brief], page 5.

-r
--recursive

When comparing directories, recursively compare any subdirectories found. See
Chapter 4 [Comparing Directories], page 29.

-s
--report-identical-files

Report when two files are the same. See Chapter 4 [Comparing Directories],
page 29.

Chapter 13: Invoking diff 65

-S file
--starting-file=file

When comparing directories, start with the file file. This is used for resuming
an aborted comparison. See Chapter 4 [Comparing Directories], page 29.

--speed-large-files
Use heuristics to speed handling of large files that have numerous scattered
small changes. See Chapter 6 [diff Performance], page 33.

--strip-trailing-cr
Strip any trailing carriage return at the end of an input line. See Section 1.7
[Binary], page 6.

--suppress-common-lines
Do not print common lines in side by side format. See Section 2.3.1 [Side by
Side Format], page 15.

-t
--expand-tabs

Expand tabs to spaces in the output, to preserve the alignment of tabs in the
input files. See Section 5.1 [Tabs], page 31.

-T
--initial-tab

Output a tab rather than a space before the text of a line in normal or context
format. This causes the alignment of tabs in the line to look normal. See
Section 5.1 [Tabs], page 31.

--tabsize=columns
Assume that tab stops are set every columns (default 8) print columns. See
Section 5.1 [Tabs], page 31.

--suppress-blank-empty
Suppress any blanks before newlines when printing the representation of an
empty line, when outputting normal, context, or unified format. See Section 5.2
[Trailing Blanks], page 31.

--to-file=file
Compare each operand to file; file may be a directory.

-u Use the unified output format, showing three lines of context. See Section 2.2.2
[Unified Format], page 12.

--unchanged-group-format=format
Use format to output a group of common lines taken from both files in if-then-
else format. See Section 2.6.1 [Line Group Formats], page 20.

--unchanged-line-format=format
Use format to output a line common to both files in if-then-else format. See
Section 2.6.2 [Line Formats], page 22.

--unidirectional-new-file
If a first file is missing, treat it as present but empty. See Chapter 4 [Comparing
Directories], page 29.

66 Comparing and Merging Files

-U lines
--unified[=lines]

Use the unified output format, showing lines (an integer) lines of context, or
three if lines is not given. See Section 2.2.2 [Unified Format], page 12. For
proper operation, patch typically needs at least two lines of context.
On older systems, diff supports an obsolete option -lines that has effect
when combined with -u. POSIX 1003.1-2001 (see Chapter 17 [Standards con-
formance], page 77) does not allow this; use -U lines instead.

-v
--version

Output version information and then exit.

-w
--ignore-all-space

Ignore white space when comparing lines. See Section 1.2 [White Space], page 4.

-W columns
--width=columns

Output at most columns (default 130) print columns per line in side by side
format. See Section 2.3.1 [Side by Side Format], page 15.

-x pattern
--exclude=pattern

When comparing directories, ignore files and subdirectories whose basenames
match pattern. See Chapter 4 [Comparing Directories], page 29.

-X file
--exclude-from=file

When comparing directories, ignore files and subdirectories whose basenames
match any pattern contained in file. See Chapter 4 [Comparing Directories],
page 29.

-y
--side-by-side

Use the side by side output format. See Section 2.3.1 [Side by Side Format],
page 15.

-Z
--ignore-trailing-space

Ignore white space at line end. See Section 1.2 [White Space], page 4.

67

14 Invoking diff3

The diff3 command compares three files and outputs descriptions of their differences. Its
arguments are as follows:

diff3 options... mine older yours
The files to compare are mine, older, and yours. At most one of these three file names

may be -, which tells diff3 to read the standard input for that file.
An exit status of 0 means diff3 was successful, 1 means some conflicts were found, and

2 means trouble.

14.1 Options to diff3
Below is a summary of all of the options that GNU diff3 accepts. Multiple single let-
ter options (unless they take an argument) can be combined into a single command line
argument.

-a
--text Treat all files as text and compare them line-by-line, even if they do not appear

to be text. See Section 1.7 [Binary], page 6.

-A
--show-all

Incorporate all unmerged changes from older to yours into mine, surrounding
conflicts with bracket lines. See Section 8.2 [Marking Conflicts], page 40.

--diff-program=program
Use the compatible comparison program program to compare files instead of
diff.

-e
--ed Generate an ed script that incorporates all the changes from older to yours into

mine. See Section 8.1 [Which Changes], page 39.

-E
--show-overlap

Like -e, except bracket lines from overlapping changes’ first and third files. See
Section 8.2 [Marking Conflicts], page 40. With -E, an overlapping change looks
like this:

<<<<<<< mine
lines from mine
=======
lines from yours
>>>>>>> yours

--help Output a summary of usage and then exit.

-i Generate ‘w’ and ‘q’ commands at the end of the ed script for System V com-
patibility. This option must be combined with one of the -AeExX3 options,
and may not be combined with -m. See Section 8.5 [Saving the Changed File],
page 42.

68 Comparing and Merging Files

--label=label
Use the label label for the brackets output by the -A, -E and -X options. This
option may be given up to three times, one for each input file. The default labels
are the names of the input files. Thus ‘diff3 --label X --label Y --label Z
-m A B C’ acts like ‘diff3 -m A B C’, except that the output looks like it came
from files named ‘X’, ‘Y’ and ‘Z’ rather than from files named ‘A’, ‘B’ and ‘C’.
See Section 8.2 [Marking Conflicts], page 40.

-m
--merge Apply the edit script to the first file and send the result to standard output.

Unlike piping the output from diff3 to ed, this works even for binary files
and incomplete lines. -A is assumed if no edit script option is specified. See
Section 8.3 [Bypassing ed], page 41.

--strip-trailing-cr
Strip any trailing carriage return at the end of an input line. See Section 1.7
[Binary], page 6.

-T
--initial-tab

Output a tab rather than two spaces before the text of a line in normal format.
This causes the alignment of tabs in the line to look normal. See Section 5.1
[Tabs], page 31.

-v
--version

Output version information and then exit.

-x
--overlap-only

Like -e, except output only the overlapping changes. See Section 8.1 [Which
Changes], page 39.

-X Like -E, except output only the overlapping changes. In other words, like -x,
except bracket changes as in -E. See Section 8.2 [Marking Conflicts], page 40.

-3
--easy-only

Like -e, except output only the nonoverlapping changes. See Section 8.1 [Which
Changes], page 39.

69

15 Invoking patch

Normally patch is invoked like this:
patch <patchfile

The full format for invoking patch is:
patch options... [origfile [patchfile]]

You can also specify where to read the patch from with the -i patchfile or
--input=patchfile option. If you do not specify patchfile, or if patchfile is -, patch
reads the patch (that is, the diff output) from the standard input.

If you do not specify an input file on the command line, patch tries to intuit from the
leading text (any text in the patch that comes before the diff output) which file to edit.
See Section 10.6 [Multiple Patches], page 49.

By default, patch replaces the original input file with the patched version, possibly after
renaming the original file into a backup file (see Section 10.9 [Backup Names], page 50, for
a description of how patch names backup files). You can also specify where to put the
output with the -o file or --output=file option; however, do not use this option if file
is one of the input files.

15.1 Options to patch
Here is a summary of all of the options that GNU patch accepts. See Section 10.13 [patch
and Tradition], page 53, for which of these options are safe to use in older versions of patch.

Multiple single-letter options that do not take an argument can be combined into a single
command line argument with only one dash.

-b
--backup Back up the original contents of each file, even if backups would normally not

be made. See Section 10.8 [Backups], page 50.

-B prefix
--prefix=prefix

Prepend prefix to backup file names. See Section 10.9 [Backup Names], page 50.

--backup-if-mismatch
Back up the original contents of each file if the patch does not exactly match
the file. This is the default behavior when not conforming to POSIX. See
Section 10.8 [Backups], page 50.

--binary Read and write all files in binary mode, except for standard output and
/dev/tty. This option has no effect on POSIX-conforming systems like
GNU/Linux. On systems where this option makes a difference, the patch
should be generated by ‘diff -a --binary’. See Section 1.7 [Binary], page 6.

-c
--context

Interpret the patch file as a context diff. See Section 10.1 [patch Input], page 45.

70 Comparing and Merging Files

-d directory
--directory=directory

Make directory directory the current directory for interpreting both file names
in the patch file, and file names given as arguments to other options. See
Section 10.7 [patch Directories], page 49.

-D name
--ifdef=name

Make merged if-then-else output using name. See Section 2.6 [If-then-else],
page 19.

--dry-run
Print the results of applying the patches without actually changing any files.
See Section 10.3.4 [Dry Runs], page 48.

-e
--ed Interpret the patch file as an ed script. See Section 10.1 [patch Input], page 45.

-E
--remove-empty-files

Remove output files that are empty after the patches have been applied. See
Section 10.4 [Creating and Removing], page 48.

-f
--force Assume that the user knows exactly what he or she is doing, and do not ask

any questions. See Section 10.11 [patch Messages], page 51.

-F lines
--fuzz=lines

Set the maximum fuzz factor to lines. See Section 10.3.3 [Inexact], page 47.

-g num
--get=num

If num is positive, get input files from a revision control system as necessary; if
zero, do not get the files; if negative, ask the user whether to get the files. See
Section 10.2 [Revision Control], page 45.

--help Output a summary of usage and then exit.

-i patchfile
--input=patchfile

Read the patch from patchfile rather than from standard input. See Section 15.1
[patch Options], page 69.

-l
--ignore-white-space

Let any sequence of blanks (spaces or tabs) in the patch file match any sequence
of blanks in the input file. See Section 10.3.1 [Changed White Space], page 46.

-n
--normal Interpret the patch file as a normal diff. See Section 10.1 [patch Input], page 45.

Chapter 15: Invoking patch 71

-N
--forward

Ignore patches that patch thinks are reversed or already applied. See also -R.
See Section 10.3.2 [Reversed Patches], page 46.

--no-backup-if-mismatch
Do not back up the original contents of files. This is the default behavior when
conforming to POSIX. See Section 10.8 [Backups], page 50.

-o file
--output=file

Use file as the output file name. See Section 15.1 [patch Options], page 69.

-pnumber
--strip=number

Set the file name strip count to number. See Section 10.7 [patch Directories],
page 49.

--posix Conform to POSIX, as if the POSIXLY_CORRECT environment variable had been
set. See Section 10.12 [patch and POSIX], page 53.

--quoting-style=word
Use style word to quote names in diagnostics, as if the QUOTING_STYLE environ-
ment variable had been set to word. See Section 10.11.3 [patch Quoting Style],
page 52.

-r reject-file
--reject-file=reject-file

Use reject-file as the reject file name. See Section 10.10 [Reject Names], page 51.

-R
--reverse

Assume that this patch was created with the old and new files swapped. See
Section 10.3.2 [Reversed Patches], page 46.

-s
--quiet
--silent Work silently unless an error occurs. See Section 10.11 [patch Messages],

page 51.

-t
--batch Do not ask any questions. See Section 10.11 [patch Messages], page 51.

-T
--set-time

Set the modification and access times of patched files from timestamps given in
context diff headers, assuming that the context diff headers use local time. See
Section 10.5 [Patching Timestamps], page 48.

-u
--unified

Interpret the patch file as a unified diff. See Section 10.1 [patch Input], page 45.

72 Comparing and Merging Files

-v
--version

Output version information and then exit.

-V backup-style
--version=control=backup-style

Select the naming convention for backup file names. See Section 10.9 [Backup
Names], page 50.

--verbose
Print more diagnostics than usual. See Section 10.11 [patch Messages], page 51.

-x number
--debug=number

Set internal debugging flags. Of interest only to patch patchers.

-Y prefix
--basename-prefix=prefix

Prepend prefix to base names of backup files. See Section 10.9 [Backup Names],
page 50.

-z suffix
--suffix=suffix

Use suffix as the backup extension instead of ‘.orig’ or ‘~’. See Section 10.9
[Backup Names], page 50.

-Z
--set-utc

Set the modification and access times of patched files from timestamps given
in context diff headers, assuming that the context diff headers use UTC. See
Section 10.5 [Patching Timestamps], page 48.

73

16 Invoking sdiff

The sdiff command merges two files and interactively outputs the results. Its arguments
are as follows:

sdiff -o outfile options... from-file to-file
This merges from-file with to-file, with output to outfile. If from-file is a directory and

to-file is not, sdiff compares the file in from-file whose file name is that of to-file, and vice
versa. from-file and to-file may not both be directories.

sdiff options begin with ‘-’, so normally from-file and to-file may not begin with ‘-’.
However, -- as an argument by itself treats the remaining arguments as file names even if
they begin with ‘-’. You may not use - as an input file.

sdiff without --output (-o) produces a side-by-side difference. This usage is obsolete;
use the --side-by-side (-y) option of diff instead.

An exit status of 0 means no differences were found, 1 means some differences were
found, and 2 means trouble.

16.1 Options to sdiff
Below is a summary of all of the options that GNU sdiff accepts. Each option has two
equivalent names, one of which is a single letter preceded by ‘-’, and the other of which
is a long name preceded by ‘--’. Multiple single letter options (unless they take an argu-
ment) can be combined into a single command line argument. Long named options can be
abbreviated to any unique prefix of their name.
-a
--text Treat all files as text and compare them line-by-line, even if they do not appear

to be text. See Section 1.7 [Binary], page 6.
-b
--ignore-space-change

Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.
-B
--ignore-blank-lines

Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank
Lines], page 4.

-d
--minimal

Change the algorithm to perhaps find a smaller set of changes. This makes
sdiff slower (sometimes much slower). See Chapter 6 [diff Performance],
page 33.

--diff-program=program
Use the compatible comparison program program to compare files instead of
diff.

-E
--ignore-tab-expansion

Ignore changes due to tab expansion. See Section 1.2 [White Space], page 4.

74 Comparing and Merging Files

--help Output a summary of usage and then exit.

-i
--ignore-case

Ignore changes in case; consider upper- and lower-case to be the same. See
Section 1.5 [Case Folding], page 5.

-I regexp
--ignore-matching-lines=regexp

Ignore changes that just insert or delete lines that match regexp. See Section 1.4
[Specified Lines], page 5.

-l
--left-column

Print only the left column of two common lines. See Section 2.3.1 [Side by Side
Format], page 15.

-o file
--output=file

Put merged output into file. This option is required for merging.

-s
--suppress-common-lines

Do not print common lines. See Section 2.3.1 [Side by Side Format], page 15.

--speed-large-files
Use heuristics to speed handling of large files that have numerous scattered
small changes. See Chapter 6 [diff Performance], page 33.

--strip-trailing-cr
Strip any trailing carriage return at the end of an input line. See Section 1.7
[Binary], page 6.

-t
--expand-tabs

Expand tabs to spaces in the output, to preserve the alignment of tabs in the
input files. See Section 5.1 [Tabs], page 31.

--tabsize=columns
Assume that tab stops are set every columns (default 8) print columns. See
Section 5.1 [Tabs], page 31.

-v
--version

Output version information and then exit.

-w columns
--width=columns

Output at most columns (default 130) print columns per line. See Section 2.3.1
[Side by Side Format], page 15. Note that for historical reasons, this option is
-W in diff, -w in sdiff.

Chapter 16: Invoking sdiff 75

-W
--ignore-all-space

Ignore white space when comparing lines. See Section 1.2 [White Space], page 4.
Note that for historical reasons, this option is -w in diff, -W in sdiff.

-Z
--ignore-trailing-space

Ignore white space at line end. See Section 1.2 [White Space], page 4.

77

17 Standards conformance
In a few cases, the GNU utilities’ default behavior is incompatible with the POSIX stan-
dard. To suppress these incompatibilities, define the POSIXLY_CORRECT environment vari-
able. Unless you are checking for POSIX conformance, you probably do not need to define
POSIXLY_CORRECT.

Normally options and operands can appear in any order, and programs act as if all
the options appear before any operands. For example, ‘diff lao tzu -C 2’ acts like ‘diff
-C 2 lao tzu’, since ‘2’ is an option-argument of -C. However, if the POSIXLY_CORRECT
environment variable is set, options must appear before operands, unless otherwise specified
for a particular command.

Newer versions of POSIX are occasionally incompatible with older versions. For example,
older versions of POSIX allowed the command ‘diff -c -10’ to have the same meaning as
‘diff -C 10’, but POSIX 1003.1-2001 ‘diff’ no longer allows digit-string options like -10.

The GNU utilities normally conform to the version of POSIX that is standard for
your system. To cause them to conform to a different version of POSIX, define the _
POSIX2_VERSION environment variable to a value of the form yyyymm specifying the year
and month the standard was adopted. Two values are currently supported for _POSIX2_
VERSION: ‘199209’ stands for POSIX 1003.2-1992, and ‘200112’ stands for POSIX 1003.1-
2001. For example, if you are running older software that assumes an older version of
POSIX and uses ‘diff -c -10’, you can work around the compatibility problems by setting
‘_POSIX2_VERSION=199209’ in your environment.

79

18 Future Projects
Here are some ideas for improving GNU diff and patch. The GNU project has identified
some improvements as potential programming projects for volunteers. You can also help
by reporting any bugs that you find.

If you are a programmer and would like to contribute something to the GNU project,
please consider volunteering for one of these projects. If you are seriously contemplating
work, please write to gvc@gnu.org to coordinate with other volunteers.

18.1 Suggested Projects for Improving GNU diff and patch
One should be able to use GNU diff to generate a patch from any pair of directory trees,
and given the patch and a copy of one such tree, use patch to generate a faithful copy
of the other. Unfortunately, some changes to directory trees cannot be expressed using
current patch formats; also, patch does not handle some of the existing formats. These
shortcomings motivate the following suggested projects.

18.1.1 Handling Multi-byte and Varying-Width Characters
diff, diff3 and sdiff treat each line of input as a string of characters and encoding errors,
where an encoding error is an input byte that is not part of any character. Single-byte and
multi-byte characters are supported, along with common character encoding systems like
UTF-8. The operating system’s locale specifies the character encoding, and can be specified
with the LC_ALL environment variable. You can find which locales are supported on your
system by running the shell command ‘locale -a’.

When counting columns for options like --expand-tabs (-t), diff consults the locale
for the column width of each character, and assumes that each encoding error occupies a
single column.

When ignoring case for --ignore-case (-i), diff downcases each character before
comparing it, regardless of whether it is multi-byte. See Section 1.5 [Case Folding], page 5.

18.1.2 Handling Changes to the Directory Structure
diff and patch do not handle some changes to directory structure. For example, suppose
one directory tree contains a directory named ‘D’ with some subsidiary files, and another
contains a file with the same name ‘D’. ‘diff -r’ does not output enough information for
patch to transform the directory subtree into the file.

There should be a way to specify that a file has been removed without having to include
its entire contents in the patch file. There should also be a way to tell patch that a file
was renamed, even if there is no way for diff to generate such information. There should
be a way to tell patch that a file’s timestamp has changed, even if its contents have not
changed.

These problems can be fixed by extending the diff output format to represent changes
in directory structure, and extending patch to understand these extensions.

18.1.3 Files that are Neither Directories Nor Regular Files
Some files are neither directories nor regular files: they are unusual files like symbolic links,
device special files, named pipes, and sockets. Currently, diff treats symbolic links as if

mailto:gvc@gnu.org

80 Comparing and Merging Files

they were the pointed-to files, except that a recursive diff reports an error if it detects
infinite loops of symbolic links (e.g., symbolic links to ..). diff treats other special files
like regular files if they are specified at the top level, but simply reports their presence when
comparing directories. This means that patch cannot represent changes to such files. For
example, if you change which file a symbolic link points to, diff outputs the difference
between the two files, instead of the change to the symbolic link.

diff should optionally report changes to special files specially, and patch should be
extended to understand these extensions.

18.1.4 File Names that Contain Unusual Characters
Since diffutils-3.3, file names have been encoded to eliminate the ambiguity of unusual
characters like newline and TAB. However, since any file name containing a newline may
easily cause trouble, in so many contexts (not just diff and patch), a future version of diff
may well reject attempts to operate on such names.

18.1.5 Outputting Diffs in Timestamp Order
Applying patch to a multiple-file diff can result in files whose timestamps are out of order.
GNU patch has options to restore the timestamps of the updated files (see Section 10.5
[Patching Timestamps], page 48), but sometimes it is useful to generate a patch that works
even if the recipient does not have GNU patch, or does not use these options. One way to
do this would be to implement a diff option to output diffs in timestamp order.

18.1.6 Ignoring Certain Changes
It would be nice to have a feature for specifying two strings, one in from-file and one in
to-file, which should be considered to match. Thus, if the two strings are ‘foo’ and ‘bar’,
then if two lines differ only in that ‘foo’ in file 1 corresponds to ‘bar’ in file 2, the lines are
treated as identical.

It is not clear how general this feature can or should be, or what syntax should be used
for it.

A partial substitute is to filter one or both files before comparing, e.g.:
sed 's/foo/bar/g' file1 | diff - file2

However, this outputs the filtered text, not the original.

18.1.7 Improving Performance
When comparing two large directory structures, one of which was originally copied from the
other with timestamps preserved (e.g., with ‘cp -pR’), it would greatly improve performance
if an option told diff to assume that two files with the same size and timestamps have the
same content. See Chapter 6 [diff Performance], page 33.

18.2 Reporting Bugs
If you think you have found a bug in GNU cmp, diff, diff3, or sdiff, please report it
by electronic mail to the GNU utilities bug report mailing list (http://mail.gnu.org/
mailman/listinfo/bug-diffutils) bug-diffutils@gnu.org. Please send bug reports
for GNU patch to bug-patch@gnu.org. Send as precise a description of the problem as
you can, including the output of the --version option and sample input files that produce

http://mail.gnu.org/mailman/listinfo/bug-diffutils
http://mail.gnu.org/mailman/listinfo/bug-diffutils
mailto:bug-diffutils@gnu.org
mailto:bug-patch@gnu.org

Chapter 18: Future Projects 81

the bug, if applicable. If you have a nontrivial fix for the bug, please send it as well. If you
have a patch, please send it too. It may simplify the maintainer’s job if the patch is relative
to a recent test release, which you can find in the directory ftp://alpha.gnu.org/gnu/
diffutils/.

ftp://alpha.gnu.org/gnu/diffutils/
ftp://alpha.gnu.org/gnu/diffutils/

83

Appendix A Copying This Manual
Version 1.3, 3 November 2008

Copyright c© 2000–2002, 2007–2008, 2022–2025 Free Software
Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

https://fsf.org/

84 Comparing and Merging Files

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document
to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix A: Copying This Manual 85

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

86 Comparing and Merging Files

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix A: Copying This Manual 87

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

88 Comparing and Merging Files

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: Copying This Manual 89

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/

90 Comparing and Merging Files

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

91

Appendix B Translations of This Manual
Nishio Futoshi of the GNUjdoc project has prepared a Japanese translation of this manual.
Its most recent version can be found at http://openlab.ring.gr.jp/gnujdoc/cvsweb/
cvsweb.cgi/gnujdoc/.

http://openlab.ring.gr.jp/gnujdoc/cvsweb/cvsweb.cgi/gnujdoc/
http://openlab.ring.gr.jp/gnujdoc/cvsweb/cvsweb.cgi/gnujdoc/

93

Appendix C Index

!
‘!’ output format . 9

+
‘+-’ output format . 12

<
‘<’ output format . 16
‘<<<<<<<’ for marking conflicts 40

_POSIX2_VERSION . 77

A
ad capability . 64
aligning tab stops . 31
alternate file names . 14
always color option . 62
auto color option . 62

B
backup file names . 50
backup file strategy . 50
binary file diff . 6
blank and tab difference suppression 4
blank line difference suppression 4
brief difference reports . 5
bug reports . 80

C
C function headings . 14
C if-then-else output format . 19
case difference suppression . 5
ClearCase . 45
cmp invocation . 57
cmp options . 57
color, distinguishing different context 62
columnar output . 15
common mistakes with patches 55
comparing three files . 35
conflict . 39
conflict marking . 40
context output format . 9
creating files . 48

D
de capability . 64
diagnostics from patch . 51
diff invocation . 61
diff merging . 43
diff options . 61
diff sample input . 9
diff3 hunks . 36
diff3 invocation . 67
diff3 options . 67
diff3 sample input . 35
directories and patch . 49
directory structure changes . 79
dry runs for patch . 48

E
ed script output format . 17
EDITOR . 44
empty files, removing . 48
exabyte, definition of . 58
exbibyte, definition of . 59

F
file name alternates . 14
file names with unusual characters 80
format of diff output . 9
format of diff3 output . 35
formats for if-then-else line groups 20
forward ed script output format 18
full lines . 27
function headings, C . 14
fuzz factor when patching . 47

G
gibibyte, definition of . 58
gigabyte, definition of . 58

H
hd capability . 64
headings . 13
hunks . 3
hunks for diff3 . 36

94 Comparing and Merging Files

I
if-then-else output format . 19
ifdef output format . 19
imperfect patch application . 46
incomplete line merging . 42
incomplete lines . 27
inexact patches . 47
inhibit messages from patch . 52
interactive merging . 43
introduction . 3
intuiting file names from patches 49
invoking cmp . 57
invoking diff . 61
invoking diff3 . 67
invoking patch . 69
invoking sdiff . 73

K
keyboard input to patch . 52
kibibyte, definition of . 58
kilobyte, definition of . 58

L
LC_COLLATE . 29
LC_NUMERIC . 22
LC_TIME . 11
line formats . 22
line group formats . 20
ln capability . 64

M
mebibyte, definition of . 58
megabyte, definition of . 58
merge commands . 43
merged diff3 format . 41
merged output format . 19
merging from a common ancestor 39
merging interactively . 43
messages from patch . 51
multi-byte characters . 79
multiple patches . 49
mutating files . 7

N
newline treatment by diff . 27
none color option . 62
normal output format . 16

O
options for cmp . 57
options for diff . 61
options for diff3 . 67
options for patch . 69
options for sdiff . 73
output formats . 9
overlap . 39
overlapping change, selection of 39
overview of diff and patch . 1

P
paginating diff output . 32
patch consumer tips . 55
patch input format . 45
patch invocation . 69
patch messages and questions 51
patch options . 69
patch producer tips . 55
patch, common mistakes . 55
PATCH_GET . 45
PATCH_VERSION_CONTROL . 50
patches, shrinking . 56
patching directories . 49
pebibyte, definition of . 58
performance of diff . 33
petabyte, definition of . 58
POSIX . 53, 77
POSIXLY_CORRECT . 53, 77
projects for directories . 79

Q
quettabyte, definition of . 59
quoting style . 52
QUOTING_STYLE . 52

R
RCS . 45
RCS script output format . 19
regular expression matching headings 13
regular expression suppression 5
reject file names . 51
removing empty files . 48
reporting bugs . 80
reversed patches . 46
revision control . 45
ronnabyte, definition of . 59

Appendix C: Index 95

S
sample input for diff . 9
sample input for diff3 . 35
SCCS . 45
script output formats . 17
sdiff invocation . 73
sdiff options . 73
sdiff output format . 43
section headings . 13
side by side . 15
side by side format . 15
SIMPLE_BACKUP_SUFFIX . 50
special files . 79
specified headings . 13
summarizing which files differ 5
System V diff3 compatibility 42

T
tab and blank difference suppression 4
tab stop alignment . 31
tebibyte, definition of . 58
terabyte, definition of . 58
terminal, using color iff . 62
testing patch . 48
text versus binary diff . 6
timestamp format, context diffs 11
timestamp format, unified diffs 13

timestamps on patched files . 48
traditional patch . 53
trailing blanks . 31
two-column output . 15

U
unified output format . 12
unmerged change . 39

V
varying-width characters . 79
verbose messages from patch 52
version control . 45
VERSION_CONTROL . 46, 50

W
white space in patches . 46

Y
yottabyte, definition of . 59

Z
zettabyte, definition of . 59

	Overview
	1 What Comparison Means
	Hunks
	Suppressing Differences in Blank and Tab Spacing
	Suppressing Differences Whose Lines Are All Blank
	Suppressing Differences Whose Lines All Match a Regular Expression
	Suppressing Case Differences
	Summarizing Which Files Differ
	Binary Files and Forcing Text Comparisons
	Comparing Files While They Are Changing

	2 diff Output Formats
	Two Sample Input Files
	Showing Differences in Their Context
	Context Format
	An Example of Context Format
	An Example of Context Format with Less Context
	Detailed Description of Context Format

	Unified Format
	An Example of Unified Format
	Detailed Description of Unified Format

	Showing Which Sections Differences Are in
	Showing Lines That Match Regular Expressions
	Showing C Function Headings

	Showing Alternate File Names

	Showing Differences Side by Side
	Controlling Side by Side Format
	An Example of Side by Side Format

	Showing Differences Without Context
	An Example of Normal Format
	Detailed Description of Normal Format

	Making Edit Scripts
	ed Scripts
	Example ed Script
	Detailed Description of ed Format

	Forward ed Scripts
	RCS Scripts

	Merging Files with If-then-else
	Line Group Formats
	Line Formats
	An Example of If-then-else Format
	Detailed Description of If-then-else Format

	3 Incomplete Lines
	4 Comparing Directories
	5 Making diff Output Prettier
	Preserving Tab Stop Alignment
	Omitting trailing blanks
	Paginating diff Output

	6 diff Performance Tradeoffs
	7 Comparing Three Files
	A Third Sample Input File
	An Example of diff3 Normal Format
	Detailed Description of diff3 Normal Format
	diff3 Hunks

	8 Merging From a Common Ancestor
	Selecting Which Changes to Incorporate
	Marking Conflicts
	Generating the Merged Output Directly
	How diff3 Merges Incomplete Lines
	Saving the Changed File

	9 Interactive Merging with sdiff
	Specifying diff Options to sdiff
	Merge Commands

	10 Merging with patch
	Selecting the patch Input Format
	Revision Control
	Applying Imperfect Patches
	Applying Patches with Changed White Space
	Applying Reversed Patches
	Helping patch Find Inexact Matches
	Predicting what patch will do

	Creating and Removing Files
	Updating Timestamps on Patched Files
	Multiple Patches in a File
	Applying Patches in Other Directories
	Backup Files
	Backup File Names
	Reject File Names
	Messages and Questions from patch
	Controlling the Verbosity of patch
	Inhibiting Keyboard Input
	patch Quoting Style

	patch and the POSIX Standard
	GNU patch and Traditional patch

	11 Tips for Making and Using Patches
	Tips for Patch Producers
	Tips for Patch Consumers
	Avoiding Common Mistakes
	Generating Smaller Patches

	12 Invoking cmp
	Options to cmp

	13 Invoking diff
	Options to diff

	14 Invoking diff3
	Options to diff3

	15 Invoking patch
	Options to patch

	16 Invoking sdiff
	Options to sdiff

	17 Standards conformance
	18 Future Projects
	Suggested Projects for Improving GNU diff and patch
	Handling Multi-byte and Varying-Width Characters
	Handling Changes to the Directory Structure
	Files that are Neither Directories Nor Regular Files
	File Names that Contain Unusual Characters
	Outputting Diffs in Timestamp Order
	Ignoring Certain Changes
	Improving Performance

	Reporting Bugs

	A Copying This Manual
	B Translations of This Manual
	C Index

